ide-io.c revision 23450319e2890986c247ec0aa1442f060e657e6d
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
50
51#include <asm/byteorder.h>
52#include <asm/irq.h>
53#include <asm/uaccess.h>
54#include <asm/io.h>
55#include <asm/bitops.h>
56
57static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58			     int uptodate, int nr_sectors)
59{
60	int ret = 1;
61
62	/*
63	 * if failfast is set on a request, override number of sectors and
64	 * complete the whole request right now
65	 */
66	if (blk_noretry_request(rq) && end_io_error(uptodate))
67		nr_sectors = rq->hard_nr_sectors;
68
69	if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70		rq->errors = -EIO;
71
72	/*
73	 * decide whether to reenable DMA -- 3 is a random magic for now,
74	 * if we DMA timeout more than 3 times, just stay in PIO
75	 */
76	if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77		drive->state = 0;
78		HWGROUP(drive)->hwif->ide_dma_on(drive);
79	}
80
81	if (!end_that_request_first(rq, uptodate, nr_sectors)) {
82		add_disk_randomness(rq->rq_disk);
83		if (!list_empty(&rq->queuelist))
84			blkdev_dequeue_request(rq);
85		HWGROUP(drive)->rq = NULL;
86		end_that_request_last(rq, uptodate);
87		ret = 0;
88	}
89
90	return ret;
91}
92
93/**
94 *	ide_end_request		-	complete an IDE I/O
95 *	@drive: IDE device for the I/O
96 *	@uptodate:
97 *	@nr_sectors: number of sectors completed
98 *
99 *	This is our end_request wrapper function. We complete the I/O
100 *	update random number input and dequeue the request, which if
101 *	it was tagged may be out of order.
102 */
103
104int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
105{
106	struct request *rq;
107	unsigned long flags;
108	int ret = 1;
109
110	/*
111	 * room for locking improvements here, the calls below don't
112	 * need the queue lock held at all
113	 */
114	spin_lock_irqsave(&ide_lock, flags);
115	rq = HWGROUP(drive)->rq;
116
117	if (!nr_sectors)
118		nr_sectors = rq->hard_cur_sectors;
119
120	ret = __ide_end_request(drive, rq, uptodate, nr_sectors);
121
122	spin_unlock_irqrestore(&ide_lock, flags);
123	return ret;
124}
125EXPORT_SYMBOL(ide_end_request);
126
127/*
128 * Power Management state machine. This one is rather trivial for now,
129 * we should probably add more, like switching back to PIO on suspend
130 * to help some BIOSes, re-do the door locking on resume, etc...
131 */
132
133enum {
134	ide_pm_flush_cache	= ide_pm_state_start_suspend,
135	idedisk_pm_standby,
136
137	idedisk_pm_restore_pio	= ide_pm_state_start_resume,
138	idedisk_pm_idle,
139	ide_pm_restore_dma,
140};
141
142static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
143{
144	struct request_pm_state *pm = rq->data;
145
146	if (drive->media != ide_disk)
147		return;
148
149	switch (pm->pm_step) {
150	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) complete */
151		if (pm->pm_state == PM_EVENT_FREEZE)
152			pm->pm_step = ide_pm_state_completed;
153		else
154			pm->pm_step = idedisk_pm_standby;
155		break;
156	case idedisk_pm_standby:	/* Suspend step 2 (standby) complete */
157		pm->pm_step = ide_pm_state_completed;
158		break;
159	case idedisk_pm_restore_pio:	/* Resume step 1 complete */
160		pm->pm_step = idedisk_pm_idle;
161		break;
162	case idedisk_pm_idle:		/* Resume step 2 (idle) complete */
163		pm->pm_step = ide_pm_restore_dma;
164		break;
165	}
166}
167
168static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
169{
170	struct request_pm_state *pm = rq->data;
171	ide_task_t *args = rq->special;
172
173	memset(args, 0, sizeof(*args));
174
175	if (drive->media != ide_disk) {
176		/*
177		 * skip idedisk_pm_restore_pio and idedisk_pm_idle for ATAPI
178		 * devices
179		 */
180		if (pm->pm_step == idedisk_pm_restore_pio)
181			pm->pm_step = ide_pm_restore_dma;
182	}
183
184	switch (pm->pm_step) {
