ide-io.c revision 18a056feccabdfa9764016a615121b194828bc72
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
50#include <linux/bitops.h>
51
52#include <asm/byteorder.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55#include <asm/io.h>
56
57static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58			     int uptodate, unsigned int nr_bytes, int dequeue)
59{
60	int ret = 1;
61
62	/*
63	 * if failfast is set on a request, override number of sectors and
64	 * complete the whole request right now
65	 */
66	if (blk_noretry_request(rq) && end_io_error(uptodate))
67		nr_bytes = rq->hard_nr_sectors << 9;
68
69	if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70		rq->errors = -EIO;
71
72	/*
73	 * decide whether to reenable DMA -- 3 is a random magic for now,
74	 * if we DMA timeout more than 3 times, just stay in PIO
75	 */
76	if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77		drive->state = 0;
78		ide_dma_on(drive);
79	}
80
81	if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82		add_disk_randomness(rq->rq_disk);
83		if (dequeue) {
84			if (!list_empty(&rq->queuelist))
85				blkdev_dequeue_request(rq);
86			HWGROUP(drive)->rq = NULL;
87		}
88		end_that_request_last(rq, uptodate);
89		ret = 0;
90	}
91
92	return ret;
93}
94
95/**
96 *	ide_end_request		-	complete an IDE I/O
97 *	@drive: IDE device for the I/O
98 *	@uptodate:
99 *	@nr_sectors: number of sectors completed
100 *
101 *	This is our end_request wrapper function. We complete the I/O
102 *	update random number input and dequeue the request, which if
103 *	it was tagged may be out of order.
104 */
105
106int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107{
108	unsigned int nr_bytes = nr_sectors << 9;
109	struct request *rq;
110	unsigned long flags;
111	int ret = 1;
112
113	/*
114	 * room for locking improvements here, the calls below don't
115	 * need the queue lock held at all
116	 */
117	spin_lock_irqsave(&ide_lock, flags);
118	rq = HWGROUP(drive)->rq;
119
120	if (!nr_bytes) {
121		if (blk_pc_request(rq))
122			nr_bytes = rq->data_len;
123		else
124			nr_bytes = rq->hard_cur_sectors << 9;
125	}
126
127	ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128
129	spin_unlock_irqrestore(&ide_lock, flags);
130	return ret;
131}
132EXPORT_SYMBOL(ide_end_request);
133
134/*
135 * Power Management state machine. This one is rather trivial for now,
136 * we should probably add more, like switching back to PIO on suspend
137 * to help some BIOSes, re-do the door locking on resume, etc...
138 */
139
140enum {
141	ide_pm_flush_cache	= ide_pm_state_start_suspend,
142	idedisk_pm_standby,
143
144	idedisk_pm_restore_pio	= ide_pm_state_start_resume,
145	idedisk_pm_idle,
146	ide_pm_restore_dma,
147};
148
149static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150{
151	struct request_pm_state *pm = rq->data;
152
153	if (drive->media != ide_disk)
154		return;
155
156	switch (pm->pm_step) {
157	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) complete */
158		if (pm->pm_state == PM_EVENT_FREEZE)
159			pm->pm_step = ide_pm_state_completed;
160		else
161			pm->pm_step = idedisk_pm_standby;
162		break;
163	case idedisk_pm_standby:	/* Suspend step 2 (standby) complete */
164		pm->pm_step = ide_pm_state_completed;
165		break;
166	case idedisk_pm_restore_pio:	/* Resume step 1 complete */
167		pm->pm_step = idedisk_pm_idle;
168		break;
169	case idedisk_pm_idle:		/* Resume step 2 (idle) complete */
170		pm->pm_step = ide_pm_restore_dma;
171		break;
172	}
173}
174
175static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176{
177	struct request_pm_state *pm = rq->data;
178	ide_task_t *args = rq->special;
179
180	memset(args, 0, sizeof(*args));
181
182	switch (pm->pm_step) {
183	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) */
184		if (drive->media != ide_disk)
185			break;
186		/* Not supported? Switch to next step now. */
187		if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188			ide_complete_power_step(drive, rq, 0, 0);
189			return ide_stopped;
190		}
191		if (ide_id_has_flush_cache_ext(drive->id))
192			args->tf.command = WIN_FLUSH_CACHE_EXT;
193		else
194			args->tf.command = WIN_FLUSH_CACHE;
195		goto out_do_tf;
196
197	case idedisk_pm_standby:	/* Suspend step 2 (standby) */
198		args->tf.command = WIN_STANDBYNOW1;
199		goto out_do_tf;
200
201	case idedisk_pm_restore_pio:	/* Resume step 1 (restore PIO) */
202		ide_set_max_pio(drive);
203		/*
204		 * skip idedisk_pm_idle for ATAPI devices
205		 */
206		if (drive->media != ide_disk)
207			pm->pm_step = ide_pm_restore_dma;
208		else
209			ide_complete_power_step(drive, rq, 0, 0);
210		return ide_stopped;
211
212	case idedisk_pm_idle:		/* Resume step 2 (idle) */
213		args->tf.command = WIN_IDLEIMMEDIATE;
214		goto out_do_tf;
215
216	case ide_pm_restore_dma:	/* Resume step 3 (restore DMA) */
217		/*
218		 * Right now, all we do is call ide_set_dma(drive),
219		 * we could be smarter and check for current xfer_speed
220		 * in struct drive etc...
221		 */
222		if (drive->hwif->dma_host_set == NULL)
223			break;
224		/*
225		 * TODO: respect ->using_dma setting
226		 */
227		ide_set_dma(drive);
228		break;
229	}
230	pm->pm_step = ide_pm_state_completed;
231	return ide_stopped;
232
233out_do_tf:
234	args->tf_flags	 = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
235	args->data_phase = TASKFILE_NO_DATA;
236	return do_rw_taskfile(drive, args);
237}
238
239/**
240 *	ide_end_dequeued_request	-	complete an IDE I/O
241 *	@drive: IDE device for the I/O
242 *	@uptodate:
243 *	@nr_sectors: number of sectors completed
244 *
245 *	Complete an I/O that is no longer on the request queue. This
246 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
247 *	We must still finish the old request but we must not tamper with the
248 *	queue in the meantime.
249 *
250 *	NOTE: This path does not handle barrier, but barrier is not supported
251 *	on ide-cd anyway.
252 */
253
254int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
255			     int uptodate, int nr_sectors)
256{
257	unsigned long flags;
258	int ret;
259
260	spin_lock_irqsave(&ide_lock, flags);
261	BUG_ON(!blk_rq_started(rq));
262	ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
263	spin_unlock_irqrestore(&ide_lock, flags);
264
265	return ret;
266}
267EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
268
269
270/**
271 *	ide_complete_pm_request - end the current Power Management request
272 *	@drive: target drive
273 *	@rq: request
274 *
275 *	This function cleans up the current PM request and stops the queue
276 *	if necessary.
