hid-core.c revision 229695e51efc4ed5e04ab471c82591d0f432909d
1/*
2 *  HID support for Linux
3 *
4 *  Copyright (c) 1999 Andreas Gal
5 *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
6 *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
7 *  Copyright (c) 2006 Jiri Kosina
8 */
9
10/*
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
14 * any later version.
15 */
16
17#include <linux/module.h>
18#include <linux/slab.h>
19#include <linux/init.h>
20#include <linux/kernel.h>
21#include <linux/sched.h>
22#include <linux/list.h>
23#include <linux/mm.h>
24#include <linux/smp_lock.h>
25#include <linux/spinlock.h>
26#include <asm/unaligned.h>
27#include <asm/byteorder.h>
28#include <linux/input.h>
29#include <linux/wait.h>
30
31#undef DEBUG
32#undef DEBUG_DATA
33
34#include <linux/hid.h>
35#include <linux/hiddev.h>
36
37/*
38 * Version Information
39 */
40
41#define DRIVER_VERSION "v2.6"
42#define DRIVER_AUTHOR "Andreas Gal, Vojtech Pavlik"
43#define DRIVER_DESC "USB HID core driver"
44#define DRIVER_LICENSE "GPL"
45
46/*
47 * Module parameters.
48 */
49
50static unsigned int hid_mousepoll_interval;
51module_param_named(mousepoll, hid_mousepoll_interval, uint, 0644);
52MODULE_PARM_DESC(mousepoll, "Polling interval of mice");
53
54/*
55 * Register a new report for a device.
56 */
57
58static struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
59{
60	struct hid_report_enum *report_enum = device->report_enum + type;
61	struct hid_report *report;
62
63	if (report_enum->report_id_hash[id])
64		return report_enum->report_id_hash[id];
65
66	if (!(report = kzalloc(sizeof(struct hid_report), GFP_KERNEL)))
67		return NULL;
68
69	if (id != 0)
70		report_enum->numbered = 1;
71
72	report->id = id;
73	report->type = type;
74	report->size = 0;
75	report->device = device;
76	report_enum->report_id_hash[id] = report;
77
78	list_add_tail(&report->list, &report_enum->report_list);
79
80	return report;
81}
82
83/*
84 * Register a new field for this report.
85 */
86
87static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
88{
89	struct hid_field *field;
90
91	if (report->maxfield == HID_MAX_FIELDS) {
92		dbg("too many fields in report");
93		return NULL;
94	}
95
96	if (!(field = kzalloc(sizeof(struct hid_field) + usages * sizeof(struct hid_usage)
97		+ values * sizeof(unsigned), GFP_KERNEL))) return NULL;
98
99	field->index = report->maxfield++;
100	report->field[field->index] = field;
101	field->usage = (struct hid_usage *)(field + 1);
102	field->value = (unsigned *)(field->usage + usages);
103	field->report = report;
104
105	return field;
106}
107
108/*
109 * Open a collection. The type/usage is pushed on the stack.
110 */
111
112static int open_collection(struct hid_parser *parser, unsigned type)
113{
114	struct hid_collection *collection;
115	unsigned usage;
116
117	usage = parser->local.usage[0];
118
119	if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
120		dbg("collection stack overflow");
121		return -1;
122	}
123
124	if (parser->device->maxcollection == parser->device->collection_size) {
125		collection = kmalloc(sizeof(struct hid_collection) *
126				parser->device->collection_size * 2, GFP_KERNEL);
127		if (collection == NULL) {
128			dbg("failed to reallocate collection array");
129			return -1;
130		}
131		memcpy(collection, parser->device->collection,
132			sizeof(struct hid_collection) *
133			parser->device->collection_size);
134		memset(collection + parser->device->collection_size, 0,
135			sizeof(struct hid_collection) *
136			parser->device->collection_size);
137		kfree(parser->device->collection);
138		parser->device->collection = collection;
139		parser->device->collection_size *= 2;
140	}
141
142	parser->collection_stack[parser->collection_stack_ptr++] =
143		parser->device->maxcollection;
144
145	collection = parser->device->collection +
146		parser->device->maxcollection++;
147	collection->type = type;
148	collection->usage = usage;
149	collection->level = parser->collection_stack_ptr - 1;
150
151	if (type == HID_COLLECTION_APPLICATION)
152		parser->device->maxapplication++;
153
154	return 0;
155}
156
157/*
158 * Close a collection.
