ide-io.c revision 22aa4b32a19b1f231d4ce7e9af6354b577a22a35
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/hdreg.h>
44#include <linux/completion.h>
45#include <linux/reboot.h>
46#include <linux/cdrom.h>
47#include <linux/seq_file.h>
48#include <linux/device.h>
49#include <linux/kmod.h>
50#include <linux/scatterlist.h>
51#include <linux/bitops.h>
52
53#include <asm/byteorder.h>
54#include <asm/irq.h>
55#include <asm/uaccess.h>
56#include <asm/io.h>
57
58static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59			     int uptodate, unsigned int nr_bytes, int dequeue)
60{
61	int ret = 1;
62	int error = 0;
63
64	if (uptodate <= 0)
65		error = uptodate ? uptodate : -EIO;
66
67	/*
68	 * if failfast is set on a request, override number of sectors and
69	 * complete the whole request right now
70	 */
71	if (blk_noretry_request(rq) && error)
72		nr_bytes = rq->hard_nr_sectors << 9;
73
74	if (!blk_fs_request(rq) && error && !rq->errors)
75		rq->errors = -EIO;
76
77	/*
78	 * decide whether to reenable DMA -- 3 is a random magic for now,
79	 * if we DMA timeout more than 3 times, just stay in PIO
80	 */
81	if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82	    drive->retry_pio <= 3) {
83		drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84		ide_dma_on(drive);
85	}
86
87	if (!blk_end_request(rq, error, nr_bytes))
88		ret = 0;
89
90	if (ret == 0 && dequeue)
91		drive->hwif->rq = NULL;
92
93	return ret;
94}
95
96/**
97 *	ide_end_request		-	complete an IDE I/O
98 *	@drive: IDE device for the I/O
99 *	@uptodate:
100 *	@nr_sectors: number of sectors completed
101 *
102 *	This is our end_request wrapper function. We complete the I/O
103 *	update random number input and dequeue the request, which if
104 *	it was tagged may be out of order.
105 */
106
107int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108{
109	unsigned int nr_bytes = nr_sectors << 9;
110	struct request *rq = drive->hwif->rq;
111
112	if (!nr_bytes) {
113		if (blk_pc_request(rq))
114			nr_bytes = rq->data_len;
115		else
116			nr_bytes = rq->hard_cur_sectors << 9;
117	}
118
119	return __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
120}
121EXPORT_SYMBOL(ide_end_request);
122
123/**
124 *	ide_end_dequeued_request	-	complete an IDE I/O
125 *	@drive: IDE device for the I/O
126 *	@uptodate:
127 *	@nr_sectors: number of sectors completed
128 *
129 *	Complete an I/O that is no longer on the request queue. This
130 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
131 *	We must still finish the old request but we must not tamper with the
132 *	queue in the meantime.
133 *
134 *	NOTE: This path does not handle barrier, but barrier is not supported
135 *	on ide-cd anyway.
