1/* utility to create the register check tables
2 * this includes inlined list.h safe for userspace.
3 *
4 * Copyright 2009 Jerome Glisse
5 * Copyright 2009 Red Hat Inc.
6 *
7 * Authors:
8 * 	Jerome Glisse
9 * 	Dave Airlie
10 */
11
12#include <sys/types.h>
13#include <stdlib.h>
14#include <string.h>
15#include <stdio.h>
16#include <regex.h>
17#include <libgen.h>
18
19#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
20/**
21 * container_of - cast a member of a structure out to the containing structure
22 * @ptr:    the pointer to the member.
23 * @type:   the type of the container struct this is embedded in.
24 * @member: the name of the member within the struct.
25 *
26 */
27#define container_of(ptr, type, member) ({          \
28	const typeof(((type *)0)->member)*__mptr = (ptr);    \
29		     (type *)((char *)__mptr - offsetof(type, member)); })
30
31/*
32 * Simple doubly linked list implementation.
33 *
34 * Some of the internal functions ("__xxx") are useful when
35 * manipulating whole lists rather than single entries, as
36 * sometimes we already know the next/prev entries and we can
37 * generate better code by using them directly rather than
38 * using the generic single-entry routines.
39 */
40
41struct list_head {
42	struct list_head *next, *prev;
43};
44
45#define LIST_HEAD_INIT(name) { &(name), &(name) }
46
47#define LIST_HEAD(name) \
48	struct list_head name = LIST_HEAD_INIT(name)
49
50static inline void INIT_LIST_HEAD(struct list_head *list)
51{
52	list->next = list;
53	list->prev = list;
54}
55
56/*
57 * Insert a new entry between two known consecutive entries.
58 *
59 * This is only for internal list manipulation where we know
60 * the prev/next entries already!
61 */
62#ifndef CONFIG_DEBUG_LIST
63static inline void __list_add(struct list_head *new,
64			      struct list_head *prev, struct list_head *next)
65{
66	next->prev = new;
67	new->next = next;
68	new->prev = prev;
69	prev->next = new;
70}
71#else
72extern void __list_add(struct list_head *new,
73		       struct list_head *prev, struct list_head *next);
74#endif
75
76/**
77 * list_add - add a new entry
78 * @new: new entry to be added
79 * @head: list head to add it after
80 *
81 * Insert a new entry after the specified head.
82 * This is good for implementing stacks.
83 */
84static inline void list_add(struct list_head *new, struct list_head *head)
85{
86	__list_add(new, head, head->next);
87}
88
89/**
90 * list_add_tail - add a new entry
91 * @new: new entry to be added
92 * @head: list head to add it before
93 *
94 * Insert a new entry before the specified head.
95 * This is useful for implementing queues.
96 */
97static inline void list_add_tail(struct list_head *new, struct list_head *head)
98{
99	__list_add(new, head->prev, head);
100}
101
102/*
103 * Delete a list entry by making the prev/next entries
104 * point to each other.
105 *
106 * This is only for internal list manipulation where we know
107 * the prev/next entries already!
108 */
109static inline void __list_del(struct list_head *prev, struct list_head *next)
110{
111	next->prev = prev;
112	prev->next = next;
113}
114
115/**
116 * list_del - deletes entry from list.
117 * @entry: the element to delete from the list.
118 * Note: list_empty() on entry does not return true after this, the entry is
119 * in an undefined state.
120 */
121#ifndef CONFIG_DEBUG_LIST
122static inline void list_del(struct list_head *entry)
123{
124	__list_del(entry->prev, entry->next);
125	entry->next = (void *)0xDEADBEEF;
126	entry->prev = (void *)0xBEEFDEAD;
127}
128#else
129extern void list_del(struct list_head *entry);
130#endif
131
132/**
133 * list_replace - replace old entry by new one
134 * @old : the element to be replaced
135 * @new : the new element to insert
136 *
137 * If @old was empty, it will be overwritten.
138 */
139static inline void list_replace(struct list_head *old, struct list_head *new)
140{
141	new->next = old->next;
142	new->next->prev = new;
143	new->prev = old->prev;
144	new->prev->next = new;
145}
146
147static inline void list_replace_init(struct list_head *old,
148				     struct list_head *new)
149{
150	list_replace(old, new);
151	INIT_LIST_HEAD(old);
152}
153
154/**
155 * list_del_init - deletes entry from list and reinitialize it.
156 * @entry: the element to delete from the list.