159 */
160
161static int close_collection(struct hid_parser *parser)
162{
163	if (!parser->collection_stack_ptr) {
164		dbg("collection stack underflow");
165		return -1;
166	}
167	parser->collection_stack_ptr--;
168	return 0;
169}
170
171/*
172 * Climb up the stack, search for the specified collection type
173 * and return the usage.
174 */
175
176static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
177{
178	int n;
179	for (n = parser->collection_stack_ptr - 1; n >= 0; n--)
180		if (parser->device->collection[parser->collection_stack[n]].type == type)
181			return parser->device->collection[parser->collection_stack[n]].usage;
182	return 0; /* we know nothing about this usage type */
183}
184
185/*
186 * Add a usage to the temporary parser table.
187 */
188
189static int hid_add_usage(struct hid_parser *parser, unsigned usage)
190{
191	if (parser->local.usage_index >= HID_MAX_USAGES) {
192		dbg("usage index exceeded");
193		return -1;
194	}
195	parser->local.usage[parser->local.usage_index] = usage;
196	parser->local.collection_index[parser->local.usage_index] =
197		parser->collection_stack_ptr ?
198		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
199	parser->local.usage_index++;
200	return 0;
201}
202
203/*
204 * Register a new field for this report.
205 */
206
207static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
208{
209	struct hid_report *report;
210	struct hid_field *field;
211	int usages;
212	unsigned offset;
213	int i;
214
215	if (!(report = hid_register_report(parser->device, report_type, parser->global.report_id))) {
216		dbg("hid_register_report failed");
217		return -1;
218	}
219
220	if (parser->global.logical_maximum < parser->global.logical_minimum) {
221		dbg("logical range invalid %d %d", parser->global.logical_minimum, parser->global.logical_maximum);
222		return -1;
223	}
224
225	offset = report->size;
226	report->size += parser->global.report_size * parser->global.report_count;
227
228	if (!parser->local.usage_index) /* Ignore padding fields */
229		return 0;
230
231	usages = max_t(int, parser->local.usage_index, parser->global.report_count);
232
233	if ((field = hid_register_field(report, usages, parser->global.report_count)) == NULL)
234		return 0;
235
236	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
237	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
238	field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
239
240	for (i = 0; i < usages; i++) {
241		int j = i;
242		/* Duplicate the last usage we parsed if we have excess values */
243		if (i >= parser->local.usage_index)
244			j = parser->local.usage_index - 1;
245		field->usage[i].hid = parser->local.usage[j];
246		field->usage[i].collection_index =
247			parser->local.collection_index[j];
248	}
249
250	field->maxusage = usages;
251	field->flags = flags;
252	field->report_offset = offset;
253	field->report_type = report_type;
254	field->report_size = parser->global.report_size;
255	field->report_count = parser->global.report_count;
256	field->logical_minimum = parser->global.logical_minimum;
257	field->logical_maximum = parser->global.logical_maximum;
258	field->physical_minimum = parser->global.physical_minimum;
259	field->physical_maximum = parser->global.physical_maximum;
260	field->unit_exponent = parser->global.unit_exponent;
261	field->unit = parser->global.unit;
262
263	return 0;
264}
265
266/*
267 * Read data value from item.
268 */
269
270static u32 item_udata(struct hid_item *item)
271{
272	switch (item->size) {
273		case 1: return item->data.u8;
274		case 2: return item->data.u16;
275		case 4: return item->data.u32;
276	}
277	return 0;
278}
279
280static s32 item_sdata(struct hid_item *item)
281{
282	switch (item->size) {
283		case 1: return item->data.s8;
284		case 2: return item->data.s16;
285		case 4: return item->data.s32;
286	}
287	return 0;
288}
289
290/*
291 * Process a global item.