185	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) */
186		if (drive->media != ide_disk)
187			break;
188		/* Not supported? Switch to next step now. */
189		if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
190			ide_complete_power_step(drive, rq, 0, 0);
191			return ide_stopped;
192		}
193		if (ide_id_has_flush_cache_ext(drive->id))
194			args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT;
195		else
196			args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE;
197		args->command_type = IDE_DRIVE_TASK_NO_DATA;
198		args->handler	   = &task_no_data_intr;
199		return do_rw_taskfile(drive, args);
200
201	case idedisk_pm_standby:	/* Suspend step 2 (standby) */
202		args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1;
203		args->command_type = IDE_DRIVE_TASK_NO_DATA;
204		args->handler	   = &task_no_data_intr;
205		return do_rw_taskfile(drive, args);
206
207	case idedisk_pm_restore_pio:	/* Resume step 1 (restore PIO) */
208		if (drive->hwif->tuneproc != NULL)
209			drive->hwif->tuneproc(drive, 255);
210		ide_complete_power_step(drive, rq, 0, 0);
211		return ide_stopped;
212
213	case idedisk_pm_idle:		/* Resume step 2 (idle) */
214		args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE;
215		args->command_type = IDE_DRIVE_TASK_NO_DATA;
216		args->handler = task_no_data_intr;
217		return do_rw_taskfile(drive, args);
218
219	case ide_pm_restore_dma:	/* Resume step 3 (restore DMA) */
220		/*
221		 * Right now, all we do is call hwif->ide_dma_check(drive),
222		 * we could be smarter and check for current xfer_speed
223		 * in struct drive etc...
224		 */
225		if ((drive->id->capability & 1) == 0)
226			break;
227		if (drive->hwif->ide_dma_check == NULL)
228			break;
229		ide_set_dma(drive);
230		break;
231	}
232	pm->pm_step = ide_pm_state_completed;
233	return ide_stopped;
234}
235
236/**
237 *	ide_end_dequeued_request	-	complete an IDE I/O
238 *	@drive: IDE device for the I/O
239 *	@uptodate:
240 *	@nr_sectors: number of sectors completed
241 *
242 *	Complete an I/O that is no longer on the request queue. This
243 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
244 *	We must still finish the old request but we must not tamper with the
245 *	queue in the meantime.
246 *
247 *	NOTE: This path does not handle barrier, but barrier is not supported
248 *	on ide-cd anyway.
249 */
250
251int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
252			     int uptodate, int nr_sectors)
253{
254	unsigned long flags;
255	int ret = 1;
256
257	spin_lock_irqsave(&ide_lock, flags);
258
259	BUG_ON(!blk_rq_started(rq));
260
261	/*
262	 * if failfast is set on a request, override number of sectors and
263	 * complete the whole request right now
264	 */
265	if (blk_noretry_request(rq) && end_io_error(uptodate))
266		nr_sectors = rq->hard_nr_sectors;
267
268	if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
269		rq->errors = -EIO;
270
271	/*
272	 * decide whether to reenable DMA -- 3 is a random magic for now,
273	 * if we DMA timeout more than 3 times, just stay in PIO
274	 */
275	if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
276		drive->state = 0;
277		HWGROUP(drive)->hwif->ide_dma_on(drive);
278	}
279
280	if (!end_that_request_first(rq, uptodate, nr_sectors)) {
281		add_disk_randomness(rq->rq_disk);
282		if (blk_rq_tagged(rq))
283			blk_queue_end_tag(drive->queue, rq);
284		end_that_request_last(rq, uptodate);
285		ret = 0;
286	}
287	spin_unlock_irqrestore(&ide_lock, flags);
288	return ret;
289}
290EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
291
292
293/**
294 *	ide_complete_pm_request - end the current Power Management request
295 *	@drive: target drive
296 *	@rq: request
297 *
298 *	This function cleans up the current PM request and stops the queue
299 *	if necessary.