157 */
158static inline void list_del_init(struct list_head *entry)
159{
160	__list_del(entry->prev, entry->next);
161	INIT_LIST_HEAD(entry);
162}
163
164/**
165 * list_move - delete from one list and add as another's head
166 * @list: the entry to move
167 * @head: the head that will precede our entry
168 */
169static inline void list_move(struct list_head *list, struct list_head *head)
170{
171	__list_del(list->prev, list->next);
172	list_add(list, head);
173}
174
175/**
176 * list_move_tail - delete from one list and add as another's tail
177 * @list: the entry to move
178 * @head: the head that will follow our entry
179 */
180static inline void list_move_tail(struct list_head *list,
181				  struct list_head *head)
182{
183	__list_del(list->prev, list->next);
184	list_add_tail(list, head);
185}
186
187/**
188 * list_is_last - tests whether @list is the last entry in list @head
189 * @list: the entry to test
190 * @head: the head of the list
191 */
192static inline int list_is_last(const struct list_head *list,
193			       const struct list_head *head)
194{
195	return list->next == head;
196}
197
198/**
199 * list_empty - tests whether a list is empty
200 * @head: the list to test.
201 */
202static inline int list_empty(const struct list_head *head)
203{
204	return head->next == head;
205}
206
207/**
208 * list_empty_careful - tests whether a list is empty and not being modified
209 * @head: the list to test
210 *
211 * Description:
212 * tests whether a list is empty _and_ checks that no other CPU might be
213 * in the process of modifying either member (next or prev)
214 *
215 * NOTE: using list_empty_careful() without synchronization
216 * can only be safe if the only activity that can happen
217 * to the list entry is list_del_init(). Eg. it cannot be used
218 * if another CPU could re-list_add() it.
219 */
220static inline int list_empty_careful(const struct list_head *head)
221{
222	struct list_head *next = head->next;
223	return (next == head) && (next == head->prev);
224}
225
226/**
227 * list_is_singular - tests whether a list has just one entry.
228 * @head: the list to test.
229 */
230static inline int list_is_singular(const struct list_head *head)
231{
232	return !list_empty(head) && (head->next == head->prev);
233}
234
235static inline void __list_cut_position(struct list_head *list,
236				       struct list_head *head,
237				       struct list_head *entry)
238{
239	struct list_head *new_first = entry->next;
240	list->next = head->next;
241	list->next->prev = list;
242	list->prev = entry;
243	entry->next = list;
244	head->next = new_first;
245	new_first->prev = head;
246}
247
248/**
249 * list_cut_position - cut a list into two
250 * @list: a new list to add all removed entries
251 * @head: a list with entries
252 * @entry: an entry within head, could be the head itself
253 *	and if so we won't cut the list
254 *
255 * This helper moves the initial part of @head, up to and
256 * including @entry, from @head to @list. You should
257 * pass on @entry an element you know is on @head. @list
258 * should be an empty list or a list you do not care about
259 * losing its data.
260 *
261 */
262static inline void list_cut_position(struct list_head *list,
263				     struct list_head *head,
264				     struct list_head *entry)
265{
266	if (list_empty(head))
267		return;
268	if (list_is_singular(head) && (head->next != entry && head != entry))
269		return;
270	if (entry == head)
271		INIT_LIST_HEAD(list);
272	else
273		__list_cut_position(list, head, entry);
274}
275
276static inline void __list_splice(const struct list_head *list,
277				 struct list_head *prev, struct list_head *next)
278{
279	struct list_head *first = list->next;
280	struct list_head *last = list->prev;
281
282	first->prev = prev;
283	prev->next = first;
284
285	last->next = next;
286	next->prev = last;
287}
288
289/**
290 * list_splice - join two lists, this is designed for stacks
291 * @list: the new list to add.
292 * @head: the place to add it in the first list.
293 */
294static inline void list_splice(const struct list_head *list,
295			       struct list_head *head)
296{
297	if (!list_empty(list))
298		__list_splice(list, head, head->next);
299}
300
301/**
302 * list_splice_tail - join two lists, each list being a queue
303 * @list: the new list to add.
304 * @head: the place to add it in the first list.
305 */
306static inline void list_splice_tail(struct list_head *list,
307				    struct list_head *head)
308{
309	if (!list_empty(list))
310		__list_splice(list, head->prev, head);
311}
312
313/**
314 * list_splice_init - join two lists and reinitialise the emptied list.
315 * @list: the new list to add.
316 * @head: the place to add it in the first list.
