ide-io.c revision 0d346ba0730d84f04022f9f984d3f606f69cef37
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/hdreg.h>
44#include <linux/completion.h>
45#include <linux/reboot.h>
46#include <linux/cdrom.h>
47#include <linux/seq_file.h>
48#include <linux/device.h>
49#include <linux/kmod.h>
50#include <linux/scatterlist.h>
51#include <linux/bitops.h>
52
53#include <asm/byteorder.h>
54#include <asm/irq.h>
55#include <asm/uaccess.h>
56#include <asm/io.h>
57
58static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59			     int uptodate, unsigned int nr_bytes, int dequeue)
60{
61	int ret = 1;
62	int error = 0;
63
64	if (uptodate <= 0)
65		error = uptodate ? uptodate : -EIO;
66
67	/*
68	 * if failfast is set on a request, override number of sectors and
69	 * complete the whole request right now
70	 */
71	if (blk_noretry_request(rq) && error)
72		nr_bytes = rq->hard_nr_sectors << 9;
73
74	if (!blk_fs_request(rq) && error && !rq->errors)
75		rq->errors = -EIO;
76
77	/*
78	 * decide whether to reenable DMA -- 3 is a random magic for now,
79	 * if we DMA timeout more than 3 times, just stay in PIO
80	 */
81	if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82	    drive->retry_pio <= 3) {
83		drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84		ide_dma_on(drive);
85	}
86
87	if (!__blk_end_request(rq, error, nr_bytes)) {
88		if (dequeue)
89			HWGROUP(drive)->rq = NULL;
90		ret = 0;
91	}
92
93	return ret;
94}
95
96/**
97 *	ide_end_request		-	complete an IDE I/O
98 *	@drive: IDE device for the I/O
99 *	@uptodate:
100 *	@nr_sectors: number of sectors completed
101 *
102 *	This is our end_request wrapper function. We complete the I/O
103 *	update random number input and dequeue the request, which if
104 *	it was tagged may be out of order.
105 */
106
107int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108{
109	unsigned int nr_bytes = nr_sectors << 9;
110	struct request *rq;
111	unsigned long flags;
112	int ret = 1;
113
114	/*
115	 * room for locking improvements here, the calls below don't
116	 * need the queue lock held at all
117	 */
118	spin_lock_irqsave(&ide_lock, flags);
119	rq = HWGROUP(drive)->rq;
120
121	if (!nr_bytes) {
122		if (blk_pc_request(rq))
123			nr_bytes = rq->data_len;
124		else
125			nr_bytes = rq->hard_cur_sectors << 9;
126	}
127
128	ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
129
130	spin_unlock_irqrestore(&ide_lock, flags);
131	return ret;
132}
133EXPORT_SYMBOL(ide_end_request);
134
135static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
136{
137	struct request_pm_state *pm = rq->data;
138
139	if (drive->media != ide_disk)
140		return;
141
142	switch (pm->pm_step) {
143	case IDE_PM_FLUSH_CACHE:	/* Suspend step 1 (flush cache) */
144		if (pm->pm_state == PM_EVENT_FREEZE)
145			pm->pm_step = IDE_PM_COMPLETED;
146		else
147			pm->pm_step = IDE_PM_STANDBY;
148		break;
149	case IDE_PM_STANDBY:		/* Suspend step 2 (standby) */
150		pm->pm_step = IDE_PM_COMPLETED;
151		break;
152	case IDE_PM_RESTORE_PIO:	/* Resume step 1 (restore PIO) */
153		pm->pm_step = IDE_PM_IDLE;
154		break;
155	case IDE_PM_IDLE:		/* Resume step 2 (idle)*/
156		pm->pm_step = IDE_PM_RESTORE_DMA;
157		break;
158	}
159}
160
161static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
162{
163	struct request_pm_state *pm = rq->data;
164	ide_task_t *args = rq->special;
165
166	memset(args, 0, sizeof(*args));
167
168	switch (pm->pm_step) {
169	case IDE_PM_FLUSH_CACHE:	/* Suspend step 1 (flush cache) */
170		if (drive->media != ide_disk)
171			break;
172		/* Not supported? Switch to next step now. */
173		if (ata_id_flush_enabled(drive->id) == 0 ||
174		    (drive->dev_flags & IDE_DFLAG_WCACHE) == 0) {
175			ide_complete_power_step(drive, rq, 0, 0);
176			return ide_stopped;
177		}
178		if (ata_id_flush_ext_enabled(drive->id))
179			args->tf.command = ATA_CMD_FLUSH_EXT;
180		else
181			args->tf.command = ATA_CMD_FLUSH;
182		goto out_do_tf;
183	case IDE_PM_STANDBY:		/* Suspend step 2 (standby) */
184		args->tf.command = ATA_CMD_STANDBYNOW1;
185		goto out_do_tf;
186	case IDE_PM_RESTORE_PIO:	/* Resume step 1 (restore PIO) */
187		ide_set_max_pio(drive);
188		/*
189		 * skip IDE_PM_IDLE for ATAPI devices
190		 */
191		if (drive->media != ide_disk)
192			pm->pm_step = IDE_PM_RESTORE_DMA;
193		else
194			ide_complete_power_step(drive, rq, 0, 0);
195		return ide_stopped;
196	case IDE_PM_IDLE:		/* Resume step 2 (idle) */
197		args->tf.command = ATA_CMD_IDLEIMMEDIATE;
198		goto out_do_tf;
199	case IDE_PM_RESTORE_DMA:	/* Resume step 3 (restore DMA) */
200		/*
201		 * Right now, all we do is call ide_set_dma(drive),
202		 * we could be smarter and check for current xfer_speed
203		 * in struct drive etc...
204		 */
205		if (drive->hwif->dma_ops == NULL)
206			break;
207		/*
208		 * TODO: respect IDE_DFLAG_USING_DMA
209		 */
210		ide_set_dma(drive);
211		break;
212	}
213
214	pm->pm_step = IDE_PM_COMPLETED;
215	return ide_stopped;
216
217out_do_tf:
218	args->tf_flags	 = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
219	args->data_phase = TASKFILE_NO_DATA;
220	return do_rw_taskfile(drive, args);
221}
222
223/**
224 *	ide_end_dequeued_request	-	complete an IDE I/O
225 *	@drive: IDE device for the I/O
226 *	@uptodate:
227 *	@nr_sectors: number of sectors completed
228 *
229 *	Complete an I/O that is no longer on the request queue. This
230 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
231 *	We must still finish the old request but we must not tamper with the
232 *	queue in the meantime.