300 */
301static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
302{
303	unsigned long flags;
304
305#ifdef DEBUG_PM
306	printk("%s: completing PM request, %s\n", drive->name,
307	       blk_pm_suspend_request(rq) ? "suspend" : "resume");
308#endif
309	spin_lock_irqsave(&ide_lock, flags);
310	if (blk_pm_suspend_request(rq)) {
311		blk_stop_queue(drive->queue);
312	} else {
313		drive->blocked = 0;
314		blk_start_queue(drive->queue);
315	}
316	blkdev_dequeue_request(rq);
317	HWGROUP(drive)->rq = NULL;
318	end_that_request_last(rq, 1);
319	spin_unlock_irqrestore(&ide_lock, flags);
320}
321
322/*
323 * FIXME: probably move this somewhere else, name is bad too :)
324 */
325u64 ide_get_error_location(ide_drive_t *drive, char *args)
326{
327	u32 high, low;
328	u8 hcyl, lcyl, sect;
329	u64 sector;
330
331	high = 0;
332	hcyl = args[5];
333	lcyl = args[4];
334	sect = args[3];
335
336	if (ide_id_has_flush_cache_ext(drive->id)) {
337		low = (hcyl << 16) | (lcyl << 8) | sect;
338		HWIF(drive)->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
339		high = ide_read_24(drive);
340	} else {
341		u8 cur = HWIF(drive)->INB(IDE_SELECT_REG);
342		if (cur & 0x40) {
343			high = cur & 0xf;
344			low = (hcyl << 16) | (lcyl << 8) | sect;
345		} else {
346			low = hcyl * drive->head * drive->sect;
347			low += lcyl * drive->sect;
348			low += sect - 1;
349		}
350	}
351
352	sector = ((u64) high << 24) | low;
353	return sector;
354}
355EXPORT_SYMBOL(ide_get_error_location);
356
357/**
358 *	ide_end_drive_cmd	-	end an explicit drive command
359 *	@drive: command
360 *	@stat: status bits
361 *	@err: error bits
362 *
363 *	Clean up after success/failure of an explicit drive command.
364 *	These get thrown onto the queue so they are synchronized with
365 *	real I/O operations on the drive.
366 *
367 *	In LBA48 mode we have to read the register set twice to get
368 *	all the extra information out.
369 */
370
371void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
372{
373	ide_hwif_t *hwif = HWIF(drive);
374	unsigned long flags;
375	struct request *rq;
376
377	spin_lock_irqsave(&ide_lock, flags);
378	rq = HWGROUP(drive)->rq;
379	spin_unlock_irqrestore(&ide_lock, flags);
380
381	if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
382		u8 *args = (u8 *) rq->buffer;
383		if (rq->errors == 0)
384			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
385
386		if (args) {
387			args[0] = stat;
388			args[1] = err;
389			args[2] = hwif->INB(IDE_NSECTOR_REG);
390		}
391	} else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
392		u8 *args = (u8 *) rq->buffer;
393		if (rq->errors == 0)
394			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
395
396		if (args) {
397			args[0] = stat;
398			args[1] = err;
399			args[2] = hwif->INB(IDE_NSECTOR_REG);
400			args[3] = hwif->INB(IDE_SECTOR_REG);
401			args[4] = hwif->INB(IDE_LCYL_REG);
402			args[5] = hwif->INB(IDE_HCYL_REG);
403			args[6] = hwif->INB(IDE_SELECT_REG);
404		}
405	} else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
406		ide_task_t *args = (ide_task_t *) rq->special;
407		if (rq->errors == 0)
408			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
409
410		if (args) {
411			if (args->tf_in_flags.b.data) {
412				u16 data				= hwif->INW(IDE_DATA_REG);
413				args->tfRegister[IDE_DATA_OFFSET]	= (data) & 0xFF;
414				args->hobRegister[IDE_DATA_OFFSET]	= (data >> 8) & 0xFF;
415			}
416			args->tfRegister[IDE_ERROR_OFFSET]   = err;
417			/* be sure we're looking at the low order bits */
418			hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
419			args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
420			args->tfRegister[IDE_SECTOR_OFFSET]  = hwif->INB(IDE_SECTOR_REG);
421			args->tfRegister[IDE_LCYL_OFFSET]    = hwif->INB(IDE_LCYL_REG);