277 */
278static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
279{
280	unsigned long flags;
281
282#ifdef DEBUG_PM
283	printk("%s: completing PM request, %s\n", drive->name,
284	       blk_pm_suspend_request(rq) ? "suspend" : "resume");
285#endif
286	spin_lock_irqsave(&ide_lock, flags);
287	if (blk_pm_suspend_request(rq)) {
288		blk_stop_queue(drive->queue);
289	} else {
290		drive->blocked = 0;
291		blk_start_queue(drive->queue);
292	}
293	blkdev_dequeue_request(rq);
294	HWGROUP(drive)->rq = NULL;
295	end_that_request_last(rq, 1);
296	spin_unlock_irqrestore(&ide_lock, flags);
297}
298
299void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
300{
301	ide_hwif_t *hwif = drive->hwif;
302	struct ide_taskfile *tf = &task->tf;
303
304	if (task->tf_flags & IDE_TFLAG_IN_DATA) {
305		u16 data = hwif->INW(IDE_DATA_REG);
306
307		tf->data = data & 0xff;
308		tf->hob_data = (data >> 8) & 0xff;
309	}
310
311	/* be sure we're looking at the low order bits */
312	hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
313
314	if (task->tf_flags & IDE_TFLAG_IN_NSECT)
315		tf->nsect  = hwif->INB(IDE_NSECTOR_REG);
316	if (task->tf_flags & IDE_TFLAG_IN_LBAL)
317		tf->lbal   = hwif->INB(IDE_SECTOR_REG);
318	if (task->tf_flags & IDE_TFLAG_IN_LBAM)
319		tf->lbam   = hwif->INB(IDE_LCYL_REG);
320	if (task->tf_flags & IDE_TFLAG_IN_LBAH)
321		tf->lbah   = hwif->INB(IDE_HCYL_REG);
322	if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
323		tf->device = hwif->INB(IDE_SELECT_REG);
324
325	if (task->tf_flags & IDE_TFLAG_LBA48) {
326		hwif->OUTB(drive->ctl | 0x80, IDE_CONTROL_REG);
327
328		if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
329			tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
330		if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
331			tf->hob_nsect   = hwif->INB(IDE_NSECTOR_REG);
332		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
333			tf->hob_lbal    = hwif->INB(IDE_SECTOR_REG);
334		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
335			tf->hob_lbam    = hwif->INB(IDE_LCYL_REG);
336		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
337			tf->hob_lbah    = hwif->INB(IDE_HCYL_REG);
338	}
339}
340
341/**
342 *	ide_end_drive_cmd	-	end an explicit drive command
343 *	@drive: command
344 *	@stat: status bits
345 *	@err: error bits
346 *
347 *	Clean up after success/failure of an explicit drive command.
348 *	These get thrown onto the queue so they are synchronized with
349 *	real I/O operations on the drive.
350 *
351 *	In LBA48 mode we have to read the register set twice to get
352 *	all the extra information out.
353 */
354
355void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
356{
357	ide_hwif_t *hwif = HWIF(drive);
358	unsigned long flags;
359	struct request *rq;
360
361	spin_lock_irqsave(&ide_lock, flags);
362	rq = HWGROUP(drive)->rq;
363	spin_unlock_irqrestore(&ide_lock, flags);
364
365	if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
366		u8 *args = (u8 *) rq->buffer;
367		if (rq->errors == 0)
368			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
369
370		if (args) {
371			args[0] = stat;
372			args[1] = err;
373			/* be sure we're looking at the low order bits */
374			hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
375			args[2] = hwif->INB(IDE_NSECTOR_REG);
376		}
377	} else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
378		ide_task_t *args = (ide_task_t *) rq->special;
379		if (rq->errors == 0)
380			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
381
382		if (args) {
383			struct ide_taskfile *tf = &args->tf;
384
385			tf->error = err;
386			tf->status = stat;
387
388			ide_tf_read(drive, args);
389		}
390	} else if (blk_pm_request(rq)) {
391		struct request_pm_state *pm = rq->data;
392#ifdef DEBUG_PM
393		printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
394			drive->name, rq->pm->pm_step, stat, err);
395#endif
396		ide_complete_power_step(drive, rq, stat, err);
397		if (pm->pm_step == ide_pm_state_completed)
398			ide_complete_pm_request(drive, rq);
399		return;
400	}
401
402	spin_lock_irqsave(&ide_lock, flags);
403	blkdev_dequeue_request(rq);
404	HWGROUP(drive)->rq = NULL;
405	rq->errors = err;
406	end_that_request_last(rq, !rq->errors);
407	spin_unlock_irqrestore(&ide_lock, flags);
408}
409
410EXPORT_SYMBOL(ide_end_drive_cmd);
411
412/**
413 *	try_to_flush_leftover_data	-	flush junk
414 *	@drive: drive to flush
415 *
416 *	try_to_flush_leftover_data() is invoked in response to a drive
417 *	unexpectedly having its DRQ_STAT bit set.  As an alternative to
418 *	resetting the drive, this routine tries to clear the condition
419 *	by read a sector's worth of data from the drive.  Of course,
420 *	this may not help if the drive is *waiting* for data from *us*.
421 */
422static void try_to_flush_leftover_data (ide_drive_t *drive)
423{
424	int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
425
426	if (drive->media != ide_disk)
427		return;
428	while (i > 0) {
429		u32 buffer[16];
430		u32 wcount = (i > 16) ? 16 : i;
431
432		i -= wcount;
433		HWIF(drive)->ata_input_data(drive, buffer, wcount);
434	}
435}
436
437static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
438{
439	if (rq->rq_disk) {
440		ide_driver_t *drv;
441
442		drv = *(ide_driver_t **)rq->rq_disk->private_data;
443		drv->end_request(drive, 0, 0);
444	} else
445		ide_end_request(drive, 0, 0);
446}
447
448static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
449{
450	ide_hwif_t *hwif = drive->hwif;
451
452	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
453		/* other bits are useless when BUSY */
454		rq->errors |= ERROR_RESET;
455	} else if (stat & ERR_STAT) {
456		/* err has different meaning on cdrom and tape */
457		if (err == ABRT_ERR) {
458			if (drive->select.b.lba &&
459			    /* some newer drives don't support WIN_SPECIFY */
460			    hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
461				return ide_stopped;
462		} else if ((err & BAD_CRC) == BAD_CRC) {
463			/* UDMA crc error, just retry the operation */
464			drive->crc_count++;
465		} else if (err & (BBD_ERR | ECC_ERR)) {
466			/* retries won't help these */
467			rq->errors = ERROR_MAX;
468		} else if (err & TRK0_ERR) {
469			/* help it find track zero */
470			rq->errors |= ERROR_RECAL;
471		}
472	}
473
474	if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
475	    (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
476		try_to_flush_leftover_data(drive);
477
478	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
479		ide_kill_rq(drive, rq);
480		return ide_stopped;
481	}
482
483	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
484		rq->errors |= ERROR_RESET;
485
486	if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
487		++rq->errors;
488		return ide_do_reset(drive);
489	}
490
491	if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
492		drive->special.b.recalibrate = 1;
493
494	++rq->errors;
495
496	return ide_stopped;
497}
498
499static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
500{
501	ide_hwif_t *hwif = drive->hwif;
502
503	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
504		/* other bits are useless when BUSY */
505		rq->errors |= ERROR_RESET;
506	} else {
507		/* add decoding error stuff */
508	}
509
510	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
511		/* force an abort */
512		hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
513
514	if (rq->errors >= ERROR_MAX) {
515		ide_kill_rq(drive, rq);
516	} else {
517		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
518			++rq->errors;
519			return ide_do_reset(drive);
520		}
521		++rq->errors;
522	}
523
524	return ide_stopped;
525}
526
527ide_startstop_t
528__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
529{
530	if (drive->media == ide_disk)
531		return ide_ata_error(drive, rq, stat, err);
532	return ide_atapi_error(drive, rq, stat, err);
533}
534
535EXPORT_SYMBOL_GPL(__ide_error);
536
537/**
538 *	ide_error	-	handle an error on the IDE
539 *	@drive: drive the error occurred on
540 *	@msg: message to report
541 *	@stat: status bits
542 *
543 *	ide_error() takes action based on the error returned by the drive.