136 */
137
138int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
139			     int uptodate, int nr_sectors)
140{
141	BUG_ON(!blk_rq_started(rq));
142
143	return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
144}
145EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
146
147void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err)
148{
149	struct ide_taskfile *tf = &cmd->tf;
150	struct request *rq = cmd->rq;
151
152	tf->error = err;
153	tf->status = stat;
154
155	drive->hwif->tp_ops->tf_read(drive, cmd);
156
157	if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
158		memcpy(rq->special, cmd, sizeof(*cmd));
159
160	if (cmd->tf_flags & IDE_TFLAG_DYN)
161		kfree(cmd);
162}
163
164void ide_complete_rq(ide_drive_t *drive, u8 err)
165{
166	ide_hwif_t *hwif = drive->hwif;
167	struct request *rq = hwif->rq;
168
169	hwif->rq = NULL;
170
171	rq->errors = err;
172
173	if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0),
174				     blk_rq_bytes(rq))))
175		BUG();
176}
177EXPORT_SYMBOL(ide_complete_rq);
178
179void ide_kill_rq(ide_drive_t *drive, struct request *rq)
180{
181	u8 drv_req = blk_special_request(rq) && rq->rq_disk;
182	u8 media = drive->media;
183
184	drive->failed_pc = NULL;
185
186	if ((media == ide_floppy && drv_req) || media == ide_tape)
187		rq->errors = IDE_DRV_ERROR_GENERAL;
188
189	if ((media == ide_floppy || media == ide_tape) && drv_req)
190		ide_complete_rq(drive, 0);
191	else
192		ide_end_request(drive, 0, 0);
193}
194
195static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
196{
197	tf->nsect   = drive->sect;
198	tf->lbal    = drive->sect;
199	tf->lbam    = drive->cyl;
200	tf->lbah    = drive->cyl >> 8;
201	tf->device  = (drive->head - 1) | drive->select;
202	tf->command = ATA_CMD_INIT_DEV_PARAMS;
203}
204
205static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
206{
207	tf->nsect   = drive->sect;
208	tf->command = ATA_CMD_RESTORE;
209}
210
211static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
212{
213	tf->nsect   = drive->mult_req;
214	tf->command = ATA_CMD_SET_MULTI;
215}
216
217static ide_startstop_t ide_disk_special(ide_drive_t *drive)
218{
219	special_t *s = &drive->special;
220	struct ide_cmd cmd;
221
222	memset(&cmd, 0, sizeof(cmd));
223	cmd.data_phase = TASKFILE_NO_DATA;
224
225	if (s->b.set_geometry) {
226		s->b.set_geometry = 0;
227		ide_tf_set_specify_cmd(drive, &cmd.tf);
228	} else if (s->b.recalibrate) {
229		s->b.recalibrate = 0;
230		ide_tf_set_restore_cmd(drive, &cmd.tf);
231	} else if (s->b.set_multmode) {
232		s->b.set_multmode = 0;
233		ide_tf_set_setmult_cmd(drive, &cmd.tf);
234	} else if (s->all) {
235		int special = s->all;
236		s->all = 0;
237		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
238		return ide_stopped;
239	}
240
241	cmd.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
242		       IDE_TFLAG_CUSTOM_HANDLER;
243
244	do_rw_taskfile(drive, &cmd);
245
246	return ide_started;
247}
248
249/**
250 *	do_special		-	issue some special commands
251 *	@drive: drive the command is for
252 *
253 *	do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
254 *	ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
255 *
256 *	It used to do much more, but has been scaled back.
257 */
258
259static ide_startstop_t do_special (ide_drive_t *drive)
260{
261	special_t *s = &drive->special;
262
263#ifdef DEBUG
264	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
265#endif
266	if (drive->media == ide_disk)
267		return ide_disk_special(drive);
268
269	s->all = 0;
270	drive->mult_req = 0;
271	return ide_stopped;
272}
273
274void ide_map_sg(ide_drive_t *drive, struct request *rq)
275{
276	ide_hwif_t *hwif = drive->hwif;
277	struct scatterlist *sg = hwif->sg_table;
278
279	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
280		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
281		hwif->sg_nents = 1;
282	} else if (!rq->bio) {
283		sg_init_one(sg, rq->data, rq->data_len);
284		hwif->sg_nents = 1;
285	} else {
286		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
287	}
288}
289
290EXPORT_SYMBOL_GPL(ide_map_sg);
291
292void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
293{
294	ide_hwif_t *hwif = drive->hwif;
295
296	hwif->nsect = hwif->nleft = rq->nr_sectors;
297	hwif->cursg_ofs = 0;
298	hwif->cursg = NULL;
299}
300
301EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
302
303/**
304 *	execute_drive_command	-	issue special drive command
305 *	@drive: the drive to issue the command on
306 *	@rq: the request structure holding the command
307 *
308 *	execute_drive_cmd() issues a special drive command,  usually
309 *	initiated by ioctl() from the external hdparm program. The
310 *	command can be a drive command, drive task or taskfile
311 *	operation. Weirdly you can call it with NULL to wait for
312 *	all commands to finish. Don't do this as that is due to change
313 */
314
315static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
316		struct request *rq)
317{
318	struct ide_cmd *cmd = rq->special;
319
320	if (cmd) {
321		switch (cmd->data_phase) {
322		case TASKFILE_MULTI_OUT:
323		case TASKFILE_OUT:
324		case TASKFILE_MULTI_IN:
325		case TASKFILE_IN:
326			ide_init_sg_cmd(drive, rq);
327			ide_map_sg(drive, rq);
328		default:
329			break;
330		}
331
332		return do_rw_taskfile(drive, cmd);
333	}
334
335 	/*
336 	 * NULL is actually a valid way of waiting for
337 	 * all current requests to be flushed from the queue.
