hid-core.c revision 6f0168d2dacd7972d887e1ca27943ef8af7512a5
1/*
2 *  HID support for Linux
3 *
4 *  Copyright (c) 1999 Andreas Gal
5 *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
6 *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
7 *  Copyright (c) 2006-2007 Jiri Kosina
8 */
9
10/*
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
14 * any later version.
15 */
16
17#include <linux/module.h>
18#include <linux/slab.h>
19#include <linux/init.h>
20#include <linux/kernel.h>
21#include <linux/list.h>
22#include <linux/mm.h>
23#include <linux/spinlock.h>
24#include <asm/unaligned.h>
25#include <asm/byteorder.h>
26#include <linux/input.h>
27#include <linux/wait.h>
28#include <linux/vmalloc.h>
29#include <linux/sched.h>
30
31#include <linux/hid.h>
32#include <linux/hiddev.h>
33#include <linux/hid-debug.h>
34#include <linux/hidraw.h>
35
36/*
37 * Version Information
38 */
39
40#define DRIVER_VERSION "v2.6"
41#define DRIVER_AUTHOR "Andreas Gal, Vojtech Pavlik, Jiri Kosina"
42#define DRIVER_DESC "HID core driver"
43#define DRIVER_LICENSE "GPL"
44
45#ifdef CONFIG_HID_DEBUG
46int hid_debug = 0;
47module_param_named(debug, hid_debug, int, 0600);
48MODULE_PARM_DESC(debug, "HID debugging (0=off, 1=probing info, 2=continuous data dumping)");
49EXPORT_SYMBOL_GPL(hid_debug);
50#endif
51
52/*
53 * Register a new report for a device.
54 */
55
56static struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
57{
58	struct hid_report_enum *report_enum = device->report_enum + type;
59	struct hid_report *report;
60
61	if (report_enum->report_id_hash[id])
62		return report_enum->report_id_hash[id];
63
64	if (!(report = kzalloc(sizeof(struct hid_report), GFP_KERNEL)))
65		return NULL;
66
67	if (id != 0)
68		report_enum->numbered = 1;
69
70	report->id = id;
71	report->type = type;
72	report->size = 0;
73	report->device = device;
74	report_enum->report_id_hash[id] = report;
75
76	list_add_tail(&report->list, &report_enum->report_list);
77
78	return report;
79}
80
81/*
82 * Register a new field for this report.
83 */
84
85static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
86{
87	struct hid_field *field;
88
89	if (report->maxfield == HID_MAX_FIELDS) {
90		dbg_hid("too many fields in report\n");
91		return NULL;
92	}
93
94	if (!(field = kzalloc(sizeof(struct hid_field) + usages * sizeof(struct hid_usage)
95		+ values * sizeof(unsigned), GFP_KERNEL))) return NULL;
96
97	field->index = report->maxfield++;
98	report->field[field->index] = field;
99	field->usage = (struct hid_usage *)(field + 1);
100	field->value = (s32 *)(field->usage + usages);
101	field->report = report;
102
103	return field;
104}
105
106/*
107 * Open a collection. The type/usage is pushed on the stack.
108 */
109
110static int open_collection(struct hid_parser *parser, unsigned type)
111{
112	struct hid_collection *collection;
113	unsigned usage;
114
115	usage = parser->local.usage[0];
116
117	if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
118		dbg_hid("collection stack overflow\n");
119		return -1;
120	}
121
122	if (parser->device->maxcollection == parser->device->collection_size) {
123		collection = kmalloc(sizeof(struct hid_collection) *
124				parser->device->collection_size * 2, GFP_KERNEL);
125		if (collection == NULL) {
126			dbg_hid("failed to reallocate collection array\n");
127			return -1;
128		}
129		memcpy(collection, parser->device->collection,
130			sizeof(struct hid_collection) *
131			parser->device->collection_size);
132		memset(collection + parser->device->collection_size, 0,
133			sizeof(struct hid_collection) *
134			parser->device->collection_size);
135		kfree(parser->device->collection);
136		parser->device->collection = collection;
137		parser->device->collection_size *= 2;
138	}
139
140	parser->collection_stack[parser->collection_stack_ptr++] =
141		parser->device->maxcollection;
142
143	collection = parser->device->collection +
144		parser->device->maxcollection++;
145	collection->type = type;
146	collection->usage = usage;
147	collection->level = parser->collection_stack_ptr - 1;
148
149	if (type == HID_COLLECTION_APPLICATION)
150		parser->device->maxapplication++;
151
152	return 0;
153}
154
155/*
156 * Close a collection.
