hid-core.c revision 58037eb961f859607b161c50d9d4ecb374de1e8f
1/*
2 *  HID support for Linux
3 *
4 *  Copyright (c) 1999 Andreas Gal
5 *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
6 *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
7 *  Copyright (c) 2006-2007 Jiri Kosina
8 */
9
10/*
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
14 * any later version.
15 */
16
17#include <linux/module.h>
18#include <linux/slab.h>
19#include <linux/init.h>
20#include <linux/kernel.h>
21#include <linux/list.h>
22#include <linux/mm.h>
23#include <linux/spinlock.h>
24#include <asm/unaligned.h>
25#include <asm/byteorder.h>
26#include <linux/input.h>
27#include <linux/wait.h>
28#include <linux/vmalloc.h>
29
30#include <linux/hid.h>
31#include <linux/hiddev.h>
32#include <linux/hid-debug.h>
33
34/*
35 * Version Information
36 */
37
38#define DRIVER_VERSION "v2.6"
39#define DRIVER_AUTHOR "Andreas Gal, Vojtech Pavlik, Jiri Kosina"
40#define DRIVER_DESC "HID core driver"
41#define DRIVER_LICENSE "GPL"
42
43#ifdef CONFIG_HID_DEBUG
44int hid_debug = 0;
45module_param_named(debug, hid_debug, bool, 0600);
46MODULE_PARM_DESC(debug, "Turn HID debugging mode on and off");
47EXPORT_SYMBOL_GPL(hid_debug);
48#endif
49
50/*
51 * Register a new report for a device.
52 */
53
54static struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
55{
56	struct hid_report_enum *report_enum = device->report_enum + type;
57	struct hid_report *report;
58
59	if (report_enum->report_id_hash[id])
60		return report_enum->report_id_hash[id];
61
62	if (!(report = kzalloc(sizeof(struct hid_report), GFP_KERNEL)))
63		return NULL;
64
65	if (id != 0)
66		report_enum->numbered = 1;
67
68	report->id = id;
69	report->type = type;
70	report->size = 0;
71	report->device = device;
72	report_enum->report_id_hash[id] = report;
73
74	list_add_tail(&report->list, &report_enum->report_list);
75
76	return report;
77}
78
79/*
80 * Register a new field for this report.
81 */
82
83static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
84{
85	struct hid_field *field;
86
87	if (report->maxfield == HID_MAX_FIELDS) {
88		dbg_hid("too many fields in report\n");
89		return NULL;
90	}
91
92	if (!(field = kzalloc(sizeof(struct hid_field) + usages * sizeof(struct hid_usage)
93		+ values * sizeof(unsigned), GFP_KERNEL))) return NULL;
94
95	field->index = report->maxfield++;
96	report->field[field->index] = field;
97	field->usage = (struct hid_usage *)(field + 1);
98	field->value = (unsigned *)(field->usage + usages);
99	field->report = report;
100
101	return field;
102}
103
104/*
105 * Open a collection. The type/usage is pushed on the stack.
106 */
107
108static int open_collection(struct hid_parser *parser, unsigned type)
109{
110	struct hid_collection *collection;
111	unsigned usage;
112
113	usage = parser->local.usage[0];
114
115	if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
116		dbg_hid("collection stack overflow\n");
117		return -1;
118	}
119
120	if (parser->device->maxcollection == parser->device->collection_size) {
121		collection = kmalloc(sizeof(struct hid_collection) *
122				parser->device->collection_size * 2, GFP_KERNEL);
123		if (collection == NULL) {
124			dbg_hid("failed to reallocate collection array\n");
125			return -1;
126		}
127		memcpy(collection, parser->device->collection,
128			sizeof(struct hid_collection) *
129			parser->device->collection_size);
130		memset(collection + parser->device->collection_size, 0,
131			sizeof(struct hid_collection) *
132			parser->device->collection_size);
133		kfree(parser->device->collection);
134		parser->device->collection = collection;
135		parser->device->collection_size *= 2;
136	}
137
138	parser->collection_stack[parser->collection_stack_ptr++] =
139		parser->device->maxcollection;
140
141	collection = parser->device->collection +
142		parser->device->maxcollection++;
143	collection->type = type;
144	collection->usage = usage;
145	collection->level = parser->collection_stack_ptr - 1;
146
147	if (type == HID_COLLECTION_APPLICATION)
148		parser->device->maxapplication++;
149
150	return 0;
151}
152
153/*
154 * Close a collection.
