hid-core.c revision 0f2213208f8da51bcb665309e3468f000489c04f
1/*
2 *  HID support for Linux
3 *
4 *  Copyright (c) 1999 Andreas Gal
5 *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
6 *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
7 *  Copyright (c) 2006-2007 Jiri Kosina
8 */
9
10/*
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
14 * any later version.
15 */
16
17#include <linux/module.h>
18#include <linux/slab.h>
19#include <linux/init.h>
20#include <linux/kernel.h>
21#include <linux/list.h>
22#include <linux/mm.h>
23#include <linux/spinlock.h>
24#include <asm/unaligned.h>
25#include <asm/byteorder.h>
26#include <linux/input.h>
27#include <linux/wait.h>
28#include <linux/vmalloc.h>
29#include <linux/sched.h>
30
31#include <linux/hid.h>
32#include <linux/hiddev.h>
33#include <linux/hid-debug.h>
34#include <linux/hidraw.h>
35
36#include "hid-ids.h"
37
38/*
39 * Version Information
40 */
41
42#define DRIVER_VERSION "v2.6"
43#define DRIVER_AUTHOR "Andreas Gal, Vojtech Pavlik, Jiri Kosina"
44#define DRIVER_DESC "HID core driver"
45#define DRIVER_LICENSE "GPL"
46
47#ifdef CONFIG_HID_DEBUG
48int hid_debug = 0;
49module_param_named(debug, hid_debug, int, 0600);
50MODULE_PARM_DESC(debug, "HID debugging (0=off, 1=probing info, 2=continuous data dumping)");
51EXPORT_SYMBOL_GPL(hid_debug);
52#endif
53
54/*
55 * Register a new report for a device.
56 */
57
58static struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
59{
60	struct hid_report_enum *report_enum = device->report_enum + type;
61	struct hid_report *report;
62
63	if (report_enum->report_id_hash[id])
64		return report_enum->report_id_hash[id];
65
66	if (!(report = kzalloc(sizeof(struct hid_report), GFP_KERNEL)))
67		return NULL;
68
69	if (id != 0)
70		report_enum->numbered = 1;
71
72	report->id = id;
73	report->type = type;
74	report->size = 0;
75	report->device = device;
76	report_enum->report_id_hash[id] = report;
77
78	list_add_tail(&report->list, &report_enum->report_list);
79
80	return report;
81}
82
83/*
84 * Register a new field for this report.
85 */
86
87static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
88{
89	struct hid_field *field;
90
91	if (report->maxfield == HID_MAX_FIELDS) {
92		dbg_hid("too many fields in report\n");
93		return NULL;
94	}
95
96	if (!(field = kzalloc(sizeof(struct hid_field) + usages * sizeof(struct hid_usage)
97		+ values * sizeof(unsigned), GFP_KERNEL))) return NULL;
98
99	field->index = report->maxfield++;
100	report->field[field->index] = field;
101	field->usage = (struct hid_usage *)(field + 1);
102	field->value = (s32 *)(field->usage + usages);
103	field->report = report;
104
105	return field;
106}
107
108/*
109 * Open a collection. The type/usage is pushed on the stack.
110 */
111
112static int open_collection(struct hid_parser *parser, unsigned type)
113{
114	struct hid_collection *collection;
115	unsigned usage;
116
117	usage = parser->local.usage[0];
118
119	if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
120		dbg_hid("collection stack overflow\n");
121		return -1;
122	}
123
124	if (parser->device->maxcollection == parser->device->collection_size) {
125		collection = kmalloc(sizeof(struct hid_collection) *
126				parser->device->collection_size * 2, GFP_KERNEL);
127		if (collection == NULL) {
128			dbg_hid("failed to reallocate collection array\n");
129			return -1;
130		}
131		memcpy(collection, parser->device->collection,
132			sizeof(struct hid_collection) *
133			parser->device->collection_size);
134		memset(collection + parser->device->collection_size, 0,
135			sizeof(struct hid_collection) *
136			parser->device->collection_size);
137		kfree(parser->device->collection);
138		parser->device->collection = collection;
139		parser->device->collection_size *= 2;
140	}
141
142	parser->collection_stack[parser->collection_stack_ptr++] =
143		parser->device->maxcollection;
144
145	collection = parser->device->collection +
146		parser->device->maxcollection++;
147	collection->type = type;
148	collection->usage = usage;
149	collection->level = parser->collection_stack_ptr - 1;
150
151	if (type == HID_COLLECTION_APPLICATION)
152		parser->device->maxapplication++;
153
154	return 0;
155}
156
157/*
158 * Close a collection.
159 */
160
161static int close_collection(struct hid_parser *parser)
162{
163	if (!parser->collection_stack_ptr) {
164		dbg_hid("collection stack underflow\n");
165		return -1;
166	}
167	parser->collection_stack_ptr--;
168	return 0;
169}
170
171/*
172 * Climb up the stack, search for the specified collection type
173 * and return the usage.
174 */
175
176static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
177{
178	int n;
179	for (n = parser->collection_stack_ptr - 1; n >= 0; n--)
180		if (parser->device->collection[parser->collection_stack[n]].type == type)
181			return parser->device->collection[parser->collection_stack[n]].usage;
182	return 0; /* we know nothing about this usage type */
183}
184
185/*
186 * Add a usage to the temporary parser table.
187 */
188
189static int hid_add_usage(struct hid_parser *parser, unsigned usage)
190{
191	if (parser->local.usage_index >= HID_MAX_USAGES) {
192		dbg_hid("usage index exceeded\n");
193		return -1;
194	}
195	parser->local.usage[parser->local.usage_index] = usage;
196	parser->local.collection_index[parser->local.usage_index] =
197		parser->collection_stack_ptr ?
198		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
199	parser->local.usage_index++;
200	return 0;
201}
202
203/*
204 * Register a new field for this report.