292 */
293
294static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
295{
296	switch (item->tag) {
297
298		case HID_GLOBAL_ITEM_TAG_PUSH:
299
300			if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
301				dbg("global enviroment stack overflow");
302				return -1;
303			}
304
305			memcpy(parser->global_stack + parser->global_stack_ptr++,
306				&parser->global, sizeof(struct hid_global));
307			return 0;
308
309		case HID_GLOBAL_ITEM_TAG_POP:
310
311			if (!parser->global_stack_ptr) {
312				dbg("global enviroment stack underflow");
313				return -1;
314			}
315
316			memcpy(&parser->global, parser->global_stack + --parser->global_stack_ptr,
317				sizeof(struct hid_global));
318			return 0;
319
320		case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
321			parser->global.usage_page = item_udata(item);
322			return 0;
323
324		case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
325			parser->global.logical_minimum = item_sdata(item);
326			return 0;
327
328		case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
329			if (parser->global.logical_minimum < 0)
330				parser->global.logical_maximum = item_sdata(item);
331			else
332				parser->global.logical_maximum = item_udata(item);
333			return 0;
334
335		case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
336			parser->global.physical_minimum = item_sdata(item);
337			return 0;
338
339		case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
340			if (parser->global.physical_minimum < 0)
341				parser->global.physical_maximum = item_sdata(item);
342			else
343				parser->global.physical_maximum = item_udata(item);
344			return 0;
345
346		case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
347			parser->global.unit_exponent = item_sdata(item);
348			return 0;
349
350		case HID_GLOBAL_ITEM_TAG_UNIT:
351			parser->global.unit = item_udata(item);
352			return 0;
353
354		case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
355			if ((parser->global.report_size = item_udata(item)) > 32) {
356				dbg("invalid report_size %d", parser->global.report_size);
357				return -1;
358			}
359			return 0;
360
361		case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
362			if ((parser->global.report_count = item_udata(item)) > HID_MAX_USAGES) {
363				dbg("invalid report_count %d", parser->global.report_count);
364				return -1;
365			}
366			return 0;
367
368		case HID_GLOBAL_ITEM_TAG_REPORT_ID:
369			if ((parser->global.report_id = item_udata(item)) == 0) {
370				dbg("report_id 0 is invalid");
371				return -1;
372			}
373			return 0;
374
375		default:
376			dbg("unknown global tag 0x%x", item->tag);
377			return -1;
378	}
379}
380
381/*
382 * Process a local item.
383 */
384
385static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
386{
387	__u32 data;
388	unsigned n;
389
390	if (item->size == 0) {
391		dbg("item data expected for local item");
392		return -1;
393	}
394
395	data = item_udata(item);
396
397	switch (item->tag) {
398
399		case HID_LOCAL_ITEM_TAG_DELIMITER:
400
401			if (data) {
402				/*
403				 * We treat items before the first delimiter
404				 * as global to all usage sets (branch 0).
405				 * In the moment we process only these global
406				 * items and the first delimiter set.
407				 */
408				if (parser->local.delimiter_depth != 0) {
409					dbg("nested delimiters");
410					return -1;
411				}
412				parser->local.delimiter_depth++;
413				parser->local.delimiter_branch++;
414			} else {
415				if (parser->local.delimiter_depth < 1) {
416					dbg("bogus close delimiter");
417					return -1;
418				}
419				parser->local.delimiter_depth--;
420			}
421			return 1;
422
423		case HID_LOCAL_ITEM_TAG_USAGE:
424
425			if (parser->local.delimiter_branch > 1) {
426				dbg("alternative usage ignored");
427				return 0;
428			}
429
430			if (item->size <= 2)
431				data = (parser->global.usage_page << 16) + data;
432
433			return hid_add_usage(parser, data);
434
435		case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
436
437			if (parser->local.delimiter_branch > 1) {
438				dbg("alternative usage ignored");
439				return 0;
440			}
441
442			if (item->size <= 2)
443				data = (parser->global.usage_page << 16) + data;
444
445			parser->local.usage_minimum = data;
446			return 0;
447
448		case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
449
450			if (parser->local.delimiter_branch > 1) {
451				dbg("alternative usage ignored");
452				return 0;
453			}
454
455			if (item->size <= 2)
456				data = (parser->global.usage_page << 16) + data;
457
458			for (n = parser->local.usage_minimum; n <= data; n++)
459				if (hid_add_usage(parser, n)) {
460					dbg("hid_add_usage failed\n");
461					return -1;
462				}
463			return 0;
464
465		default:
466
467			dbg("unknown local item tag 0x%x", item->tag);
468			return 0;
469	}
470	return 0;
471}
472
473/*
474 * Process a main item.