233 *
234 *	NOTE: This path does not handle barrier, but barrier is not supported
235 *	on ide-cd anyway.
236 */
237
238int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
239			     int uptodate, int nr_sectors)
240{
241	unsigned long flags;
242	int ret;
243
244	spin_lock_irqsave(&ide_lock, flags);
245	BUG_ON(!blk_rq_started(rq));
246	ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
247	spin_unlock_irqrestore(&ide_lock, flags);
248
249	return ret;
250}
251EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
252
253
254/**
255 *	ide_complete_pm_request - end the current Power Management request
256 *	@drive: target drive
257 *	@rq: request
258 *
259 *	This function cleans up the current PM request and stops the queue
260 *	if necessary.
261 */
262static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
263{
264	unsigned long flags;
265
266#ifdef DEBUG_PM
267	printk("%s: completing PM request, %s\n", drive->name,
268	       blk_pm_suspend_request(rq) ? "suspend" : "resume");
269#endif
270	spin_lock_irqsave(&ide_lock, flags);
271	if (blk_pm_suspend_request(rq)) {
272		blk_stop_queue(drive->queue);
273	} else {
274		drive->dev_flags &= ~IDE_DFLAG_BLOCKED;
275		blk_start_queue(drive->queue);
276	}
277	HWGROUP(drive)->rq = NULL;
278	if (__blk_end_request(rq, 0, 0))
279		BUG();
280	spin_unlock_irqrestore(&ide_lock, flags);
281}
282
283/**
284 *	ide_end_drive_cmd	-	end an explicit drive command
285 *	@drive: command
286 *	@stat: status bits
287 *	@err: error bits
288 *
289 *	Clean up after success/failure of an explicit drive command.
290 *	These get thrown onto the queue so they are synchronized with
291 *	real I/O operations on the drive.
292 *
293 *	In LBA48 mode we have to read the register set twice to get
294 *	all the extra information out.
295 */
296
297void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
298{
299	unsigned long flags;
300	struct request *rq;
301
302	spin_lock_irqsave(&ide_lock, flags);
303	rq = HWGROUP(drive)->rq;
304	spin_unlock_irqrestore(&ide_lock, flags);
305
306	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
307		ide_task_t *task = (ide_task_t *)rq->special;
308
309		if (rq->errors == 0)
310			rq->errors = !OK_STAT(stat, ATA_DRDY, BAD_STAT);
311
312		if (task) {
313			struct ide_taskfile *tf = &task->tf;
314
315			tf->error = err;
316			tf->status = stat;
317
318			drive->hwif->tp_ops->tf_read(drive, task);
319
320			if (task->tf_flags & IDE_TFLAG_DYN)
321				kfree(task);
322		}
323	} else if (blk_pm_request(rq)) {
324		struct request_pm_state *pm = rq->data;
325#ifdef DEBUG_PM
326		printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
327			drive->name, rq->pm->pm_step, stat, err);
328#endif
329		ide_complete_power_step(drive, rq, stat, err);
330		if (pm->pm_step == IDE_PM_COMPLETED)
331			ide_complete_pm_request(drive, rq);
332		return;
333	}
334
335	spin_lock_irqsave(&ide_lock, flags);
336	HWGROUP(drive)->rq = NULL;
337	rq->errors = err;
338	if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
339				       blk_rq_bytes(rq))))
340		BUG();
341	spin_unlock_irqrestore(&ide_lock, flags);
342}
343
344EXPORT_SYMBOL(ide_end_drive_cmd);
345
346static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
347{
348	if (rq->rq_disk) {
349		ide_driver_t *drv;
350
351		drv = *(ide_driver_t **)rq->rq_disk->private_data;
352		drv->end_request(drive, 0, 0);
353	} else
354		ide_end_request(drive, 0, 0);
355}
356
357static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
358{
359	ide_hwif_t *hwif = drive->hwif;
360
361	if ((stat & ATA_BUSY) ||
362	    ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
363		/* other bits are useless when BUSY */
364		rq->errors |= ERROR_RESET;
365	} else if (stat & ATA_ERR) {
366		/* err has different meaning on cdrom and tape */
367		if (err == ATA_ABORTED) {
368			if ((drive->dev_flags & IDE_DFLAG_LBA) &&
369			    /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
370			    hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
371				return ide_stopped;
372		} else if ((err & BAD_CRC) == BAD_CRC) {
373			/* UDMA crc error, just retry the operation */
374			drive->crc_count++;
375		} else if (err & (ATA_BBK | ATA_UNC)) {
376			/* retries won't help these */
377			rq->errors = ERROR_MAX;
378		} else if (err & ATA_TRK0NF) {
379			/* help it find track zero */
380			rq->errors |= ERROR_RECAL;
381		}
382	}
383
384	if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
385	    (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
386		int nsect = drive->mult_count ? drive->mult_count : 1;
387
388		ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
389	}
390
391	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
392		ide_kill_rq(drive, rq);
393		return ide_stopped;
394	}
395
396	if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
397		rq->errors |= ERROR_RESET;
398
399	if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
400		++rq->errors;
401		return ide_do_reset(drive);
402	}
403
404	if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
405		drive->special.b.recalibrate = 1;
406
407	++rq->errors;
408
409	return ide_stopped;
410}
411
412static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
413{
414	ide_hwif_t *hwif = drive->hwif;
415
416	if ((stat & ATA_BUSY) ||
417	    ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
418		/* other bits are useless when BUSY */
419		rq->errors |= ERROR_RESET;
420	} else {
421		/* add decoding error stuff */
422	}
423
424	if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
425		/* force an abort */
426		hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
427
428	if (rq->errors >= ERROR_MAX) {
429		ide_kill_rq(drive, rq);
430	} else {
431		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
432			++rq->errors;
433			return ide_do_reset(drive);
434		}
435		++rq->errors;
436	}
437
438	return ide_stopped;
439}
440
441ide_startstop_t
442__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
443{
444	if (drive->media == ide_disk)
445		return ide_ata_error(drive, rq, stat, err);
446	return ide_atapi_error(drive, rq, stat, err);
447}
448
449EXPORT_SYMBOL_GPL(__ide_error);
450
451/**
452 *	ide_error	-	handle an error on the IDE
453 *	@drive: drive the error occurred on
454 *	@msg: message to report
455 *	@stat: status bits
456 *
457 *	ide_error() takes action based on the error returned by the drive.