422			args->tfRegister[IDE_HCYL_OFFSET]    = hwif->INB(IDE_HCYL_REG);
423			args->tfRegister[IDE_SELECT_OFFSET]  = hwif->INB(IDE_SELECT_REG);
424			args->tfRegister[IDE_STATUS_OFFSET]  = stat;
425
426			if (drive->addressing == 1) {
427				hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
428				args->hobRegister[IDE_FEATURE_OFFSET]	= hwif->INB(IDE_FEATURE_REG);
429				args->hobRegister[IDE_NSECTOR_OFFSET]	= hwif->INB(IDE_NSECTOR_REG);
430				args->hobRegister[IDE_SECTOR_OFFSET]	= hwif->INB(IDE_SECTOR_REG);
431				args->hobRegister[IDE_LCYL_OFFSET]	= hwif->INB(IDE_LCYL_REG);
432				args->hobRegister[IDE_HCYL_OFFSET]	= hwif->INB(IDE_HCYL_REG);
433			}
434		}
435	} else if (blk_pm_request(rq)) {
436		struct request_pm_state *pm = rq->data;
437#ifdef DEBUG_PM
438		printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
439			drive->name, rq->pm->pm_step, stat, err);
440#endif
441		ide_complete_power_step(drive, rq, stat, err);
442		if (pm->pm_step == ide_pm_state_completed)
443			ide_complete_pm_request(drive, rq);
444		return;
445	}
446
447	spin_lock_irqsave(&ide_lock, flags);
448	blkdev_dequeue_request(rq);
449	HWGROUP(drive)->rq = NULL;
450	rq->errors = err;
451	end_that_request_last(rq, !rq->errors);
452	spin_unlock_irqrestore(&ide_lock, flags);
453}
454
455EXPORT_SYMBOL(ide_end_drive_cmd);
456
457/**
458 *	try_to_flush_leftover_data	-	flush junk
459 *	@drive: drive to flush
460 *
461 *	try_to_flush_leftover_data() is invoked in response to a drive
462 *	unexpectedly having its DRQ_STAT bit set.  As an alternative to
463 *	resetting the drive, this routine tries to clear the condition
464 *	by read a sector's worth of data from the drive.  Of course,
465 *	this may not help if the drive is *waiting* for data from *us*.
466 */
467static void try_to_flush_leftover_data (ide_drive_t *drive)
468{
469	int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
470
471	if (drive->media != ide_disk)
472		return;
473	while (i > 0) {
474		u32 buffer[16];
475		u32 wcount = (i > 16) ? 16 : i;
476
477		i -= wcount;
478		HWIF(drive)->ata_input_data(drive, buffer, wcount);
479	}
480}
481
482static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
483{
484	if (rq->rq_disk) {
485		ide_driver_t *drv;
486
487		drv = *(ide_driver_t **)rq->rq_disk->private_data;
488		drv->end_request(drive, 0, 0);
489	} else
490		ide_end_request(drive, 0, 0);
491}
492
493static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
494{
495	ide_hwif_t *hwif = drive->hwif;
496
497	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
498		/* other bits are useless when BUSY */
499		rq->errors |= ERROR_RESET;
500	} else if (stat & ERR_STAT) {
501		/* err has different meaning on cdrom and tape */
502		if (err == ABRT_ERR) {
503			if (drive->select.b.lba &&
504			    /* some newer drives don't support WIN_SPECIFY */
505			    hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
506				return ide_stopped;
507		} else if ((err & BAD_CRC) == BAD_CRC) {
508			/* UDMA crc error, just retry the operation */
509			drive->crc_count++;
510		} else if (err & (BBD_ERR | ECC_ERR)) {
511			/* retries won't help these */
512			rq->errors = ERROR_MAX;
513		} else if (err & TRK0_ERR) {
514			/* help it find track zero */
515			rq->errors |= ERROR_RECAL;
516		}
517	}
518
519	if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ && hwif->err_stops_fifo == 0)
520		try_to_flush_leftover_data(drive);
521
522	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
523		ide_kill_rq(drive, rq);
524		return ide_stopped;
525	}
526
527	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
528		rq->errors |= ERROR_RESET;
529
530	if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
531		++rq->errors;
532		return ide_do_reset(drive);