205 */
206
207static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
208{
209	struct hid_report *report;
210	struct hid_field *field;
211	int usages;
212	unsigned offset;
213	int i;
214
215	if (!(report = hid_register_report(parser->device, report_type, parser->global.report_id))) {
216		dbg_hid("hid_register_report failed\n");
217		return -1;
218	}
219
220	if (parser->global.logical_maximum < parser->global.logical_minimum) {
221		dbg_hid("logical range invalid %d %d\n", parser->global.logical_minimum, parser->global.logical_maximum);
222		return -1;
223	}
224
225	offset = report->size;
226	report->size += parser->global.report_size * parser->global.report_count;
227
228	if (!parser->local.usage_index) /* Ignore padding fields */
229		return 0;
230
231	usages = max_t(int, parser->local.usage_index, parser->global.report_count);
232
233	if ((field = hid_register_field(report, usages, parser->global.report_count)) == NULL)
234		return 0;
235
236	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
237	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
238	field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
239
240	for (i = 0; i < usages; i++) {
241		int j = i;
242		/* Duplicate the last usage we parsed if we have excess values */
243		if (i >= parser->local.usage_index)
244			j = parser->local.usage_index - 1;
245		field->usage[i].hid = parser->local.usage[j];
246		field->usage[i].collection_index =
247			parser->local.collection_index[j];
248	}
249
250	field->maxusage = usages;
251	field->flags = flags;
252	field->report_offset = offset;
253	field->report_type = report_type;
254	field->report_size = parser->global.report_size;
255	field->report_count = parser->global.report_count;
256	field->logical_minimum = parser->global.logical_minimum;
257	field->logical_maximum = parser->global.logical_maximum;
258	field->physical_minimum = parser->global.physical_minimum;
259	field->physical_maximum = parser->global.physical_maximum;
260	field->unit_exponent = parser->global.unit_exponent;
261	field->unit = parser->global.unit;
262
263	return 0;
264}
265
266/*
267 * Read data value from item.
268 */
269
270static u32 item_udata(struct hid_item *item)
271{
272	switch (item->size) {
273	case 1: return item->data.u8;
274	case 2: return item->data.u16;
275	case 4: return item->data.u32;
276	}
277	return 0;
278}
279
280static s32 item_sdata(struct hid_item *item)
281{
282	switch (item->size) {
283	case 1: return item->data.s8;
284	case 2: return item->data.s16;
285	case 4: return item->data.s32;
286	}
287	return 0;
288}
289
290/*
291 * Process a global item.
292 */
293
294static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
295{
296	switch (item->tag) {
297	case HID_GLOBAL_ITEM_TAG_PUSH:
298
299		if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
300			dbg_hid("global enviroment stack overflow\n");
301			return -1;
302		}
303
304		memcpy(parser->global_stack + parser->global_stack_ptr++,
305			&parser->global, sizeof(struct hid_global));
306		return 0;
307
308	case HID_GLOBAL_ITEM_TAG_POP:
309
310		if (!parser->global_stack_ptr) {
311			dbg_hid("global enviroment stack underflow\n");
312			return -1;
313		}
314
315		memcpy(&parser->global, parser->global_stack +
316			--parser->global_stack_ptr, sizeof(struct hid_global));
317		return 0;
318
319	case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
320		parser->global.usage_page = item_udata(item);
321		return 0;
322
323	case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
324		parser->global.logical_minimum = item_sdata(item);
325		return 0;
326
327	case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
328		if (parser->global.logical_minimum < 0)
329			parser->global.logical_maximum = item_sdata(item);
330		else
331			parser->global.logical_maximum = item_udata(item);
332		return 0;
333
334	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
335		parser->global.physical_minimum = item_sdata(item);
336		return 0;
337
338	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
339		if (parser->global.physical_minimum < 0)
340			parser->global.physical_maximum = item_sdata(item);
341		else
342			parser->global.physical_maximum = item_udata(item);
343		return 0;
344
345	case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
346		parser->global.unit_exponent = item_sdata(item);
347		return 0;
348
349	case HID_GLOBAL_ITEM_TAG_UNIT:
350		parser->global.unit = item_udata(item);
351		return 0;
352
353	case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
354		parser->global.report_size = item_udata(item);
355		if (parser->global.report_size > 32) {
356			dbg_hid("invalid report_size %d\n",
357					parser->global.report_size);
358			return -1;
359		}
360		return 0;
361
362	case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
363		parser->global.report_count = item_udata(item);
364		if (parser->global.report_count > HID_MAX_USAGES) {
365			dbg_hid("invalid report_count %d\n",
366					parser->global.report_count);
367			return -1;
368		}
369		return 0;
370
371	case HID_GLOBAL_ITEM_TAG_REPORT_ID:
372		parser->global.report_id = item_udata(item);
373		if (parser->global.report_id == 0) {
374			dbg_hid("report_id 0 is invalid\n");
375			return -1;
376		}
377		return 0;
378
379	default:
380		dbg_hid("unknown global tag 0x%x\n", item->tag);
381		return -1;
382	}
383}
384
385/*
386 * Process a local item.
387 */
388
389static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
390{
391	__u32 data;
392	unsigned n;
393
394	if (item->size == 0) {
395		dbg_hid("item data expected for local item\n");
396		return -1;
397	}
398
399	data = item_udata(item);
400
401	switch (item->tag) {
402	case HID_LOCAL_ITEM_TAG_DELIMITER:
403
404		if (data) {
405			/*
406			 * We treat items before the first delimiter
407			 * as global to all usage sets (branch 0).
408			 * In the moment we process only these global
409			 * items and the first delimiter set.
410			 */
411			if (parser->local.delimiter_depth != 0) {
412				dbg_hid("nested delimiters\n");
413				return -1;
414			}
415			parser->local.delimiter_depth++;
416			parser->local.delimiter_branch++;
417		} else {
418			if (parser->local.delimiter_depth < 1) {
419				dbg_hid("bogus close delimiter\n");
420				return -1;
421			}
422			parser->local.delimiter_depth--;
423		}
424		return 1;
425
426	case HID_LOCAL_ITEM_TAG_USAGE:
427
428		if (parser->local.delimiter_branch > 1) {
429			dbg_hid("alternative usage ignored\n");
430			return 0;
431		}
432
433		if (item->size <= 2)
434			data = (parser->global.usage_page << 16) + data;
435
436		return hid_add_usage(parser, data);
437
438	case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
439
440		if (parser->local.delimiter_branch > 1) {
441			dbg_hid("alternative usage ignored\n");
442			return 0;
443		}
444
445		if (item->size <= 2)
446			data = (parser->global.usage_page << 16) + data;
447
448		parser->local.usage_minimum = data;
449		return 0;
450
451	case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
452
453		if (parser->local.delimiter_branch > 1) {
454			dbg_hid("alternative usage ignored\n");
455			return 0;
456		}
457
458		if (item->size <= 2)
459			data = (parser->global.usage_page << 16) + data;
460
461		for (n = parser->local.usage_minimum; n <= data; n++)
462			if (hid_add_usage(parser, n)) {
463				dbg_hid("hid_add_usage failed\n");
464				return -1;
465			}
466		return 0;
467
468	default:
469
470		dbg_hid("unknown local item tag 0x%x\n", item->tag);
471		return 0;
472	}
473	return 0;
474}
475
476/*
477 * Process a main item.