155 */
156
157static int close_collection(struct hid_parser *parser)
158{
159	if (!parser->collection_stack_ptr) {
160		dbg_hid("collection stack underflow\n");
161		return -1;
162	}
163	parser->collection_stack_ptr--;
164	return 0;
165}
166
167/*
168 * Climb up the stack, search for the specified collection type
169 * and return the usage.
170 */
171
172static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
173{
174	int n;
175	for (n = parser->collection_stack_ptr - 1; n >= 0; n--)
176		if (parser->device->collection[parser->collection_stack[n]].type == type)
177			return parser->device->collection[parser->collection_stack[n]].usage;
178	return 0; /* we know nothing about this usage type */
179}
180
181/*
182 * Add a usage to the temporary parser table.
183 */
184
185static int hid_add_usage(struct hid_parser *parser, unsigned usage)
186{
187	if (parser->local.usage_index >= HID_MAX_USAGES) {
188		dbg_hid("usage index exceeded\n");
189		return -1;
190	}
191	parser->local.usage[parser->local.usage_index] = usage;
192	parser->local.collection_index[parser->local.usage_index] =
193		parser->collection_stack_ptr ?
194		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
195	parser->local.usage_index++;
196	return 0;
197}
198
199/*
200 * Register a new field for this report.
201 */
202
203static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
204{
205	struct hid_report *report;
206	struct hid_field *field;
207	int usages;
208	unsigned offset;
209	int i;
210
211	if (!(report = hid_register_report(parser->device, report_type, parser->global.report_id))) {
212		dbg_hid("hid_register_report failed\n");
213		return -1;
214	}
215
216	if (parser->global.logical_maximum < parser->global.logical_minimum) {
217		dbg_hid("logical range invalid %d %d\n", parser->global.logical_minimum, parser->global.logical_maximum);
218		return -1;
219	}
220
221	offset = report->size;
222	report->size += parser->global.report_size * parser->global.report_count;
223
224	if (!parser->local.usage_index) /* Ignore padding fields */
225		return 0;
226
227	usages = max_t(int, parser->local.usage_index, parser->global.report_count);
228
229	if ((field = hid_register_field(report, usages, parser->global.report_count)) == NULL)
230		return 0;
231
232	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
233	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
234	field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
235
236	for (i = 0; i < usages; i++) {
237		int j = i;
238		/* Duplicate the last usage we parsed if we have excess values */
239		if (i >= parser->local.usage_index)
240			j = parser->local.usage_index - 1;
241		field->usage[i].hid = parser->local.usage[j];
242		field->usage[i].collection_index =
243			parser->local.collection_index[j];
244	}
245
246	field->maxusage = usages;
247	field->flags = flags;
248	field->report_offset = offset;
249	field->report_type = report_type;
250	field->report_size = parser->global.report_size;
251	field->report_count = parser->global.report_count;
252	field->logical_minimum = parser->global.logical_minimum;
253	field->logical_maximum = parser->global.logical_maximum;
254	field->physical_minimum = parser->global.physical_minimum;
255	field->physical_maximum = parser->global.physical_maximum;
256	field->unit_exponent = parser->global.unit_exponent;
257	field->unit = parser->global.unit;
258
259	return 0;
260}
261
262/*
263 * Read data value from item.
264 */
265
266static u32 item_udata(struct hid_item *item)
267{
268	switch (item->size) {
269		case 1: return item->data.u8;
270		case 2: return item->data.u16;
271		case 4: return item->data.u32;
272	}
273	return 0;
274}
275
276static s32 item_sdata(struct hid_item *item)
277{
278	switch (item->size) {
279		case 1: return item->data.s8;
280		case 2: return item->data.s16;
281		case 4: return item->data.s32;
282	}
283	return 0;
284}
285
286/*
287 * Process a global item.
