ide-io.c revision 1192e528e064ebb9a578219731d2b0f78ca3c1ec
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
50#include <linux/bitops.h>
51
52#include <asm/byteorder.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55#include <asm/io.h>
56
57static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58			     int uptodate, unsigned int nr_bytes, int dequeue)
59{
60	int ret = 1;
61
62	/*
63	 * if failfast is set on a request, override number of sectors and
64	 * complete the whole request right now
65	 */
66	if (blk_noretry_request(rq) && end_io_error(uptodate))
67		nr_bytes = rq->hard_nr_sectors << 9;
68
69	if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70		rq->errors = -EIO;
71
72	/*
73	 * decide whether to reenable DMA -- 3 is a random magic for now,
74	 * if we DMA timeout more than 3 times, just stay in PIO
75	 */
76	if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77		drive->state = 0;
78		HWGROUP(drive)->hwif->ide_dma_on(drive);
79	}
80
81	if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82		add_disk_randomness(rq->rq_disk);
83		if (dequeue) {
84			if (!list_empty(&rq->queuelist))
85				blkdev_dequeue_request(rq);
86			HWGROUP(drive)->rq = NULL;
87		}
88		end_that_request_last(rq, uptodate);
89		ret = 0;
90	}
91
92	return ret;
93}
94
95/**
96 *	ide_end_request		-	complete an IDE I/O
97 *	@drive: IDE device for the I/O
98 *	@uptodate:
99 *	@nr_sectors: number of sectors completed
100 *
101 *	This is our end_request wrapper function. We complete the I/O
102 *	update random number input and dequeue the request, which if
103 *	it was tagged may be out of order.
104 */
105
106int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107{
108	unsigned int nr_bytes = nr_sectors << 9;
109	struct request *rq;
110	unsigned long flags;
111	int ret = 1;
112
113	/*
114	 * room for locking improvements here, the calls below don't
115	 * need the queue lock held at all
116	 */
117	spin_lock_irqsave(&ide_lock, flags);
118	rq = HWGROUP(drive)->rq;
119
120	if (!nr_bytes) {
121		if (blk_pc_request(rq))
122			nr_bytes = rq->data_len;
123		else
124			nr_bytes = rq->hard_cur_sectors << 9;
125	}
126
127	ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128
129	spin_unlock_irqrestore(&ide_lock, flags);
130	return ret;
131}
132EXPORT_SYMBOL(ide_end_request);
133
134/*
135 * Power Management state machine. This one is rather trivial for now,
136 * we should probably add more, like switching back to PIO on suspend
137 * to help some BIOSes, re-do the door locking on resume, etc...
138 */
139
140enum {
141	ide_pm_flush_cache	= ide_pm_state_start_suspend,
142	idedisk_pm_standby,
143
144	idedisk_pm_restore_pio	= ide_pm_state_start_resume,
145	idedisk_pm_idle,
146	ide_pm_restore_dma,
147};
148
149static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150{
151	struct request_pm_state *pm = rq->data;
152
153	if (drive->media != ide_disk)
154		return;
155
156	switch (pm->pm_step) {
157	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) complete */
158		if (pm->pm_state == PM_EVENT_FREEZE)
159			pm->pm_step = ide_pm_state_completed;
160		else
161			pm->pm_step = idedisk_pm_standby;
162		break;
163	case idedisk_pm_standby:	/* Suspend step 2 (standby) complete */
164		pm->pm_step = ide_pm_state_completed;
165		break;
166	case idedisk_pm_restore_pio:	/* Resume step 1 complete */
167		pm->pm_step = idedisk_pm_idle;
168		break;
169	case idedisk_pm_idle:		/* Resume step 2 (idle) complete */
170		pm->pm_step = ide_pm_restore_dma;
171		break;
172	}
173}
174
175static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176{
177	struct request_pm_state *pm = rq->data;
178	ide_task_t *args = rq->special;
179
180	memset(args, 0, sizeof(*args));
181
182	switch (pm->pm_step) {
183	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) */
184		if (drive->media != ide_disk)
185			break;
186		/* Not supported? Switch to next step now. */
187		if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188			ide_complete_power_step(drive, rq, 0, 0);
189			return ide_stopped;
190		}
191		if (ide_id_has_flush_cache_ext(drive->id))
192			args->tf.command = WIN_FLUSH_CACHE_EXT;
193		else
194			args->tf.command = WIN_FLUSH_CACHE;
195		goto out_do_tf;
196
197	case idedisk_pm_standby:	/* Suspend step 2 (standby) */
198		args->tf.command = WIN_STANDBYNOW1;
199		goto out_do_tf;
200
201	case idedisk_pm_restore_pio:	/* Resume step 1 (restore PIO) */
202		ide_set_max_pio(drive);
203		/*
204		 * skip idedisk_pm_idle for ATAPI devices
205		 */
206		if (drive->media != ide_disk)
207			pm->pm_step = ide_pm_restore_dma;
208		else
209			ide_complete_power_step(drive, rq, 0, 0);
210		return ide_stopped;
211
212	case idedisk_pm_idle:		/* Resume step 2 (idle) */
213		args->tf.command = WIN_IDLEIMMEDIATE;
214		goto out_do_tf;
215
216	case ide_pm_restore_dma:	/* Resume step 3 (restore DMA) */
217		/*
218		 * Right now, all we do is call ide_set_dma(drive),
219		 * we could be smarter and check for current xfer_speed
220		 * in struct drive etc...
221		 */
222		if (drive->hwif->ide_dma_on == NULL)
223			break;
224		drive->hwif->dma_off_quietly(drive);
225		/*
226		 * TODO: respect ->using_dma setting
227		 */
228		ide_set_dma(drive);
229		break;
230	}
231	pm->pm_step = ide_pm_state_completed;
232	return ide_stopped;
233
234out_do_tf:
235	args->tf_flags	 = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE;
236	args->data_phase = TASKFILE_NO_DATA;
237	return do_rw_taskfile(drive, args);
238}
239
240/**
241 *	ide_end_dequeued_request	-	complete an IDE I/O
242 *	@drive: IDE device for the I/O
243 *	@uptodate:
244 *	@nr_sectors: number of sectors completed
245 *
246 *	Complete an I/O that is no longer on the request queue. This
247 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
248 *	We must still finish the old request but we must not tamper with the
249 *	queue in the meantime.
250 *
251 *	NOTE: This path does not handle barrier, but barrier is not supported
252 *	on ide-cd anyway.
253 */
254
255int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
256			     int uptodate, int nr_sectors)
257{
258	unsigned long flags;
259	int ret;
260
261	spin_lock_irqsave(&ide_lock, flags);
262	BUG_ON(!blk_rq_started(rq));
263	ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
264	spin_unlock_irqrestore(&ide_lock, flags);
265
266	return ret;
267}
268EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
269
270
271/**
272 *	ide_complete_pm_request - end the current Power Management request
273 *	@drive: target drive
274 *	@rq: request
275 *
276 *	This function cleans up the current PM request and stops the queue
277 *	if necessary.