458 *	For normal I/O that may well include retries. We deal with
459 *	both new-style (taskfile) and old style command handling here.
460 *	In the case of taskfile command handling there is work left to
461 *	do
462 */
463
464ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
465{
466	struct request *rq;
467	u8 err;
468
469	err = ide_dump_status(drive, msg, stat);
470
471	if ((rq = HWGROUP(drive)->rq) == NULL)
472		return ide_stopped;
473
474	/* retry only "normal" I/O: */
475	if (!blk_fs_request(rq)) {
476		rq->errors = 1;
477		ide_end_drive_cmd(drive, stat, err);
478		return ide_stopped;
479	}
480
481	if (rq->rq_disk) {
482		ide_driver_t *drv;
483
484		drv = *(ide_driver_t **)rq->rq_disk->private_data;
485		return drv->error(drive, rq, stat, err);
486	} else
487		return __ide_error(drive, rq, stat, err);
488}
489
490EXPORT_SYMBOL_GPL(ide_error);
491
492static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
493{
494	tf->nsect   = drive->sect;
495	tf->lbal    = drive->sect;
496	tf->lbam    = drive->cyl;
497	tf->lbah    = drive->cyl >> 8;
498	tf->device  = (drive->head - 1) | drive->select.all;
499	tf->command = ATA_CMD_INIT_DEV_PARAMS;
500}
501
502static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
503{
504	tf->nsect   = drive->sect;
505	tf->command = ATA_CMD_RESTORE;
506}
507
508static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
509{
510	tf->nsect   = drive->mult_req;
511	tf->command = ATA_CMD_SET_MULTI;
512}
513
514static ide_startstop_t ide_disk_special(ide_drive_t *drive)
515{
516	special_t *s = &drive->special;
517	ide_task_t args;
518
519	memset(&args, 0, sizeof(ide_task_t));
520	args.data_phase = TASKFILE_NO_DATA;
521
522	if (s->b.set_geometry) {
523		s->b.set_geometry = 0;
524		ide_tf_set_specify_cmd(drive, &args.tf);
525	} else if (s->b.recalibrate) {
526		s->b.recalibrate = 0;
527		ide_tf_set_restore_cmd(drive, &args.tf);
528	} else if (s->b.set_multmode) {
529		s->b.set_multmode = 0;
530		ide_tf_set_setmult_cmd(drive, &args.tf);
531	} else if (s->all) {
532		int special = s->all;
533		s->all = 0;
534		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
535		return ide_stopped;
536	}
537
538	args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
539			IDE_TFLAG_CUSTOM_HANDLER;
540
541	do_rw_taskfile(drive, &args);
542
543	return ide_started;
544}
545
546/*
547 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
548 */
549static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
550{
551	switch (req_pio) {
552	case 202:
553	case 201:
554	case 200:
555	case 102:
556	case 101:
557	case 100:
558		return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
559	case 9:
560	case 8:
561		return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
562	case 7:
563	case 6:
564		return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
565	default:
566		return 0;
567	}
568}
569
570/**
571 *	do_special		-	issue some special commands
572 *	@drive: drive the command is for
573 *
574 *	do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
575 *	ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
576 *
577 *	It used to do much more, but has been scaled back.
578 */
579
580static ide_startstop_t do_special (ide_drive_t *drive)
581{
582	special_t *s = &drive->special;
583
584#ifdef DEBUG
585	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
586#endif
587	if (s->b.set_tune) {
588		ide_hwif_t *hwif = drive->hwif;
589		const struct ide_port_ops *port_ops = hwif->port_ops;
590		u8 req_pio = drive->tune_req;
591
592		s->b.set_tune = 0;
593
594		if (set_pio_mode_abuse(drive->hwif, req_pio)) {
595			/*
596			 * take ide_lock for IDE_DFLAG_[NO_]UNMASK/[NO_]IO_32BIT
597			 */
598			if (req_pio == 8 || req_pio == 9) {
599				unsigned long flags;
600
601				spin_lock_irqsave(&ide_lock, flags);
602				port_ops->set_pio_mode(drive, req_pio);
603				spin_unlock_irqrestore(&ide_lock, flags);
604			} else
605				port_ops->set_pio_mode(drive, req_pio);
606		} else {
607			int keep_dma =
608				!!(drive->dev_flags & IDE_DFLAG_USING_DMA);
609
610			ide_set_pio(drive, req_pio);
611
612			if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
613				if (keep_dma)
614					ide_dma_on(drive);
615			}
616		}
617
618		return ide_stopped;
619	} else {
620		if (drive->media == ide_disk)
621			return ide_disk_special(drive);
622
623		s->all = 0;
624		drive->mult_req = 0;
625		return ide_stopped;
626	}
627}
628
629void ide_map_sg(ide_drive_t *drive, struct request *rq)
630{
631	ide_hwif_t *hwif = drive->hwif;
632	struct scatterlist *sg = hwif->sg_table;
633
634	if (hwif->sg_mapped)	/* needed by ide-scsi */
635		return;
636
637	if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
638		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
639	} else {
640		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
641		hwif->sg_nents = 1;
642	}
643}
644
645EXPORT_SYMBOL_GPL(ide_map_sg);
646
647void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
648{
649	ide_hwif_t *hwif = drive->hwif;
650
651	hwif->nsect = hwif->nleft = rq->nr_sectors;
652	hwif->cursg_ofs = 0;
653	hwif->cursg = NULL;
654}
655
656EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
657
658/**
659 *	execute_drive_command	-	issue special drive command
660 *	@drive: the drive to issue the command on
661 *	@rq: the request structure holding the command
662 *
663 *	execute_drive_cmd() issues a special drive command,  usually
664 *	initiated by ioctl() from the external hdparm program. The
665 *	command can be a drive command, drive task or taskfile
666 *	operation. Weirdly you can call it with NULL to wait for
667 *	all commands to finish. Don't do this as that is due to change
668 */
669
670static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
671		struct request *rq)
672{
673	ide_hwif_t *hwif = HWIF(drive);
674	ide_task_t *task = rq->special;
675
676	if (task) {
677		hwif->data_phase = task->data_phase;
678
679		switch (hwif->data_phase) {
680		case TASKFILE_MULTI_OUT:
681		case TASKFILE_OUT:
682		case TASKFILE_MULTI_IN:
683		case TASKFILE_IN:
684			ide_init_sg_cmd(drive, rq);
685			ide_map_sg(drive, rq);
686		default:
687			break;
688		}
689
690		return do_rw_taskfile(drive, task);
691	}
692
693 	/*
694 	 * NULL is actually a valid way of waiting for
695 	 * all current requests to be flushed from the queue.