317 *
318 * The list at @list is reinitialised
319 */
320static inline void list_splice_init(struct list_head *list,
321				    struct list_head *head)
322{
323	if (!list_empty(list)) {
324		__list_splice(list, head, head->next);
325		INIT_LIST_HEAD(list);
326	}
327}
328
329/**
330 * list_splice_tail_init - join two lists and reinitialise the emptied list
331 * @list: the new list to add.
332 * @head: the place to add it in the first list.
333 *
334 * Each of the lists is a queue.
335 * The list at @list is reinitialised
336 */
337static inline void list_splice_tail_init(struct list_head *list,
338					 struct list_head *head)
339{
340	if (!list_empty(list)) {
341		__list_splice(list, head->prev, head);
342		INIT_LIST_HEAD(list);
343	}
344}
345
346/**
347 * list_entry - get the struct for this entry
348 * @ptr:	the &struct list_head pointer.
349 * @type:	the type of the struct this is embedded in.
350 * @member:	the name of the list_struct within the struct.
351 */
352#define list_entry(ptr, type, member) \
353	container_of(ptr, type, member)
354
355/**
356 * list_first_entry - get the first element from a list
357 * @ptr:	the list head to take the element from.
358 * @type:	the type of the struct this is embedded in.
359 * @member:	the name of the list_struct within the struct.
360 *
361 * Note, that list is expected to be not empty.
362 */
363#define list_first_entry(ptr, type, member) \
364	list_entry((ptr)->next, type, member)
365
366/**
367 * list_for_each	-	iterate over a list
368 * @pos:	the &struct list_head to use as a loop cursor.
369 * @head:	the head for your list.
370 */
371#define list_for_each(pos, head) \
372	for (pos = (head)->next; prefetch(pos->next), pos != (head); \
373		pos = pos->next)
374
375/**
376 * list_for_each_prev	-	iterate over a list backwards
377 * @pos:	the &struct list_head to use as a loop cursor.
378 * @head:	the head for your list.
379 */
380#define list_for_each_prev(pos, head) \
381	for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
382		pos = pos->prev)
383
384/**
385 * list_for_each_safe - iterate over a list safe against removal of list entry
386 * @pos:	the &struct list_head to use as a loop cursor.
387 * @n:		another &struct list_head to use as temporary storage
388 * @head:	the head for your list.
389 */
390#define list_for_each_safe(pos, n, head) \
391	for (pos = (head)->next, n = pos->next; pos != (head); \
392		pos = n, n = pos->next)
393
394/**
395 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
396 * @pos:	the &struct list_head to use as a loop cursor.
397 * @n:		another &struct list_head to use as temporary storage
398 * @head:	the head for your list.
399 */
400#define list_for_each_prev_safe(pos, n, head) \
401	for (pos = (head)->prev, n = pos->prev; \
402	     prefetch(pos->prev), pos != (head); \
403	     pos = n, n = pos->prev)
404
405/**
406 * list_for_each_entry	-	iterate over list of given type
407 * @pos:	the type * to use as a loop cursor.
408 * @head:	the head for your list.
409 * @member:	the name of the list_struct within the struct.
410 */
411#define list_for_each_entry(pos, head, member)				\
412	for (pos = list_entry((head)->next, typeof(*pos), member);	\
413	     &pos->member != (head); 	\
414	     pos = list_entry(pos->member.next, typeof(*pos), member))
415
416/**
417 * list_for_each_entry_reverse - iterate backwards over list of given type.
418 * @pos:	the type * to use as a loop cursor.
419 * @head:	the head for your list.
420 * @member:	the name of the list_struct within the struct.
421 */
422#define list_for_each_entry_reverse(pos, head, member)			\
423	for (pos = list_entry((head)->prev, typeof(*pos), member);	\
424	     prefetch(pos->member.prev), &pos->member != (head); 	\
425	     pos = list_entry(pos->member.prev, typeof(*pos), member))
426
427/**
428 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
429 * @pos:	the type * to use as a start point
430 * @head:	the head of the list
431 * @member:	the name of the list_struct within the struct.
432 *
433 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
434 */
435#define list_prepare_entry(pos, head, member) \
436	((pos) ? : list_entry(head, typeof(*pos), member))
437
438/**
439 * list_for_each_entry_continue - continue iteration over list of given type
440 * @pos:	the type * to use as a loop cursor.
441 * @head:	the head for your list.
442 * @member:	the name of the list_struct within the struct.
443 *
444 * Continue to iterate over list of given type, continuing after
445 * the current position.