533	}
534
535	if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
536		drive->special.b.recalibrate = 1;
537
538	++rq->errors;
539
540	return ide_stopped;
541}
542
543static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
544{
545	ide_hwif_t *hwif = drive->hwif;
546
547	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
548		/* other bits are useless when BUSY */
549		rq->errors |= ERROR_RESET;
550	} else {
551		/* add decoding error stuff */
552	}
553
554	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
555		/* force an abort */
556		hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
557
558	if (rq->errors >= ERROR_MAX) {
559		ide_kill_rq(drive, rq);
560	} else {
561		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
562			++rq->errors;
563			return ide_do_reset(drive);
564		}
565		++rq->errors;
566	}
567
568	return ide_stopped;
569}
570
571ide_startstop_t
572__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
573{
574	if (drive->media == ide_disk)
575		return ide_ata_error(drive, rq, stat, err);
576	return ide_atapi_error(drive, rq, stat, err);
577}
578
579EXPORT_SYMBOL_GPL(__ide_error);
580
581/**
582 *	ide_error	-	handle an error on the IDE
583 *	@drive: drive the error occurred on
584 *	@msg: message to report
585 *	@stat: status bits
586 *
587 *	ide_error() takes action based on the error returned by the drive.
588 *	For normal I/O that may well include retries. We deal with
589 *	both new-style (taskfile) and old style command handling here.
590 *	In the case of taskfile command handling there is work left to
591 *	do
592 */
593
594ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
595{
596	struct request *rq;
597	u8 err;
598
599	err = ide_dump_status(drive, msg, stat);
600
601	if ((rq = HWGROUP(drive)->rq) == NULL)
602		return ide_stopped;
603
604	/* retry only "normal" I/O: */
605	if (!blk_fs_request(rq)) {
606		rq->errors = 1;
607		ide_end_drive_cmd(drive, stat, err);
608		return ide_stopped;
609	}
610
611	if (rq->rq_disk) {
612		ide_driver_t *drv;
613
614		drv = *(ide_driver_t **)rq->rq_disk->private_data;
615		return drv->error(drive, rq, stat, err);
616	} else
617		return __ide_error(drive, rq, stat, err);
618}
619
620EXPORT_SYMBOL_GPL(ide_error);
621
622ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
623{
624	if (drive->media != ide_disk)
625		rq->errors |= ERROR_RESET;
626
627	ide_kill_rq(drive, rq);
628
629	return ide_stopped;
630}
631
632EXPORT_SYMBOL_GPL(__ide_abort);
633
634/**
635 *	ide_abort	-	abort pending IDE operations
636 *	@drive: drive the error occurred on
637 *	@msg: message to report
638 *
639 *	ide_abort kills and cleans up when we are about to do a
640 *	host initiated reset on active commands. Longer term we
641 *	want handlers to have sensible abort handling themselves
642 *
643 *	This differs fundamentally from ide_error because in
644 *	this case the command is doing just fine when we
645 *	blow it away.
646 */
647
648ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
649{
650	struct request *rq;
651
652	if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
653		return ide_stopped;
654
655	/* retry only "normal" I/O: */
656	if (!blk_fs_request(rq)) {
657		rq->errors = 1;
658		ide_end_drive_cmd(drive, BUSY_STAT, 0);
659		return ide_stopped;
660	}
661
662	if (rq->rq_disk) {
663		ide_driver_t *drv;
664
665		drv = *(ide_driver_t **)rq->rq_disk->private_data;
666		return drv->abort(drive, rq);
667	} else
668		return __ide_abort(drive, rq);
669}
670
671/**
672 *	ide_cmd		-	issue a simple drive command
673 *	@drive: drive the command is for
674 *	@cmd: command byte
675 *	@nsect: sector byte
676 *	@handler: handler for the command completion
677 *
678 *	Issue a simple drive command with interrupts.