338 	 */
339#ifdef DEBUG
340 	printk("%s: DRIVE_CMD (null)\n", drive->name);
341#endif
342	ide_complete_rq(drive, 0);
343
344 	return ide_stopped;
345}
346
347static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
348{
349	u8 cmd = rq->cmd[0];
350
351	switch (cmd) {
352	case REQ_PARK_HEADS:
353	case REQ_UNPARK_HEADS:
354		return ide_do_park_unpark(drive, rq);
355	case REQ_DEVSET_EXEC:
356		return ide_do_devset(drive, rq);
357	case REQ_DRIVE_RESET:
358		return ide_do_reset(drive);
359	default:
360		blk_dump_rq_flags(rq, "ide_special_rq - bad request");
361		ide_end_request(drive, 0, 0);
362		return ide_stopped;
363	}
364}
365
366/**
367 *	start_request	-	start of I/O and command issuing for IDE
368 *
369 *	start_request() initiates handling of a new I/O request. It
370 *	accepts commands and I/O (read/write) requests.
371 *
372 *	FIXME: this function needs a rename
373 */
374
375static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
376{
377	ide_startstop_t startstop;
378
379	BUG_ON(!blk_rq_started(rq));
380
381#ifdef DEBUG
382	printk("%s: start_request: current=0x%08lx\n",
383		drive->hwif->name, (unsigned long) rq);
384#endif
385
386	/* bail early if we've exceeded max_failures */
387	if (drive->max_failures && (drive->failures > drive->max_failures)) {
388		rq->cmd_flags |= REQ_FAILED;
389		goto kill_rq;
390	}
391
392	if (blk_pm_request(rq))
393		ide_check_pm_state(drive, rq);
394
395	SELECT_DRIVE(drive);
396	if (ide_wait_stat(&startstop, drive, drive->ready_stat,
397			  ATA_BUSY | ATA_DRQ, WAIT_READY)) {
398		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
399		return startstop;
400	}
401	if (!drive->special.all) {
402		struct ide_driver *drv;
403
404		/*
405		 * We reset the drive so we need to issue a SETFEATURES.
406		 * Do it _after_ do_special() restored device parameters.
407		 */
408		if (drive->current_speed == 0xff)
409			ide_config_drive_speed(drive, drive->desired_speed);
410
411		if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
412			return execute_drive_cmd(drive, rq);
413		else if (blk_pm_request(rq)) {
414			struct request_pm_state *pm = rq->data;
415#ifdef DEBUG_PM
416			printk("%s: start_power_step(step: %d)\n",
417				drive->name, pm->pm_step);
418#endif
419			startstop = ide_start_power_step(drive, rq);
420			if (startstop == ide_stopped &&
421			    pm->pm_step == IDE_PM_COMPLETED)
422				ide_complete_pm_rq(drive, rq);
423			return startstop;
424		} else if (!rq->rq_disk && blk_special_request(rq))
425			/*
426			 * TODO: Once all ULDs have been modified to
427			 * check for specific op codes rather than
428			 * blindly accepting any special request, the
429			 * check for ->rq_disk above may be replaced
430			 * by a more suitable mechanism or even
431			 * dropped entirely.
432			 */
433			return ide_special_rq(drive, rq);
434
435		drv = *(struct ide_driver **)rq->rq_disk->private_data;
436
437		return drv->do_request(drive, rq, rq->sector);
438	}
439	return do_special(drive);
440kill_rq:
441	ide_kill_rq(drive, rq);
442	return ide_stopped;
443}
444
445/**
446 *	ide_stall_queue		-	pause an IDE device
447 *	@drive: drive to stall
448 *	@timeout: time to stall for (jiffies)
449 *
450 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
451 *	to the port by sleeping for timeout jiffies.