696 	 */
697#ifdef DEBUG
698 	printk("%s: DRIVE_CMD (null)\n", drive->name);
699#endif
700	ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
701			  ide_read_error(drive));
702
703 	return ide_stopped;
704}
705
706int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
707		       int arg)
708{
709	struct request_queue *q = drive->queue;
710	struct request *rq;
711	int ret = 0;
712
713	if (!(setting->flags & DS_SYNC))
714		return setting->set(drive, arg);
715
716	rq = blk_get_request(q, READ, GFP_KERNEL);
717	if (!rq)
718		return -ENOMEM;
719
720	rq->cmd_type = REQ_TYPE_SPECIAL;
721	rq->cmd_len = 5;
722	rq->cmd[0] = REQ_DEVSET_EXEC;
723	*(int *)&rq->cmd[1] = arg;
724	rq->special = setting->set;
725
726	if (blk_execute_rq(q, NULL, rq, 0))
727		ret = rq->errors;
728	blk_put_request(rq);
729
730	return ret;
731}
732EXPORT_SYMBOL_GPL(ide_devset_execute);
733
734static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
735{
736	switch (rq->cmd[0]) {
737	case REQ_DEVSET_EXEC:
738	{
739		int err, (*setfunc)(ide_drive_t *, int) = rq->special;
740
741		err = setfunc(drive, *(int *)&rq->cmd[1]);
742		if (err)
743			rq->errors = err;
744		else
745			err = 1;
746		ide_end_request(drive, err, 0);
747		return ide_stopped;
748	}
749	case REQ_DRIVE_RESET:
750		return ide_do_reset(drive);
751	default:
752		blk_dump_rq_flags(rq, "ide_special_rq - bad request");
753		ide_end_request(drive, 0, 0);
754		return ide_stopped;
755	}
756}
757
758static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
759{
760	struct request_pm_state *pm = rq->data;
761
762	if (blk_pm_suspend_request(rq) &&
763	    pm->pm_step == IDE_PM_START_SUSPEND)
764		/* Mark drive blocked when starting the suspend sequence. */
765		drive->dev_flags |= IDE_DFLAG_BLOCKED;
766	else if (blk_pm_resume_request(rq) &&
767		 pm->pm_step == IDE_PM_START_RESUME) {
768		/*
769		 * The first thing we do on wakeup is to wait for BSY bit to
770		 * go away (with a looong timeout) as a drive on this hwif may
771		 * just be POSTing itself.
772		 * We do that before even selecting as the "other" device on
773		 * the bus may be broken enough to walk on our toes at this
774		 * point.
775		 */
776		ide_hwif_t *hwif = drive->hwif;
777		int rc;
778#ifdef DEBUG_PM
779		printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
780#endif
781		rc = ide_wait_not_busy(hwif, 35000);
782		if (rc)
783			printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
784		SELECT_DRIVE(drive);
785		hwif->tp_ops->set_irq(hwif, 1);
786		rc = ide_wait_not_busy(hwif, 100000);
787		if (rc)
788			printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
789	}
790}
791
792/**
793 *	start_request	-	start of I/O and command issuing for IDE
794 *
795 *	start_request() initiates handling of a new I/O request. It
796 *	accepts commands and I/O (read/write) requests.
797 *
798 *	FIXME: this function needs a rename
799 */
800
801static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
802{
803	ide_startstop_t startstop;
804
805	BUG_ON(!blk_rq_started(rq));
806
807#ifdef DEBUG
808	printk("%s: start_request: current=0x%08lx\n",
809		HWIF(drive)->name, (unsigned long) rq);
810#endif
811
812	/* bail early if we've exceeded max_failures */
813	if (drive->max_failures && (drive->failures > drive->max_failures)) {
814		rq->cmd_flags |= REQ_FAILED;
815		goto kill_rq;
816	}
817
818	if (blk_pm_request(rq))
819		ide_check_pm_state(drive, rq);
820
821	SELECT_DRIVE(drive);
822	if (ide_wait_stat(&startstop, drive, drive->ready_stat,
823			  ATA_BUSY | ATA_DRQ, WAIT_READY)) {
824		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
825		return startstop;
826	}
827	if (!drive->special.all) {
828		ide_driver_t *drv;
829
830		/*
831		 * We reset the drive so we need to issue a SETFEATURES.
832		 * Do it _after_ do_special() restored device parameters.
833		 */
834		if (drive->current_speed == 0xff)
835			ide_config_drive_speed(drive, drive->desired_speed);
836
837		if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
838			return execute_drive_cmd(drive, rq);
839		else if (blk_pm_request(rq)) {
840			struct request_pm_state *pm = rq->data;
841#ifdef DEBUG_PM
842			printk("%s: start_power_step(step: %d)\n",
843				drive->name, rq->pm->pm_step);
844#endif
845			startstop = ide_start_power_step(drive, rq);
846			if (startstop == ide_stopped &&
847			    pm->pm_step == IDE_PM_COMPLETED)
848				ide_complete_pm_request(drive, rq);
849			return startstop;
850		} else if (!rq->rq_disk && blk_special_request(rq))
851			/*
852			 * TODO: Once all ULDs have been modified to
853			 * check for specific op codes rather than
854			 * blindly accepting any special request, the
855			 * check for ->rq_disk above may be replaced
856			 * by a more suitable mechanism or even
857			 * dropped entirely.
858			 */
859			return ide_special_rq(drive, rq);
860
861		drv = *(ide_driver_t **)rq->rq_disk->private_data;
862
863		return drv->do_request(drive, rq, rq->sector);
864	}
865	return do_special(drive);
866kill_rq:
867	ide_kill_rq(drive, rq);
868	return ide_stopped;
869}
870
871/**
872 *	ide_stall_queue		-	pause an IDE device
873 *	@drive: drive to stall
874 *	@timeout: time to stall for (jiffies)
875 *
876 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
877 *	to the hwgroup by sleeping for timeout jiffies.
878 */
879
880void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
881{
882	if (timeout > WAIT_WORSTCASE)
883		timeout = WAIT_WORSTCASE;
884	drive->sleep = timeout + jiffies;
885	drive->dev_flags |= IDE_DFLAG_SLEEPING;
886}
887
888EXPORT_SYMBOL(ide_stall_queue);
889
890#define WAKEUP(drive)	((drive)->service_start + 2 * (drive)->service_time)
891
892/**
893 *	choose_drive		-	select a drive to service
894 *	@hwgroup: hardware group to select on
895 *
896 *	choose_drive() selects the next drive which will be serviced.