446 */
447#define list_for_each_entry_continue(pos, head, member) 		\
448	for (pos = list_entry(pos->member.next, typeof(*pos), member);	\
449	     prefetch(pos->member.next), &pos->member != (head);	\
450	     pos = list_entry(pos->member.next, typeof(*pos), member))
451
452/**
453 * list_for_each_entry_continue_reverse - iterate backwards from the given point
454 * @pos:	the type * to use as a loop cursor.
455 * @head:	the head for your list.
456 * @member:	the name of the list_struct within the struct.
457 *
458 * Start to iterate over list of given type backwards, continuing after
459 * the current position.
460 */
461#define list_for_each_entry_continue_reverse(pos, head, member)		\
462	for (pos = list_entry(pos->member.prev, typeof(*pos), member);	\
463	     prefetch(pos->member.prev), &pos->member != (head);	\
464	     pos = list_entry(pos->member.prev, typeof(*pos), member))
465
466/**
467 * list_for_each_entry_from - iterate over list of given type from the current point
468 * @pos:	the type * to use as a loop cursor.
469 * @head:	the head for your list.
470 * @member:	the name of the list_struct within the struct.
471 *
472 * Iterate over list of given type, continuing from current position.
473 */
474#define list_for_each_entry_from(pos, head, member) 			\
475	for (; prefetch(pos->member.next), &pos->member != (head);	\
476	     pos = list_entry(pos->member.next, typeof(*pos), member))
477
478/**
479 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
480 * @pos:	the type * to use as a loop cursor.
481 * @n:		another type * to use as temporary storage
482 * @head:	the head for your list.
483 * @member:	the name of the list_struct within the struct.
484 */
485#define list_for_each_entry_safe(pos, n, head, member)			\
486	for (pos = list_entry((head)->next, typeof(*pos), member),	\
487		n = list_entry(pos->member.next, typeof(*pos), member);	\
488	     &pos->member != (head); 					\
489	     pos = n, n = list_entry(n->member.next, typeof(*n), member))
490
491/**
492 * list_for_each_entry_safe_continue
493 * @pos:	the type * to use as a loop cursor.
494 * @n:		another type * to use as temporary storage
495 * @head:	the head for your list.
496 * @member:	the name of the list_struct within the struct.
497 *
498 * Iterate over list of given type, continuing after current point,
499 * safe against removal of list entry.
500 */
501#define list_for_each_entry_safe_continue(pos, n, head, member) 		\
502	for (pos = list_entry(pos->member.next, typeof(*pos), member), 		\
503		n = list_entry(pos->member.next, typeof(*pos), member);		\
504	     &pos->member != (head);						\
505	     pos = n, n = list_entry(n->member.next, typeof(*n), member))
506
507/**
508 * list_for_each_entry_safe_from
509 * @pos:	the type * to use as a loop cursor.
510 * @n:		another type * to use as temporary storage
511 * @head:	the head for your list.
512 * @member:	the name of the list_struct within the struct.
513 *
514 * Iterate over list of given type from current point, safe against
515 * removal of list entry.
516 */
517#define list_for_each_entry_safe_from(pos, n, head, member) 			\
518	for (n = list_entry(pos->member.next, typeof(*pos), member);		\
519	     &pos->member != (head);						\
520	     pos = n, n = list_entry(n->member.next, typeof(*n), member))
521
522/**
523 * list_for_each_entry_safe_reverse
524 * @pos:	the type * to use as a loop cursor.
525 * @n:		another type * to use as temporary storage
526 * @head:	the head for your list.
527 * @member:	the name of the list_struct within the struct.
528 *
529 * Iterate backwards over list of given type, safe against removal
530 * of list entry.