544 *	For normal I/O that may well include retries. We deal with
545 *	both new-style (taskfile) and old style command handling here.
546 *	In the case of taskfile command handling there is work left to
547 *	do
548 */
549
550ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
551{
552	struct request *rq;
553	u8 err;
554
555	err = ide_dump_status(drive, msg, stat);
556
557	if ((rq = HWGROUP(drive)->rq) == NULL)
558		return ide_stopped;
559
560	/* retry only "normal" I/O: */
561	if (!blk_fs_request(rq)) {
562		rq->errors = 1;
563		ide_end_drive_cmd(drive, stat, err);
564		return ide_stopped;
565	}
566
567	if (rq->rq_disk) {
568		ide_driver_t *drv;
569
570		drv = *(ide_driver_t **)rq->rq_disk->private_data;
571		return drv->error(drive, rq, stat, err);
572	} else
573		return __ide_error(drive, rq, stat, err);
574}
575
576EXPORT_SYMBOL_GPL(ide_error);
577
578ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
579{
580	if (drive->media != ide_disk)
581		rq->errors |= ERROR_RESET;
582
583	ide_kill_rq(drive, rq);
584
585	return ide_stopped;
586}
587
588EXPORT_SYMBOL_GPL(__ide_abort);
589
590/**
591 *	ide_abort	-	abort pending IDE operations
592 *	@drive: drive the error occurred on
593 *	@msg: message to report
594 *
595 *	ide_abort kills and cleans up when we are about to do a
596 *	host initiated reset on active commands. Longer term we
597 *	want handlers to have sensible abort handling themselves
598 *
599 *	This differs fundamentally from ide_error because in
600 *	this case the command is doing just fine when we
601 *	blow it away.
602 */
603
604ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
605{
606	struct request *rq;
607
608	if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
609		return ide_stopped;
610
611	/* retry only "normal" I/O: */
612	if (!blk_fs_request(rq)) {
613		rq->errors = 1;
614		ide_end_drive_cmd(drive, BUSY_STAT, 0);
615		return ide_stopped;
616	}
617
618	if (rq->rq_disk) {
619		ide_driver_t *drv;
620
621		drv = *(ide_driver_t **)rq->rq_disk->private_data;
622		return drv->abort(drive, rq);
623	} else
624		return __ide_abort(drive, rq);
625}
626
627/**
628 *	drive_cmd_intr		- 	drive command completion interrupt
629 *	@drive: drive the completion interrupt occurred on
630 *
631 *	drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
632 *	We do any necessary data reading and then wait for the drive to
633 *	go non busy. At that point we may read the error data and complete
634 *	the request
635 */
636
637static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
638{
639	struct request *rq = HWGROUP(drive)->rq;
640	ide_hwif_t *hwif = HWIF(drive);
641	u8 *args = (u8 *)rq->buffer, pio_in = (args && args[3]) ? 1 : 0, stat;
642
643	if (pio_in) {
644		u8 io_32bit = drive->io_32bit;
645		stat = hwif->INB(IDE_STATUS_REG);
646		if ((stat & DRQ_STAT) == 0)
647			goto out;
648		drive->io_32bit = 0;
649		hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
650		drive->io_32bit = io_32bit;
651		stat = wait_drive_not_busy(drive);
652	} else {
653		local_irq_enable_in_hardirq();
654		stat = hwif->INB(IDE_STATUS_REG);
655	}
656out:
657	if (!OK_STAT(stat, READY_STAT, BAD_STAT))
658		return ide_error(drive, "drive_cmd", stat);
659		/* calls ide_end_drive_cmd */
660	ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
661	return ide_stopped;
662}
663
664static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
665{
666	tf->nsect   = drive->sect;
667	tf->lbal    = drive->sect;
668	tf->lbam    = drive->cyl;
669	tf->lbah    = drive->cyl >> 8;
670	tf->device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
671	tf->command = WIN_SPECIFY;
672}
673
674static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
675{
676	tf->nsect   = drive->sect;
677	tf->command = WIN_RESTORE;
678}
679
680static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
681{
682	tf->nsect   = drive->mult_req;
683	tf->command = WIN_SETMULT;
684}
685
686static ide_startstop_t ide_disk_special(ide_drive_t *drive)
687{
688	special_t *s = &drive->special;
689	ide_task_t args;
690
691	memset(&args, 0, sizeof(ide_task_t));
692	args.data_phase = TASKFILE_NO_DATA;
693
694	if (s->b.set_geometry) {
695		s->b.set_geometry = 0;
696		ide_tf_set_specify_cmd(drive, &args.tf);
697	} else if (s->b.recalibrate) {
698		s->b.recalibrate = 0;
699		ide_tf_set_restore_cmd(drive, &args.tf);
700	} else if (s->b.set_multmode) {
701		s->b.set_multmode = 0;
702		if (drive->mult_req > drive->id->max_multsect)
703			drive->mult_req = drive->id->max_multsect;
704		ide_tf_set_setmult_cmd(drive, &args.tf);
705	} else if (s->all) {
706		int special = s->all;
707		s->all = 0;
708		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
709		return ide_stopped;
710	}
711
712	args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
713			IDE_TFLAG_CUSTOM_HANDLER;
714
715	do_rw_taskfile(drive, &args);
716
717	return ide_started;
718}
719
720/*
721 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
722 */
723static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
724{
725	switch (req_pio) {
726	case 202:
727	case 201:
728	case 200:
729	case 102:
730	case 101:
731	case 100:
732		return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
733	case 9:
734	case 8:
735		return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
736	case 7:
737	case 6:
738		return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
739	default:
740		return 0;
741	}
742}
743
744/**
745 *	do_special		-	issue some special commands
746 *	@drive: drive the command is for
747 *
748 *	do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
749 *	commands to a drive.  It used to do much more, but has been scaled
750 *	back.