278 */
279static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
280{
281	unsigned long flags;
282
283#ifdef DEBUG_PM
284	printk("%s: completing PM request, %s\n", drive->name,
285	       blk_pm_suspend_request(rq) ? "suspend" : "resume");
286#endif
287	spin_lock_irqsave(&ide_lock, flags);
288	if (blk_pm_suspend_request(rq)) {
289		blk_stop_queue(drive->queue);
290	} else {
291		drive->blocked = 0;
292		blk_start_queue(drive->queue);
293	}
294	blkdev_dequeue_request(rq);
295	HWGROUP(drive)->rq = NULL;
296	end_that_request_last(rq, 1);
297	spin_unlock_irqrestore(&ide_lock, flags);
298}
299
300/**
301 *	ide_end_drive_cmd	-	end an explicit drive command
302 *	@drive: command
303 *	@stat: status bits
304 *	@err: error bits
305 *
306 *	Clean up after success/failure of an explicit drive command.
307 *	These get thrown onto the queue so they are synchronized with
308 *	real I/O operations on the drive.
309 *
310 *	In LBA48 mode we have to read the register set twice to get
311 *	all the extra information out.
312 */
313
314void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
315{
316	ide_hwif_t *hwif = HWIF(drive);
317	unsigned long flags;
318	struct request *rq;
319
320	spin_lock_irqsave(&ide_lock, flags);
321	rq = HWGROUP(drive)->rq;
322	spin_unlock_irqrestore(&ide_lock, flags);
323
324	if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
325		u8 *args = (u8 *) rq->buffer;
326		if (rq->errors == 0)
327			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
328
329		if (args) {
330			args[0] = stat;
331			args[1] = err;
332			args[2] = hwif->INB(IDE_NSECTOR_REG);
333		}
334	} else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
335		ide_task_t *args = (ide_task_t *) rq->special;
336		if (rq->errors == 0)
337			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
338
339		if (args) {
340			struct ide_taskfile *tf = &args->tf;
341
342			if (args->tf_flags & IDE_TFLAG_IN_DATA) {
343				u16 data = hwif->INW(IDE_DATA_REG);
344
345				tf->data = data & 0xff;
346				tf->hob_data = (data >> 8) & 0xff;
347			}
348			tf->error = err;
349			/* be sure we're looking at the low order bits */
350			hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
351			tf->nsect  = hwif->INB(IDE_NSECTOR_REG);
352			tf->lbal   = hwif->INB(IDE_SECTOR_REG);
353			tf->lbam   = hwif->INB(IDE_LCYL_REG);
354			tf->lbah   = hwif->INB(IDE_HCYL_REG);
355			tf->device = hwif->INB(IDE_SELECT_REG);
356			tf->status = stat;
357
358			if (args->tf_flags & IDE_TFLAG_LBA48) {
359				hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
360				tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
361				tf->hob_nsect   = hwif->INB(IDE_NSECTOR_REG);
362				tf->hob_lbal    = hwif->INB(IDE_SECTOR_REG);
363				tf->hob_lbam    = hwif->INB(IDE_LCYL_REG);
364				tf->hob_lbah    = hwif->INB(IDE_HCYL_REG);
365			}
366		}
367	} else if (blk_pm_request(rq)) {
368		struct request_pm_state *pm = rq->data;
369#ifdef DEBUG_PM
370		printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
371			drive->name, rq->pm->pm_step, stat, err);
372#endif
373		ide_complete_power_step(drive, rq, stat, err);
374		if (pm->pm_step == ide_pm_state_completed)
375			ide_complete_pm_request(drive, rq);
376		return;
377	}
378
379	spin_lock_irqsave(&ide_lock, flags);
380	blkdev_dequeue_request(rq);
381	HWGROUP(drive)->rq = NULL;
382	rq->errors = err;
383	end_that_request_last(rq, !rq->errors);
384	spin_unlock_irqrestore(&ide_lock, flags);
385}
386
387EXPORT_SYMBOL(ide_end_drive_cmd);
388
389/**
390 *	try_to_flush_leftover_data	-	flush junk
391 *	@drive: drive to flush
392 *
393 *	try_to_flush_leftover_data() is invoked in response to a drive
394 *	unexpectedly having its DRQ_STAT bit set.  As an alternative to
395 *	resetting the drive, this routine tries to clear the condition
396 *	by read a sector's worth of data from the drive.  Of course,
397 *	this may not help if the drive is *waiting* for data from *us*.
398 */
399static void try_to_flush_leftover_data (ide_drive_t *drive)
400{
401	int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
402
403	if (drive->media != ide_disk)
404		return;
405	while (i > 0) {
406		u32 buffer[16];
407		u32 wcount = (i > 16) ? 16 : i;
408
409		i -= wcount;
410		HWIF(drive)->ata_input_data(drive, buffer, wcount);
411	}
412}
413
414static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
415{
416	if (rq->rq_disk) {
417		ide_driver_t *drv;
418
419		drv = *(ide_driver_t **)rq->rq_disk->private_data;
420		drv->end_request(drive, 0, 0);
421	} else
422		ide_end_request(drive, 0, 0);
423}
424
425static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
426{
427	ide_hwif_t *hwif = drive->hwif;
428
429	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
430		/* other bits are useless when BUSY */
431		rq->errors |= ERROR_RESET;
432	} else if (stat & ERR_STAT) {
433		/* err has different meaning on cdrom and tape */
434		if (err == ABRT_ERR) {
435			if (drive->select.b.lba &&
436			    /* some newer drives don't support WIN_SPECIFY */
437			    hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
438				return ide_stopped;
439		} else if ((err & BAD_CRC) == BAD_CRC) {
440			/* UDMA crc error, just retry the operation */
441			drive->crc_count++;
442		} else if (err & (BBD_ERR | ECC_ERR)) {
443			/* retries won't help these */
444			rq->errors = ERROR_MAX;
445		} else if (err & TRK0_ERR) {
446			/* help it find track zero */
447			rq->errors |= ERROR_RECAL;
448		}
449	}
450
451	if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
452	    (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
453		try_to_flush_leftover_data(drive);
454
455	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
456		ide_kill_rq(drive, rq);
457		return ide_stopped;
458	}
459
460	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
461		rq->errors |= ERROR_RESET;
462
463	if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
464		++rq->errors;
465		return ide_do_reset(drive);
466	}
467
468	if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
469		drive->special.b.recalibrate = 1;
470
471	++rq->errors;
472
473	return ide_stopped;
474}
475
476static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
477{
478	ide_hwif_t *hwif = drive->hwif;
479
480	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
481		/* other bits are useless when BUSY */
482		rq->errors |= ERROR_RESET;
483	} else {
484		/* add decoding error stuff */
485	}
486
487	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
488		/* force an abort */
489		hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
490
491	if (rq->errors >= ERROR_MAX) {
492		ide_kill_rq(drive, rq);
493	} else {
494		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
495			++rq->errors;
496			return ide_do_reset(drive);
497		}
498		++rq->errors;
499	}
500
501	return ide_stopped;
502}
503
504ide_startstop_t
505__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
506{
507	if (drive->media == ide_disk)
508		return ide_ata_error(drive, rq, stat, err);
509	return ide_atapi_error(drive, rq, stat, err);
510}
511
512EXPORT_SYMBOL_GPL(__ide_error);
513
514/**
515 *	ide_error	-	handle an error on the IDE
516 *	@drive: drive the error occurred on
517 *	@msg: message to report
518 *	@stat: status bits
519 *
520 *	ide_error() takes action based on the error returned by the drive.