897 *	This is necessary because the IDE layer can't issue commands
898 *	to both drives on the same cable, unlike SCSI.
899 */
900
901static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
902{
903	ide_drive_t *drive, *best;
904
905repeat:
906	best = NULL;
907	drive = hwgroup->drive;
908
909	/*
910	 * drive is doing pre-flush, ordered write, post-flush sequence. even
911	 * though that is 3 requests, it must be seen as a single transaction.
912	 * we must not preempt this drive until that is complete
913	 */
914	if (blk_queue_flushing(drive->queue)) {
915		/*
916		 * small race where queue could get replugged during
917		 * the 3-request flush cycle, just yank the plug since
918		 * we want it to finish asap
919		 */
920		blk_remove_plug(drive->queue);
921		return drive;
922	}
923
924	do {
925		u8 dev_s = !!(drive->dev_flags & IDE_DFLAG_SLEEPING);
926		u8 best_s = (best && !!(best->dev_flags & IDE_DFLAG_SLEEPING));
927
928		if ((dev_s == 0 || time_after_eq(jiffies, drive->sleep)) &&
929		    !elv_queue_empty(drive->queue)) {
930			if (best == NULL ||
931			    (dev_s && (best_s == 0 || time_before(drive->sleep, best->sleep))) ||
932			    (best_s == 0 && time_before(WAKEUP(drive), WAKEUP(best)))) {
933				if (!blk_queue_plugged(drive->queue))
934					best = drive;
935			}
936		}
937	} while ((drive = drive->next) != hwgroup->drive);
938
939	if (best && (best->dev_flags & IDE_DFLAG_NICE1) &&
940	    (best->dev_flags & IDE_DFLAG_SLEEPING) == 0 &&
941	    best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
942		long t = (signed long)(WAKEUP(best) - jiffies);
943		if (t >= WAIT_MIN_SLEEP) {
944		/*
945		 * We *may* have some time to spare, but first let's see if
946		 * someone can potentially benefit from our nice mood today..
947		 */
948			drive = best->next;
949			do {
950				if ((drive->dev_flags & IDE_DFLAG_SLEEPING) == 0
951				 && time_before(jiffies - best->service_time, WAKEUP(drive))
952				 && time_before(WAKEUP(drive), jiffies + t))
953				{
954					ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
955					goto repeat;
956				}
957			} while ((drive = drive->next) != best);
958		}
959	}
960	return best;
961}
962
963/*
964 * Issue a new request to a drive from hwgroup
965 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
966 *
967 * A hwgroup is a serialized group of IDE interfaces.  Usually there is
968 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
969 * may have both interfaces in a single hwgroup to "serialize" access.
970 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
971 * together into one hwgroup for serialized access.
972 *
973 * Note also that several hwgroups can end up sharing a single IRQ,
974 * possibly along with many other devices.  This is especially common in
975 * PCI-based systems with off-board IDE controller cards.
976 *
977 * The IDE driver uses the single global ide_lock spinlock to protect
978 * access to the request queues, and to protect the hwgroup->busy flag.
979 *
980 * The first thread into the driver for a particular hwgroup sets the
981 * hwgroup->busy flag to indicate that this hwgroup is now active,
982 * and then initiates processing of the top request from the request queue.
983 *
984 * Other threads attempting entry notice the busy setting, and will simply
985 * queue their new requests and exit immediately.  Note that hwgroup->busy
986 * remains set even when the driver is merely awaiting the next interrupt.
987 * Thus, the meaning is "this hwgroup is busy processing a request".
988 *
989 * When processing of a request completes, the completing thread or IRQ-handler
990 * will start the next request from the queue.  If no more work remains,
991 * the driver will clear the hwgroup->busy flag and exit.
992 *
993 * The ide_lock (spinlock) is used to protect all access to the
994 * hwgroup->busy flag, but is otherwise not needed for most processing in
995 * the driver.  This makes the driver much more friendlier to shared IRQs
996 * than previous designs, while remaining 100% (?) SMP safe and capable.
997 */
998static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
999{
1000	ide_drive_t	*drive;
1001	ide_hwif_t	*hwif;
1002	struct request	*rq;
1003	ide_startstop_t	startstop;
1004	int             loops = 0;
1005
1006	/* for atari only: POSSIBLY BROKEN HERE(?) */
1007	ide_get_lock(ide_intr, hwgroup);
1008
1009	/* caller must own ide_lock */
1010	BUG_ON(!irqs_disabled());
1011
1012	while (!hwgroup->busy) {
1013		hwgroup->busy = 1;
1014		drive = choose_drive(hwgroup);
1015		if (drive == NULL) {
1016			int sleeping = 0;
1017			unsigned long sleep = 0; /* shut up, gcc */
1018			hwgroup->rq = NULL;
1019			drive = hwgroup->drive;
1020			do {
1021				if ((drive->dev_flags & IDE_DFLAG_SLEEPING) &&
1022				    (sleeping == 0 ||
1023				     time_before(drive->sleep, sleep))) {
1024					sleeping = 1;
1025					sleep = drive->sleep;
1026				}
1027			} while ((drive = drive->next) != hwgroup->drive);
1028			if (sleeping) {
1029		/*
1030		 * Take a short snooze, and then wake up this hwgroup again.
1031		 * This gives other hwgroups on the same a chance to
1032		 * play fairly with us, just in case there are big differences
1033		 * in relative throughputs.. don't want to hog the cpu too much.
1034		 */
1035				if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1036					sleep = jiffies + WAIT_MIN_SLEEP;
1037#if 1
1038				if (timer_pending(&hwgroup->timer))
1039					printk(KERN_CRIT "ide_set_handler: timer already active\n");
1040#endif
1041				/* so that ide_timer_expiry knows what to do */
1042				hwgroup->sleeping = 1;
1043				hwgroup->req_gen_timer = hwgroup->req_gen;
1044				mod_timer(&hwgroup->timer, sleep);
1045				/* we purposely leave hwgroup->busy==1
1046				 * while sleeping */
1047			} else {
1048				/* Ugly, but how can we sleep for the lock
1049				 * otherwise? perhaps from tq_disk?