475 */
476
477static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
478{
479	__u32 data;
480	int ret;
481
482	data = item_udata(item);
483
484	switch (item->tag) {
485		case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
486			ret = open_collection(parser, data & 0xff);
487			break;
488		case HID_MAIN_ITEM_TAG_END_COLLECTION:
489			ret = close_collection(parser);
490			break;
491		case HID_MAIN_ITEM_TAG_INPUT:
492			ret = hid_add_field(parser, HID_INPUT_REPORT, data);
493			break;
494		case HID_MAIN_ITEM_TAG_OUTPUT:
495			ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
496			break;
497		case HID_MAIN_ITEM_TAG_FEATURE:
498			ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
499			break;
500		default:
501			dbg("unknown main item tag 0x%x", item->tag);
502			ret = 0;
503	}
504
505	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
506
507	return ret;
508}
509
510/*
511 * Process a reserved item.
512 */
513
514static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
515{
516	dbg("reserved item type, tag 0x%x", item->tag);
517	return 0;
518}
519
520/*
521 * Free a report and all registered fields. The field->usage and
522 * field->value table's are allocated behind the field, so we need
523 * only to free(field) itself.
524 */
525
526static void hid_free_report(struct hid_report *report)
527{
528	unsigned n;
529
530	for (n = 0; n < report->maxfield; n++)
531		kfree(report->field[n]);
532	kfree(report);
533}
534
535/*
536 * Free a device structure, all reports, and all fields.
537 */
538
539void hid_free_device(struct hid_device *device)
540{
541	unsigned i,j;
542
543	for (i = 0; i < HID_REPORT_TYPES; i++) {
544		struct hid_report_enum *report_enum = device->report_enum + i;
545
546		for (j = 0; j < 256; j++) {
547			struct hid_report *report = report_enum->report_id_hash[j];
548			if (report)
549				hid_free_report(report);
550		}
551	}
552
553	kfree(device->rdesc);
554	kfree(device);
555}
556EXPORT_SYMBOL_GPL(hid_free_device);
557
558/*
559 * Fetch a report description item from the data stream. We support long
560 * items, though they are not used yet.
561 */
562
563static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
564{
565	u8 b;
566
567	if ((end - start) <= 0)
568		return NULL;
569
570	b = *start++;
571
572	item->type = (b >> 2) & 3;
573	item->tag  = (b >> 4) & 15;
574
575	if (item->tag == HID_ITEM_TAG_LONG) {
576
577		item->format = HID_ITEM_FORMAT_LONG;
578
579		if ((end - start) < 2)
580			return NULL;
581
582		item->size = *start++;
583		item->tag  = *start++;
584
585		if ((end - start) < item->size)
586			return NULL;
587
588		item->data.longdata = start;
589		start += item->size;
590		return start;
591	}
592
593	item->format = HID_ITEM_FORMAT_SHORT;
594	item->size = b & 3;
595
596	switch (item->size) {
597
598		case 0:
599			return start;
600
601		case 1:
602			if ((end - start) < 1)
603				return NULL;
604			item->data.u8 = *start++;
605			return start;
606
607		case 2:
608			if ((end - start) < 2)
609				return NULL;
610			item->data.u16 = le16_to_cpu(get_unaligned((__le16*)start));
611			start = (__u8 *)((__le16 *)start + 1);
612			return start;
613
614		case 3:
615			item->size++;
616			if ((end - start) < 4)
617				return NULL;
618			item->data.u32 = le32_to_cpu(get_unaligned((__le32*)start));
619			start = (__u8 *)((__le32 *)start + 1);
620			return start;
621	}
622
623	return NULL;
624}
625
626/*
627 * Parse a report description into a hid_device structure. Reports are
628 * enumerated, fields are attached to these reports.