452 */
453
454void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
455{
456	if (timeout > WAIT_WORSTCASE)
457		timeout = WAIT_WORSTCASE;
458	drive->sleep = timeout + jiffies;
459	drive->dev_flags |= IDE_DFLAG_SLEEPING;
460}
461EXPORT_SYMBOL(ide_stall_queue);
462
463static inline int ide_lock_port(ide_hwif_t *hwif)
464{
465	if (hwif->busy)
466		return 1;
467
468	hwif->busy = 1;
469
470	return 0;
471}
472
473static inline void ide_unlock_port(ide_hwif_t *hwif)
474{
475	hwif->busy = 0;
476}
477
478static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
479{
480	int rc = 0;
481
482	if (host->host_flags & IDE_HFLAG_SERIALIZE) {
483		rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
484		if (rc == 0) {
485			if (host->get_lock)
486				host->get_lock(ide_intr, hwif);
487		}
488	}
489	return rc;
490}
491
492static inline void ide_unlock_host(struct ide_host *host)
493{
494	if (host->host_flags & IDE_HFLAG_SERIALIZE) {
495		if (host->release_lock)
496			host->release_lock();
497		clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
498	}
499}
500
501/*
502 * Issue a new request to a device.
503 */
504void do_ide_request(struct request_queue *q)
505{
506	ide_drive_t	*drive = q->queuedata;
507	ide_hwif_t	*hwif = drive->hwif;
508	struct ide_host *host = hwif->host;
509	struct request	*rq = NULL;
510	ide_startstop_t	startstop;
511
512	/*
513	 * drive is doing pre-flush, ordered write, post-flush sequence. even
514	 * though that is 3 requests, it must be seen as a single transaction.
515	 * we must not preempt this drive until that is complete
516	 */
517	if (blk_queue_flushing(q))
518		/*
519		 * small race where queue could get replugged during
520		 * the 3-request flush cycle, just yank the plug since
521		 * we want it to finish asap
522		 */
523		blk_remove_plug(q);
524
525	spin_unlock_irq(q->queue_lock);
526
527	if (ide_lock_host(host, hwif))
528		goto plug_device_2;
529
530	spin_lock_irq(&hwif->lock);
531
532	if (!ide_lock_port(hwif)) {
533		ide_hwif_t *prev_port;
534repeat:
535		prev_port = hwif->host->cur_port;
536		hwif->rq = NULL;
537
538		if (drive->dev_flags & IDE_DFLAG_SLEEPING) {
539			if (time_before(drive->sleep, jiffies)) {
540				ide_unlock_port(hwif);
541				goto plug_device;
542			}
543		}
544
545		if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
546		    hwif != prev_port) {
547			/*
548			 * set nIEN for previous port, drives in the
549			 * quirk_list may not like intr setups/cleanups
550			 */
551			if (prev_port && prev_port->cur_dev->quirk_list == 0)
552				prev_port->tp_ops->set_irq(prev_port, 0);
553
554			hwif->host->cur_port = hwif;
555		}
556		hwif->cur_dev = drive;
557		drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
558
559		spin_unlock_irq(&hwif->lock);
560		spin_lock_irq(q->queue_lock);
561		/*
562		 * we know that the queue isn't empty, but this can happen
563		 * if the q->prep_rq_fn() decides to kill a request
564		 */
565		rq = elv_next_request(drive->queue);
566		spin_unlock_irq(q->queue_lock);
567		spin_lock_irq(&hwif->lock);
568
569		if (!rq) {
570			ide_unlock_port(hwif);
571			goto out;
572		}
573
574		/*
575		 * Sanity: don't accept a request that isn't a PM request
576		 * if we are currently power managed. This is very important as
577		 * blk_stop_queue() doesn't prevent the elv_next_request()
578		 * above to return us whatever is in the queue. Since we call
579		 * ide_do_request() ourselves, we end up taking requests while
580		 * the queue is blocked...