478 */
479
480static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
481{
482	__u32 data;
483	int ret;
484
485	data = item_udata(item);
486
487	switch (item->tag) {
488	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
489		ret = open_collection(parser, data & 0xff);
490		break;
491	case HID_MAIN_ITEM_TAG_END_COLLECTION:
492		ret = close_collection(parser);
493		break;
494	case HID_MAIN_ITEM_TAG_INPUT:
495		ret = hid_add_field(parser, HID_INPUT_REPORT, data);
496		break;
497	case HID_MAIN_ITEM_TAG_OUTPUT:
498		ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
499		break;
500	case HID_MAIN_ITEM_TAG_FEATURE:
501		ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
502		break;
503	default:
504		dbg_hid("unknown main item tag 0x%x\n", item->tag);
505		ret = 0;
506	}
507
508	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
509
510	return ret;
511}
512
513/*
514 * Process a reserved item.
515 */
516
517static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
518{
519	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
520	return 0;
521}
522
523/*
524 * Free a report and all registered fields. The field->usage and
525 * field->value table's are allocated behind the field, so we need
526 * only to free(field) itself.
527 */
528
529static void hid_free_report(struct hid_report *report)
530{
531	unsigned n;
532
533	for (n = 0; n < report->maxfield; n++)
534		kfree(report->field[n]);
535	kfree(report);
536}
537
538/*
539 * Free a device structure, all reports, and all fields.
540 */
541
542static void hid_device_release(struct device *dev)
543{
544	struct hid_device *device = container_of(dev, struct hid_device, dev);
545	unsigned i, j;
546
547	for (i = 0; i < HID_REPORT_TYPES; i++) {
548		struct hid_report_enum *report_enum = device->report_enum + i;
549
550		for (j = 0; j < 256; j++) {
551			struct hid_report *report = report_enum->report_id_hash[j];
552			if (report)
553				hid_free_report(report);
554		}
555	}
556
557	kfree(device->rdesc);
558	kfree(device->collection);
559	kfree(device);
560}
561
562/*
563 * Fetch a report description item from the data stream. We support long
564 * items, though they are not used yet.
565 */
566
567static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
568{
569	u8 b;
570
571	if ((end - start) <= 0)
572		return NULL;
573
574	b = *start++;
575
576	item->type = (b >> 2) & 3;
577	item->tag  = (b >> 4) & 15;
578
579	if (item->tag == HID_ITEM_TAG_LONG) {
580
581		item->format = HID_ITEM_FORMAT_LONG;
582
583		if ((end - start) < 2)
584			return NULL;
585
586		item->size = *start++;
587		item->tag  = *start++;
588
589		if ((end - start) < item->size)
590			return NULL;
591
592		item->data.longdata = start;
593		start += item->size;
594		return start;
595	}
596
597	item->format = HID_ITEM_FORMAT_SHORT;
598	item->size = b & 3;
599
600	switch (item->size) {
601	case 0:
602		return start;
603
604	case 1:
605		if ((end - start) < 1)
606			return NULL;
607		item->data.u8 = *start++;
608		return start;
609
610	case 2:
611		if ((end - start) < 2)
612			return NULL;
613		item->data.u16 = get_unaligned_le16(start);
614		start = (__u8 *)((__le16 *)start + 1);
615		return start;
616
617	case 3:
618		item->size++;
619		if ((end - start) < 4)
620			return NULL;
621		item->data.u32 = get_unaligned_le32(start);
622		start = (__u8 *)((__le32 *)start + 1);
623		return start;
624	}
625
626	return NULL;
627}
628
629/**
630 * hid_parse_report - parse device report
631 *
632 * @device: hid device
633 * @start: report start
634 * @size: report size
635 *
636 * Parse a report description into a hid_device structure. Reports are
637 * enumerated, fields are attached to these reports.
638 * 0 returned on success, otherwise nonzero error value.
639 */
640int hid_parse_report(struct hid_device *device, __u8 *start,
641		unsigned size)
642{
643	struct hid_parser *parser;
644	struct hid_item item;
645	__u8 *end;
646	int ret;
647	static int (*dispatch_type[])(struct hid_parser *parser,
648				      struct hid_item *item) = {
649		hid_parser_main,
650		hid_parser_global,
651		hid_parser_local,
652		hid_parser_reserved
653	};
654
655	if (device->driver->report_fixup)
656		device->driver->report_fixup(device, start, size);
657
658	device->rdesc = kmalloc(size, GFP_KERNEL);
659	if (device->rdesc == NULL)
660		return -ENOMEM;
661	memcpy(device->rdesc, start, size);
662	device->rsize = size;
663
664	parser = vmalloc(sizeof(struct hid_parser));
665	if (!parser) {
666		ret = -ENOMEM;
667		goto err;
668	}
669
670	memset(parser, 0, sizeof(struct hid_parser));
671	parser->device = device;
672
673	end = start + size;
674	ret = -EINVAL;
675	while ((start = fetch_item(start, end, &item)) != NULL) {
676
677		if (item.format != HID_ITEM_FORMAT_SHORT) {
678			dbg_hid("unexpected long global item\n");
679			goto err;
680		}
681
682		if (dispatch_type[item.type](parser, &item)) {
683			dbg_hid("item %u %u %u %u parsing failed\n",
684				item.format, (unsigned)item.size, (unsigned)item.type, (unsigned)item.tag);
685			goto err;
686		}
687
688		if (start == end) {
689			if (parser->collection_stack_ptr) {
690				dbg_hid("unbalanced collection at end of report description\n");
691				goto err;
692			}
693			if (parser->local.delimiter_depth) {
694				dbg_hid("unbalanced delimiter at end of report description\n");
695				goto err;
696			}
697			vfree(parser);
698			return 0;
699		}
700	}
701
702	dbg_hid("item fetching failed at offset %d\n", (int)(end - start));
703err:
704	vfree(parser);
705	return ret;
706}
707EXPORT_SYMBOL_GPL(hid_parse_report);
708
709/*
710 * Convert a signed n-bit integer to signed 32-bit integer. Common
711 * cases are done through the compiler, the screwed things has to be
712 * done by hand.