521 *	For normal I/O that may well include retries. We deal with
522 *	both new-style (taskfile) and old style command handling here.
523 *	In the case of taskfile command handling there is work left to
524 *	do
525 */
526
527ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
528{
529	struct request *rq;
530	u8 err;
531
532	err = ide_dump_status(drive, msg, stat);
533
534	if ((rq = HWGROUP(drive)->rq) == NULL)
535		return ide_stopped;
536
537	/* retry only "normal" I/O: */
538	if (!blk_fs_request(rq)) {
539		rq->errors = 1;
540		ide_end_drive_cmd(drive, stat, err);
541		return ide_stopped;
542	}
543
544	if (rq->rq_disk) {
545		ide_driver_t *drv;
546
547		drv = *(ide_driver_t **)rq->rq_disk->private_data;
548		return drv->error(drive, rq, stat, err);
549	} else
550		return __ide_error(drive, rq, stat, err);
551}
552
553EXPORT_SYMBOL_GPL(ide_error);
554
555ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
556{
557	if (drive->media != ide_disk)
558		rq->errors |= ERROR_RESET;
559
560	ide_kill_rq(drive, rq);
561
562	return ide_stopped;
563}
564
565EXPORT_SYMBOL_GPL(__ide_abort);
566
567/**
568 *	ide_abort	-	abort pending IDE operations
569 *	@drive: drive the error occurred on
570 *	@msg: message to report
571 *
572 *	ide_abort kills and cleans up when we are about to do a
573 *	host initiated reset on active commands. Longer term we
574 *	want handlers to have sensible abort handling themselves
575 *
576 *	This differs fundamentally from ide_error because in
577 *	this case the command is doing just fine when we
578 *	blow it away.
579 */
580
581ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
582{
583	struct request *rq;
584
585	if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
586		return ide_stopped;
587
588	/* retry only "normal" I/O: */
589	if (!blk_fs_request(rq)) {
590		rq->errors = 1;
591		ide_end_drive_cmd(drive, BUSY_STAT, 0);
592		return ide_stopped;
593	}
594
595	if (rq->rq_disk) {
596		ide_driver_t *drv;
597
598		drv = *(ide_driver_t **)rq->rq_disk->private_data;
599		return drv->abort(drive, rq);
600	} else
601		return __ide_abort(drive, rq);
602}
603
604/**
605 *	drive_cmd_intr		- 	drive command completion interrupt
606 *	@drive: drive the completion interrupt occurred on
607 *
608 *	drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
609 *	We do any necessary data reading and then wait for the drive to
610 *	go non busy. At that point we may read the error data and complete
611 *	the request
612 */
613
614static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
615{
616	struct request *rq = HWGROUP(drive)->rq;
617	ide_hwif_t *hwif = HWIF(drive);
618	u8 *args = (u8 *) rq->buffer;
619	u8 stat = hwif->INB(IDE_STATUS_REG);
620	int retries = 10;
621
622	local_irq_enable_in_hardirq();
623	if (rq->cmd_type == REQ_TYPE_ATA_CMD &&
624	    (stat & DRQ_STAT) && args && args[3]) {
625		u8 io_32bit = drive->io_32bit;
626		drive->io_32bit = 0;
627		hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
628		drive->io_32bit = io_32bit;
629		while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
630			udelay(100);
631	}
632
633	if (!OK_STAT(stat, READY_STAT, BAD_STAT))
634		return ide_error(drive, "drive_cmd", stat);
635		/* calls ide_end_drive_cmd */
636	ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
637	return ide_stopped;
638}
639
640static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
641{
642	task->tf.nsect   = drive->sect;
643	task->tf.lbal    = drive->sect;
644	task->tf.lbam    = drive->cyl;
645	task->tf.lbah    = drive->cyl >> 8;
646	task->tf.device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
647	task->tf.command = WIN_SPECIFY;
648
649	task->handler = &set_geometry_intr;
650}
651
652static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
653{
654	task->tf.nsect   = drive->sect;
655	task->tf.command = WIN_RESTORE;
656
657	task->handler = &recal_intr;
658}
659
660static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
661{
662	task->tf.nsect   = drive->mult_req;
663	task->tf.command = WIN_SETMULT;
664
665	task->handler = &set_multmode_intr;
666}
667
668static ide_startstop_t ide_disk_special(ide_drive_t *drive)
669{
670	special_t *s = &drive->special;
671	ide_task_t args;
672
673	memset(&args, 0, sizeof(ide_task_t));
674	args.data_phase = TASKFILE_NO_DATA;
675
676	if (s->b.set_geometry) {
677		s->b.set_geometry = 0;
678		ide_init_specify_cmd(drive, &args);
679	} else if (s->b.recalibrate) {
680		s->b.recalibrate = 0;
681		ide_init_restore_cmd(drive, &args);
682	} else if (s->b.set_multmode) {
683		s->b.set_multmode = 0;
684		if (drive->mult_req > drive->id->max_multsect)
685			drive->mult_req = drive->id->max_multsect;
686		ide_init_setmult_cmd(drive, &args);
687	} else if (s->all) {
688		int special = s->all;
689		s->all = 0;
690		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
691		return ide_stopped;
692	}
693
694	args.tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE;
695
696	do_rw_taskfile(drive, &args);
697
698	return ide_started;
699}
700
701/*
702 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
703 */
704static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
705{
706	switch (req_pio) {
707	case 202:
708	case 201:
709	case 200:
710	case 102:
711	case 101:
712	case 100:
713		return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
714	case 9:
715	case 8:
716		return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
717	case 7:
718	case 6:
719		return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
720	default:
721		return 0;
722	}
723}
724
725/**
726 *	do_special		-	issue some special commands
727 *	@drive: drive the command is for
728 *
729 *	do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
730 *	commands to a drive.  It used to do much more, but has been scaled
731 *	back.