157 */
158
159static int close_collection(struct hid_parser *parser)
160{
161	if (!parser->collection_stack_ptr) {
162		dbg_hid("collection stack underflow\n");
163		return -1;
164	}
165	parser->collection_stack_ptr--;
166	return 0;
167}
168
169/*
170 * Climb up the stack, search for the specified collection type
171 * and return the usage.
172 */
173
174static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
175{
176	int n;
177	for (n = parser->collection_stack_ptr - 1; n >= 0; n--)
178		if (parser->device->collection[parser->collection_stack[n]].type == type)
179			return parser->device->collection[parser->collection_stack[n]].usage;
180	return 0; /* we know nothing about this usage type */
181}
182
183/*
184 * Add a usage to the temporary parser table.
185 */
186
187static int hid_add_usage(struct hid_parser *parser, unsigned usage)
188{
189	if (parser->local.usage_index >= HID_MAX_USAGES) {
190		dbg_hid("usage index exceeded\n");
191		return -1;
192	}
193	parser->local.usage[parser->local.usage_index] = usage;
194	parser->local.collection_index[parser->local.usage_index] =
195		parser->collection_stack_ptr ?
196		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
197	parser->local.usage_index++;
198	return 0;
199}
200
201/*
202 * Register a new field for this report.
203 */
204
205static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
206{
207	struct hid_report *report;
208	struct hid_field *field;
209	int usages;
210	unsigned offset;
211	int i;
212
213	if (!(report = hid_register_report(parser->device, report_type, parser->global.report_id))) {
214		dbg_hid("hid_register_report failed\n");
215		return -1;
216	}
217
218	if (parser->global.logical_maximum < parser->global.logical_minimum) {
219		dbg_hid("logical range invalid %d %d\n", parser->global.logical_minimum, parser->global.logical_maximum);
220		return -1;
221	}
222
223	offset = report->size;
224	report->size += parser->global.report_size * parser->global.report_count;
225
226	if (!parser->local.usage_index) /* Ignore padding fields */
227		return 0;
228
229	usages = max_t(int, parser->local.usage_index, parser->global.report_count);
230
231	if ((field = hid_register_field(report, usages, parser->global.report_count)) == NULL)
232		return 0;
233
234	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
235	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
236	field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
237
238	for (i = 0; i < usages; i++) {
239		int j = i;
240		/* Duplicate the last usage we parsed if we have excess values */
241		if (i >= parser->local.usage_index)
242			j = parser->local.usage_index - 1;
243		field->usage[i].hid = parser->local.usage[j];
244		field->usage[i].collection_index =
245			parser->local.collection_index[j];
246	}
247
248	field->maxusage = usages;
249	field->flags = flags;
250	field->report_offset = offset;
251	field->report_type = report_type;
252	field->report_size = parser->global.report_size;
253	field->report_count = parser->global.report_count;
254	field->logical_minimum = parser->global.logical_minimum;
255	field->logical_maximum = parser->global.logical_maximum;
256	field->physical_minimum = parser->global.physical_minimum;
257	field->physical_maximum = parser->global.physical_maximum;
258	field->unit_exponent = parser->global.unit_exponent;
259	field->unit = parser->global.unit;
260
261	return 0;
262}
263
264/*
265 * Read data value from item.
266 */
267
268static u32 item_udata(struct hid_item *item)
269{
270	switch (item->size) {
271		case 1: return item->data.u8;
272		case 2: return item->data.u16;
273		case 4: return item->data.u32;
274	}
275	return 0;
276}
277
278static s32 item_sdata(struct hid_item *item)
279{
280	switch (item->size) {
281		case 1: return item->data.s8;
282		case 2: return item->data.s16;
283		case 4: return item->data.s32;
284	}
285	return 0;
286}
287
288/*
289 * Process a global item.