713 */
714
715static s32 snto32(__u32 value, unsigned n)
716{
717	switch (n) {
718	case 8:  return ((__s8)value);
719	case 16: return ((__s16)value);
720	case 32: return ((__s32)value);
721	}
722	return value & (1 << (n - 1)) ? value | (-1 << n) : value;
723}
724
725/*
726 * Convert a signed 32-bit integer to a signed n-bit integer.
727 */
728
729static u32 s32ton(__s32 value, unsigned n)
730{
731	s32 a = value >> (n - 1);
732	if (a && a != -1)
733		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
734	return value & ((1 << n) - 1);
735}
736
737/*
738 * Extract/implement a data field from/to a little endian report (bit array).
739 *
740 * Code sort-of follows HID spec:
741 *     http://www.usb.org/developers/devclass_docs/HID1_11.pdf
742 *
743 * While the USB HID spec allows unlimited length bit fields in "report
744 * descriptors", most devices never use more than 16 bits.
745 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
746 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
747 */
748
749static __inline__ __u32 extract(__u8 *report, unsigned offset, unsigned n)
750{
751	u64 x;
752
753	if (n > 32)
754		printk(KERN_WARNING "HID: extract() called with n (%d) > 32! (%s)\n",
755				n, current->comm);
756
757	report += offset >> 3;  /* adjust byte index */
758	offset &= 7;            /* now only need bit offset into one byte */
759	x = get_unaligned_le64(report);
760	x = (x >> offset) & ((1ULL << n) - 1);  /* extract bit field */
761	return (u32) x;
762}
763
764/*
765 * "implement" : set bits in a little endian bit stream.
766 * Same concepts as "extract" (see comments above).
767 * The data mangled in the bit stream remains in little endian
768 * order the whole time. It make more sense to talk about
769 * endianness of register values by considering a register
770 * a "cached" copy of the little endiad bit stream.
771 */
772static __inline__ void implement(__u8 *report, unsigned offset, unsigned n, __u32 value)
773{
774	u64 x;
775	u64 m = (1ULL << n) - 1;
776
777	if (n > 32)
778		printk(KERN_WARNING "HID: implement() called with n (%d) > 32! (%s)\n",
779				n, current->comm);
780
781	if (value > m)
782		printk(KERN_WARNING "HID: implement() called with too large value %d! (%s)\n",
783				value, current->comm);
784	WARN_ON(value > m);
785	value &= m;
786
787	report += offset >> 3;
788	offset &= 7;
789
790	x = get_unaligned_le64(report);
791	x &= ~(m << offset);
792	x |= ((u64)value) << offset;
793	put_unaligned_le64(x, report);
794}
795
796/*
797 * Search an array for a value.
798 */
799
800static __inline__ int search(__s32 *array, __s32 value, unsigned n)
801{
802	while (n--) {
803		if (*array++ == value)
804			return 0;
805	}
806	return -1;
807}
808
809/**
810 * hid_match_report - check if driver's raw_event should be called
811 *
812 * @hid: hid device
813 * @report_type: type to match against
814 *
815 * compare hid->driver->report_table->report_type to report->type
816 */
817static int hid_match_report(struct hid_device *hid, struct hid_report *report)
818{
819	const struct hid_report_id *id = hid->driver->report_table;
820
821	if (!id) /* NULL means all */
822		return 1;
823
824	for (; id->report_type != HID_TERMINATOR; id++)
825		if (id->report_type == HID_ANY_ID ||
826				id->report_type == report->type)
827			return 1;
828	return 0;
829}
830
831/**
832 * hid_match_usage - check if driver's event should be called
833 *
834 * @hid: hid device
835 * @usage: usage to match against
836 *
837 * compare hid->driver->usage_table->usage_{type,code} to
838 * usage->usage_{type,code}
839 */
840static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
841{
842	const struct hid_usage_id *id = hid->driver->usage_table;
843
844	if (!id) /* NULL means all */
845		return 1;
846
847	for (; id->usage_type != HID_ANY_ID - 1; id++)
848		if ((id->usage_hid == HID_ANY_ID ||
849				id->usage_hid == usage->hid) &&
850				(id->usage_type == HID_ANY_ID ||
851				id->usage_type == usage->type) &&
852				(id->usage_code == HID_ANY_ID ||
853				 id->usage_code == usage->code))
854			return 1;
855	return 0;
856}
857
858static void hid_process_event(struct hid_device *hid, struct hid_field *field,
859		struct hid_usage *usage, __s32 value, int interrupt)
860{
861	struct hid_driver *hdrv = hid->driver;
862	int ret;
863
864	hid_dump_input(usage, value);
865
866	if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
867		ret = hdrv->event(hid, field, usage, value);
868		if (ret != 0) {
869			if (ret < 0)
870				dbg_hid("%s's event failed with %d\n",
871						hdrv->name, ret);
872			return;
873		}
874	}
875
876	if (hid->claimed & HID_CLAIMED_INPUT)
877		hidinput_hid_event(hid, field, usage, value);
878	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
879		hid->hiddev_hid_event(hid, field, usage, value);
880}
881
882/*
883 * Analyse a received field, and fetch the data from it. The field
884 * content is stored for next report processing (we do differential
885 * reporting to the layer).
886 */
887
888static void hid_input_field(struct hid_device *hid, struct hid_field *field,
889			    __u8 *data, int interrupt)
890{
891	unsigned n;
892	unsigned count = field->report_count;
893	unsigned offset = field->report_offset;
894	unsigned size = field->report_size;
895	__s32 min = field->logical_minimum;
896	__s32 max = field->logical_maximum;
897	__s32 *value;
898
899	if (!(value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC)))
900		return;
901
902	for (n = 0; n < count; n++) {
903
904			value[n] = min < 0 ? snto32(extract(data, offset + n * size, size), size) :
905						    extract(data, offset + n * size, size);
906
907			if (!(field->flags & HID_MAIN_ITEM_VARIABLE) /* Ignore report if ErrorRollOver */
908			    && value[n] >= min && value[n] <= max
909			    && field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
910				goto exit;
911	}
912
913	for (n = 0; n < count; n++) {
914
915		if (HID_MAIN_ITEM_VARIABLE & field->flags) {
916			hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
917			continue;
918		}
919
920		if (field->value[n] >= min && field->value[n] <= max
921			&& field->usage[field->value[n] - min].hid
922			&& search(value, field->value[n], count))
923				hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
924
925		if (value[n] >= min && value[n] <= max
926			&& field->usage[value[n] - min].hid
927			&& search(field->value, value[n], count))
928				hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
929	}
930
931	memcpy(field->value, value, count * sizeof(__s32));
932exit:
933	kfree(value);
934}
935
936/*
937 * Output the field into the report.