732 */
733
734static ide_startstop_t do_special (ide_drive_t *drive)
735{
736	special_t *s = &drive->special;
737
738#ifdef DEBUG
739	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
740#endif
741	if (s->b.set_tune) {
742		ide_hwif_t *hwif = drive->hwif;
743		u8 req_pio = drive->tune_req;
744
745		s->b.set_tune = 0;
746
747		if (set_pio_mode_abuse(drive->hwif, req_pio)) {
748
749			if (hwif->set_pio_mode == NULL)
750				return ide_stopped;
751
752			/*
753			 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
754			 */
755			if (req_pio == 8 || req_pio == 9) {
756				unsigned long flags;
757
758				spin_lock_irqsave(&ide_lock, flags);
759				hwif->set_pio_mode(drive, req_pio);
760				spin_unlock_irqrestore(&ide_lock, flags);
761			} else
762				hwif->set_pio_mode(drive, req_pio);
763		} else {
764			int keep_dma = drive->using_dma;
765
766			ide_set_pio(drive, req_pio);
767
768			if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
769				if (keep_dma)
770					hwif->ide_dma_on(drive);
771			}
772		}
773
774		return ide_stopped;
775	} else {
776		if (drive->media == ide_disk)
777			return ide_disk_special(drive);
778
779		s->all = 0;
780		drive->mult_req = 0;
781		return ide_stopped;
782	}
783}
784
785void ide_map_sg(ide_drive_t *drive, struct request *rq)
786{
787	ide_hwif_t *hwif = drive->hwif;
788	struct scatterlist *sg = hwif->sg_table;
789
790	if (hwif->sg_mapped)	/* needed by ide-scsi */
791		return;
792
793	if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
794		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
795	} else {
796		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
797		hwif->sg_nents = 1;
798	}
799}
800
801EXPORT_SYMBOL_GPL(ide_map_sg);
802
803void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
804{
805	ide_hwif_t *hwif = drive->hwif;
806
807	hwif->nsect = hwif->nleft = rq->nr_sectors;
808	hwif->cursg_ofs = 0;
809	hwif->cursg = NULL;
810}
811
812EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
813
814/**
815 *	execute_drive_command	-	issue special drive command
816 *	@drive: the drive to issue the command on
817 *	@rq: the request structure holding the command
818 *
819 *	execute_drive_cmd() issues a special drive command,  usually
820 *	initiated by ioctl() from the external hdparm program. The
821 *	command can be a drive command, drive task or taskfile
822 *	operation. Weirdly you can call it with NULL to wait for
823 *	all commands to finish. Don't do this as that is due to change
824 */
825
826static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
827		struct request *rq)
828{
829	ide_hwif_t *hwif = HWIF(drive);
830	u8 *args = rq->buffer;
831	ide_task_t ltask;
832	struct ide_taskfile *tf = &ltask.tf;
833
834	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
835		ide_task_t *task = rq->special;
836
837		if (task == NULL)
838			goto done;
839
840		hwif->data_phase = task->data_phase;
841
842		switch (hwif->data_phase) {
843		case TASKFILE_MULTI_OUT:
844		case TASKFILE_OUT:
845		case TASKFILE_MULTI_IN:
846		case TASKFILE_IN:
847			ide_init_sg_cmd(drive, rq);
848			ide_map_sg(drive, rq);
849		default:
850			break;
851		}
852
853		return do_rw_taskfile(drive, task);
854	}
855
856	if (args == NULL)
857		goto done;
858
859	memset(&ltask, 0, sizeof(ltask));
860	if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
861#ifdef DEBUG
862		printk("%s: DRIVE_CMD\n", drive->name);
863#endif
864		tf->feature = args[2];
865		if (args[0] == WIN_SMART) {
866			tf->nsect = args[3];
867			tf->lbal  = args[1];
868			tf->lbam  = 0x4f;
869			tf->lbah  = 0xc2;
870			ltask.tf_flags = IDE_TFLAG_OUT_TF;
871		} else {
872			tf->nsect = args[1];
873			ltask.tf_flags = IDE_TFLAG_OUT_FEATURE |
874					 IDE_TFLAG_OUT_NSECT;
875		}
876 	}
877	tf->command = args[0];
878	ide_tf_load(drive, &ltask);
879	ide_execute_command(drive, args[0], &drive_cmd_intr, WAIT_WORSTCASE, NULL);
880	return ide_started;
881
882done:
883 	/*
884 	 * NULL is actually a valid way of waiting for
885 	 * all current requests to be flushed from the queue.
886 	 */
887#ifdef DEBUG
888 	printk("%s: DRIVE_CMD (null)\n", drive->name);
889#endif
890 	ide_end_drive_cmd(drive,
891			hwif->INB(IDE_STATUS_REG),
892			hwif->INB(IDE_ERROR_REG));
893 	return ide_stopped;
894}
895
896static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
897{
898	struct request_pm_state *pm = rq->data;
899
900	if (blk_pm_suspend_request(rq) &&
901	    pm->pm_step == ide_pm_state_start_suspend)
902		/* Mark drive blocked when starting the suspend sequence. */
903		drive->blocked = 1;
904	else if (blk_pm_resume_request(rq) &&
905		 pm->pm_step == ide_pm_state_start_resume) {
906		/*
907		 * The first thing we do on wakeup is to wait for BSY bit to
908		 * go away (with a looong timeout) as a drive on this hwif may
909		 * just be POSTing itself.
910		 * We do that before even selecting as the "other" device on
911		 * the bus may be broken enough to walk on our toes at this
912		 * point.
913		 */
914		int rc;
915#ifdef DEBUG_PM
916		printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
917#endif
918		rc = ide_wait_not_busy(HWIF(drive), 35000);
919		if (rc)
920			printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
921		SELECT_DRIVE(drive);
922		if (IDE_CONTROL_REG)
923			HWIF(drive)->OUTB(drive->ctl, IDE_CONTROL_REG);
924		rc = ide_wait_not_busy(HWIF(drive), 100000);
925		if (rc)
926			printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
927	}
928}
929
930/**
931 *	start_request	-	start of I/O and command issuing for IDE
932 *
933 *	start_request() initiates handling of a new I/O request. It
934 *	accepts commands and I/O (read/write) requests. It also does
935 *	the final remapping for weird stuff like EZDrive. Once
936 *	device mapper can work sector level the EZDrive stuff can go away
937 *
938 *	FIXME: this function needs a rename
939 */
940
941static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
942{
943	ide_startstop_t startstop;
944	sector_t block;
945
946	BUG_ON(!blk_rq_started(rq));
947
948#ifdef DEBUG
949	printk("%s: start_request: current=0x%08lx\n",
950		HWIF(drive)->name, (unsigned long) rq);
951#endif
952
953	/* bail early if we've exceeded max_failures */
954	if (drive->max_failures && (drive->failures > drive->max_failures)) {
955		rq->cmd_flags |= REQ_FAILED;
956		goto kill_rq;
957	}
958
959	block    = rq->sector;
960	if (blk_fs_request(rq) &&
961	    (drive->media == ide_disk || drive->media == ide_floppy)) {
962		block += drive->sect0;
963	}
964	/* Yecch - this will shift the entire interval,
965	   possibly killing some innocent following sector */
966	if (block == 0 && drive->remap_0_to_1 == 1)
967		block = 1;  /* redirect MBR access to EZ-Drive partn table */
968
969	if (blk_pm_request(rq))
970		ide_check_pm_state(drive, rq);
971
972	SELECT_DRIVE(drive);
973	if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
974		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
975		return startstop;
976	}
977	if (!drive->special.all) {
978		ide_driver_t *drv;
979
980		/*
981		 * We reset the drive so we need to issue a SETFEATURES.