751 */
752
753static ide_startstop_t do_special (ide_drive_t *drive)
754{
755	special_t *s = &drive->special;
756
757#ifdef DEBUG
758	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
759#endif
760	if (s->b.set_tune) {
761		ide_hwif_t *hwif = drive->hwif;
762		u8 req_pio = drive->tune_req;
763
764		s->b.set_tune = 0;
765
766		if (set_pio_mode_abuse(drive->hwif, req_pio)) {
767
768			if (hwif->set_pio_mode == NULL)
769				return ide_stopped;
770
771			/*
772			 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
773			 */
774			if (req_pio == 8 || req_pio == 9) {
775				unsigned long flags;
776
777				spin_lock_irqsave(&ide_lock, flags);
778				hwif->set_pio_mode(drive, req_pio);
779				spin_unlock_irqrestore(&ide_lock, flags);
780			} else
781				hwif->set_pio_mode(drive, req_pio);
782		} else {
783			int keep_dma = drive->using_dma;
784
785			ide_set_pio(drive, req_pio);
786
787			if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
788				if (keep_dma)
789					ide_dma_on(drive);
790			}
791		}
792
793		return ide_stopped;
794	} else {
795		if (drive->media == ide_disk)
796			return ide_disk_special(drive);
797
798		s->all = 0;
799		drive->mult_req = 0;
800		return ide_stopped;
801	}
802}
803
804void ide_map_sg(ide_drive_t *drive, struct request *rq)
805{
806	ide_hwif_t *hwif = drive->hwif;
807	struct scatterlist *sg = hwif->sg_table;
808
809	if (hwif->sg_mapped)	/* needed by ide-scsi */
810		return;
811
812	if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
813		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
814	} else {
815		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
816		hwif->sg_nents = 1;
817	}
818}
819
820EXPORT_SYMBOL_GPL(ide_map_sg);
821
822void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
823{
824	ide_hwif_t *hwif = drive->hwif;
825
826	hwif->nsect = hwif->nleft = rq->nr_sectors;
827	hwif->cursg_ofs = 0;
828	hwif->cursg = NULL;
829}
830
831EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
832
833/**
834 *	execute_drive_command	-	issue special drive command
835 *	@drive: the drive to issue the command on
836 *	@rq: the request structure holding the command
837 *
838 *	execute_drive_cmd() issues a special drive command,  usually
839 *	initiated by ioctl() from the external hdparm program. The
840 *	command can be a drive command, drive task or taskfile
841 *	operation. Weirdly you can call it with NULL to wait for
842 *	all commands to finish. Don't do this as that is due to change
843 */
844
845static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
846		struct request *rq)
847{
848	ide_hwif_t *hwif = HWIF(drive);
849	u8 *args = rq->buffer;
850	ide_task_t ltask;
851	struct ide_taskfile *tf = &ltask.tf;
852
853	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
854		ide_task_t *task = rq->special;
855
856		if (task == NULL)
857			goto done;
858
859		hwif->data_phase = task->data_phase;
860
861		switch (hwif->data_phase) {
862		case TASKFILE_MULTI_OUT:
863		case TASKFILE_OUT:
864		case TASKFILE_MULTI_IN:
865		case TASKFILE_IN:
866			ide_init_sg_cmd(drive, rq);
867			ide_map_sg(drive, rq);
868		default:
869			break;
870		}
871
872		return do_rw_taskfile(drive, task);
873	}
874
875	if (args == NULL)
876		goto done;
877
878	memset(&ltask, 0, sizeof(ltask));
879	if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
880#ifdef DEBUG
881		printk("%s: DRIVE_CMD\n", drive->name);
882#endif
883		tf->feature = args[2];
884		if (args[0] == WIN_SMART) {
885			tf->nsect = args[3];
886			tf->lbal  = args[1];
887			tf->lbam  = 0x4f;
888			tf->lbah  = 0xc2;
889			ltask.tf_flags = IDE_TFLAG_OUT_TF;
890		} else {
891			tf->nsect = args[1];
892			ltask.tf_flags = IDE_TFLAG_OUT_FEATURE |
893					 IDE_TFLAG_OUT_NSECT;
894		}
895 	}
896	tf->command = args[0];
897	ide_tf_load(drive, &ltask);
898	ide_execute_command(drive, args[0], &drive_cmd_intr, WAIT_WORSTCASE, NULL);
899	return ide_started;
900
901done:
902 	/*
903 	 * NULL is actually a valid way of waiting for
904 	 * all current requests to be flushed from the queue.
905 	 */
906#ifdef DEBUG
907 	printk("%s: DRIVE_CMD (null)\n", drive->name);
908#endif
909 	ide_end_drive_cmd(drive,
910			hwif->INB(IDE_STATUS_REG),
911			hwif->INB(IDE_ERROR_REG));
912 	return ide_stopped;
913}
914
915static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
916{
917	struct request_pm_state *pm = rq->data;
918
919	if (blk_pm_suspend_request(rq) &&
920	    pm->pm_step == ide_pm_state_start_suspend)
921		/* Mark drive blocked when starting the suspend sequence. */
922		drive->blocked = 1;
923	else if (blk_pm_resume_request(rq) &&
924		 pm->pm_step == ide_pm_state_start_resume) {
925		/*
926		 * The first thing we do on wakeup is to wait for BSY bit to
927		 * go away (with a looong timeout) as a drive on this hwif may
928		 * just be POSTing itself.
929		 * We do that before even selecting as the "other" device on
930		 * the bus may be broken enough to walk on our toes at this
931		 * point.
932		 */
933		int rc;
934#ifdef DEBUG_PM
935		printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
936#endif
937		rc = ide_wait_not_busy(HWIF(drive), 35000);
938		if (rc)
939			printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
940		SELECT_DRIVE(drive);
941		ide_set_irq(drive, 1);
942		rc = ide_wait_not_busy(HWIF(drive), 100000);
943		if (rc)
944			printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
945	}
946}
947
948/**
949 *	start_request	-	start of I/O and command issuing for IDE
950 *
951 *	start_request() initiates handling of a new I/O request. It
952 *	accepts commands and I/O (read/write) requests. It also does
953 *	the final remapping for weird stuff like EZDrive. Once
954 *	device mapper can work sector level the EZDrive stuff can go away
955 *
956 *	FIXME: this function needs a rename
957 */
958
959static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
960{
961	ide_startstop_t startstop;
962	sector_t block;
963
964	BUG_ON(!blk_rq_started(rq));
965
966#ifdef DEBUG
967	printk("%s: start_request: current=0x%08lx\n",
968		HWIF(drive)->name, (unsigned long) rq);
969#endif
970
971	/* bail early if we've exceeded max_failures */
972	if (drive->max_failures && (drive->failures > drive->max_failures)) {
973		rq->cmd_flags |= REQ_FAILED;
974		goto kill_rq;
975	}
976
977	block    = rq->sector;
978	if (blk_fs_request(rq) &&
979	    (drive->media == ide_disk || drive->media == ide_floppy)) {
980		block += drive->sect0;
981	}
982	/* Yecch - this will shift the entire interval,
983	   possibly killing some innocent following sector */
984	if (block == 0 && drive->remap_0_to_1 == 1)
985		block = 1;  /* redirect MBR access to EZ-Drive partn table */
986
987	if (blk_pm_request(rq))
988		ide_check_pm_state(drive, rq);
989
990	SELECT_DRIVE(drive);
991	if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
992		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
993		return startstop;
994	}
995	if (!drive->special.all) {
996		ide_driver_t *drv;
997
998		/*
999		 * We reset the drive so we need to issue a SETFEATURES.