629 */
630
631struct hid_device *hid_parse_report(__u8 *start, unsigned size)
632{
633	struct hid_device *device;
634	struct hid_parser *parser;
635	struct hid_item item;
636	__u8 *end;
637	unsigned i;
638	static int (*dispatch_type[])(struct hid_parser *parser,
639				      struct hid_item *item) = {
640		hid_parser_main,
641		hid_parser_global,
642		hid_parser_local,
643		hid_parser_reserved
644	};
645
646	if (!(device = kzalloc(sizeof(struct hid_device), GFP_KERNEL)))
647		return NULL;
648
649	if (!(device->collection = kzalloc(sizeof(struct hid_collection) *
650				   HID_DEFAULT_NUM_COLLECTIONS, GFP_KERNEL))) {
651		kfree(device);
652		return NULL;
653	}
654	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
655
656	for (i = 0; i < HID_REPORT_TYPES; i++)
657		INIT_LIST_HEAD(&device->report_enum[i].report_list);
658
659	if (!(device->rdesc = (__u8 *)kmalloc(size, GFP_KERNEL))) {
660		kfree(device->collection);
661		kfree(device);
662		return NULL;
663	}
664	memcpy(device->rdesc, start, size);
665	device->rsize = size;
666
667	if (!(parser = kzalloc(sizeof(struct hid_parser), GFP_KERNEL))) {
668		kfree(device->rdesc);
669		kfree(device->collection);
670		kfree(device);
671		return NULL;
672	}
673	parser->device = device;
674
675	end = start + size;
676	while ((start = fetch_item(start, end, &item)) != NULL) {
677
678		if (item.format != HID_ITEM_FORMAT_SHORT) {
679			dbg("unexpected long global item");
680			kfree(device->collection);
681			hid_free_device(device);
682			kfree(parser);
683			return NULL;
684		}
685
686		if (dispatch_type[item.type](parser, &item)) {
687			dbg("item %u %u %u %u parsing failed\n",
688				item.format, (unsigned)item.size, (unsigned)item.type, (unsigned)item.tag);
689			kfree(device->collection);
690			hid_free_device(device);
691			kfree(parser);
692			return NULL;
693		}
694
695		if (start == end) {
696			if (parser->collection_stack_ptr) {
697				dbg("unbalanced collection at end of report description");
698				kfree(device->collection);
699				hid_free_device(device);
700				kfree(parser);
701				return NULL;
702			}
703			if (parser->local.delimiter_depth) {
704				dbg("unbalanced delimiter at end of report description");
705				kfree(device->collection);
706				hid_free_device(device);
707				kfree(parser);
708				return NULL;
709			}
710			kfree(parser);
711			return device;
712		}
713	}
714
715	dbg("item fetching failed at offset %d\n", (int)(end - start));
716	kfree(device->collection);
717	hid_free_device(device);
718	kfree(parser);
719	return NULL;
720}
721EXPORT_SYMBOL_GPL(hid_parse_report);
722
723/*
724 * Convert a signed n-bit integer to signed 32-bit integer. Common
725 * cases are done through the compiler, the screwed things has to be
726 * done by hand.
727 */
728
729static s32 snto32(__u32 value, unsigned n)
730{
731	switch (n) {
732		case 8:  return ((__s8)value);
733		case 16: return ((__s16)value);
734		case 32: return ((__s32)value);
735	}
736	return value & (1 << (n - 1)) ? value | (-1 << n) : value;
737}
738
739/*
740 * Convert a signed 32-bit integer to a signed n-bit integer.
741 */
742
743static u32 s32ton(__s32 value, unsigned n)
744{
745	s32 a = value >> (n - 1);
746	if (a && a != -1)
747		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
748	return value & ((1 << n) - 1);
749}
750
751/*
752 * Extract/implement a data field from/to a little endian report (bit array).
753 *
754 * Code sort-of follows HID spec:
755 *     http://www.usb.org/developers/devclass_docs/HID1_11.pdf
756 *
757 * While the USB HID spec allows unlimited length bit fields in "report
758 * descriptors", most devices never use more than 16 bits.
759 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
760 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
761 */
762
763static __inline__ __u32 extract(__u8 *report, unsigned offset, unsigned n)
764{
765	u64 x;
766
767	WARN_ON(n > 32);
768
769	report += offset >> 3;  /* adjust byte index */
770	offset &= 7;            /* now only need bit offset into one byte */
771	x = get_unaligned((u64 *) report);
772	x = le64_to_cpu(x);
773	x = (x >> offset) & ((1ULL << n) - 1);  /* extract bit field */
774	return (u32) x;
775}
776
777/*
778 * "implement" : set bits in a little endian bit stream.
779 * Same concepts as "extract" (see comments above).
780 * The data mangled in the bit stream remains in little endian
781 * order the whole time. It make more sense to talk about
782 * endianness of register values by considering a register
783 * a "cached" copy of the little endiad bit stream.