1050				 */
1051
1052				/* for atari only */
1053				ide_release_lock();
1054				hwgroup->busy = 0;
1055			}
1056
1057			/* no more work for this hwgroup (for now) */
1058			return;
1059		}
1060	again:
1061		hwif = HWIF(drive);
1062		if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1063			/*
1064			 * set nIEN for previous hwif, drives in the
1065			 * quirk_list may not like intr setups/cleanups
1066			 */
1067			if (drive->quirk_list != 1)
1068				hwif->tp_ops->set_irq(hwif, 0);
1069		}
1070		hwgroup->hwif = hwif;
1071		hwgroup->drive = drive;
1072		drive->dev_flags &= ~IDE_DFLAG_SLEEPING;
1073		drive->service_start = jiffies;
1074
1075		if (blk_queue_plugged(drive->queue)) {
1076			printk(KERN_ERR "ide: huh? queue was plugged!\n");
1077			break;
1078		}
1079
1080		/*
1081		 * we know that the queue isn't empty, but this can happen
1082		 * if the q->prep_rq_fn() decides to kill a request
1083		 */
1084		rq = elv_next_request(drive->queue);
1085		if (!rq) {
1086			hwgroup->busy = 0;
1087			break;
1088		}
1089
1090		/*
1091		 * Sanity: don't accept a request that isn't a PM request
1092		 * if we are currently power managed. This is very important as
1093		 * blk_stop_queue() doesn't prevent the elv_next_request()
1094		 * above to return us whatever is in the queue. Since we call
1095		 * ide_do_request() ourselves, we end up taking requests while
1096		 * the queue is blocked...
1097		 *
1098		 * We let requests forced at head of queue with ide-preempt
1099		 * though. I hope that doesn't happen too much, hopefully not
1100		 * unless the subdriver triggers such a thing in its own PM
1101		 * state machine.
1102		 *
1103		 * We count how many times we loop here to make sure we service
1104		 * all drives in the hwgroup without looping for ever
1105		 */
1106		if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
1107		    blk_pm_request(rq) == 0 &&
1108		    (rq->cmd_flags & REQ_PREEMPT) == 0) {
1109			drive = drive->next ? drive->next : hwgroup->drive;
1110			if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1111				goto again;
1112			/* We clear busy, there should be no pending ATA command at this point. */
1113			hwgroup->busy = 0;
1114			break;
1115		}
1116
1117		hwgroup->rq = rq;
1118
1119		/*
1120		 * Some systems have trouble with IDE IRQs arriving while
1121		 * the driver is still setting things up.  So, here we disable
1122		 * the IRQ used by this interface while the request is being started.
1123		 * This may look bad at first, but pretty much the same thing
1124		 * happens anyway when any interrupt comes in, IDE or otherwise
1125		 *  -- the kernel masks the IRQ while it is being handled.
1126		 */
1127		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1128			disable_irq_nosync(hwif->irq);
1129		spin_unlock(&ide_lock);
1130		local_irq_enable_in_hardirq();
1131			/* allow other IRQs while we start this request */
1132		startstop = start_request(drive, rq);
1133		spin_lock_irq(&ide_lock);
1134		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1135			enable_irq(hwif->irq);
1136		if (startstop == ide_stopped)
1137			hwgroup->busy = 0;
1138	}
1139}
1140
1141/*
1142 * Passes the stuff to ide_do_request
1143 */
1144void do_ide_request(struct request_queue *q)
1145{
1146	ide_drive_t *drive = q->queuedata;
1147
1148	ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1149}
1150
1151/*
1152 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1153 * retry the current request in pio mode instead of risking tossing it
1154 * all away
1155 */
1156static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1157{
1158	ide_hwif_t *hwif = HWIF(drive);
1159	struct request *rq;
1160	ide_startstop_t ret = ide_stopped;
1161
1162	/*
1163	 * end current dma transaction
1164	 */
1165
1166	if (error < 0) {
1167		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1168		(void)hwif->dma_ops->dma_end(drive);
1169		ret = ide_error(drive, "dma timeout error",
1170				hwif->tp_ops->read_status(hwif));
1171	} else {
1172		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1173		hwif->dma_ops->dma_timeout(drive);
1174	}
1175
1176	/*
1177	 * disable dma for now, but remember that we did so because of
1178	 * a timeout -- we'll reenable after we finish this next request
1179	 * (or rather the first chunk of it) in pio.
1180	 */
1181	drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY;
1182	drive->retry_pio++;
1183	ide_dma_off_quietly(drive);
1184
1185	/*
1186	 * un-busy drive etc (hwgroup->busy is cleared on return) and
1187	 * make sure request is sane
1188	 */
1189	rq = HWGROUP(drive)->rq;
1190
1191	if (!rq)
1192		goto out;
1193
1194	HWGROUP(drive)->rq = NULL;
1195
1196	rq->errors = 0;
1197
1198	if (!rq->bio)
1199		goto out;
1200
1201	rq->sector = rq->bio->bi_sector;
1202	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1203	rq->hard_cur_sectors = rq->current_nr_sectors;
1204	rq->buffer = bio_data(rq->bio);
1205out:
1206	return ret;
1207}
1208
1209/**
1210 *	ide_timer_expiry	-	handle lack of an IDE interrupt
1211 *	@data: timer callback magic (hwgroup)
1212 *
1213 *	An IDE command has timed out before the expected drive return
1214 *	occurred. At this point we attempt to clean up the current
1215 *	mess. If the current handler includes an expiry handler then
1216 *	we invoke the expiry handler, and providing it is happy the
1217 *	work is done. If that fails we apply generic recovery rules
1218 *	invoking the handler and checking the drive DMA status. We
1219 *	have an excessively incestuous relationship with the DMA
1220 *	logic that wants cleaning up.
1221 */
1222
1223void ide_timer_expiry (unsigned long data)
1224{
1225	ide_hwgroup_t	*hwgroup = (ide_hwgroup_t *) data;
1226	ide_handler_t	*handler;
1227	ide_expiry_t	*expiry;
1228	unsigned long	flags;
1229	unsigned long	wait = -1;
1230
1231	spin_lock_irqsave(&ide_lock, flags);
1232
1233	if (((handler = hwgroup->handler) == NULL) ||
1234	    (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1235		/*
1236		 * Either a marginal timeout occurred
1237		 * (got the interrupt just as timer expired),
1238		 * or we were "sleeping" to give other devices a chance.
1239		 * Either way, we don't really want to complain about anything.