581		 *
582		 * We let requests forced at head of queue with ide-preempt
583		 * though. I hope that doesn't happen too much, hopefully not
584		 * unless the subdriver triggers such a thing in its own PM
585		 * state machine.
586		 */
587		if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
588		    blk_pm_request(rq) == 0 &&
589		    (rq->cmd_flags & REQ_PREEMPT) == 0) {
590			/* there should be no pending command at this point */
591			ide_unlock_port(hwif);
592			goto plug_device;
593		}
594
595		hwif->rq = rq;
596
597		spin_unlock_irq(&hwif->lock);
598		startstop = start_request(drive, rq);
599		spin_lock_irq(&hwif->lock);
600
601		if (startstop == ide_stopped)
602			goto repeat;
603	} else
604		goto plug_device;
605out:
606	spin_unlock_irq(&hwif->lock);
607	if (rq == NULL)
608		ide_unlock_host(host);
609	spin_lock_irq(q->queue_lock);
610	return;
611
612plug_device:
613	spin_unlock_irq(&hwif->lock);
614	ide_unlock_host(host);
615plug_device_2:
616	spin_lock_irq(q->queue_lock);
617
618	if (!elv_queue_empty(q))
619		blk_plug_device(q);
620}
621
622static void ide_plug_device(ide_drive_t *drive)
623{
624	struct request_queue *q = drive->queue;
625	unsigned long flags;
626
627	spin_lock_irqsave(q->queue_lock, flags);
628	if (!elv_queue_empty(q))
629		blk_plug_device(q);
630	spin_unlock_irqrestore(q->queue_lock, flags);
631}
632
633static int drive_is_ready(ide_drive_t *drive)
634{
635	ide_hwif_t *hwif = drive->hwif;
636	u8 stat = 0;
637
638	if (drive->waiting_for_dma)
639		return hwif->dma_ops->dma_test_irq(drive);
640
641	if (hwif->io_ports.ctl_addr &&
642	    (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
643		stat = hwif->tp_ops->read_altstatus(hwif);
644	else
645		/* Note: this may clear a pending IRQ!! */
646		stat = hwif->tp_ops->read_status(hwif);
647
648	if (stat & ATA_BUSY)
649		/* drive busy: definitely not interrupting */
650		return 0;
651
652	/* drive ready: *might* be interrupting */
653	return 1;
654}
655
656/**
657 *	ide_timer_expiry	-	handle lack of an IDE interrupt
658 *	@data: timer callback magic (hwif)
659 *
660 *	An IDE command has timed out before the expected drive return
661 *	occurred. At this point we attempt to clean up the current
662 *	mess. If the current handler includes an expiry handler then
663 *	we invoke the expiry handler, and providing it is happy the
664 *	work is done. If that fails we apply generic recovery rules
665 *	invoking the handler and checking the drive DMA status. We
666 *	have an excessively incestuous relationship with the DMA
667 *	logic that wants cleaning up.
668 */
669
670void ide_timer_expiry (unsigned long data)
671{
672	ide_hwif_t	*hwif = (ide_hwif_t *)data;
673	ide_drive_t	*uninitialized_var(drive);
674	ide_handler_t	*handler;
675	unsigned long	flags;
676	int		wait = -1;
677	int		plug_device = 0;
678
679	spin_lock_irqsave(&hwif->lock, flags);
680
681	handler = hwif->handler;
682
683	if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
684		/*
685		 * Either a marginal timeout occurred
686		 * (got the interrupt just as timer expired),
687		 * or we were "sleeping" to give other devices a chance.
688		 * Either way, we don't really want to complain about anything.