1000		 * Do it _after_ do_special() restored device parameters.
1001		 */
1002		if (drive->current_speed == 0xff)
1003			ide_config_drive_speed(drive, drive->desired_speed);
1004
1005		if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1006		    rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1007			return execute_drive_cmd(drive, rq);
1008		else if (blk_pm_request(rq)) {
1009			struct request_pm_state *pm = rq->data;
1010#ifdef DEBUG_PM
1011			printk("%s: start_power_step(step: %d)\n",
1012				drive->name, rq->pm->pm_step);
1013#endif
1014			startstop = ide_start_power_step(drive, rq);
1015			if (startstop == ide_stopped &&
1016			    pm->pm_step == ide_pm_state_completed)
1017				ide_complete_pm_request(drive, rq);
1018			return startstop;
1019		}
1020
1021		drv = *(ide_driver_t **)rq->rq_disk->private_data;
1022		return drv->do_request(drive, rq, block);
1023	}
1024	return do_special(drive);
1025kill_rq:
1026	ide_kill_rq(drive, rq);
1027	return ide_stopped;
1028}
1029
1030/**
1031 *	ide_stall_queue		-	pause an IDE device
1032 *	@drive: drive to stall
1033 *	@timeout: time to stall for (jiffies)
1034 *
1035 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
1036 *	to the hwgroup by sleeping for timeout jiffies.
1037 */
1038
1039void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1040{
1041	if (timeout > WAIT_WORSTCASE)
1042		timeout = WAIT_WORSTCASE;
1043	drive->sleep = timeout + jiffies;
1044	drive->sleeping = 1;
1045}
1046
1047EXPORT_SYMBOL(ide_stall_queue);
1048
1049#define WAKEUP(drive)	((drive)->service_start + 2 * (drive)->service_time)
1050
1051/**
1052 *	choose_drive		-	select a drive to service
1053 *	@hwgroup: hardware group to select on
1054 *
1055 *	choose_drive() selects the next drive which will be serviced.
1056 *	This is necessary because the IDE layer can't issue commands
1057 *	to both drives on the same cable, unlike SCSI.
1058 */
1059
1060static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1061{
1062	ide_drive_t *drive, *best;
1063
1064repeat:
1065	best = NULL;
1066	drive = hwgroup->drive;
1067
1068	/*
1069	 * drive is doing pre-flush, ordered write, post-flush sequence. even
1070	 * though that is 3 requests, it must be seen as a single transaction.
1071	 * we must not preempt this drive until that is complete
1072	 */
1073	if (blk_queue_flushing(drive->queue)) {
1074		/*
1075		 * small race where queue could get replugged during
1076		 * the 3-request flush cycle, just yank the plug since
1077		 * we want it to finish asap
1078		 */
1079		blk_remove_plug(drive->queue);
1080		return drive;
1081	}
1082
1083	do {
1084		if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1085		    && !elv_queue_empty(drive->queue)) {
1086			if (!best
1087			 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1088			 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1089			{
1090				if (!blk_queue_plugged(drive->queue))
1091					best = drive;
1092			}
1093		}
1094	} while ((drive = drive->next) != hwgroup->drive);
1095	if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1096		long t = (signed long)(WAKEUP(best) - jiffies);
1097		if (t >= WAIT_MIN_SLEEP) {
1098		/*
1099		 * We *may* have some time to spare, but first let's see if
1100		 * someone can potentially benefit from our nice mood today..
1101		 */
1102			drive = best->next;
1103			do {
1104				if (!drive->sleeping
1105				 && time_before(jiffies - best->service_time, WAKEUP(drive))
1106				 && time_before(WAKEUP(drive), jiffies + t))
1107				{
1108					ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1109					goto repeat;
1110				}
1111			} while ((drive = drive->next) != best);
1112		}
1113	}
1114	return best;
1115}
1116
1117/*
1118 * Issue a new request to a drive from hwgroup
1119 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1120 *
1121 * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1122 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1123 * may have both interfaces in a single hwgroup to "serialize" access.
1124 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1125 * together into one hwgroup for serialized access.
1126 *
1127 * Note also that several hwgroups can end up sharing a single IRQ,
1128 * possibly along with many other devices.  This is especially common in
1129 * PCI-based systems with off-board IDE controller cards.
1130 *
1131 * The IDE driver uses the single global ide_lock spinlock to protect
1132 * access to the request queues, and to protect the hwgroup->busy flag.
1133 *
1134 * The first thread into the driver for a particular hwgroup sets the
1135 * hwgroup->busy flag to indicate that this hwgroup is now active,
1136 * and then initiates processing of the top request from the request queue.
1137 *
1138 * Other threads attempting entry notice the busy setting, and will simply
1139 * queue their new requests and exit immediately.  Note that hwgroup->busy
1140 * remains set even when the driver is merely awaiting the next interrupt.
1141 * Thus, the meaning is "this hwgroup is busy processing a request".
1142 *
1143 * When processing of a request completes, the completing thread or IRQ-handler
1144 * will start the next request from the queue.  If no more work remains,
1145 * the driver will clear the hwgroup->busy flag and exit.
1146 *
1147 * The ide_lock (spinlock) is used to protect all access to the
1148 * hwgroup->busy flag, but is otherwise not needed for most processing in
1149 * the driver.  This makes the driver much more friendlier to shared IRQs
1150 * than previous designs, while remaining 100% (?) SMP safe and capable.
1151 */
1152static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1153{
1154	ide_drive_t	*drive;
1155	ide_hwif_t	*hwif;
1156	struct request	*rq;
1157	ide_startstop_t	startstop;
1158	int             loops = 0;
1159
1160	/* for atari only: POSSIBLY BROKEN HERE(?) */
1161	ide_get_lock(ide_intr, hwgroup);
1162
1163	/* caller must own ide_lock */
1164	BUG_ON(!irqs_disabled());
1165
1166	while (!hwgroup->busy) {
1167		hwgroup->busy = 1;
1168		drive = choose_drive(hwgroup);
1169		if (drive == NULL) {
1170			int sleeping = 0;
1171			unsigned long sleep = 0; /* shut up, gcc */
1172			hwgroup->rq = NULL;
1173			drive = hwgroup->drive;
1174			do {
1175				if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1176					sleeping = 1;
1177					sleep = drive->sleep;
1178				}
1179			} while ((drive = drive->next) != hwgroup->drive);
1180			if (sleeping) {
1181		/*
1182		 * Take a short snooze, and then wake up this hwgroup again.
1183		 * This gives other hwgroups on the same a chance to
1184		 * play fairly with us, just in case there are big differences
1185		 * in relative throughputs.. don't want to hog the cpu too much.