1240		 */
1241		if (hwgroup->sleeping) {
1242			hwgroup->sleeping = 0;
1243			hwgroup->busy = 0;
1244		}
1245	} else {
1246		ide_drive_t *drive = hwgroup->drive;
1247		if (!drive) {
1248			printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1249			hwgroup->handler = NULL;
1250		} else {
1251			ide_hwif_t *hwif;
1252			ide_startstop_t startstop = ide_stopped;
1253			if (!hwgroup->busy) {
1254				hwgroup->busy = 1;	/* paranoia */
1255				printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1256			}
1257			if ((expiry = hwgroup->expiry) != NULL) {
1258				/* continue */
1259				if ((wait = expiry(drive)) > 0) {
1260					/* reset timer */
1261					hwgroup->timer.expires  = jiffies + wait;
1262					hwgroup->req_gen_timer = hwgroup->req_gen;
1263					add_timer(&hwgroup->timer);
1264					spin_unlock_irqrestore(&ide_lock, flags);
1265					return;
1266				}
1267			}
1268			hwgroup->handler = NULL;
1269			/*
1270			 * We need to simulate a real interrupt when invoking
1271			 * the handler() function, which means we need to
1272			 * globally mask the specific IRQ:
1273			 */
1274			spin_unlock(&ide_lock);
1275			hwif  = HWIF(drive);
1276			/* disable_irq_nosync ?? */
1277			disable_irq(hwif->irq);
1278			/* local CPU only,
1279			 * as if we were handling an interrupt */
1280			local_irq_disable();
1281			if (hwgroup->polling) {
1282				startstop = handler(drive);
1283			} else if (drive_is_ready(drive)) {
1284				if (drive->waiting_for_dma)
1285					hwif->dma_ops->dma_lost_irq(drive);
1286				(void)ide_ack_intr(hwif);
1287				printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1288				startstop = handler(drive);
1289			} else {
1290				if (drive->waiting_for_dma) {
1291					startstop = ide_dma_timeout_retry(drive, wait);
1292				} else
1293					startstop =
1294					ide_error(drive, "irq timeout",
1295						  hwif->tp_ops->read_status(hwif));
1296			}
1297			drive->service_time = jiffies - drive->service_start;
1298			spin_lock_irq(&ide_lock);
1299			enable_irq(hwif->irq);
1300			if (startstop == ide_stopped)
1301				hwgroup->busy = 0;
1302		}
1303	}
1304	ide_do_request(hwgroup, IDE_NO_IRQ);
1305	spin_unlock_irqrestore(&ide_lock, flags);
1306}
1307
1308/**
1309 *	unexpected_intr		-	handle an unexpected IDE interrupt
1310 *	@irq: interrupt line
1311 *	@hwgroup: hwgroup being processed
1312 *
1313 *	There's nothing really useful we can do with an unexpected interrupt,
1314 *	other than reading the status register (to clear it), and logging it.
1315 *	There should be no way that an irq can happen before we're ready for it,
1316 *	so we needn't worry much about losing an "important" interrupt here.
1317 *
1318 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1319 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
1320 *	looks "good", we just ignore the interrupt completely.
1321 *
1322 *	This routine assumes __cli() is in effect when called.
1323 *
1324 *	If an unexpected interrupt happens on irq15 while we are handling irq14
1325 *	and if the two interfaces are "serialized" (CMD640), then it looks like
1326 *	we could screw up by interfering with a new request being set up for
1327 *	irq15.
1328 *
1329 *	In reality, this is a non-issue.  The new command is not sent unless
1330 *	the drive is ready to accept one, in which case we know the drive is
1331 *	not trying to interrupt us.  And ide_set_handler() is always invoked
1332 *	before completing the issuance of any new drive command, so we will not
1333 *	be accidentally invoked as a result of any valid command completion
1334 *	interrupt.
1335 *
1336 *	Note that we must walk the entire hwgroup here. We know which hwif
1337 *	is doing the current command, but we don't know which hwif burped
1338 *	mysteriously.
1339 */
1340
1341static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1342{
1343	u8 stat;
1344	ide_hwif_t *hwif = hwgroup->hwif;
1345
1346	/*
1347	 * handle the unexpected interrupt
1348	 */
1349	do {
1350		if (hwif->irq == irq) {
1351			stat = hwif->tp_ops->read_status(hwif);
1352
1353			if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1354				/* Try to not flood the console with msgs */
1355				static unsigned long last_msgtime, count;
1356				++count;
1357				if (time_after(jiffies, last_msgtime + HZ)) {
1358					last_msgtime = jiffies;
1359					printk(KERN_ERR "%s%s: unexpected interrupt, "
1360						"status=0x%02x, count=%ld\n",
1361						hwif->name,
1362						(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1363				}
1364			}
1365		}
1366	} while ((hwif = hwif->next) != hwgroup->hwif);
1367}
1368
1369/**
1370 *	ide_intr	-	default IDE interrupt handler
1371 *	@irq: interrupt number
1372 *	@dev_id: hwif group
1373 *	@regs: unused weirdness from the kernel irq layer
1374 *
1375 *	This is the default IRQ handler for the IDE layer. You should
1376 *	not need to override it. If you do be aware it is subtle in
1377 *	places
1378 *
1379 *	hwgroup->hwif is the interface in the group currently performing
1380 *	a command. hwgroup->drive is the drive and hwgroup->handler is
1381 *	the IRQ handler to call. As we issue a command the handlers
1382 *	step through multiple states, reassigning the handler to the
1383 *	next step in the process. Unlike a smart SCSI controller IDE
1384 *	expects the main processor to sequence the various transfer
1385 *	stages. We also manage a poll timer to catch up with most
1386 *	timeout situations. There are still a few where the handlers
1387 *	don't ever decide to give up.
1388 *
1389 *	The handler eventually returns ide_stopped to indicate the
1390 *	request completed. At this point we issue the next request
1391 *	on the hwgroup and the process begins again.
1392 */
1393
1394irqreturn_t ide_intr (int irq, void *dev_id)
1395{
1396	unsigned long flags;
1397	ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1398	ide_hwif_t *hwif;
1399	ide_drive_t *drive;
1400	ide_handler_t *handler;
1401	ide_startstop_t startstop;
1402
1403	spin_lock_irqsave(&ide_lock, flags);
1404	hwif = hwgroup->hwif;
1405
1406	if (!ide_ack_intr(hwif)) {
1407		spin_unlock_irqrestore(&ide_lock, flags);
1408		return IRQ_NONE;
1409	}
1410
1411	if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1412		/*
1413		 * Not expecting an interrupt from this drive.