288 */
289
290static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
291{
292	switch (item->tag) {
293
294		case HID_GLOBAL_ITEM_TAG_PUSH:
295
296			if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
297				dbg_hid("global enviroment stack overflow\n");
298				return -1;
299			}
300
301			memcpy(parser->global_stack + parser->global_stack_ptr++,
302				&parser->global, sizeof(struct hid_global));
303			return 0;
304
305		case HID_GLOBAL_ITEM_TAG_POP:
306
307			if (!parser->global_stack_ptr) {
308				dbg_hid("global enviroment stack underflow\n");
309				return -1;
310			}
311
312			memcpy(&parser->global, parser->global_stack + --parser->global_stack_ptr,
313				sizeof(struct hid_global));
314			return 0;
315
316		case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
317			parser->global.usage_page = item_udata(item);
318			return 0;
319
320		case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
321			parser->global.logical_minimum = item_sdata(item);
322			return 0;
323
324		case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
325			if (parser->global.logical_minimum < 0)
326				parser->global.logical_maximum = item_sdata(item);
327			else
328				parser->global.logical_maximum = item_udata(item);
329			return 0;
330
331		case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
332			parser->global.physical_minimum = item_sdata(item);
333			return 0;
334
335		case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
336			if (parser->global.physical_minimum < 0)
337				parser->global.physical_maximum = item_sdata(item);
338			else
339				parser->global.physical_maximum = item_udata(item);
340			return 0;
341
342		case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
343			parser->global.unit_exponent = item_sdata(item);
344			return 0;
345
346		case HID_GLOBAL_ITEM_TAG_UNIT:
347			parser->global.unit = item_udata(item);
348			return 0;
349
350		case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
351			if ((parser->global.report_size = item_udata(item)) > 32) {
352				dbg_hid("invalid report_size %d\n", parser->global.report_size);
353				return -1;
354			}
355			return 0;
356
357		case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
358			if ((parser->global.report_count = item_udata(item)) > HID_MAX_USAGES) {
359				dbg_hid("invalid report_count %d\n", parser->global.report_count);
360				return -1;
361			}
362			return 0;
363
364		case HID_GLOBAL_ITEM_TAG_REPORT_ID:
365			if ((parser->global.report_id = item_udata(item)) == 0) {
366				dbg_hid("report_id 0 is invalid\n");
367				return -1;
368			}
369			return 0;
370
371		default:
372			dbg_hid("unknown global tag 0x%x\n", item->tag);
373			return -1;
374	}
375}
376
377/*
378 * Process a local item.
379 */
380
381static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
382{
383	__u32 data;
384	unsigned n;
385
386	if (item->size == 0) {
387		dbg_hid("item data expected for local item\n");
388		return -1;
389	}
390
391	data = item_udata(item);
392
393	switch (item->tag) {
394
395		case HID_LOCAL_ITEM_TAG_DELIMITER:
396
397			if (data) {
398				/*
399				 * We treat items before the first delimiter
400				 * as global to all usage sets (branch 0).
401				 * In the moment we process only these global
402				 * items and the first delimiter set.