1186		 */
1187				if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1188					sleep = jiffies + WAIT_MIN_SLEEP;
1189#if 1
1190				if (timer_pending(&hwgroup->timer))
1191					printk(KERN_CRIT "ide_set_handler: timer already active\n");
1192#endif
1193				/* so that ide_timer_expiry knows what to do */
1194				hwgroup->sleeping = 1;
1195				hwgroup->req_gen_timer = hwgroup->req_gen;
1196				mod_timer(&hwgroup->timer, sleep);
1197				/* we purposely leave hwgroup->busy==1
1198				 * while sleeping */
1199			} else {
1200				/* Ugly, but how can we sleep for the lock
1201				 * otherwise? perhaps from tq_disk?
1202				 */
1203
1204				/* for atari only */
1205				ide_release_lock();
1206				hwgroup->busy = 0;
1207			}
1208
1209			/* no more work for this hwgroup (for now) */
1210			return;
1211		}
1212	again:
1213		hwif = HWIF(drive);
1214		if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1215			/*
1216			 * set nIEN for previous hwif, drives in the
1217			 * quirk_list may not like intr setups/cleanups
1218			 */
1219			if (drive->quirk_list != 1)
1220				ide_set_irq(drive, 0);
1221		}
1222		hwgroup->hwif = hwif;
1223		hwgroup->drive = drive;
1224		drive->sleeping = 0;
1225		drive->service_start = jiffies;
1226
1227		if (blk_queue_plugged(drive->queue)) {
1228			printk(KERN_ERR "ide: huh? queue was plugged!\n");
1229			break;
1230		}
1231
1232		/*
1233		 * we know that the queue isn't empty, but this can happen
1234		 * if the q->prep_rq_fn() decides to kill a request
1235		 */
1236		rq = elv_next_request(drive->queue);
1237		if (!rq) {
1238			hwgroup->busy = 0;
1239			break;
1240		}
1241
1242		/*
1243		 * Sanity: don't accept a request that isn't a PM request
1244		 * if we are currently power managed. This is very important as
1245		 * blk_stop_queue() doesn't prevent the elv_next_request()
1246		 * above to return us whatever is in the queue. Since we call
1247		 * ide_do_request() ourselves, we end up taking requests while
1248		 * the queue is blocked...
1249		 *
1250		 * We let requests forced at head of queue with ide-preempt
1251		 * though. I hope that doesn't happen too much, hopefully not
1252		 * unless the subdriver triggers such a thing in its own PM
1253		 * state machine.
1254		 *
1255		 * We count how many times we loop here to make sure we service
1256		 * all drives in the hwgroup without looping for ever
1257		 */
1258		if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1259			drive = drive->next ? drive->next : hwgroup->drive;
1260			if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1261				goto again;
1262			/* We clear busy, there should be no pending ATA command at this point. */
1263			hwgroup->busy = 0;
1264			break;
1265		}
1266
1267		hwgroup->rq = rq;
1268
1269		/*
1270		 * Some systems have trouble with IDE IRQs arriving while
1271		 * the driver is still setting things up.  So, here we disable
1272		 * the IRQ used by this interface while the request is being started.
1273		 * This may look bad at first, but pretty much the same thing
1274		 * happens anyway when any interrupt comes in, IDE or otherwise
1275		 *  -- the kernel masks the IRQ while it is being handled.
1276		 */
1277		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1278			disable_irq_nosync(hwif->irq);
1279		spin_unlock(&ide_lock);
1280		local_irq_enable_in_hardirq();
1281			/* allow other IRQs while we start this request */
1282		startstop = start_request(drive, rq);
1283		spin_lock_irq(&ide_lock);
1284		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1285			enable_irq(hwif->irq);
1286		if (startstop == ide_stopped)
1287			hwgroup->busy = 0;
1288	}
1289}
1290
1291/*
1292 * Passes the stuff to ide_do_request
1293 */
1294void do_ide_request(struct request_queue *q)
1295{
1296	ide_drive_t *drive = q->queuedata;
1297
1298	ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1299}
1300
1301/*
1302 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1303 * retry the current request in pio mode instead of risking tossing it
1304 * all away
1305 */
1306static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1307{
1308	ide_hwif_t *hwif = HWIF(drive);
1309	struct request *rq;
1310	ide_startstop_t ret = ide_stopped;
1311
1312	/*
1313	 * end current dma transaction
1314	 */
1315
1316	if (error < 0) {
1317		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1318		(void)HWIF(drive)->ide_dma_end(drive);
1319		ret = ide_error(drive, "dma timeout error",
1320						hwif->INB(IDE_STATUS_REG));
1321	} else {
1322		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1323		hwif->dma_timeout(drive);
1324	}
1325
1326	/*
1327	 * disable dma for now, but remember that we did so because of
1328	 * a timeout -- we'll reenable after we finish this next request
1329	 * (or rather the first chunk of it) in pio.
1330	 */
1331	drive->retry_pio++;
1332	drive->state = DMA_PIO_RETRY;
1333	ide_dma_off_quietly(drive);
1334
1335	/*
1336	 * un-busy drive etc (hwgroup->busy is cleared on return) and
1337	 * make sure request is sane
1338	 */
1339	rq = HWGROUP(drive)->rq;
1340
1341	if (!rq)
1342		goto out;
1343
1344	HWGROUP(drive)->rq = NULL;
1345
1346	rq->errors = 0;
1347
1348	if (!rq->bio)
1349		goto out;
1350
1351	rq->sector = rq->bio->bi_sector;
1352	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1353	rq->hard_cur_sectors = rq->current_nr_sectors;
1354	rq->buffer = bio_data(rq->bio);
1355out:
1356	return ret;
1357}
1358
1359/**
1360 *	ide_timer_expiry	-	handle lack of an IDE interrupt
1361 *	@data: timer callback magic (hwgroup)
1362 *
1363 *	An IDE command has timed out before the expected drive return
1364 *	occurred. At this point we attempt to clean up the current
1365 *	mess. If the current handler includes an expiry handler then
1366 *	we invoke the expiry handler, and providing it is happy the
1367 *	work is done. If that fails we apply generic recovery rules
1368 *	invoking the handler and checking the drive DMA status. We
1369 *	have an excessively incestuous relationship with the DMA
1370 *	logic that wants cleaning up.
1371 */
1372
1373void ide_timer_expiry (unsigned long data)
1374{
1375	ide_hwgroup_t	*hwgroup = (ide_hwgroup_t *) data;
1376	ide_handler_t	*handler;
1377	ide_expiry_t	*expiry;
1378	unsigned long	flags;
1379	unsigned long	wait = -1;
1380
1381	spin_lock_irqsave(&ide_lock, flags);
1382
1383	if (((handler = hwgroup->handler) == NULL) ||
1384	    (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1385		/*
1386		 * Either a marginal timeout occurred
1387		 * (got the interrupt just as timer expired),
1388		 * or we were "sleeping" to give other devices a chance.
1389		 * Either way, we don't really want to complain about anything.