689		 */
690	} else {
691		ide_expiry_t *expiry = hwif->expiry;
692		ide_startstop_t startstop = ide_stopped;
693
694		drive = hwif->cur_dev;
695
696		if (expiry) {
697			wait = expiry(drive);
698			if (wait > 0) { /* continue */
699				/* reset timer */
700				hwif->timer.expires = jiffies + wait;
701				hwif->req_gen_timer = hwif->req_gen;
702				add_timer(&hwif->timer);
703				spin_unlock_irqrestore(&hwif->lock, flags);
704				return;
705			}
706		}
707		hwif->handler = NULL;
708		/*
709		 * We need to simulate a real interrupt when invoking
710		 * the handler() function, which means we need to
711		 * globally mask the specific IRQ:
712		 */
713		spin_unlock(&hwif->lock);
714		/* disable_irq_nosync ?? */
715		disable_irq(hwif->irq);
716		/* local CPU only, as if we were handling an interrupt */
717		local_irq_disable();
718		if (hwif->polling) {
719			startstop = handler(drive);
720		} else if (drive_is_ready(drive)) {
721			if (drive->waiting_for_dma)
722				hwif->dma_ops->dma_lost_irq(drive);
723			if (hwif->ack_intr)
724				hwif->ack_intr(hwif);
725			printk(KERN_WARNING "%s: lost interrupt\n",
726				drive->name);
727			startstop = handler(drive);
728		} else {
729			if (drive->waiting_for_dma)
730				startstop = ide_dma_timeout_retry(drive, wait);
731			else
732				startstop = ide_error(drive, "irq timeout",
733					hwif->tp_ops->read_status(hwif));
734		}
735		spin_lock_irq(&hwif->lock);
736		enable_irq(hwif->irq);
737		if (startstop == ide_stopped) {
738			ide_unlock_port(hwif);
739			plug_device = 1;
740		}
741	}
742	spin_unlock_irqrestore(&hwif->lock, flags);
743
744	if (plug_device) {
745		ide_unlock_host(hwif->host);
746		ide_plug_device(drive);
747	}
748}
749
750/**
751 *	unexpected_intr		-	handle an unexpected IDE interrupt
752 *	@irq: interrupt line
753 *	@hwif: port being processed
754 *
755 *	There's nothing really useful we can do with an unexpected interrupt,
756 *	other than reading the status register (to clear it), and logging it.
757 *	There should be no way that an irq can happen before we're ready for it,
758 *	so we needn't worry much about losing an "important" interrupt here.
759 *
760 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
761 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
762 *	looks "good", we just ignore the interrupt completely.
763 *
764 *	This routine assumes __cli() is in effect when called.
765 *
766 *	If an unexpected interrupt happens on irq15 while we are handling irq14
767 *	and if the two interfaces are "serialized" (CMD640), then it looks like
768 *	we could screw up by interfering with a new request being set up for
769 *	irq15.
770 *
771 *	In reality, this is a non-issue.  The new command is not sent unless
772 *	the drive is ready to accept one, in which case we know the drive is
773 *	not trying to interrupt us.  And ide_set_handler() is always invoked
774 *	before completing the issuance of any new drive command, so we will not
775 *	be accidentally invoked as a result of any valid command completion
776 *	interrupt.
777 */
778
779static void unexpected_intr(int irq, ide_hwif_t *hwif)
780{
781	u8 stat = hwif->tp_ops->read_status(hwif);
782
783	if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
784		/* Try to not flood the console with msgs */
785		static unsigned long last_msgtime, count;
786		++count;
787
788		if (time_after(jiffies, last_msgtime + HZ)) {
789			last_msgtime = jiffies;
790			printk(KERN_ERR "%s: unexpected interrupt, "
791				"status=0x%02x, count=%ld\n",
792				hwif->name, stat, count);
793		}
794	}
795}
796
797/**
798 *	ide_intr	-	default IDE interrupt handler
799 *	@irq: interrupt number
800 *	@dev_id: hwif
801 *	@regs: unused weirdness from the kernel irq layer
802 *
803 *	This is the default IRQ handler for the IDE layer. You should
804 *	not need to override it. If you do be aware it is subtle in
805 *	places
806 *
807 *	hwif is the interface in the group currently performing
808 *	a command. hwif->cur_dev is the drive and hwif->handler is
809 *	the IRQ handler to call. As we issue a command the handlers
810 *	step through multiple states, reassigning the handler to the
811 *	next step in the process. Unlike a smart SCSI controller IDE
812 *	expects the main processor to sequence the various transfer
813 *	stages. We also manage a poll timer to catch up with most
814 *	timeout situations. There are still a few where the handlers
815 *	don't ever decide to give up.