403				 */
404				if (parser->local.delimiter_depth != 0) {
405					dbg_hid("nested delimiters\n");
406					return -1;
407				}
408				parser->local.delimiter_depth++;
409				parser->local.delimiter_branch++;
410			} else {
411				if (parser->local.delimiter_depth < 1) {
412					dbg_hid("bogus close delimiter\n");
413					return -1;
414				}
415				parser->local.delimiter_depth--;
416			}
417			return 1;
418
419		case HID_LOCAL_ITEM_TAG_USAGE:
420
421			if (parser->local.delimiter_branch > 1) {
422				dbg_hid("alternative usage ignored\n");
423				return 0;
424			}
425
426			if (item->size <= 2)
427				data = (parser->global.usage_page << 16) + data;
428
429			return hid_add_usage(parser, data);
430
431		case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
432
433			if (parser->local.delimiter_branch > 1) {
434				dbg_hid("alternative usage ignored\n");
435				return 0;
436			}
437
438			if (item->size <= 2)
439				data = (parser->global.usage_page << 16) + data;
440
441			parser->local.usage_minimum = data;
442			return 0;
443
444		case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
445
446			if (parser->local.delimiter_branch > 1) {
447				dbg_hid("alternative usage ignored\n");
448				return 0;
449			}
450
451			if (item->size <= 2)
452				data = (parser->global.usage_page << 16) + data;
453
454			for (n = parser->local.usage_minimum; n <= data; n++)
455				if (hid_add_usage(parser, n)) {
456					dbg_hid("hid_add_usage failed\n");
457					return -1;
458				}
459			return 0;
460
461		default:
462
463			dbg_hid("unknown local item tag 0x%x\n", item->tag);
464			return 0;
465	}
466	return 0;
467}
468
469/*
470 * Process a main item.
471 */
472
473static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
474{
475	__u32 data;
476	int ret;
477
478	data = item_udata(item);
479
480	switch (item->tag) {
481		case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
482			ret = open_collection(parser, data & 0xff);
483			break;
484		case HID_MAIN_ITEM_TAG_END_COLLECTION:
485			ret = close_collection(parser);
486			break;
487		case HID_MAIN_ITEM_TAG_INPUT:
488			ret = hid_add_field(parser, HID_INPUT_REPORT, data);
489			break;
490		case HID_MAIN_ITEM_TAG_OUTPUT:
491			ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
492			break;
493		case HID_MAIN_ITEM_TAG_FEATURE:
494			ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
495			break;
496		default:
497			dbg_hid("unknown main item tag 0x%x\n", item->tag);
498			ret = 0;
499	}
500
501	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
502
503	return ret;
504}
505
506/*
507 * Process a reserved item.
508 */
509
510static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
511{
512	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
513	return 0;
514}
515
516/*
517 * Free a report and all registered fields. The field->usage and
518 * field->value table's are allocated behind the field, so we need
519 * only to free(field) itself.
520 */
521
522static void hid_free_report(struct hid_report *report)
523{
524	unsigned n;
525
526	for (n = 0; n < report->maxfield; n++)
527		kfree(report->field[n]);
528	kfree(report);
529}
530
531/*
532 * Free a device structure, all reports, and all fields.
533 */
534
535void hid_free_device(struct hid_device *device)
536{
537	unsigned i,j;
538
539	for (i = 0; i < HID_REPORT_TYPES; i++) {
540		struct hid_report_enum *report_enum = device->report_enum + i;
541
542		for (j = 0; j < 256; j++) {
543			struct hid_report *report = report_enum->report_id_hash[j];
544			if (report)
545				hid_free_report(report);
546		}
547	}
548
549	kfree(device->rdesc);
550	kfree(device->collection);
551	kfree(device);
552}
553EXPORT_SYMBOL_GPL(hid_free_device);
554
555/*
556 * Fetch a report description item from the data stream. We support long
557 * items, though they are not used yet.
558 */
559
560static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
561{
562	u8 b;
563
564	if ((end - start) <= 0)
565		return NULL;
566
567	b = *start++;
568
569	item->type = (b >> 2) & 3;
570	item->tag  = (b >> 4) & 15;
571
572	if (item->tag == HID_ITEM_TAG_LONG) {
573
574		item->format = HID_ITEM_FORMAT_LONG;
575
576		if ((end - start) < 2)
577			return NULL;
578
579		item->size = *start++;
580		item->tag  = *start++;
581
582		if ((end - start) < item->size)
583			return NULL;
584
585		item->data.longdata = start;
586		start += item->size;
587		return start;
588	}
589
590	item->format = HID_ITEM_FORMAT_SHORT;
591	item->size = b & 3;
592
593	switch (item->size) {
594
595		case 0:
596			return start;
597
598		case 1:
599			if ((end - start) < 1)
600				return NULL;
601			item->data.u8 = *start++;
602			return start;
603
604		case 2:
605			if ((end - start) < 2)
606				return NULL;
607			item->data.u16 = le16_to_cpu(get_unaligned((__le16*)start));
608			start = (__u8 *)((__le16 *)start + 1);
609			return start;
610
611		case 3:
612			item->size++;
613			if ((end - start) < 4)
614				return NULL;
615			item->data.u32 = le32_to_cpu(get_unaligned((__le32*)start));
616			start = (__u8 *)((__le32 *)start + 1);
617			return start;
618	}
619
620	return NULL;
621}
622
623/*
624 * Parse a report description into a hid_device structure. Reports are
625 * enumerated, fields are attached to these reports.