938 */
939
940static void hid_output_field(struct hid_field *field, __u8 *data)
941{
942	unsigned count = field->report_count;
943	unsigned offset = field->report_offset;
944	unsigned size = field->report_size;
945	unsigned bitsused = offset + count * size;
946	unsigned n;
947
948	/* make sure the unused bits in the last byte are zeros */
949	if (count > 0 && size > 0 && (bitsused % 8) != 0)
950		data[(bitsused-1)/8] &= (1 << (bitsused % 8)) - 1;
951
952	for (n = 0; n < count; n++) {
953		if (field->logical_minimum < 0)	/* signed values */
954			implement(data, offset + n * size, size, s32ton(field->value[n], size));
955		else				/* unsigned values */
956			implement(data, offset + n * size, size, field->value[n]);
957	}
958}
959
960/*
961 * Create a report.
962 */
963
964void hid_output_report(struct hid_report *report, __u8 *data)
965{
966	unsigned n;
967
968	if (report->id > 0)
969		*data++ = report->id;
970
971	for (n = 0; n < report->maxfield; n++)
972		hid_output_field(report->field[n], data);
973}
974EXPORT_SYMBOL_GPL(hid_output_report);
975
976/*
977 * Set a field value. The report this field belongs to has to be
978 * created and transferred to the device, to set this value in the
979 * device.
980 */
981
982int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
983{
984	unsigned size = field->report_size;
985
986	hid_dump_input(field->usage + offset, value);
987
988	if (offset >= field->report_count) {
989		dbg_hid("offset (%d) exceeds report_count (%d)\n", offset, field->report_count);
990		hid_dump_field(field, 8);
991		return -1;
992	}
993	if (field->logical_minimum < 0) {
994		if (value != snto32(s32ton(value, size), size)) {
995			dbg_hid("value %d is out of range\n", value);
996			return -1;
997		}
998	}
999	field->value[offset] = value;
1000	return 0;
1001}
1002EXPORT_SYMBOL_GPL(hid_set_field);
1003
1004static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1005		const u8 *data)
1006{
1007	struct hid_report *report;
1008	unsigned int n = 0;	/* Normally report number is 0 */
1009
1010	/* Device uses numbered reports, data[0] is report number */
1011	if (report_enum->numbered)
1012		n = *data;
1013
1014	report = report_enum->report_id_hash[n];
1015	if (report == NULL)
1016		dbg_hid("undefined report_id %u received\n", n);
1017
1018	return report;
1019}
1020
1021void hid_report_raw_event(struct hid_device *hid, int type, u8 *data, int size,
1022		int interrupt)
1023{
1024	struct hid_report_enum *report_enum = hid->report_enum + type;
1025	struct hid_report *report;
1026	unsigned int a;
1027	int rsize, csize = size;
1028	u8 *cdata = data;
1029
1030	report = hid_get_report(report_enum, data);
1031	if (!report)
1032		return;
1033
1034	if (report_enum->numbered) {
1035		cdata++;
1036		csize--;
1037	}
1038
1039	rsize = ((report->size - 1) >> 3) + 1;
1040
1041	if (csize < rsize) {
1042		dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1043				csize, rsize);
1044		memset(cdata + csize, 0, rsize - csize);
1045	}
1046
1047	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1048		hid->hiddev_report_event(hid, report);
1049	if (hid->claimed & HID_CLAIMED_HIDRAW) {
1050		/* numbered reports need to be passed with the report num */
1051		if (report_enum->numbered)
1052			hidraw_report_event(hid, data - 1, size + 1);
1053		else
1054			hidraw_report_event(hid, data, size);
1055	}
1056
1057	for (a = 0; a < report->maxfield; a++)
1058		hid_input_field(hid, report->field[a], cdata, interrupt);
1059
1060	if (hid->claimed & HID_CLAIMED_INPUT)
1061		hidinput_report_event(hid, report);
1062}
1063EXPORT_SYMBOL_GPL(hid_report_raw_event);
1064
1065/**
1066 * hid_input_report - report data from lower layer (usb, bt...)
1067 *
1068 * @hid: hid device
1069 * @type: HID report type (HID_*_REPORT)
1070 * @data: report contents
1071 * @size: size of data parameter
1072 * @interrupt: called from atomic?
1073 *
1074 * This is data entry for lower layers.