816 *
817 *	The handler eventually returns ide_stopped to indicate the
818 *	request completed. At this point we issue the next request
819 *	on the port and the process begins again.
820 */
821
822irqreturn_t ide_intr (int irq, void *dev_id)
823{
824	ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
825	struct ide_host *host = hwif->host;
826	ide_drive_t *uninitialized_var(drive);
827	ide_handler_t *handler;
828	unsigned long flags;
829	ide_startstop_t startstop;
830	irqreturn_t irq_ret = IRQ_NONE;
831	int plug_device = 0;
832
833	if (host->host_flags & IDE_HFLAG_SERIALIZE) {
834		if (hwif != host->cur_port)
835			goto out_early;
836	}
837
838	spin_lock_irqsave(&hwif->lock, flags);
839
840	if (hwif->ack_intr && hwif->ack_intr(hwif) == 0)
841		goto out;
842
843	handler = hwif->handler;
844
845	if (handler == NULL || hwif->polling) {
846		/*
847		 * Not expecting an interrupt from this drive.
848		 * That means this could be:
849		 *	(1) an interrupt from another PCI device
850		 *	sharing the same PCI INT# as us.
851		 * or	(2) a drive just entered sleep or standby mode,
852		 *	and is interrupting to let us know.
853		 * or	(3) a spurious interrupt of unknown origin.
854		 *
855		 * For PCI, we cannot tell the difference,
856		 * so in that case we just ignore it and hope it goes away.
857		 */
858		if ((host->irq_flags & IRQF_SHARED) == 0) {
859			/*
860			 * Probably not a shared PCI interrupt,
861			 * so we can safely try to do something about it:
862			 */
863			unexpected_intr(irq, hwif);
864		} else {
865			/*
866			 * Whack the status register, just in case
867			 * we have a leftover pending IRQ.
868			 */
869			(void)hwif->tp_ops->read_status(hwif);
870		}
871		goto out;
872	}
873
874	drive = hwif->cur_dev;
875
876	if (!drive_is_ready(drive))
877		/*
878		 * This happens regularly when we share a PCI IRQ with
879		 * another device.  Unfortunately, it can also happen
880		 * with some buggy drives that trigger the IRQ before
881		 * their status register is up to date.  Hopefully we have
882		 * enough advance overhead that the latter isn't a problem.
883		 */
884		goto out;
885
886	hwif->handler = NULL;
887	hwif->req_gen++;
888	del_timer(&hwif->timer);
889	spin_unlock(&hwif->lock);
890
891	if (hwif->port_ops && hwif->port_ops->clear_irq)
892		hwif->port_ops->clear_irq(drive);
893
894	if (drive->dev_flags & IDE_DFLAG_UNMASK)
895		local_irq_enable_in_hardirq();
896
897	/* service this interrupt, may set handler for next interrupt */
898	startstop = handler(drive);
899
900	spin_lock_irq(&hwif->lock);
901	/*
902	 * Note that handler() may have set things up for another
903	 * interrupt to occur soon, but it cannot happen until
904	 * we exit from this routine, because it will be the
905	 * same irq as is currently being serviced here, and Linux
906	 * won't allow another of the same (on any CPU) until we return.
907	 */
908	if (startstop == ide_stopped) {
909		BUG_ON(hwif->handler);
910		ide_unlock_port(hwif);
911		plug_device = 1;
912	}
913	irq_ret = IRQ_HANDLED;
914out:
915	spin_unlock_irqrestore(&hwif->lock, flags);
916out_early:
917	if (plug_device) {
918		ide_unlock_host(hwif->host);
919		ide_plug_device(drive);
920	}
921
922	return irq_ret;
923}
924EXPORT_SYMBOL_GPL(ide_intr);
925
926void ide_pad_transfer(ide_drive_t *drive, int write, int len)
927{
928	ide_hwif_t *hwif = drive->hwif;
929	u8 buf[4] = { 0 };
930
931	while (len > 0) {
932		if (write)
933			hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
934		else
935			hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
936		len -= 4;
937	}
938}
939EXPORT_SYMBOL_GPL(ide_pad_transfer);
940