784 */
785static __inline__ void implement(__u8 *report, unsigned offset, unsigned n, __u32 value)
786{
787	u64 x;
788	u64 m = (1ULL << n) - 1;
789
790	WARN_ON(n > 32);
791
792	WARN_ON(value > m);
793	value &= m;
794
795	report += offset >> 3;
796	offset &= 7;
797
798	x = get_unaligned((u64 *)report);
799	x &= cpu_to_le64(~(m << offset));
800	x |= cpu_to_le64(((u64) value) << offset);
801	put_unaligned(x, (u64 *) report);
802}
803
804/*
805 * Search an array for a value.
806 */
807
808static __inline__ int search(__s32 *array, __s32 value, unsigned n)
809{
810	while (n--) {
811		if (*array++ == value)
812			return 0;
813	}
814	return -1;
815}
816
817static void hid_process_event(struct hid_device *hid, struct hid_field *field, struct hid_usage *usage, __s32 value, int interrupt)
818{
819	hid_dump_input(usage, value);
820	if (hid->claimed & HID_CLAIMED_INPUT)
821		hidinput_hid_event(hid, field, usage, value);
822	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt)
823		hiddev_hid_event(hid, field, usage, value);
824}
825
826/*
827 * Analyse a received field, and fetch the data from it. The field
828 * content is stored for next report processing (we do differential
829 * reporting to the layer).
830 */
831
832void hid_input_field(struct hid_device *hid, struct hid_field *field, __u8 *data, int interrupt)
833{
834	unsigned n;
835	unsigned count = field->report_count;
836	unsigned offset = field->report_offset;
837	unsigned size = field->report_size;
838	__s32 min = field->logical_minimum;
839	__s32 max = field->logical_maximum;
840	__s32 *value;
841
842	if (!(value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC)))
843		return;
844
845	for (n = 0; n < count; n++) {
846
847			value[n] = min < 0 ? snto32(extract(data, offset + n * size, size), size) :
848						    extract(data, offset + n * size, size);
849
850			if (!(field->flags & HID_MAIN_ITEM_VARIABLE) /* Ignore report if ErrorRollOver */
851			    && value[n] >= min && value[n] <= max
852			    && field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
853				goto exit;
854	}
855
856	for (n = 0; n < count; n++) {
857
858		if (HID_MAIN_ITEM_VARIABLE & field->flags) {
859			hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
860			continue;
861		}
862
863		if (field->value[n] >= min && field->value[n] <= max
864			&& field->usage[field->value[n] - min].hid
865			&& search(value, field->value[n], count))
866				hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
867
868		if (value[n] >= min && value[n] <= max
869			&& field->usage[value[n] - min].hid
870			&& search(field->value, value[n], count))
871				hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
872	}
873
874	memcpy(field->value, value, count * sizeof(__s32));
875exit:
876	kfree(value);
877}
878EXPORT_SYMBOL_GPL(hid_input_field);
879
880/*
881 * Output the field into the report.
882 */
883
884static void hid_output_field(struct hid_field *field, __u8 *data)
885{
886	unsigned count = field->report_count;
887	unsigned offset = field->report_offset;
888	unsigned size = field->report_size;
889	unsigned n;
890
891	for (n = 0; n < count; n++) {
892		if (field->logical_minimum < 0)	/* signed values */
893			implement(data, offset + n * size, size, s32ton(field->value[n], size));
894		else				/* unsigned values */
895			implement(data, offset + n * size, size, field->value[n]);
896	}
897}
898
899/*
900 * Create a report.
901 */
902
903void hid_output_report(struct hid_report *report, __u8 *data)
904{
905	unsigned n;
906
907	if (report->id > 0)
908		*data++ = report->id;
909
910	for (n = 0; n < report->maxfield; n++)
911		hid_output_field(report->field[n], data);
912}
913EXPORT_SYMBOL_GPL(hid_output_report);
914
915/*
916 * Set a field value. The report this field belongs to has to be
917 * created and transferred to the device, to set this value in the
918 * device.
919 */
920
921int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
922{
923	unsigned size = field->report_size;
924
925	hid_dump_input(field->usage + offset, value);
926
927	if (offset >= field->report_count) {
928		dbg("offset (%d) exceeds report_count (%d)", offset, field->report_count);
929		hid_dump_field(field, 8);
930		return -1;
931	}
932	if (field->logical_minimum < 0) {
933		if (value != snto32(s32ton(value, size), size)) {
934			dbg("value %d is out of range", value);
935			return -1;
936		}
937	}
938	field->value[offset] = value;
939	return 0;
940}
941EXPORT_SYMBOL_GPL(hid_set_field);
942
943