1075 */
1076int hid_input_report(struct hid_device *hid, int type, u8 *data, int size, int interrupt)
1077{
1078	struct hid_report_enum *report_enum = hid->report_enum + type;
1079	struct hid_driver *hdrv = hid->driver;
1080	struct hid_report *report;
1081	unsigned int i;
1082	int ret;
1083
1084	if (!hid || !hid->driver)
1085		return -ENODEV;
1086
1087	if (!size) {
1088		dbg_hid("empty report\n");
1089		return -1;
1090	}
1091
1092	dbg_hid("report (size %u) (%snumbered)\n", size, report_enum->numbered ? "" : "un");
1093
1094	report = hid_get_report(report_enum, data);
1095	if (!report)
1096		return -1;
1097
1098	/* dump the report */
1099	dbg_hid("report %d (size %u) = ", report->id, size);
1100	for (i = 0; i < size; i++)
1101		dbg_hid_line(" %02x", data[i]);
1102	dbg_hid_line("\n");
1103
1104	if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1105		ret = hdrv->raw_event(hid, report, data, size);
1106		if (ret != 0)
1107			return ret < 0 ? ret : 0;
1108	}
1109
1110	hid_report_raw_event(hid, type, data, size, interrupt);
1111
1112	return 0;
1113}
1114EXPORT_SYMBOL_GPL(hid_input_report);
1115
1116static bool hid_match_one_id(struct hid_device *hdev,
1117		const struct hid_device_id *id)
1118{
1119	return id->bus == hdev->bus &&
1120		(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1121		(id->product == HID_ANY_ID || id->product == hdev->product);
1122}
1123
1124static const struct hid_device_id *hid_match_id(struct hid_device *hdev,
1125		const struct hid_device_id *id)
1126{
1127	for (; id->bus; id++)
1128		if (hid_match_one_id(hdev, id))
1129			return id;
1130
1131	return NULL;
1132}
1133
1134static const struct hid_device_id hid_blacklist[] = {
1135	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_IRCONTROL4) },
1136	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_MIGHTYMOUSE) },
1137	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ANSI) },
1138	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_ISO) },
1139	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ANSI) },
1140	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_ISO) },
1141	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER_JIS) },
1142	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ANSI) },
1143	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_ISO) },
1144	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER3_JIS) },
1145	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ANSI) },
1146	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_ISO) },
1147	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_JIS) },
1148	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_ANSI) },
1149	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_ISO) },
1150	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_JIS) },
1151	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ANSI) },
1152	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_ISO) },
1153	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER4_HF_JIS) },
1154	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_ANSI) },
1155	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_ISO) },
1156	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_ALU_WIRELESS_JIS) },
1157	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ANSI) },
1158	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_ISO) },
1159	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING_JIS) },
1160	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ANSI) },
1161	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_ISO) },
1162	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_WELLSPRING2_JIS) },
1163	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_FOUNTAIN_TP_ONLY) },
1164	{ HID_USB_DEVICE(USB_VENDOR_ID_APPLE, USB_DEVICE_ID_APPLE_GEYSER1_TP_ONLY) },
1165	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_1) },
1166	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_BARCODE_2) },
1167	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_MOUSE) },
1168	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_MX3000_RECEIVER) },
1169	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_S510_RECEIVER) },
1170	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_S510_RECEIVER_2) },
1171	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_RECEIVER) },
1172	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_DESKTOP) },
1173	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_EDGE) },
1174	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_DINOVO_MINI) },
1175	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_KBD) },
1176	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_ELITE_KBD) },
1177	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_CORDLESS_DESKTOP_LX500) },
1178	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_LX3) },
1179	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_V150) },
1180	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_EXTREME_3D) },
1181	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_WHEEL) },
1182	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_SIDEWINDER_GV) },
1183	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_NE4K) },
1184	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_LK6K) },
1185	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_PRESENTER_8K_USB) },
1186	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_WIRELESS_OPTICAL_DESKTOP_3_0) },
1187	{ HID_USB_DEVICE(USB_VENDOR_ID_SUNPLUS, USB_DEVICE_ID_SUNPLUS_WDESKTOP) },
1188
1189	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_APPLE, 0x030c) },
1190	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_MICROSOFT, USB_DEVICE_ID_MS_PRESENTER_8K_BT) },
1191	{ }
1192};
1193
1194static int hid_bus_match(struct device *dev, struct device_driver *drv)
1195{
1196	struct hid_driver *hdrv = container_of(drv, struct hid_driver, driver);
1197	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1198
1199	if (!hid_match_id(hdev, hdrv->id_table))
1200		return 0;
1201
1202	/* generic wants all non-blacklisted */
1203	if (!strncmp(hdrv->name, "generic-", 8))
1204		return !hid_match_id(hdev, hid_blacklist);
1205
1206	return 1;
1207}
1208
1209static int hid_device_probe(struct device *dev)
1210{
1211	struct hid_driver *hdrv = container_of(dev->driver,
1212			struct hid_driver, driver);
1213	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1214	const struct hid_device_id *id;
1215	int ret = 0;
1216
1217	if (!hdev->driver) {
1218		id = hid_match_id(hdev, hdrv->id_table);
1219		if (id == NULL)
1220			return -ENODEV;
1221
1222		hdev->driver = hdrv;
1223		if (hdrv->probe) {
1224			ret = hdrv->probe(hdev, id);
1225		} else { /* default probe */
1226			ret = hid_parse(hdev);
1227			if (!ret)
1228				ret = hid_hw_start(hdev);
1229		}
1230		if (ret)
1231			hdev->driver = NULL;
1232	}
1233	return ret;
1234}
1235
1236static int hid_device_remove(struct device *dev)
1237{
1238	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1239	struct hid_driver *hdrv = hdev->driver;
1240
1241	if (hdrv) {
1242		if (hdrv->remove)
1243			hdrv->remove(hdev);
1244		else /* default remove */
1245			hid_hw_stop(hdev);
1246		hdev->driver = NULL;
1247	}
1248
1249	return 0;
1250}
1251
1252static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
1253{
1254	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
1255
1256	if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