626 */
627
628struct hid_device *hid_parse_report(__u8 *start, unsigned size)
629{
630	struct hid_device *device;
631	struct hid_parser *parser;
632	struct hid_item item;
633	__u8 *end;
634	unsigned i;
635	static int (*dispatch_type[])(struct hid_parser *parser,
636				      struct hid_item *item) = {
637		hid_parser_main,
638		hid_parser_global,
639		hid_parser_local,
640		hid_parser_reserved
641	};
642
643	if (!(device = kzalloc(sizeof(struct hid_device), GFP_KERNEL)))
644		return NULL;
645
646	if (!(device->collection = kzalloc(sizeof(struct hid_collection) *
647				   HID_DEFAULT_NUM_COLLECTIONS, GFP_KERNEL))) {
648		kfree(device);
649		return NULL;
650	}
651	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
652
653	for (i = 0; i < HID_REPORT_TYPES; i++)
654		INIT_LIST_HEAD(&device->report_enum[i].report_list);
655
656	if (!(device->rdesc = kmalloc(size, GFP_KERNEL))) {
657		kfree(device->collection);
658		kfree(device);
659		return NULL;
660	}
661	memcpy(device->rdesc, start, size);
662	device->rsize = size;
663
664	if (!(parser = vmalloc(sizeof(struct hid_parser)))) {
665		kfree(device->rdesc);
666		kfree(device->collection);
667		kfree(device);
668		return NULL;
669	}
670	memset(parser, 0, sizeof(struct hid_parser));
671	parser->device = device;
672
673	end = start + size;
674	while ((start = fetch_item(start, end, &item)) != NULL) {
675
676		if (item.format != HID_ITEM_FORMAT_SHORT) {
677			dbg_hid("unexpected long global item\n");
678			hid_free_device(device);
679			vfree(parser);
680			return NULL;
681		}
682
683		if (dispatch_type[item.type](parser, &item)) {
684			dbg_hid("item %u %u %u %u parsing failed\n",
685				item.format, (unsigned)item.size, (unsigned)item.type, (unsigned)item.tag);
686			hid_free_device(device);
687			vfree(parser);
688			return NULL;
689		}
690
691		if (start == end) {
692			if (parser->collection_stack_ptr) {
693				dbg_hid("unbalanced collection at end of report description\n");
694				hid_free_device(device);
695				vfree(parser);
696				return NULL;
697			}
698			if (parser->local.delimiter_depth) {
699				dbg_hid("unbalanced delimiter at end of report description\n");
700				hid_free_device(device);
701				vfree(parser);
702				return NULL;
703			}
704			vfree(parser);
705			return device;
706		}
707	}
708
709	dbg_hid("item fetching failed at offset %d\n", (int)(end - start));
710	hid_free_device(device);
711	vfree(parser);
712	return NULL;
713}
714EXPORT_SYMBOL_GPL(hid_parse_report);
715
716/*
717 * Convert a signed n-bit integer to signed 32-bit integer. Common
718 * cases are done through the compiler, the screwed things has to be
719 * done by hand.
720 */
721
722static s32 snto32(__u32 value, unsigned n)
723{
724	switch (n) {
725		case 8:  return ((__s8)value);
726		case 16: return ((__s16)value);
727		case 32: return ((__s32)value);
728	}
729	return value & (1 << (n - 1)) ? value | (-1 << n) : value;
730}
731
732/*
733 * Convert a signed 32-bit integer to a signed n-bit integer.