290 */
291
292static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
293{
294	switch (item->tag) {
295
296		case HID_GLOBAL_ITEM_TAG_PUSH:
297
298			if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
299				dbg_hid("global enviroment stack overflow\n");
300				return -1;
301			}
302
303			memcpy(parser->global_stack + parser->global_stack_ptr++,
304				&parser->global, sizeof(struct hid_global));
305			return 0;
306
307		case HID_GLOBAL_ITEM_TAG_POP:
308
309			if (!parser->global_stack_ptr) {
310				dbg_hid("global enviroment stack underflow\n");
311				return -1;
312			}
313
314			memcpy(&parser->global, parser->global_stack + --parser->global_stack_ptr,
315				sizeof(struct hid_global));
316			return 0;
317
318		case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
319			parser->global.usage_page = item_udata(item);
320			return 0;
321
322		case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
323			parser->global.logical_minimum = item_sdata(item);
324			return 0;
325
326		case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
327			if (parser->global.logical_minimum < 0)
328				parser->global.logical_maximum = item_sdata(item);
329			else
330				parser->global.logical_maximum = item_udata(item);
331			return 0;
332
333		case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
334			parser->global.physical_minimum = item_sdata(item);
335			return 0;
336
337		case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
338			if (parser->global.physical_minimum < 0)
339				parser->global.physical_maximum = item_sdata(item);
340			else
341				parser->global.physical_maximum = item_udata(item);
342			return 0;
343
344		case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
345			parser->global.unit_exponent = item_sdata(item);
346			return 0;
347
348		case HID_GLOBAL_ITEM_TAG_UNIT:
349			parser->global.unit = item_udata(item);
350			return 0;
351
352		case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
353			if ((parser->global.report_size = item_udata(item)) > 32) {
354				dbg_hid("invalid report_size %d\n", parser->global.report_size);
355				return -1;
356			}
357			return 0;
358
359		case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
360			if ((parser->global.report_count = item_udata(item)) > HID_MAX_USAGES) {
361				dbg_hid("invalid report_count %d\n", parser->global.report_count);
362				return -1;
363			}
364			return 0;
365
366		case HID_GLOBAL_ITEM_TAG_REPORT_ID:
367			if ((parser->global.report_id = item_udata(item)) == 0) {
368				dbg_hid("report_id 0 is invalid\n");
369				return -1;
370			}
371			return 0;
372
373		default:
374			dbg_hid("unknown global tag 0x%x\n", item->tag);
375			return -1;
376	}
377}
378
379/*
380 * Process a local item.
381 */
382
383static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
384{
385	__u32 data;
386	unsigned n;
387
388	if (item->size == 0) {
389		dbg_hid("item data expected for local item\n");
390		return -1;
391	}
392
393	data = item_udata(item);
394
395	switch (item->tag) {
396
397		case HID_LOCAL_ITEM_TAG_DELIMITER:
398
399			if (data) {
400				/*
401				 * We treat items before the first delimiter
402				 * as global to all usage sets (branch 0).
403				 * In the moment we process only these global
404				 * items and the first delimiter set.
405				 */
406				if (parser->local.delimiter_depth != 0) {
407					dbg_hid("nested delimiters\n");
408					return -1;
409				}
410				parser->local.delimiter_depth++;
411				parser->local.delimiter_branch++;
412			} else {
413				if (parser->local.delimiter_depth < 1) {
414					dbg_hid("bogus close delimiter\n");
415					return -1;
416				}
417				parser->local.delimiter_depth--;
418			}
419			return 1;
420
421		case HID_LOCAL_ITEM_TAG_USAGE:
422
423			if (parser->local.delimiter_branch > 1) {
424				dbg_hid("alternative usage ignored\n");
425				return 0;
426			}
427
428			if (item->size <= 2)
429				data = (parser->global.usage_page << 16) + data;
430
431			return hid_add_usage(parser, data);
432
433		case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
434
435			if (parser->local.delimiter_branch > 1) {
436				dbg_hid("alternative usage ignored\n");
437				return 0;
438			}
439
440			if (item->size <= 2)
441				data = (parser->global.usage_page << 16) + data;
442
443			parser->local.usage_minimum = data;
444			return 0;
445
446		case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
447
448			if (parser->local.delimiter_branch > 1) {
449				dbg_hid("alternative usage ignored\n");
450				return 0;
451			}
452
453			if (item->size <= 2)
454				data = (parser->global.usage_page << 16) + data;
455
456			for (n = parser->local.usage_minimum; n <= data; n++)
457				if (hid_add_usage(parser, n)) {
458					dbg_hid("hid_add_usage failed\n");
459					return -1;
460				}
461			return 0;
462
463		default:
464
465			dbg_hid("unknown local item tag 0x%x\n", item->tag);
466			return 0;
467	}
468	return 0;
469}
470
471/*
472 * Process a main item.