982		 * Do it _after_ do_special() restored device parameters.
983		 */
984		if (drive->current_speed == 0xff)
985			ide_config_drive_speed(drive, drive->desired_speed);
986
987		if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
988		    rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
989			return execute_drive_cmd(drive, rq);
990		else if (blk_pm_request(rq)) {
991			struct request_pm_state *pm = rq->data;
992#ifdef DEBUG_PM
993			printk("%s: start_power_step(step: %d)\n",
994				drive->name, rq->pm->pm_step);
995#endif
996			startstop = ide_start_power_step(drive, rq);
997			if (startstop == ide_stopped &&
998			    pm->pm_step == ide_pm_state_completed)
999				ide_complete_pm_request(drive, rq);
1000			return startstop;
1001		}
1002
1003		drv = *(ide_driver_t **)rq->rq_disk->private_data;
1004		return drv->do_request(drive, rq, block);
1005	}
1006	return do_special(drive);
1007kill_rq:
1008	ide_kill_rq(drive, rq);
1009	return ide_stopped;
1010}
1011
1012/**
1013 *	ide_stall_queue		-	pause an IDE device
1014 *	@drive: drive to stall
1015 *	@timeout: time to stall for (jiffies)
1016 *
1017 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
1018 *	to the hwgroup by sleeping for timeout jiffies.
1019 */
1020
1021void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1022{
1023	if (timeout > WAIT_WORSTCASE)
1024		timeout = WAIT_WORSTCASE;
1025	drive->sleep = timeout + jiffies;
1026	drive->sleeping = 1;
1027}
1028
1029EXPORT_SYMBOL(ide_stall_queue);
1030
1031#define WAKEUP(drive)	((drive)->service_start + 2 * (drive)->service_time)
1032
1033/**
1034 *	choose_drive		-	select a drive to service
1035 *	@hwgroup: hardware group to select on
1036 *
1037 *	choose_drive() selects the next drive which will be serviced.
1038 *	This is necessary because the IDE layer can't issue commands
1039 *	to both drives on the same cable, unlike SCSI.
1040 */
1041
1042static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1043{
1044	ide_drive_t *drive, *best;
1045
1046repeat:
1047	best = NULL;
1048	drive = hwgroup->drive;
1049
1050	/*
1051	 * drive is doing pre-flush, ordered write, post-flush sequence. even
1052	 * though that is 3 requests, it must be seen as a single transaction.
1053	 * we must not preempt this drive until that is complete
1054	 */
1055	if (blk_queue_flushing(drive->queue)) {
1056		/*
1057		 * small race where queue could get replugged during
1058		 * the 3-request flush cycle, just yank the plug since
1059		 * we want it to finish asap
1060		 */
1061		blk_remove_plug(drive->queue);
1062		return drive;
1063	}
1064
1065	do {
1066		if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1067		    && !elv_queue_empty(drive->queue)) {
1068			if (!best
1069			 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1070			 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1071			{
1072				if (!blk_queue_plugged(drive->queue))
1073					best = drive;
1074			}
1075		}
1076	} while ((drive = drive->next) != hwgroup->drive);
1077	if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1078		long t = (signed long)(WAKEUP(best) - jiffies);
1079		if (t >= WAIT_MIN_SLEEP) {
1080		/*
1081		 * We *may* have some time to spare, but first let's see if
1082		 * someone can potentially benefit from our nice mood today..
1083		 */
1084			drive = best->next;
1085			do {
1086				if (!drive->sleeping
1087				 && time_before(jiffies - best->service_time, WAKEUP(drive))
1088				 && time_before(WAKEUP(drive), jiffies + t))
1089				{
1090					ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1091					goto repeat;
1092				}
1093			} while ((drive = drive->next) != best);
1094		}
1095	}
1096	return best;
1097}
1098
1099/*
1100 * Issue a new request to a drive from hwgroup
1101 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1102 *
1103 * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1104 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1105 * may have both interfaces in a single hwgroup to "serialize" access.
1106 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1107 * together into one hwgroup for serialized access.
1108 *
1109 * Note also that several hwgroups can end up sharing a single IRQ,
1110 * possibly along with many other devices.  This is especially common in
1111 * PCI-based systems with off-board IDE controller cards.
1112 *
1113 * The IDE driver uses the single global ide_lock spinlock to protect
1114 * access to the request queues, and to protect the hwgroup->busy flag.
1115 *
1116 * The first thread into the driver for a particular hwgroup sets the
1117 * hwgroup->busy flag to indicate that this hwgroup is now active,
1118 * and then initiates processing of the top request from the request queue.
1119 *
1120 * Other threads attempting entry notice the busy setting, and will simply
1121 * queue their new requests and exit immediately.  Note that hwgroup->busy
1122 * remains set even when the driver is merely awaiting the next interrupt.
1123 * Thus, the meaning is "this hwgroup is busy processing a request".
1124 *
1125 * When processing of a request completes, the completing thread or IRQ-handler
1126 * will start the next request from the queue.  If no more work remains,
1127 * the driver will clear the hwgroup->busy flag and exit.
1128 *
1129 * The ide_lock (spinlock) is used to protect all access to the
1130 * hwgroup->busy flag, but is otherwise not needed for most processing in
1131 * the driver.  This makes the driver much more friendlier to shared IRQs
1132 * than previous designs, while remaining 100% (?) SMP safe and capable.
1133 */
1134static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1135{
1136	ide_drive_t	*drive;
1137	ide_hwif_t	*hwif;
1138	struct request	*rq;
1139	ide_startstop_t	startstop;
1140	int             loops = 0;
1141
1142	/* for atari only: POSSIBLY BROKEN HERE(?) */
1143	ide_get_lock(ide_intr, hwgroup);
1144
1145	/* caller must own ide_lock */
1146	BUG_ON(!irqs_disabled());
1147
1148	while (!hwgroup->busy) {
1149		hwgroup->busy = 1;
1150		drive = choose_drive(hwgroup);
1151		if (drive == NULL) {
1152			int sleeping = 0;
1153			unsigned long sleep = 0; /* shut up, gcc */
1154			hwgroup->rq = NULL;
1155			drive = hwgroup->drive;
1156			do {
1157				if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1158					sleeping = 1;
1159					sleep = drive->sleep;
1160				}
1161			} while ((drive = drive->next) != hwgroup->drive);
1162			if (sleeping) {
1163		/*
1164		 * Take a short snooze, and then wake up this hwgroup again.
1165		 * This gives other hwgroups on the same a chance to
1166		 * play fairly with us, just in case there are big differences
1167		 * in relative throughputs.. don't want to hog the cpu too much.
1168		 */
1169				if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1170					sleep = jiffies + WAIT_MIN_SLEEP;
1171#if 1
1172				if (timer_pending(&hwgroup->timer))
1173					printk(KERN_CRIT "ide_set_handler: timer already active\n");
1174#endif
1175				/* so that ide_timer_expiry knows what to do */
1176				hwgroup->sleeping = 1;
1177				hwgroup->req_gen_timer = hwgroup->req_gen;
1178				mod_timer(&hwgroup->timer, sleep);
1179				/* we purposely leave hwgroup->busy==1
1180				 * while sleeping */
1181			} else {
1182				/* Ugly, but how can we sleep for the lock
1183				 * otherwise? perhaps from tq_disk?