531 */
532#define list_for_each_entry_safe_reverse(pos, n, head, member)		\
533	for (pos = list_entry((head)->prev, typeof(*pos), member),	\
534		n = list_entry(pos->member.prev, typeof(*pos), member);	\
535	     &pos->member != (head); 					\
536	     pos = n, n = list_entry(n->member.prev, typeof(*n), member))
537
538struct offset {
539	struct list_head list;
540	unsigned offset;
541};
542
543struct table {
544	struct list_head offsets;
545	unsigned offset_max;
546	unsigned nentry;
547	unsigned *table;
548	char *gpu_prefix;
549};
550
551static struct offset *offset_new(unsigned o)
552{
553	struct offset *offset;
554
555	offset = (struct offset *)malloc(sizeof(struct offset));
556	if (offset) {
557		INIT_LIST_HEAD(&offset->list);
558		offset->offset = o;
559	}
560	return offset;
561}
562
563static void table_offset_add(struct table *t, struct offset *offset)
564{
565	list_add_tail(&offset->list, &t->offsets);
566}
567
568static void table_init(struct table *t)
569{
570	INIT_LIST_HEAD(&t->offsets);
571	t->offset_max = 0;
572	t->nentry = 0;
573	t->table = NULL;
574}
575
576static void table_print(struct table *t)
577{
578	unsigned nlloop, i, j, n, c, id;
579
580	nlloop = (t->nentry + 3) / 4;
581	c = t->nentry;
582	printf("static const unsigned %s_reg_safe_bm[%d] = {\n", t->gpu_prefix,
583	       t->nentry);
584	for (i = 0, id = 0; i < nlloop; i++) {
585		n = 4;
586		if (n > c)
587			n = c;
588		c -= n;
589		for (j = 0; j < n; j++) {
590			if (j == 0)
591				printf("\t");
592			else
593				printf(" ");
594			printf("0x%08X,", t->table[id++]);
595		}
596		printf("\n");
597	}
598	printf("};\n");
599}
600
601static int table_build(struct table *t)
602{
603	struct offset *offset;
604	unsigned i, m;
605
606	t->nentry = ((t->offset_max >> 2) + 31) / 32;
607	t->table = (unsigned *)malloc(sizeof(unsigned) * t->nentry);
608	if (t->table == NULL)
609		return -1;
610	memset(t->table, 0xff, sizeof(unsigned) * t->nentry);
611	list_for_each_entry(offset, &t->offsets, list) {
612		i = (offset->offset >> 2) / 32;
613		m = (offset->offset >> 2) & 31;
614		m = 1 << m;
615		t->table[i] ^= m;
616	}
617	return 0;
618}
619
620static char gpu_name[10];
621static int parser_auth(struct table *t, const char *filename)
622{
623	FILE *file;
624	regex_t mask_rex;
625	regmatch_t match[4];
626	char buf[1024];
627	size_t end;
628	int len;
629	int done = 0;
630	int r;
631	unsigned o;
632	struct offset *offset;
633	char last_reg_s[10];
634	int last_reg;
635
636	if (regcomp
637	    (&mask_rex, "(0x[0-9a-fA-F]*) *([_a-zA-Z0-9]*)", REG_EXTENDED)) {
638		fprintf(stderr, "Failed to compile regular expression\n");
639		return -1;
640	}
641	file = fopen(filename, "r");
642	if (file == NULL) {
643		fprintf(stderr, "Failed to open: %s\n", filename);
644		return -1;
645	}
646	fseek(file, 0, SEEK_END);
647	end = ftell(file);
648	fseek(file, 0, SEEK_SET);
649
650	/* get header */
651	if (fgets(buf, 1024, file) == NULL) {
652		fclose(file);
653		return -1;
654	}
655
656	/* first line will contain the last register
657	 * and gpu name */
658	sscanf(buf, "%9s %9s", gpu_name, last_reg_s);
659	t->gpu_prefix = gpu_name;
660	last_reg = strtol(last_reg_s, NULL, 16);
661
662	do {
663		if (fgets(buf, 1024, file) == NULL) {
664			fclose(file);
665			return -1;
666		}
667		len = strlen(buf);
668		if (ftell(file) == end)
669			done = 1;
670		if (len) {
671			r = regexec(&mask_rex, buf, 4, match, 0);
672			if (r == REG_NOMATCH) {
673			} else if (r) {
674				fprintf(stderr,
675					"Error matching regular expression %d in %s\n",
676					r, filename);
677				fclose(file);
678				return -1;
679			} else {
680				buf[match[0].rm_eo] = 0;
681				buf[match[1].rm_eo] = 0;
682				buf[match[2].rm_eo] = 0;
683				o = strtol(&buf[match[1].rm_so], NULL, 16);
684				offset = offset_new(o);
685				table_offset_add(t, offset);
686				if (o > t->offset_max)
687					t->offset_max = o;
688			}
689		}
690	} while (!done);
691	fclose(file);
692	if (t->offset_max < last_reg)
693		t->offset_max = last_reg;
694	return table_build(t);
695}
696
697int main(int argc, char *argv[])
698{
699	struct table t;
700
701	if (argc != 2) {
702		fprintf(stderr, "Usage: %s <authfile>\n", argv[0]);
703		exit(1);
704	}
705	table_init(&t);
706	if (parser_auth(&t, argv[1])) {
707		fprintf(stderr, "Failed to parse file %s\n", argv[1]);
708		return -1;
709	}
710	table_print(&t);
711	return 0;
712}
713