473 */
474
475static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
476{
477	__u32 data;
478	int ret;
479
480	data = item_udata(item);
481
482	switch (item->tag) {
483		case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
484			ret = open_collection(parser, data & 0xff);
485			break;
486		case HID_MAIN_ITEM_TAG_END_COLLECTION:
487			ret = close_collection(parser);
488			break;
489		case HID_MAIN_ITEM_TAG_INPUT:
490			ret = hid_add_field(parser, HID_INPUT_REPORT, data);
491			break;
492		case HID_MAIN_ITEM_TAG_OUTPUT:
493			ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
494			break;
495		case HID_MAIN_ITEM_TAG_FEATURE:
496			ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
497			break;
498		default:
499			dbg_hid("unknown main item tag 0x%x\n", item->tag);
500			ret = 0;
501	}
502
503	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
504
505	return ret;
506}
507
508/*
509 * Process a reserved item.
510 */
511
512static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
513{
514	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
515	return 0;
516}
517
518/*
519 * Free a report and all registered fields. The field->usage and
520 * field->value table's are allocated behind the field, so we need
521 * only to free(field) itself.
522 */
523
524static void hid_free_report(struct hid_report *report)
525{
526	unsigned n;
527
528	for (n = 0; n < report->maxfield; n++)
529		kfree(report->field[n]);
530	kfree(report);
531}
532
533/*
534 * Free a device structure, all reports, and all fields.
535 */
536
537void hid_free_device(struct hid_device *device)
538{
539	unsigned i,j;
540
541	for (i = 0; i < HID_REPORT_TYPES; i++) {
542		struct hid_report_enum *report_enum = device->report_enum + i;
543
544		for (j = 0; j < 256; j++) {
545			struct hid_report *report = report_enum->report_id_hash[j];
546			if (report)
547				hid_free_report(report);
548		}
549	}
550
551	kfree(device->rdesc);
552	kfree(device->collection);
553	kfree(device);
554}
555EXPORT_SYMBOL_GPL(hid_free_device);
556
557/*
558 * Fetch a report description item from the data stream. We support long
559 * items, though they are not used yet.
560 */
561
562static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
563{
564	u8 b;
565
566	if ((end - start) <= 0)
567		return NULL;
568
569	b = *start++;
570
571	item->type = (b >> 2) & 3;
572	item->tag  = (b >> 4) & 15;
573
574	if (item->tag == HID_ITEM_TAG_LONG) {
575
576		item->format = HID_ITEM_FORMAT_LONG;
577
578		if ((end - start) < 2)
579			return NULL;
580
581		item->size = *start++;
582		item->tag  = *start++;
583
584		if ((end - start) < item->size)
585			return NULL;
586
587		item->data.longdata = start;
588		start += item->size;
589		return start;
590	}
591
592	item->format = HID_ITEM_FORMAT_SHORT;
593	item->size = b & 3;
594
595	switch (item->size) {
596
597		case 0:
598			return start;
599
600		case 1:
601			if ((end - start) < 1)
602				return NULL;
603			item->data.u8 = *start++;
604			return start;
605
606		case 2:
607			if ((end - start) < 2)
608				return NULL;
609			item->data.u16 = get_unaligned_le16(start);
610			start = (__u8 *)((__le16 *)start + 1);
611			return start;
612
613		case 3:
614			item->size++;
615			if ((end - start) < 4)
616				return NULL;
617			item->data.u32 = get_unaligned_le32(start);
618			start = (__u8 *)((__le32 *)start + 1);
619			return start;
620	}
621
622	return NULL;
623}
624
625/*
626 * Parse a report description into a hid_device structure. Reports are
627 * enumerated, fields are attached to these reports.