1414		 * That means this could be:
1415		 *	(1) an interrupt from another PCI device
1416		 *	sharing the same PCI INT# as us.
1417		 * or	(2) a drive just entered sleep or standby mode,
1418		 *	and is interrupting to let us know.
1419		 * or	(3) a spurious interrupt of unknown origin.
1420		 *
1421		 * For PCI, we cannot tell the difference,
1422		 * so in that case we just ignore it and hope it goes away.
1423		 *
1424		 * FIXME: unexpected_intr should be hwif-> then we can
1425		 * remove all the ifdef PCI crap
1426		 */
1427#ifdef CONFIG_BLK_DEV_IDEPCI
1428		if (hwif->chipset != ide_pci)
1429#endif	/* CONFIG_BLK_DEV_IDEPCI */
1430		{
1431			/*
1432			 * Probably not a shared PCI interrupt,
1433			 * so we can safely try to do something about it:
1434			 */
1435			unexpected_intr(irq, hwgroup);
1436#ifdef CONFIG_BLK_DEV_IDEPCI
1437		} else {
1438			/*
1439			 * Whack the status register, just in case
1440			 * we have a leftover pending IRQ.
1441			 */
1442			(void)hwif->tp_ops->read_status(hwif);
1443#endif /* CONFIG_BLK_DEV_IDEPCI */
1444		}
1445		spin_unlock_irqrestore(&ide_lock, flags);
1446		return IRQ_NONE;
1447	}
1448	drive = hwgroup->drive;
1449	if (!drive) {
1450		/*
1451		 * This should NEVER happen, and there isn't much
1452		 * we could do about it here.
1453		 *
1454		 * [Note - this can occur if the drive is hot unplugged]
1455		 */
1456		spin_unlock_irqrestore(&ide_lock, flags);
1457		return IRQ_HANDLED;
1458	}
1459	if (!drive_is_ready(drive)) {
1460		/*
1461		 * This happens regularly when we share a PCI IRQ with
1462		 * another device.  Unfortunately, it can also happen
1463		 * with some buggy drives that trigger the IRQ before
1464		 * their status register is up to date.  Hopefully we have
1465		 * enough advance overhead that the latter isn't a problem.
1466		 */
1467		spin_unlock_irqrestore(&ide_lock, flags);
1468		return IRQ_NONE;
1469	}
1470	if (!hwgroup->busy) {
1471		hwgroup->busy = 1;	/* paranoia */
1472		printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1473	}
1474	hwgroup->handler = NULL;
1475	hwgroup->req_gen++;
1476	del_timer(&hwgroup->timer);
1477	spin_unlock(&ide_lock);
1478
1479	/* Some controllers might set DMA INTR no matter DMA or PIO;
1480	 * bmdma status might need to be cleared even for
1481	 * PIO interrupts to prevent spurious/lost irq.
1482	 */
1483	if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1484		/* ide_dma_end() needs bmdma status for error checking.
1485		 * So, skip clearing bmdma status here and leave it
1486		 * to ide_dma_end() if this is dma interrupt.
1487		 */
1488		hwif->ide_dma_clear_irq(drive);
1489
1490	if (drive->dev_flags & IDE_DFLAG_UNMASK)
1491		local_irq_enable_in_hardirq();
1492	/* service this interrupt, may set handler for next interrupt */
1493	startstop = handler(drive);
1494	spin_lock_irq(&ide_lock);
1495
1496	/*
1497	 * Note that handler() may have set things up for another
1498	 * interrupt to occur soon, but it cannot happen until
1499	 * we exit from this routine, because it will be the
1500	 * same irq as is currently being serviced here, and Linux
1501	 * won't allow another of the same (on any CPU) until we return.
1502	 */
1503	drive->service_time = jiffies - drive->service_start;
1504	if (startstop == ide_stopped) {
1505		if (hwgroup->handler == NULL) {	/* paranoia */
1506			hwgroup->busy = 0;
1507			ide_do_request(hwgroup, hwif->irq);
1508		} else {
1509			printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1510				"on exit\n", drive->name);
1511		}
1512	}
1513	spin_unlock_irqrestore(&ide_lock, flags);
1514	return IRQ_HANDLED;
1515}
1516
1517/**
1518 *	ide_do_drive_cmd	-	issue IDE special command
1519 *	@drive: device to issue command
1520 *	@rq: request to issue
1521 *
1522 *	This function issues a special IDE device request
1523 *	onto the request queue.
1524 *
1525 *	the rq is queued at the head of the request queue, displacing
1526 *	the currently-being-processed request and this function
1527 *	returns immediately without waiting for the new rq to be
1528 *	completed.  This is VERY DANGEROUS, and is intended for
1529 *	careful use by the ATAPI tape/cdrom driver code.
1530 */
1531
1532void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1533{
1534	unsigned long flags;
1535	ide_hwgroup_t *hwgroup = HWGROUP(drive);
1536
1537	spin_lock_irqsave(&ide_lock, flags);
1538	hwgroup->rq = NULL;
1539	__elv_add_request(drive->queue, rq, ELEVATOR_INSERT_FRONT, 1);
1540	__generic_unplug_device(drive->queue);
1541	spin_unlock_irqrestore(&ide_lock, flags);
1542}
1543
1544EXPORT_SYMBOL(ide_do_drive_cmd);
1545
1546void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1547{
1548	ide_hwif_t *hwif = drive->hwif;
1549	ide_task_t task;
1550
1551	memset(&task, 0, sizeof(task));
1552	task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1553			IDE_TFLAG_OUT_FEATURE | tf_flags;
1554	task.tf.feature = dma;		/* Use PIO/DMA */
1555	task.tf.lbam    = bcount & 0xff;
1556	task.tf.lbah    = (bcount >> 8) & 0xff;
1557
1558	ide_tf_dump(drive->name, &task.tf);
1559	hwif->tp_ops->set_irq(hwif, 1);
1560	SELECT_MASK(drive, 0);
1561	hwif->tp_ops->tf_load(drive, &task);
1562}
1563
1564EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1565
1566void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1567{
1568	ide_hwif_t *hwif = drive->hwif;
1569	u8 buf[4] = { 0 };
1570
1571	while (len > 0) {
1572		if (write)
1573			hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1574		else
1575			hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1576		len -= 4;
1577	}
1578}
1579EXPORT_SYMBOL_GPL(ide_pad_transfer);
1580