1257			hdev->bus, hdev->vendor, hdev->product))
1258		return -ENOMEM;
1259
1260	if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
1261		return -ENOMEM;
1262
1263	if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
1264		return -ENOMEM;
1265
1266	if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
1267		return -ENOMEM;
1268
1269	if (add_uevent_var(env, "MODALIAS=hid:b%04Xv%08Xp%08X",
1270			hdev->bus, hdev->vendor, hdev->product))
1271		return -ENOMEM;
1272
1273	return 0;
1274}
1275
1276static struct bus_type hid_bus_type = {
1277	.name		= "hid",
1278	.match		= hid_bus_match,
1279	.probe		= hid_device_probe,
1280	.remove		= hid_device_remove,
1281	.uevent		= hid_uevent,
1282};
1283
1284static const struct hid_device_id hid_ignore_list[] = {
1285	{ HID_USB_DEVICE(USB_VENDOR_ID_ACECAD, USB_DEVICE_ID_ACECAD_FLAIR) },
1286	{ HID_USB_DEVICE(USB_VENDOR_ID_ACECAD, USB_DEVICE_ID_ACECAD_302) },
1287	{ HID_USB_DEVICE(USB_VENDOR_ID_ADS_TECH, USB_DEVICE_ID_ADS_TECH_RADIO_SI470X) },
1288	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_01) },
1289	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_10) },
1290	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_20) },
1291	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_21) },
1292	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_22) },
1293	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_23) },
1294	{ HID_USB_DEVICE(USB_VENDOR_ID_AIPTEK, USB_DEVICE_ID_AIPTEK_24) },
1295	{ HID_USB_DEVICE(USB_VENDOR_ID_AIRCABLE, USB_DEVICE_ID_AIRCABLE1) },
1296	{ HID_USB_DEVICE(USB_VENDOR_ID_ALCOR, USB_DEVICE_ID_ALCOR_USBRS232) },
1297	{ HID_USB_DEVICE(USB_VENDOR_ID_ASUS, USB_DEVICE_ID_ASUS_LCM)},
1298	{ HID_USB_DEVICE(USB_VENDOR_ID_BERKSHIRE, USB_DEVICE_ID_BERKSHIRE_PCWD) },
1299	{ HID_USB_DEVICE(USB_VENDOR_ID_CIDC, 0x0103) },
1300	{ HID_USB_DEVICE(USB_VENDOR_ID_CYGNAL, USB_DEVICE_ID_CYGNAL_RADIO_SI470X) },
1301	{ HID_USB_DEVICE(USB_VENDOR_ID_CMEDIA, USB_DEVICE_ID_CM109) },
1302	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_HIDCOM) },
1303	{ HID_USB_DEVICE(USB_VENDOR_ID_CYPRESS, USB_DEVICE_ID_CYPRESS_ULTRAMOUSE) },
1304	{ HID_USB_DEVICE(USB_VENDOR_ID_DELORME, USB_DEVICE_ID_DELORME_EARTHMATE) },
1305	{ HID_USB_DEVICE(USB_VENDOR_ID_DELORME, USB_DEVICE_ID_DELORME_EM_LT20) },
1306	{ HID_USB_DEVICE(USB_VENDOR_ID_ESSENTIAL_REALITY, USB_DEVICE_ID_ESSENTIAL_REALITY_P5) },
1307	{ HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0001) },
1308	{ HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0002) },
1309	{ HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0003) },
1310	{ HID_USB_DEVICE(USB_VENDOR_ID_GENERAL_TOUCH, 0x0004) },
1311	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_4_PHIDGETSERVO_30) },
1312	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_1_PHIDGETSERVO_30) },
1313	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_0_4_IF_KIT) },
1314	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_16_16_IF_KIT) },
1315	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_8_8_8_IF_KIT) },
1316	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_8_7_IF_KIT) },
1317	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_0_8_8_IF_KIT) },
1318	{ HID_USB_DEVICE(USB_VENDOR_ID_GLAB, USB_DEVICE_ID_PHIDGET_MOTORCONTROL) },
1319	{ HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_SUPER_Q2) },
1320	{ HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_GOGOPEN) },
1321	{ HID_USB_DEVICE(USB_VENDOR_ID_GOTOP, USB_DEVICE_ID_PENPOWER) },
1322	{ HID_USB_DEVICE(USB_VENDOR_ID_GRETAGMACBETH, USB_DEVICE_ID_GRETAGMACBETH_HUEY) },
1323	{ HID_USB_DEVICE(USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_POWERMATE) },
1324	{ HID_USB_DEVICE(USB_VENDOR_ID_GRIFFIN, USB_DEVICE_ID_SOUNDKNOB) },
1325	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_90) },
1326	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_100) },
1327	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_101) },
1328	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_103) },
1329	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_104) },
1330	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_105) },
1331	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_106) },
1332	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_107) },
1333	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_108) },
1334	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_200) },
1335	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_201) },
1336	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_202) },
1337	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_203) },
1338	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_204) },
1339	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_205) },
1340	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_206) },
1341	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_207) },
1342	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_300) },
1343	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_301) },
1344	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_302) },
1345	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_303) },
1346	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_304) },
1347	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_305) },
1348	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_306) },
1349	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_307) },
1350	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_308) },
1351	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_309) },
1352	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_400) },
1353	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_401) },
1354	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_402) },
1355	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_403) },
1356	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_404) },
1357	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_405) },
1358	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_500) },
1359	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_501) },
1360	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_502) },
1361	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_503) },
1362	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_504) },
1363	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1000) },
1364	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1001) },
1365	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1002) },
1366	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1003) },
1367	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1004) },
1368	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1005) },
1369	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1006) },
1370	{ HID_USB_DEVICE(USB_VENDOR_ID_GTCO, USB_DEVICE_ID_GTCO_1007) },
1371	{ HID_USB_DEVICE(USB_VENDOR_ID_IMATION, USB_DEVICE_ID_DISC_STAKKA) },
1372	{ HID_USB_DEVICE(USB_VENDOR_ID_KBGEAR, USB_DEVICE_ID_KBGEAR_JAMSTUDIO) },
1373	{ HID_USB_DEVICE(USB_VENDOR_ID_KYE, USB_DEVICE_ID_KYE_GPEN_560) },
1374	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_CASSY) },
1375	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POCKETCASSY) },
1376	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MOBILECASSY) },
1377	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_JWM) },
1378	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_DMMP) },