1390		 */
1391		if (hwgroup->sleeping) {
1392			hwgroup->sleeping = 0;
1393			hwgroup->busy = 0;
1394		}
1395	} else {
1396		ide_drive_t *drive = hwgroup->drive;
1397		if (!drive) {
1398			printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1399			hwgroup->handler = NULL;
1400		} else {
1401			ide_hwif_t *hwif;
1402			ide_startstop_t startstop = ide_stopped;
1403			if (!hwgroup->busy) {
1404				hwgroup->busy = 1;	/* paranoia */
1405				printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1406			}
1407			if ((expiry = hwgroup->expiry) != NULL) {
1408				/* continue */
1409				if ((wait = expiry(drive)) > 0) {
1410					/* reset timer */
1411					hwgroup->timer.expires  = jiffies + wait;
1412					hwgroup->req_gen_timer = hwgroup->req_gen;
1413					add_timer(&hwgroup->timer);
1414					spin_unlock_irqrestore(&ide_lock, flags);
1415					return;
1416				}
1417			}
1418			hwgroup->handler = NULL;
1419			/*
1420			 * We need to simulate a real interrupt when invoking
1421			 * the handler() function, which means we need to
1422			 * globally mask the specific IRQ:
1423			 */
1424			spin_unlock(&ide_lock);
1425			hwif  = HWIF(drive);
1426			/* disable_irq_nosync ?? */
1427			disable_irq(hwif->irq);
1428			/* local CPU only,
1429			 * as if we were handling an interrupt */
1430			local_irq_disable();
1431			if (hwgroup->polling) {
1432				startstop = handler(drive);
1433			} else if (drive_is_ready(drive)) {
1434				if (drive->waiting_for_dma)
1435					hwgroup->hwif->dma_lost_irq(drive);
1436				(void)ide_ack_intr(hwif);
1437				printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1438				startstop = handler(drive);
1439			} else {
1440				if (drive->waiting_for_dma) {
1441					startstop = ide_dma_timeout_retry(drive, wait);
1442				} else
1443					startstop =
1444					ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1445			}
1446			drive->service_time = jiffies - drive->service_start;
1447			spin_lock_irq(&ide_lock);
1448			enable_irq(hwif->irq);
1449			if (startstop == ide_stopped)
1450				hwgroup->busy = 0;
1451		}
1452	}
1453	ide_do_request(hwgroup, IDE_NO_IRQ);
1454	spin_unlock_irqrestore(&ide_lock, flags);
1455}
1456
1457/**
1458 *	unexpected_intr		-	handle an unexpected IDE interrupt
1459 *	@irq: interrupt line
1460 *	@hwgroup: hwgroup being processed
1461 *
1462 *	There's nothing really useful we can do with an unexpected interrupt,
1463 *	other than reading the status register (to clear it), and logging it.
1464 *	There should be no way that an irq can happen before we're ready for it,
1465 *	so we needn't worry much about losing an "important" interrupt here.
1466 *
1467 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1468 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
1469 *	looks "good", we just ignore the interrupt completely.
1470 *
1471 *	This routine assumes __cli() is in effect when called.
1472 *
1473 *	If an unexpected interrupt happens on irq15 while we are handling irq14
1474 *	and if the two interfaces are "serialized" (CMD640), then it looks like
1475 *	we could screw up by interfering with a new request being set up for
1476 *	irq15.
1477 *
1478 *	In reality, this is a non-issue.  The new command is not sent unless
1479 *	the drive is ready to accept one, in which case we know the drive is
1480 *	not trying to interrupt us.  And ide_set_handler() is always invoked
1481 *	before completing the issuance of any new drive command, so we will not
1482 *	be accidentally invoked as a result of any valid command completion
1483 *	interrupt.
1484 *
1485 *	Note that we must walk the entire hwgroup here. We know which hwif
1486 *	is doing the current command, but we don't know which hwif burped
1487 *	mysteriously.
1488 */
1489
1490static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1491{
1492	u8 stat;
1493	ide_hwif_t *hwif = hwgroup->hwif;
1494
1495	/*
1496	 * handle the unexpected interrupt
1497	 */
1498	do {
1499		if (hwif->irq == irq) {
1500			stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1501			if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1502				/* Try to not flood the console with msgs */
1503				static unsigned long last_msgtime, count;
1504				++count;
1505				if (time_after(jiffies, last_msgtime + HZ)) {
1506					last_msgtime = jiffies;
1507					printk(KERN_ERR "%s%s: unexpected interrupt, "
1508						"status=0x%02x, count=%ld\n",
1509						hwif->name,
1510						(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1511				}
1512			}
1513		}
1514	} while ((hwif = hwif->next) != hwgroup->hwif);
1515}
1516
1517/**
1518 *	ide_intr	-	default IDE interrupt handler
1519 *	@irq: interrupt number
1520 *	@dev_id: hwif group
1521 *	@regs: unused weirdness from the kernel irq layer
1522 *
1523 *	This is the default IRQ handler for the IDE layer. You should
1524 *	not need to override it. If you do be aware it is subtle in
1525 *	places
1526 *
1527 *	hwgroup->hwif is the interface in the group currently performing
1528 *	a command. hwgroup->drive is the drive and hwgroup->handler is
1529 *	the IRQ handler to call. As we issue a command the handlers
1530 *	step through multiple states, reassigning the handler to the
1531 *	next step in the process. Unlike a smart SCSI controller IDE
1532 *	expects the main processor to sequence the various transfer
1533 *	stages. We also manage a poll timer to catch up with most
1534 *	timeout situations. There are still a few where the handlers
1535 *	don't ever decide to give up.
1536 *
1537 *	The handler eventually returns ide_stopped to indicate the
1538 *	request completed. At this point we issue the next request
1539 *	on the hwgroup and the process begins again.
1540 */
1541
1542irqreturn_t ide_intr (int irq, void *dev_id)
1543{
1544	unsigned long flags;
1545	ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1546	ide_hwif_t *hwif;
1547	ide_drive_t *drive;
1548	ide_handler_t *handler;
1549	ide_startstop_t startstop;
1550
1551	spin_lock_irqsave(&ide_lock, flags);
1552	hwif = hwgroup->hwif;
1553
1554	if (!ide_ack_intr(hwif)) {
1555		spin_unlock_irqrestore(&ide_lock, flags);
1556		return IRQ_NONE;
1557	}
1558
1559	if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1560		/*
1561		 * Not expecting an interrupt from this drive.
1562		 * That means this could be:
1563		 *	(1) an interrupt from another PCI device
1564		 *	sharing the same PCI INT# as us.
1565		 * or	(2) a drive just entered sleep or standby mode,
1566		 *	and is interrupting to let us know.
1567		 * or	(3) a spurious interrupt of unknown origin.
1568		 *
1569		 * For PCI, we cannot tell the difference,
1570		 * so in that case we just ignore it and hope it goes away.