679 *	The drive must be selected beforehand.
680 */
681
682static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect,
683		ide_handler_t *handler)
684{
685	ide_hwif_t *hwif = HWIF(drive);
686	if (IDE_CONTROL_REG)
687		hwif->OUTB(drive->ctl,IDE_CONTROL_REG);	/* clear nIEN */
688	SELECT_MASK(drive,0);
689	hwif->OUTB(nsect,IDE_NSECTOR_REG);
690	ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
691}
692
693/**
694 *	drive_cmd_intr		- 	drive command completion interrupt
695 *	@drive: drive the completion interrupt occurred on
696 *
697 *	drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
698 *	We do any necessary data reading and then wait for the drive to
699 *	go non busy. At that point we may read the error data and complete
700 *	the request
701 */
702
703static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
704{
705	struct request *rq = HWGROUP(drive)->rq;
706	ide_hwif_t *hwif = HWIF(drive);
707	u8 *args = (u8 *) rq->buffer;
708	u8 stat = hwif->INB(IDE_STATUS_REG);
709	int retries = 10;
710
711	local_irq_enable_in_hardirq();
712	if ((stat & DRQ_STAT) && args && args[3]) {
713		u8 io_32bit = drive->io_32bit;
714		drive->io_32bit = 0;
715		hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
716		drive->io_32bit = io_32bit;
717		while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
718			udelay(100);
719	}
720
721	if (!OK_STAT(stat, READY_STAT, BAD_STAT))
722		return ide_error(drive, "drive_cmd", stat);
723		/* calls ide_end_drive_cmd */
724	ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
725	return ide_stopped;
726}
727
728static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
729{
730	task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
731	task->tfRegister[IDE_SECTOR_OFFSET]  = drive->sect;
732	task->tfRegister[IDE_LCYL_OFFSET]    = drive->cyl;
733	task->tfRegister[IDE_HCYL_OFFSET]    = drive->cyl>>8;
734	task->tfRegister[IDE_SELECT_OFFSET]  = ((drive->head-1)|drive->select.all)&0xBF;
735	task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY;
736
737	task->handler = &set_geometry_intr;
738}
739
740static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
741{
742	task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
743	task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE;
744
745	task->handler = &recal_intr;
746}
747
748static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
749{
750	task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req;
751	task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT;
752
753	task->handler = &set_multmode_intr;
754}
755
756static ide_startstop_t ide_disk_special(ide_drive_t *drive)
757{
758	special_t *s = &drive->special;
759	ide_task_t args;
760
761	memset(&args, 0, sizeof(ide_task_t));
762	args.command_type = IDE_DRIVE_TASK_NO_DATA;
763
764	if (s->b.set_geometry) {
765		s->b.set_geometry = 0;
766		ide_init_specify_cmd(drive, &args);
767	} else if (s->b.recalibrate) {
768		s->b.recalibrate = 0;
769		ide_init_restore_cmd(drive, &args);
770	} else if (s->b.set_multmode) {
771		s->b.set_multmode = 0;
772		if (drive->mult_req > drive->id->max_multsect)
773			drive->mult_req = drive->id->max_multsect;
774		ide_init_setmult_cmd(drive, &args);
775	} else if (s->all) {
776		int special = s->all;
777		s->all = 0;
778		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
779		return ide_stopped;
780	}
781
782	do_rw_taskfile(drive, &args);
783
784	return ide_started;
785}
786
787/**
788 *	do_special		-	issue some special commands
789 *	@drive: drive the command is for
790 *
791 *	do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
792 *	commands to a drive.  It used to do much more, but has been scaled
793 *	back.