1379	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_UMIP) },
1380	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_XRAY1) },
1381	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_XRAY2) },
1382	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_VIDEOCOM) },
1383	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_COM3LAB) },
1384	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_TELEPORT) },
1385	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_NETWORKANALYSER) },
1386	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_POWERCONTROL) },
1387	{ HID_USB_DEVICE(USB_VENDOR_ID_LD, USB_DEVICE_ID_LD_MACHINETEST) },
1388	{ HID_USB_DEVICE(USB_VENDOR_ID_MCC, USB_DEVICE_ID_MCC_PMD1024LS) },
1389	{ HID_USB_DEVICE(USB_VENDOR_ID_MCC, USB_DEVICE_ID_MCC_PMD1208LS) },
1390	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1391	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1392	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICKIT1) },
1393	{ HID_USB_DEVICE(USB_VENDOR_ID_MICROCHIP, USB_DEVICE_ID_PICKIT2) },
1394	{ HID_USB_DEVICE(USB_VENDOR_ID_NATIONAL_SEMICONDUCTOR, USB_DEVICE_ID_N_S_HARMONY) },
1395	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100) },
1396	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 20) },
1397	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 30) },
1398	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 100) },
1399	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 108) },
1400	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 118) },
1401	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 200) },
1402	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 300) },
1403	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 400) },
1404	{ HID_USB_DEVICE(USB_VENDOR_ID_ONTRAK, USB_DEVICE_ID_ONTRAK_ADU100 + 500) },
1405	{ HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0001) },
1406	{ HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0002) },
1407	{ HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0003) },
1408	{ HID_USB_DEVICE(USB_VENDOR_ID_PANJIT, 0x0004) },
1409	{ HID_USB_DEVICE(USB_VENDOR_ID_SOUNDGRAPH, USB_DEVICE_ID_SOUNDGRAPH_IMON_LCD) },
1410	{ HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_LABPRO) },
1411	{ HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_GOTEMP) },
1412	{ HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_SKIP) },
1413	{ HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_CYCLOPS) },
1414	{ HID_USB_DEVICE(USB_VENDOR_ID_VERNIER, USB_DEVICE_ID_VERNIER_LCSPEC) },
1415	{ HID_USB_DEVICE(USB_VENDOR_ID_WACOM, HID_ANY_ID) },
1416	{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_4_PHIDGETSERVO_20) },
1417	{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_1_PHIDGETSERVO_20) },
1418	{ HID_USB_DEVICE(USB_VENDOR_ID_WISEGROUP, USB_DEVICE_ID_8_8_4_IF_KIT) },
1419	{ HID_USB_DEVICE(USB_VENDOR_ID_YEALINK, USB_DEVICE_ID_YEALINK_P1K_P4K_B2K) },
1420	{ }
1421};
1422
1423static bool hid_ignore(struct hid_device *hdev)
1424{
1425	switch (hdev->vendor) {
1426	case USB_VENDOR_ID_CODEMERCS:
1427		/* ignore all Code Mercenaries IOWarrior devices */
1428		if (hdev->product >= USB_DEVICE_ID_CODEMERCS_IOW_FIRST &&
1429				hdev->product <= USB_DEVICE_ID_CODEMERCS_IOW_LAST)
1430			return true;
1431		break;
1432	case USB_VENDOR_ID_LOGITECH:
1433		if (hdev->product >= USB_DEVICE_ID_LOGITECH_HARMONY_FIRST &&
1434				hdev->product <= USB_DEVICE_ID_LOGITECH_HARMONY_LAST)
1435			return true;
1436		break;
1437	}
1438
1439	return !!hid_match_id(hdev, hid_ignore_list);
1440}
1441
1442int hid_add_device(struct hid_device *hdev)
1443{
1444	static atomic_t id = ATOMIC_INIT(0);
1445	int ret;
1446
1447	if (WARN_ON(hdev->status & HID_STAT_ADDED))
1448		return -EBUSY;
1449
1450	/* we need to kill them here, otherwise they will stay allocated to
1451	 * wait for coming driver */
1452	if (hid_ignore(hdev))
1453		return -ENODEV;
1454
1455	/* XXX hack, any other cleaner solution < 20 bus_id bytes? */
1456	sprintf(hdev->dev.bus_id, "%04X:%04X:%04X.%04X", hdev->bus,
1457			hdev->vendor, hdev->product, atomic_inc_return(&id));
1458
1459	ret = device_add(&hdev->dev);
1460	if (!ret)
1461		hdev->status |= HID_STAT_ADDED;
1462
1463	return ret;
1464}
1465EXPORT_SYMBOL_GPL(hid_add_device);
1466
1467/**
1468 * hid_allocate_device - allocate new hid device descriptor
1469 *
1470 * Allocate and initialize hid device, so that hid_destroy_device might be
1471 * used to free it.
1472 *
1473 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
1474 * error value.
1475 */
1476struct hid_device *hid_allocate_device(void)
1477{
1478	struct hid_device *hdev;
1479	unsigned int i;
1480	int ret = -ENOMEM;
1481
1482	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
1483	if (hdev == NULL)
1484		return ERR_PTR(ret);
1485
1486	device_initialize(&hdev->dev);
1487	hdev->dev.release = hid_device_release;
1488	hdev->dev.bus = &hid_bus_type;
1489
1490	hdev->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1491			sizeof(struct hid_collection), GFP_KERNEL);
1492	if (hdev->collection == NULL)
1493		goto err;
1494	hdev->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1495
1496	for (i = 0; i < HID_REPORT_TYPES; i++)
1497		INIT_LIST_HEAD(&hdev->report_enum[i].report_list);
1498
1499	return hdev;
1500err:
1501	put_device(&hdev->dev);
1502	return ERR_PTR(ret);
1503}
1504EXPORT_SYMBOL_GPL(hid_allocate_device);
1505
1506static void hid_remove_device(struct hid_device *hdev)
1507{
1508	if (hdev->status & HID_STAT_ADDED) {
1509		device_del(&hdev->dev);
1510		hdev->status &= ~HID_STAT_ADDED;
1511	}
1512}
1513
1514/**
1515 * hid_destroy_device - free previously allocated device
1516 *
1517 * @hdev: hid device
1518 *
1519 * If you allocate hid_device through hid_allocate_device, you should ever
1520 * free by this function.
1521 */
1522void hid_destroy_device(struct hid_device *hdev)
1523{
1524	hid_remove_device(hdev);
1525	put_device(&hdev->dev);
1526}
1527EXPORT_SYMBOL_GPL(hid_destroy_device);
1528
1529int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
1530		const char *mod_name)
1531{
1532	hdrv->driver.name = hdrv->name;
1533	hdrv->driver.bus = &hid_bus_type;
1534	hdrv->driver.owner = owner;
1535	hdrv->driver.mod_name = mod_name;
1536
1537	return driver_register(&hdrv->driver);
1538}
1539EXPORT_SYMBOL_GPL(__hid_register_driver);
1540
1541void hid_unregister_driver(struct hid_driver *hdrv)
1542{
1543	driver_unregister(&hdrv->driver);
1544}
1545EXPORT_SYMBOL_GPL(hid_unregister_driver);
1546
1547#ifdef CONFIG_HID_COMPAT
1548static void hid_compat_load(struct work_struct *ws)
1549{
1550	request_module("hid-dummy");
1551}
1552static DECLARE_WORK(hid_compat_work, hid_compat_load);
1553#endif
1554
1555static int __init hid_init(void)
1556{
1557	int ret;
1558
1559	ret = bus_register(&hid_bus_type);
1560	if (ret) {
1561		printk(KERN_ERR "HID: can't register hid bus\n");
1562		goto err;
1563	}
1564
1565	ret = hidraw_init();
1566	if (ret)
1567		goto err_bus;
1568
1569#ifdef CONFIG_HID_COMPAT
1570	schedule_work(&hid_compat_work);
1571#endif
1572
1573	return 0;
1574err_bus:
1575	bus_unregister(&hid_bus_type);
1576err:
1577	return ret;
1578}
1579
1580static void __exit hid_exit(void)
1581{
1582	hidraw_exit();
1583	bus_unregister(&hid_bus_type);
1584}
1585
1586module_init(hid_init);
1587module_exit(hid_exit);
1588
1589MODULE_LICENSE(DRIVER_LICENSE);
1590
1591