734 */
735
736static u32 s32ton(__s32 value, unsigned n)
737{
738	s32 a = value >> (n - 1);
739	if (a && a != -1)
740		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
741	return value & ((1 << n) - 1);
742}
743
744/*
745 * Extract/implement a data field from/to a little endian report (bit array).
746 *
747 * Code sort-of follows HID spec:
748 *     http://www.usb.org/developers/devclass_docs/HID1_11.pdf
749 *
750 * While the USB HID spec allows unlimited length bit fields in "report
751 * descriptors", most devices never use more than 16 bits.
752 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
753 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
754 */
755
756static __inline__ __u32 extract(__u8 *report, unsigned offset, unsigned n)
757{
758	u64 x;
759
760	WARN_ON(n > 32);
761
762	report += offset >> 3;  /* adjust byte index */
763	offset &= 7;            /* now only need bit offset into one byte */
764	x = le64_to_cpu(get_unaligned((__le64 *) report));
765	x = (x >> offset) & ((1ULL << n) - 1);  /* extract bit field */
766	return (u32) x;
767}
768
769/*
770 * "implement" : set bits in a little endian bit stream.
771 * Same concepts as "extract" (see comments above).
772 * The data mangled in the bit stream remains in little endian
773 * order the whole time. It make more sense to talk about
774 * endianness of register values by considering a register
775 * a "cached" copy of the little endiad bit stream.
776 */
777static __inline__ void implement(__u8 *report, unsigned offset, unsigned n, __u32 value)
778{
779	__le64 x;
780	u64 m = (1ULL << n) - 1;
781
782	WARN_ON(n > 32);
783
784	WARN_ON(value > m);
785	value &= m;
786
787	report += offset >> 3;
788	offset &= 7;
789
790	x = get_unaligned((__le64 *)report);
791	x &= cpu_to_le64(~(m << offset));
792	x |= cpu_to_le64(((u64) value) << offset);
793	put_unaligned(x, (__le64 *) report);
794}
795
796/*
797 * Search an array for a value.
798 */
799
800static __inline__ int search(__s32 *array, __s32 value, unsigned n)
801{
802	while (n--) {
803		if (*array++ == value)
804			return 0;
805	}
806	return -1;
807}
808
809static void hid_process_event(struct hid_device *hid, struct hid_field *field, struct hid_usage *usage, __s32 value, int interrupt)
810{
811	hid_dump_input(usage, value);
812	if (hid->claimed & HID_CLAIMED_INPUT)
813		hidinput_hid_event(hid, field, usage, value);
814	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
815		hid->hiddev_hid_event(hid, field, usage, value);
816}
817
818/*
819 * Analyse a received field, and fetch the data from it. The field
820 * content is stored for next report processing (we do differential
821 * reporting to the layer).
822 */
823
824void hid_input_field(struct hid_device *hid, struct hid_field *field, __u8 *data, int interrupt)
825{
826	unsigned n;
827	unsigned count = field->report_count;
828	unsigned offset = field->report_offset;
829	unsigned size = field->report_size;
830	__s32 min = field->logical_minimum;
831	__s32 max = field->logical_maximum;
832	__s32 *value;
833
834	if (!(value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC)))
835		return;
836
837	for (n = 0; n < count; n++) {
838
839			value[n] = min < 0 ? snto32(extract(data, offset + n * size, size), size) :
840						    extract(data, offset + n * size, size);
841
842			if (!(field->flags & HID_MAIN_ITEM_VARIABLE) /* Ignore report if ErrorRollOver */
843			    && value[n] >= min && value[n] <= max
844			    && field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
845				goto exit;
846	}
847
848	for (n = 0; n < count; n++) {
849
850		if (HID_MAIN_ITEM_VARIABLE & field->flags) {
851			hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
852			continue;
853		}
854
855		if (field->value[n] >= min && field->value[n] <= max
856			&& field->usage[field->value[n] - min].hid
857			&& search(value, field->value[n], count))
858				hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
859
860		if (value[n] >= min && value[n] <= max
861			&& field->usage[value[n] - min].hid
862			&& search(field->value, value[n], count))
863				hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
864	}
865
866	memcpy(field->value, value, count * sizeof(__s32));
867exit:
868	kfree(value);
869}
870EXPORT_SYMBOL_GPL(hid_input_field);
871
872/*
873 * Output the field into the report.