1571		 *
1572		 * FIXME: unexpected_intr should be hwif-> then we can
1573		 * remove all the ifdef PCI crap
1574		 */
1575#ifdef CONFIG_BLK_DEV_IDEPCI
1576		if (hwif->pci_dev && !hwif->pci_dev->vendor)
1577#endif	/* CONFIG_BLK_DEV_IDEPCI */
1578		{
1579			/*
1580			 * Probably not a shared PCI interrupt,
1581			 * so we can safely try to do something about it:
1582			 */
1583			unexpected_intr(irq, hwgroup);
1584#ifdef CONFIG_BLK_DEV_IDEPCI
1585		} else {
1586			/*
1587			 * Whack the status register, just in case
1588			 * we have a leftover pending IRQ.
1589			 */
1590			(void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1591#endif /* CONFIG_BLK_DEV_IDEPCI */
1592		}
1593		spin_unlock_irqrestore(&ide_lock, flags);
1594		return IRQ_NONE;
1595	}
1596	drive = hwgroup->drive;
1597	if (!drive) {
1598		/*
1599		 * This should NEVER happen, and there isn't much
1600		 * we could do about it here.
1601		 *
1602		 * [Note - this can occur if the drive is hot unplugged]
1603		 */
1604		spin_unlock_irqrestore(&ide_lock, flags);
1605		return IRQ_HANDLED;
1606	}
1607	if (!drive_is_ready(drive)) {
1608		/*
1609		 * This happens regularly when we share a PCI IRQ with
1610		 * another device.  Unfortunately, it can also happen
1611		 * with some buggy drives that trigger the IRQ before
1612		 * their status register is up to date.  Hopefully we have
1613		 * enough advance overhead that the latter isn't a problem.
1614		 */
1615		spin_unlock_irqrestore(&ide_lock, flags);
1616		return IRQ_NONE;
1617	}
1618	if (!hwgroup->busy) {
1619		hwgroup->busy = 1;	/* paranoia */
1620		printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1621	}
1622	hwgroup->handler = NULL;
1623	hwgroup->req_gen++;
1624	del_timer(&hwgroup->timer);
1625	spin_unlock(&ide_lock);
1626
1627	/* Some controllers might set DMA INTR no matter DMA or PIO;
1628	 * bmdma status might need to be cleared even for
1629	 * PIO interrupts to prevent spurious/lost irq.
1630	 */
1631	if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1632		/* ide_dma_end() needs bmdma status for error checking.
1633		 * So, skip clearing bmdma status here and leave it
1634		 * to ide_dma_end() if this is dma interrupt.
1635		 */
1636		hwif->ide_dma_clear_irq(drive);
1637
1638	if (drive->unmask)
1639		local_irq_enable_in_hardirq();
1640	/* service this interrupt, may set handler for next interrupt */
1641	startstop = handler(drive);
1642	spin_lock_irq(&ide_lock);
1643
1644	/*
1645	 * Note that handler() may have set things up for another
1646	 * interrupt to occur soon, but it cannot happen until
1647	 * we exit from this routine, because it will be the
1648	 * same irq as is currently being serviced here, and Linux
1649	 * won't allow another of the same (on any CPU) until we return.
1650	 */
1651	drive->service_time = jiffies - drive->service_start;
1652	if (startstop == ide_stopped) {
1653		if (hwgroup->handler == NULL) {	/* paranoia */
1654			hwgroup->busy = 0;
1655			ide_do_request(hwgroup, hwif->irq);
1656		} else {
1657			printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1658				"on exit\n", drive->name);
1659		}
1660	}
1661	spin_unlock_irqrestore(&ide_lock, flags);
1662	return IRQ_HANDLED;
1663}
1664
1665/**
1666 *	ide_init_drive_cmd	-	initialize a drive command request
1667 *	@rq: request object
1668 *
1669 *	Initialize a request before we fill it in and send it down to
1670 *	ide_do_drive_cmd. Commands must be set up by this function. Right
1671 *	now it doesn't do a lot, but if that changes abusers will have a
1672 *	nasty surprise.
1673 */
1674
1675void ide_init_drive_cmd (struct request *rq)
1676{
1677	memset(rq, 0, sizeof(*rq));
1678	rq->ref_count = 1;
1679}
1680
1681EXPORT_SYMBOL(ide_init_drive_cmd);
1682
1683/**
1684 *	ide_do_drive_cmd	-	issue IDE special command
1685 *	@drive: device to issue command
1686 *	@rq: request to issue
1687 *	@action: action for processing
1688 *
1689 *	This function issues a special IDE device request
1690 *	onto the request queue.
1691 *
1692 *	If action is ide_wait, then the rq is queued at the end of the
1693 *	request queue, and the function sleeps until it has been processed.
1694 *	This is for use when invoked from an ioctl handler.
1695 *
1696 *	If action is ide_preempt, then the rq is queued at the head of
1697 *	the request queue, displacing the currently-being-processed
1698 *	request and this function returns immediately without waiting
1699 *	for the new rq to be completed.  This is VERY DANGEROUS, and is
1700 *	intended for careful use by the ATAPI tape/cdrom driver code.
1701 *
1702 *	If action is ide_end, then the rq is queued at the end of the
1703 *	request queue, and the function returns immediately without waiting
1704 *	for the new rq to be completed. This is again intended for careful
1705 *	use by the ATAPI tape/cdrom driver code.
1706 */
1707
1708int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1709{
1710	unsigned long flags;
1711	ide_hwgroup_t *hwgroup = HWGROUP(drive);
1712	DECLARE_COMPLETION_ONSTACK(wait);
1713	int where = ELEVATOR_INSERT_BACK, err;
1714	int must_wait = (action == ide_wait || action == ide_head_wait);
1715
1716	rq->errors = 0;
1717
1718	/*
1719	 * we need to hold an extra reference to request for safe inspection
1720	 * after completion
1721	 */
1722	if (must_wait) {
1723		rq->ref_count++;
1724		rq->end_io_data = &wait;
1725		rq->end_io = blk_end_sync_rq;
1726	}
1727
1728	spin_lock_irqsave(&ide_lock, flags);
1729	if (action == ide_preempt)
1730		hwgroup->rq = NULL;
1731	if (action == ide_preempt || action == ide_head_wait) {
1732		where = ELEVATOR_INSERT_FRONT;
1733		rq->cmd_flags |= REQ_PREEMPT;
1734	}
1735	__elv_add_request(drive->queue, rq, where, 0);
1736	ide_do_request(hwgroup, IDE_NO_IRQ);
1737	spin_unlock_irqrestore(&ide_lock, flags);
1738
1739	err = 0;
1740	if (must_wait) {
1741		wait_for_completion(&wait);
1742		if (rq->errors)
1743			err = -EIO;
1744
1745		blk_put_request(rq);
1746	}
1747
1748	return err;
1749}
1750
1751EXPORT_SYMBOL(ide_do_drive_cmd);
1752
1753void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1754{
1755	ide_task_t task;
1756
1757	memset(&task, 0, sizeof(task));
1758	task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1759			IDE_TFLAG_OUT_FEATURE | tf_flags;
1760	task.tf.feature = dma;		/* Use PIO/DMA */
1761	task.tf.lbam    = bcount & 0xff;
1762	task.tf.lbah    = (bcount >> 8) & 0xff;
1763
1764	ide_tf_load(drive, &task);
1765}
1766
1767EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1768