1184				 */
1185
1186				/* for atari only */
1187				ide_release_lock();
1188				hwgroup->busy = 0;
1189			}
1190
1191			/* no more work for this hwgroup (for now) */
1192			return;
1193		}
1194	again:
1195		hwif = HWIF(drive);
1196		if (hwgroup->hwif->sharing_irq &&
1197		    hwif != hwgroup->hwif &&
1198		    hwif->io_ports[IDE_CONTROL_OFFSET]) {
1199			/*
1200			 * set nIEN for previous hwif, drives in the
1201			 * quirk_list may not like intr setups/cleanups
1202			 */
1203			if (drive->quirk_list != 1)
1204				hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
1205		}
1206		hwgroup->hwif = hwif;
1207		hwgroup->drive = drive;
1208		drive->sleeping = 0;
1209		drive->service_start = jiffies;
1210
1211		if (blk_queue_plugged(drive->queue)) {
1212			printk(KERN_ERR "ide: huh? queue was plugged!\n");
1213			break;
1214		}
1215
1216		/*
1217		 * we know that the queue isn't empty, but this can happen
1218		 * if the q->prep_rq_fn() decides to kill a request
1219		 */
1220		rq = elv_next_request(drive->queue);
1221		if (!rq) {
1222			hwgroup->busy = 0;
1223			break;
1224		}
1225
1226		/*
1227		 * Sanity: don't accept a request that isn't a PM request
1228		 * if we are currently power managed. This is very important as
1229		 * blk_stop_queue() doesn't prevent the elv_next_request()
1230		 * above to return us whatever is in the queue. Since we call
1231		 * ide_do_request() ourselves, we end up taking requests while
1232		 * the queue is blocked...
1233		 *
1234		 * We let requests forced at head of queue with ide-preempt
1235		 * though. I hope that doesn't happen too much, hopefully not
1236		 * unless the subdriver triggers such a thing in its own PM
1237		 * state machine.
1238		 *
1239		 * We count how many times we loop here to make sure we service
1240		 * all drives in the hwgroup without looping for ever
1241		 */
1242		if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1243			drive = drive->next ? drive->next : hwgroup->drive;
1244			if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1245				goto again;
1246			/* We clear busy, there should be no pending ATA command at this point. */
1247			hwgroup->busy = 0;
1248			break;
1249		}
1250
1251		hwgroup->rq = rq;
1252
1253		/*
1254		 * Some systems have trouble with IDE IRQs arriving while
1255		 * the driver is still setting things up.  So, here we disable
1256		 * the IRQ used by this interface while the request is being started.
1257		 * This may look bad at first, but pretty much the same thing
1258		 * happens anyway when any interrupt comes in, IDE or otherwise
1259		 *  -- the kernel masks the IRQ while it is being handled.
1260		 */
1261		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1262			disable_irq_nosync(hwif->irq);
1263		spin_unlock(&ide_lock);
1264		local_irq_enable_in_hardirq();
1265			/* allow other IRQs while we start this request */
1266		startstop = start_request(drive, rq);
1267		spin_lock_irq(&ide_lock);
1268		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1269			enable_irq(hwif->irq);
1270		if (startstop == ide_stopped)
1271			hwgroup->busy = 0;
1272	}
1273}
1274
1275/*
1276 * Passes the stuff to ide_do_request
1277 */
1278void do_ide_request(struct request_queue *q)
1279{
1280	ide_drive_t *drive = q->queuedata;
1281
1282	ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1283}
1284
1285/*
1286 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1287 * retry the current request in pio mode instead of risking tossing it
1288 * all away
1289 */
1290static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1291{
1292	ide_hwif_t *hwif = HWIF(drive);
1293	struct request *rq;
1294	ide_startstop_t ret = ide_stopped;
1295
1296	/*
1297	 * end current dma transaction
1298	 */
1299
1300	if (error < 0) {
1301		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1302		(void)HWIF(drive)->ide_dma_end(drive);
1303		ret = ide_error(drive, "dma timeout error",
1304						hwif->INB(IDE_STATUS_REG));
1305	} else {
1306		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1307		hwif->dma_timeout(drive);
1308	}
1309
1310	/*
1311	 * disable dma for now, but remember that we did so because of
1312	 * a timeout -- we'll reenable after we finish this next request
1313	 * (or rather the first chunk of it) in pio.
1314	 */
1315	drive->retry_pio++;
1316	drive->state = DMA_PIO_RETRY;
1317	hwif->dma_off_quietly(drive);
1318
1319	/*
1320	 * un-busy drive etc (hwgroup->busy is cleared on return) and
1321	 * make sure request is sane
1322	 */
1323	rq = HWGROUP(drive)->rq;
1324
1325	if (!rq)
1326		goto out;
1327
1328	HWGROUP(drive)->rq = NULL;
1329
1330	rq->errors = 0;
1331
1332	if (!rq->bio)
1333		goto out;
1334
1335	rq->sector = rq->bio->bi_sector;
1336	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1337	rq->hard_cur_sectors = rq->current_nr_sectors;
1338	rq->buffer = bio_data(rq->bio);
1339out:
1340	return ret;
1341}
1342
1343/**
1344 *	ide_timer_expiry	-	handle lack of an IDE interrupt
1345 *	@data: timer callback magic (hwgroup)
1346 *
1347 *	An IDE command has timed out before the expected drive return
1348 *	occurred. At this point we attempt to clean up the current
1349 *	mess. If the current handler includes an expiry handler then
1350 *	we invoke the expiry handler, and providing it is happy the
1351 *	work is done. If that fails we apply generic recovery rules
1352 *	invoking the handler and checking the drive DMA status. We
1353 *	have an excessively incestuous relationship with the DMA
1354 *	logic that wants cleaning up.
1355 */
1356
1357void ide_timer_expiry (unsigned long data)
1358{
1359	ide_hwgroup_t	*hwgroup = (ide_hwgroup_t *) data;
1360	ide_handler_t	*handler;
1361	ide_expiry_t	*expiry;
1362	unsigned long	flags;
1363	unsigned long	wait = -1;
1364
1365	spin_lock_irqsave(&ide_lock, flags);
1366
1367	if (((handler = hwgroup->handler) == NULL) ||
1368	    (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1369		/*
1370		 * Either a marginal timeout occurred
1371		 * (got the interrupt just as timer expired),
1372		 * or we were "sleeping" to give other devices a chance.
1373		 * Either way, we don't really want to complain about anything.