874 */
875
876static void hid_output_field(struct hid_field *field, __u8 *data)
877{
878	unsigned count = field->report_count;
879	unsigned offset = field->report_offset;
880	unsigned size = field->report_size;
881	unsigned bitsused = offset + count * size;
882	unsigned n;
883
884	/* make sure the unused bits in the last byte are zeros */
885	if (count > 0 && size > 0 && (bitsused % 8) != 0)
886		data[(bitsused-1)/8] &= (1 << (bitsused % 8)) - 1;
887
888	for (n = 0; n < count; n++) {
889		if (field->logical_minimum < 0)	/* signed values */
890			implement(data, offset + n * size, size, s32ton(field->value[n], size));
891		else				/* unsigned values */
892			implement(data, offset + n * size, size, field->value[n]);
893	}
894}
895
896/*
897 * Create a report.
898 */
899
900void hid_output_report(struct hid_report *report, __u8 *data)
901{
902	unsigned n;
903
904	if (report->id > 0)
905		*data++ = report->id;
906
907	for (n = 0; n < report->maxfield; n++)
908		hid_output_field(report->field[n], data);
909}
910EXPORT_SYMBOL_GPL(hid_output_report);
911
912/*
913 * Set a field value. The report this field belongs to has to be
914 * created and transferred to the device, to set this value in the
915 * device.
916 */
917
918int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
919{
920	unsigned size = field->report_size;
921
922	hid_dump_input(field->usage + offset, value);
923
924	if (offset >= field->report_count) {
925		dbg_hid("offset (%d) exceeds report_count (%d)\n", offset, field->report_count);
926		hid_dump_field(field, 8);
927		return -1;
928	}
929	if (field->logical_minimum < 0) {
930		if (value != snto32(s32ton(value, size), size)) {
931			dbg_hid("value %d is out of range\n", value);
932			return -1;
933		}
934	}
935	field->value[offset] = value;
936	return 0;
937}
938EXPORT_SYMBOL_GPL(hid_set_field);
939
940int hid_input_report(struct hid_device *hid, int type, u8 *data, int size, int interrupt)
941{
942	struct hid_report_enum *report_enum = hid->report_enum + type;
943	struct hid_report *report;
944	int n, rsize, i;
945
946	if (!hid)
947		return -ENODEV;
948
949	if (!size) {
950		dbg_hid("empty report\n");
951		return -1;
952	}
953
954	dbg_hid("report (size %u) (%snumbered)\n", size, report_enum->numbered ? "" : "un");
955
956	n = 0;                          /* Normally report number is 0 */
957	if (report_enum->numbered) {    /* Device uses numbered reports, data[0] is report number */
958		n = *data++;
959		size--;
960	}
961
962	/* dump the report descriptor */
963	dbg_hid("report %d (size %u) = ", n, size);
964	for (i = 0; i < size; i++)
965		dbg_hid_line(" %02x", data[i]);
966	dbg_hid_line("\n");
967
968	if (!(report = report_enum->report_id_hash[n])) {
969		dbg_hid("undefined report_id %d received\n", n);
970		return -1;
971	}
972
973	rsize = ((report->size - 1) >> 3) + 1;
974
975	if (size < rsize) {
976		dbg_hid("report %d is too short, (%d < %d)\n", report->id, size, rsize);
977		memset(data + size, 0, rsize - size);
978	}
979
980	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
981		hid->hiddev_report_event(hid, report);
982
983	for (n = 0; n < report->maxfield; n++)
984		hid_input_field(hid, report->field[n], data, interrupt);
985
986	if (hid->claimed & HID_CLAIMED_INPUT)
987		hidinput_report_event(hid, report);
988
989	return 0;
990}
991EXPORT_SYMBOL_GPL(hid_input_report);
992
993MODULE_LICENSE(DRIVER_LICENSE);
994
995