628 */
629
630struct hid_device *hid_parse_report(__u8 *start, unsigned size)
631{
632	struct hid_device *device;
633	struct hid_parser *parser;
634	struct hid_item item;
635	__u8 *end;
636	unsigned i;
637	static int (*dispatch_type[])(struct hid_parser *parser,
638				      struct hid_item *item) = {
639		hid_parser_main,
640		hid_parser_global,
641		hid_parser_local,
642		hid_parser_reserved
643	};
644
645	if (!(device = kzalloc(sizeof(struct hid_device), GFP_KERNEL)))
646		return NULL;
647
648	if (!(device->collection = kzalloc(sizeof(struct hid_collection) *
649				   HID_DEFAULT_NUM_COLLECTIONS, GFP_KERNEL))) {
650		kfree(device);
651		return NULL;
652	}
653	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
654
655	for (i = 0; i < HID_REPORT_TYPES; i++)
656		INIT_LIST_HEAD(&device->report_enum[i].report_list);
657
658	if (!(device->rdesc = kmalloc(size, GFP_KERNEL))) {
659		kfree(device->collection);
660		kfree(device);
661		return NULL;
662	}
663	memcpy(device->rdesc, start, size);
664	device->rsize = size;
665
666	if (!(parser = vmalloc(sizeof(struct hid_parser)))) {
667		kfree(device->rdesc);
668		kfree(device->collection);
669		kfree(device);
670		return NULL;
671	}
672	memset(parser, 0, sizeof(struct hid_parser));
673	parser->device = device;
674
675	end = start + size;
676	while ((start = fetch_item(start, end, &item)) != NULL) {
677
678		if (item.format != HID_ITEM_FORMAT_SHORT) {
679			dbg_hid("unexpected long global item\n");
680			hid_free_device(device);
681			vfree(parser);
682			return NULL;
683		}
684
685		if (dispatch_type[item.type](parser, &item)) {
686			dbg_hid("item %u %u %u %u parsing failed\n",
687				item.format, (unsigned)item.size, (unsigned)item.type, (unsigned)item.tag);
688			hid_free_device(device);
689			vfree(parser);
690			return NULL;
691		}
692
693		if (start == end) {
694			if (parser->collection_stack_ptr) {
695				dbg_hid("unbalanced collection at end of report description\n");
696				hid_free_device(device);
697				vfree(parser);
698				return NULL;
699			}
700			if (parser->local.delimiter_depth) {
701				dbg_hid("unbalanced delimiter at end of report description\n");
702				hid_free_device(device);
703				vfree(parser);
704				return NULL;
705			}
706			vfree(parser);
707			return device;
708		}
709	}
710
711	dbg_hid("item fetching failed at offset %d\n", (int)(end - start));
712	hid_free_device(device);
713	vfree(parser);
714	return NULL;
715}
716EXPORT_SYMBOL_GPL(hid_parse_report);
717
718/*
719 * Convert a signed n-bit integer to signed 32-bit integer. Common
720 * cases are done through the compiler, the screwed things has to be
721 * done by hand.
722 */
723
724static s32 snto32(__u32 value, unsigned n)
725{
726	switch (n) {
727		case 8:  return ((__s8)value);
728		case 16: return ((__s16)value);
729		case 32: return ((__s32)value);
730	}
731	return value & (1 << (n - 1)) ? value | (-1 << n) : value;
732}
733
734/*
735 * Convert a signed 32-bit integer to a signed n-bit integer.
736 */
737
738static u32 s32ton(__s32 value, unsigned n)
739{
740	s32 a = value >> (n - 1);
741	if (a && a != -1)
742		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
743	return value & ((1 << n) - 1);
744}
745
746/*
747 * Extract/implement a data field from/to a little endian report (bit array).
748 *
749 * Code sort-of follows HID spec:
750 *     http://www.usb.org/developers/devclass_docs/HID1_11.pdf
751 *
752 * While the USB HID spec allows unlimited length bit fields in "report
753 * descriptors", most devices never use more than 16 bits.