1374		 */
1375		if (hwgroup->sleeping) {
1376			hwgroup->sleeping = 0;
1377			hwgroup->busy = 0;
1378		}
1379	} else {
1380		ide_drive_t *drive = hwgroup->drive;
1381		if (!drive) {
1382			printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1383			hwgroup->handler = NULL;
1384		} else {
1385			ide_hwif_t *hwif;
1386			ide_startstop_t startstop = ide_stopped;
1387			if (!hwgroup->busy) {
1388				hwgroup->busy = 1;	/* paranoia */
1389				printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1390			}
1391			if ((expiry = hwgroup->expiry) != NULL) {
1392				/* continue */
1393				if ((wait = expiry(drive)) > 0) {
1394					/* reset timer */
1395					hwgroup->timer.expires  = jiffies + wait;
1396					hwgroup->req_gen_timer = hwgroup->req_gen;
1397					add_timer(&hwgroup->timer);
1398					spin_unlock_irqrestore(&ide_lock, flags);
1399					return;
1400				}
1401			}
1402			hwgroup->handler = NULL;
1403			/*
1404			 * We need to simulate a real interrupt when invoking
1405			 * the handler() function, which means we need to
1406			 * globally mask the specific IRQ:
1407			 */
1408			spin_unlock(&ide_lock);
1409			hwif  = HWIF(drive);
1410			/* disable_irq_nosync ?? */
1411			disable_irq(hwif->irq);
1412			/* local CPU only,
1413			 * as if we were handling an interrupt */
1414			local_irq_disable();
1415			if (hwgroup->polling) {
1416				startstop = handler(drive);
1417			} else if (drive_is_ready(drive)) {
1418				if (drive->waiting_for_dma)
1419					hwgroup->hwif->dma_lost_irq(drive);
1420				(void)ide_ack_intr(hwif);
1421				printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1422				startstop = handler(drive);
1423			} else {
1424				if (drive->waiting_for_dma) {
1425					startstop = ide_dma_timeout_retry(drive, wait);
1426				} else
1427					startstop =
1428					ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1429			}
1430			drive->service_time = jiffies - drive->service_start;
1431			spin_lock_irq(&ide_lock);
1432			enable_irq(hwif->irq);
1433			if (startstop == ide_stopped)
1434				hwgroup->busy = 0;
1435		}
1436	}
1437	ide_do_request(hwgroup, IDE_NO_IRQ);
1438	spin_unlock_irqrestore(&ide_lock, flags);
1439}
1440
1441/**
1442 *	unexpected_intr		-	handle an unexpected IDE interrupt
1443 *	@irq: interrupt line
1444 *	@hwgroup: hwgroup being processed
1445 *
1446 *	There's nothing really useful we can do with an unexpected interrupt,
1447 *	other than reading the status register (to clear it), and logging it.
1448 *	There should be no way that an irq can happen before we're ready for it,
1449 *	so we needn't worry much about losing an "important" interrupt here.
1450 *
1451 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1452 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
1453 *	looks "good", we just ignore the interrupt completely.
1454 *
1455 *	This routine assumes __cli() is in effect when called.
1456 *
1457 *	If an unexpected interrupt happens on irq15 while we are handling irq14
1458 *	and if the two interfaces are "serialized" (CMD640), then it looks like
1459 *	we could screw up by interfering with a new request being set up for
1460 *	irq15.
1461 *
1462 *	In reality, this is a non-issue.  The new command is not sent unless
1463 *	the drive is ready to accept one, in which case we know the drive is
1464 *	not trying to interrupt us.  And ide_set_handler() is always invoked
1465 *	before completing the issuance of any new drive command, so we will not
1466 *	be accidentally invoked as a result of any valid command completion
1467 *	interrupt.
1468 *
1469 *	Note that we must walk the entire hwgroup here. We know which hwif
1470 *	is doing the current command, but we don't know which hwif burped
1471 *	mysteriously.
1472 */
1473
1474static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1475{
1476	u8 stat;
1477	ide_hwif_t *hwif = hwgroup->hwif;
1478
1479	/*
1480	 * handle the unexpected interrupt
1481	 */
1482	do {
1483		if (hwif->irq == irq) {
1484			stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1485			if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1486				/* Try to not flood the console with msgs */
1487				static unsigned long last_msgtime, count;
1488				++count;
1489				if (time_after(jiffies, last_msgtime + HZ)) {
1490					last_msgtime = jiffies;
1491					printk(KERN_ERR "%s%s: unexpected interrupt, "
1492						"status=0x%02x, count=%ld\n",
1493						hwif->name,
1494						(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1495				}
1496			}
1497		}
1498	} while ((hwif = hwif->next) != hwgroup->hwif);
1499}
1500
1501/**
1502 *	ide_intr	-	default IDE interrupt handler
1503 *	@irq: interrupt number
1504 *	@dev_id: hwif group
1505 *	@regs: unused weirdness from the kernel irq layer
1506 *
1507 *	This is the default IRQ handler for the IDE layer. You should
1508 *	not need to override it. If you do be aware it is subtle in
1509 *	places
1510 *
1511 *	hwgroup->hwif is the interface in the group currently performing
1512 *	a command. hwgroup->drive is the drive and hwgroup->handler is
1513 *	the IRQ handler to call. As we issue a command the handlers
1514 *	step through multiple states, reassigning the handler to the
1515 *	next step in the process. Unlike a smart SCSI controller IDE
1516 *	expects the main processor to sequence the various transfer
1517 *	stages. We also manage a poll timer to catch up with most
1518 *	timeout situations. There are still a few where the handlers
1519 *	don't ever decide to give up.
1520 *
1521 *	The handler eventually returns ide_stopped to indicate the
1522 *	request completed. At this point we issue the next request
1523 *	on the hwgroup and the process begins again.
1524 */
1525
1526irqreturn_t ide_intr (int irq, void *dev_id)
1527{
1528	unsigned long flags;
1529	ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1530	ide_hwif_t *hwif;
1531	ide_drive_t *drive;
1532	ide_handler_t *handler;
1533	ide_startstop_t startstop;
1534
1535	spin_lock_irqsave(&ide_lock, flags);
1536	hwif = hwgroup->hwif;
1537
1538	if (!ide_ack_intr(hwif)) {
1539		spin_unlock_irqrestore(&ide_lock, flags);
1540		return IRQ_NONE;
1541	}
1542
1543	if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1544		/*
1545		 * Not expecting an interrupt from this drive.
1546		 * That means this could be:
1547		 *	(1) an interrupt from another PCI device
1548		 *	sharing the same PCI INT# as us.
1549		 * or	(2) a drive just entered sleep or standby mode,
1550		 *	and is interrupting to let us know.
1551		 * or	(3) a spurious interrupt of unknown origin.
1552		 *
1553		 * For PCI, we cannot tell the difference,
1554		 * so in that case we just ignore it and hope it goes away.
1555		 *
1556		 * FIXME: unexpected_intr should be hwif-> then we can
1557		 * remove all the ifdef PCI crap
1558		 */
1559#ifdef CONFIG_BLK_DEV_IDEPCI
1560		if (hwif->pci_dev && !hwif->pci_dev->vendor)
1561#endif	/* CONFIG_BLK_DEV_IDEPCI */
1562		{
1563			/*
1564			 * Probably not a shared PCI interrupt,
1565			 * so we can safely try to do something about it:
1566			 */
1567			unexpected_intr(irq, hwgroup);
1568#ifdef CONFIG_BLK_DEV_IDEPCI
1569		} else {
1570			/*
1571			 * Whack the status register, just in case
1572			 * we have a leftover pending IRQ.