754 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
755 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
756 */
757
758static __inline__ __u32 extract(__u8 *report, unsigned offset, unsigned n)
759{
760	u64 x;
761
762	if (n > 32)
763		printk(KERN_WARNING "HID: extract() called with n (%d) > 32! (%s)\n",
764				n, current->comm);
765
766	report += offset >> 3;  /* adjust byte index */
767	offset &= 7;            /* now only need bit offset into one byte */
768	x = get_unaligned_le64(report);
769	x = (x >> offset) & ((1ULL << n) - 1);  /* extract bit field */
770	return (u32) x;
771}
772
773/*
774 * "implement" : set bits in a little endian bit stream.
775 * Same concepts as "extract" (see comments above).
776 * The data mangled in the bit stream remains in little endian
777 * order the whole time. It make more sense to talk about
778 * endianness of register values by considering a register
779 * a "cached" copy of the little endiad bit stream.
780 */
781static __inline__ void implement(__u8 *report, unsigned offset, unsigned n, __u32 value)
782{
783	u64 x;
784	u64 m = (1ULL << n) - 1;
785
786	if (n > 32)
787		printk(KERN_WARNING "HID: implement() called with n (%d) > 32! (%s)\n",
788				n, current->comm);
789
790	if (value > m)
791		printk(KERN_WARNING "HID: implement() called with too large value %d! (%s)\n",
792				value, current->comm);
793	WARN_ON(value > m);
794	value &= m;
795
796	report += offset >> 3;
797	offset &= 7;
798
799	x = get_unaligned_le64(report);
800	x &= ~(m << offset);
801	x |= ((u64)value) << offset;
802	put_unaligned_le64(x, report);
803}
804
805/*
806 * Search an array for a value.
807 */
808
809static __inline__ int search(__s32 *array, __s32 value, unsigned n)
810{
811	while (n--) {
812		if (*array++ == value)
813			return 0;
814	}
815	return -1;
816}
817
818static void hid_process_event(struct hid_device *hid, struct hid_field *field, struct hid_usage *usage, __s32 value, int interrupt)
819{
820	hid_dump_input(usage, value);
821	if (hid->claimed & HID_CLAIMED_INPUT)
822		hidinput_hid_event(hid, field, usage, value);
823	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
824		hid->hiddev_hid_event(hid, field, usage, value);
825}
826
827/*
828 * Analyse a received field, and fetch the data from it. The field
829 * content is stored for next report processing (we do differential
830 * reporting to the layer).
831 */
832
833static void hid_input_field(struct hid_device *hid, struct hid_field *field,
834			    __u8 *data, int interrupt)
835{
836	unsigned n;
837	unsigned count = field->report_count;
838	unsigned offset = field->report_offset;
839	unsigned size = field->report_size;
840	__s32 min = field->logical_minimum;
841	__s32 max = field->logical_maximum;
842	__s32 *value;
843
844	if (!(value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC)))
845		return;
846
847	for (n = 0; n < count; n++) {
848
849			value[n] = min < 0 ? snto32(extract(data, offset + n * size, size), size) :
850						    extract(data, offset + n * size, size);
851
852			if (!(field->flags & HID_MAIN_ITEM_VARIABLE) /* Ignore report if ErrorRollOver */
853			    && value[n] >= min && value[n] <= max
854			    && field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
855				goto exit;
856	}
857
858	for (n = 0; n < count; n++) {
859
860		if (HID_MAIN_ITEM_VARIABLE & field->flags) {
861			hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
862			continue;
863		}
864
865		if (field->value[n] >= min && field->value[n] <= max
866			&& field->usage[field->value[n] - min].hid
867			&& search(value, field->value[n], count))
868				hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
869
870		if (value[n] >= min && value[n] <= max
871			&& field->usage[value[n] - min].hid
872			&& search(field->value, value[n], count))
873				hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
874	}
875
876	memcpy(field->value, value, count * sizeof(__s32));
877exit:
878	kfree(value);
879}
880
881/*
882 * Output the field into the report.
883 */
884
885static void hid_output_field(struct hid_field *field, __u8 *data)
886{
887	unsigned count = field->report_count;
888	unsigned offset = field->report_offset;
889	unsigned size = field->report_size;
890	unsigned bitsused = offset + count * size;
891	unsigned n;
892
893	/* make sure the unused bits in the last byte are zeros */
894	if (count > 0 && size > 0 && (bitsused % 8) != 0)
895		data[(bitsused-1)/8] &= (1 << (bitsused % 8)) - 1;
896
897	for (n = 0; n < count; n++) {
898		if (field->logical_minimum < 0)	/* signed values */
899			implement(data, offset + n * size, size, s32ton(field->value[n], size));
900		else				/* unsigned values */
901			implement(data, offset + n * size, size, field->value[n]);
902	}
903}
904
905/*
906 * Create a report.
907 */
908
909void hid_output_report(struct hid_report *report, __u8 *data)
910{
911	unsigned n;
912
913	if (report->id > 0)
914		*data++ = report->id;
915
916	for (n = 0; n < report->maxfield; n++)
917		hid_output_field(report->field[n], data);
918}
919EXPORT_SYMBOL_GPL(hid_output_report);
920
921/*
922 * Set a field value. The report this field belongs to has to be
923 * created and transferred to the device, to set this value in the
924 * device.
925 */
926
927int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
928{
929	unsigned size = field->report_size;
930
931	hid_dump_input(field->usage + offset, value);
932
933	if (offset >= field->report_count) {
934		dbg_hid("offset (%d) exceeds report_count (%d)\n", offset, field->report_count);
935		hid_dump_field(field, 8);
936		return -1;
937	}
938	if (field->logical_minimum < 0) {
939		if (value != snto32(s32ton(value, size), size)) {
940			dbg_hid("value %d is out of range\n", value);
941			return -1;
942		}
943	}
944	field->value[offset] = value;
945	return 0;
946}
947EXPORT_SYMBOL_GPL(hid_set_field);
948
949int hid_input_report(struct hid_device *hid, int type, u8 *data, int size, int interrupt)
950{
951	struct hid_report_enum *report_enum = hid->report_enum + type;
952	struct hid_report *report;
953	int n, rsize, i;
954
955	if (!hid)
956		return -ENODEV;
957
958	if (!size) {
959		dbg_hid("empty report\n");
960		return -1;
961	}
962
963	dbg_hid("report (size %u) (%snumbered)\n", size, report_enum->numbered ? "" : "un");
964
965	n = 0;                          /* Normally report number is 0 */
966	if (report_enum->numbered) {    /* Device uses numbered reports, data[0] is report number */
967		n = *data++;
968		size--;
969	}
970
971	/* dump the report */
972	dbg_hid("report %d (size %u) = ", n, size);
973	for (i = 0; i < size; i++)
974		dbg_hid_line(" %02x", data[i]);
975	dbg_hid_line("\n");
976
977	if (!(report = report_enum->report_id_hash[n])) {
978		dbg_hid("undefined report_id %d received\n", n);
979		return -1;
980	}
981
982	rsize = ((report->size - 1) >> 3) + 1;
983
984	if (size < rsize) {
985		dbg_hid("report %d is too short, (%d < %d)\n", report->id, size, rsize);
986		memset(data + size, 0, rsize - size);
987	}
988
989	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
990		hid->hiddev_report_event(hid, report);
991	if (hid->claimed & HID_CLAIMED_HIDRAW) {
992		/* numbered reports need to be passed with the report num */
993		if (report_enum->numbered)
994			hidraw_report_event(hid, data - 1, size + 1);
995		else
996			hidraw_report_event(hid, data, size);
997	}
998
999	for (n = 0; n < report->maxfield; n++)
1000		hid_input_field(hid, report->field[n], data, interrupt);
1001
1002	if (hid->claimed & HID_CLAIMED_INPUT)
1003		hidinput_report_event(hid, report);
1004
1005	return 0;
1006}
1007EXPORT_SYMBOL_GPL(hid_input_report);
1008
1009static int __init hid_init(void)
1010{
1011	return hidraw_init();
1012}
1013
1014static void __exit hid_exit(void)
1015{
1016	hidraw_exit();
1017}
1018
1019module_init(hid_init);
1020module_exit(hid_exit);
1021
1022MODULE_LICENSE(DRIVER_LICENSE);
1023
1024