1573			 */
1574			(void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1575#endif /* CONFIG_BLK_DEV_IDEPCI */
1576		}
1577		spin_unlock_irqrestore(&ide_lock, flags);
1578		return IRQ_NONE;
1579	}
1580	drive = hwgroup->drive;
1581	if (!drive) {
1582		/*
1583		 * This should NEVER happen, and there isn't much
1584		 * we could do about it here.
1585		 *
1586		 * [Note - this can occur if the drive is hot unplugged]
1587		 */
1588		spin_unlock_irqrestore(&ide_lock, flags);
1589		return IRQ_HANDLED;
1590	}
1591	if (!drive_is_ready(drive)) {
1592		/*
1593		 * This happens regularly when we share a PCI IRQ with
1594		 * another device.  Unfortunately, it can also happen
1595		 * with some buggy drives that trigger the IRQ before
1596		 * their status register is up to date.  Hopefully we have
1597		 * enough advance overhead that the latter isn't a problem.
1598		 */
1599		spin_unlock_irqrestore(&ide_lock, flags);
1600		return IRQ_NONE;
1601	}
1602	if (!hwgroup->busy) {
1603		hwgroup->busy = 1;	/* paranoia */
1604		printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1605	}
1606	hwgroup->handler = NULL;
1607	hwgroup->req_gen++;
1608	del_timer(&hwgroup->timer);
1609	spin_unlock(&ide_lock);
1610
1611	/* Some controllers might set DMA INTR no matter DMA or PIO;
1612	 * bmdma status might need to be cleared even for
1613	 * PIO interrupts to prevent spurious/lost irq.
1614	 */
1615	if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1616		/* ide_dma_end() needs bmdma status for error checking.
1617		 * So, skip clearing bmdma status here and leave it
1618		 * to ide_dma_end() if this is dma interrupt.
1619		 */
1620		hwif->ide_dma_clear_irq(drive);
1621
1622	if (drive->unmask)
1623		local_irq_enable_in_hardirq();
1624	/* service this interrupt, may set handler for next interrupt */
1625	startstop = handler(drive);
1626	spin_lock_irq(&ide_lock);
1627
1628	/*
1629	 * Note that handler() may have set things up for another
1630	 * interrupt to occur soon, but it cannot happen until
1631	 * we exit from this routine, because it will be the
1632	 * same irq as is currently being serviced here, and Linux
1633	 * won't allow another of the same (on any CPU) until we return.
1634	 */
1635	drive->service_time = jiffies - drive->service_start;
1636	if (startstop == ide_stopped) {
1637		if (hwgroup->handler == NULL) {	/* paranoia */
1638			hwgroup->busy = 0;
1639			ide_do_request(hwgroup, hwif->irq);
1640		} else {
1641			printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1642				"on exit\n", drive->name);
1643		}
1644	}
1645	spin_unlock_irqrestore(&ide_lock, flags);
1646	return IRQ_HANDLED;
1647}
1648
1649/**
1650 *	ide_init_drive_cmd	-	initialize a drive command request
1651 *	@rq: request object
1652 *
1653 *	Initialize a request before we fill it in and send it down to
1654 *	ide_do_drive_cmd. Commands must be set up by this function. Right
1655 *	now it doesn't do a lot, but if that changes abusers will have a
1656 *	nasty surprise.
1657 */
1658
1659void ide_init_drive_cmd (struct request *rq)
1660{
1661	memset(rq, 0, sizeof(*rq));
1662	rq->cmd_type = REQ_TYPE_ATA_CMD;
1663	rq->ref_count = 1;
1664}
1665
1666EXPORT_SYMBOL(ide_init_drive_cmd);
1667
1668/**
1669 *	ide_do_drive_cmd	-	issue IDE special command
1670 *	@drive: device to issue command
1671 *	@rq: request to issue
1672 *	@action: action for processing
1673 *
1674 *	This function issues a special IDE device request
1675 *	onto the request queue.
1676 *
1677 *	If action is ide_wait, then the rq is queued at the end of the
1678 *	request queue, and the function sleeps until it has been processed.
1679 *	This is for use when invoked from an ioctl handler.
1680 *
1681 *	If action is ide_preempt, then the rq is queued at the head of
1682 *	the request queue, displacing the currently-being-processed
1683 *	request and this function returns immediately without waiting
1684 *	for the new rq to be completed.  This is VERY DANGEROUS, and is
1685 *	intended for careful use by the ATAPI tape/cdrom driver code.
1686 *
1687 *	If action is ide_end, then the rq is queued at the end of the
1688 *	request queue, and the function returns immediately without waiting
1689 *	for the new rq to be completed. This is again intended for careful
1690 *	use by the ATAPI tape/cdrom driver code.
1691 */
1692
1693int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1694{
1695	unsigned long flags;
1696	ide_hwgroup_t *hwgroup = HWGROUP(drive);
1697	DECLARE_COMPLETION_ONSTACK(wait);
1698	int where = ELEVATOR_INSERT_BACK, err;
1699	int must_wait = (action == ide_wait || action == ide_head_wait);
1700
1701	rq->errors = 0;
1702
1703	/*
1704	 * we need to hold an extra reference to request for safe inspection
1705	 * after completion
1706	 */
1707	if (must_wait) {
1708		rq->ref_count++;
1709		rq->end_io_data = &wait;
1710		rq->end_io = blk_end_sync_rq;
1711	}
1712
1713	spin_lock_irqsave(&ide_lock, flags);
1714	if (action == ide_preempt)
1715		hwgroup->rq = NULL;
1716	if (action == ide_preempt || action == ide_head_wait) {
1717		where = ELEVATOR_INSERT_FRONT;
1718		rq->cmd_flags |= REQ_PREEMPT;
1719	}
1720	__elv_add_request(drive->queue, rq, where, 0);
1721	ide_do_request(hwgroup, IDE_NO_IRQ);
1722	spin_unlock_irqrestore(&ide_lock, flags);
1723
1724	err = 0;
1725	if (must_wait) {
1726		wait_for_completion(&wait);
1727		if (rq->errors)
1728			err = -EIO;
1729
1730		blk_put_request(rq);
1731	}
1732
1733	return err;
1734}
1735
1736EXPORT_SYMBOL(ide_do_drive_cmd);
1737
1738void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1739{
1740	ide_task_t task;
1741
1742	memset(&task, 0, sizeof(task));
1743	task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1744			IDE_TFLAG_OUT_FEATURE | tf_flags;
1745	task.tf.feature = dma;		/* Use PIO/DMA */
1746	task.tf.lbam    = bcount & 0xff;
1747	task.tf.lbah    = (bcount >> 8) & 0xff;
1748
1749	ide_tf_load(drive, &task);
1750}
1751
1752EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1753