794 */
795
796static ide_startstop_t do_special (ide_drive_t *drive)
797{
798	special_t *s = &drive->special;
799
800#ifdef DEBUG
801	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
802#endif
803	if (s->b.set_tune) {
804		s->b.set_tune = 0;
805		if (HWIF(drive)->tuneproc != NULL)
806			HWIF(drive)->tuneproc(drive, drive->tune_req);
807		return ide_stopped;
808	} else {
809		if (drive->media == ide_disk)
810			return ide_disk_special(drive);
811
812		s->all = 0;
813		drive->mult_req = 0;
814		return ide_stopped;
815	}
816}
817
818void ide_map_sg(ide_drive_t *drive, struct request *rq)
819{
820	ide_hwif_t *hwif = drive->hwif;
821	struct scatterlist *sg = hwif->sg_table;
822
823	if (hwif->sg_mapped)	/* needed by ide-scsi */
824		return;
825
826	if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
827		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
828	} else {
829		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
830		hwif->sg_nents = 1;
831	}
832}
833
834EXPORT_SYMBOL_GPL(ide_map_sg);
835
836void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
837{
838	ide_hwif_t *hwif = drive->hwif;
839
840	hwif->nsect = hwif->nleft = rq->nr_sectors;
841	hwif->cursg = hwif->cursg_ofs = 0;
842}
843
844EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
845
846/**
847 *	execute_drive_command	-	issue special drive command
848 *	@drive: the drive to issue the command on
849 *	@rq: the request structure holding the command
850 *
851 *	execute_drive_cmd() issues a special drive command,  usually
852 *	initiated by ioctl() from the external hdparm program. The
853 *	command can be a drive command, drive task or taskfile
854 *	operation. Weirdly you can call it with NULL to wait for
855 *	all commands to finish. Don't do this as that is due to change
856 */
857
858static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
859		struct request *rq)
860{
861	ide_hwif_t *hwif = HWIF(drive);
862	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
863 		ide_task_t *args = rq->special;
864
865		if (!args)
866			goto done;
867
868		hwif->data_phase = args->data_phase;
869
870		switch (hwif->data_phase) {
871		case TASKFILE_MULTI_OUT:
872		case TASKFILE_OUT:
873		case TASKFILE_MULTI_IN:
874		case TASKFILE_IN:
875			ide_init_sg_cmd(drive, rq);
876			ide_map_sg(drive, rq);
877		default:
878			break;
879		}
880
881		if (args->tf_out_flags.all != 0)
882			return flagged_taskfile(drive, args);
883		return do_rw_taskfile(drive, args);
884	} else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
885		u8 *args = rq->buffer;
886		u8 sel;
887
888		if (!args)
889			goto done;
890#ifdef DEBUG
891 		printk("%s: DRIVE_TASK_CMD ", drive->name);
892 		printk("cmd=0x%02x ", args[0]);
893 		printk("fr=0x%02x ", args[1]);
894 		printk("ns=0x%02x ", args[2]);
895 		printk("sc=0x%02x ", args[3]);
896 		printk("lcyl=0x%02x ", args[4]);
897 		printk("hcyl=0x%02x ", args[5]);
898 		printk("sel=0x%02x\n", args[6]);
899#endif
900 		hwif->OUTB(args[1], IDE_FEATURE_REG);
901 		hwif->OUTB(args[3], IDE_SECTOR_REG);
902 		hwif->OUTB(args[4], IDE_LCYL_REG);
903 		hwif->OUTB(args[5], IDE_HCYL_REG);
904 		sel = (args[6] & ~0x10);
905 		if (drive->select.b.unit)
906 			sel |= 0x10;
907 		hwif->OUTB(sel, IDE_SELECT_REG);
908 		ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
909 		return ide_started;
910 	} else if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
911 		u8 *args = rq->buffer;
912
913		if (!args)
914			goto done;
915#ifdef DEBUG
916 		printk("%s: DRIVE_CMD ", drive->name);
917 		printk("cmd=0x%02x ", args[0]);
918 		printk("sc=0x%02x ", args[1]);
919 		printk("fr=0x%02x ", args[2]);
920 		printk("xx=0x%02x\n", args[3]);
921#endif
922 		if (args[0] == WIN_SMART) {
923 			hwif->OUTB(0x4f, IDE_LCYL_REG);
924 			hwif->OUTB(0xc2, IDE_HCYL_REG);
925 			hwif->OUTB(args[2],IDE_FEATURE_REG);
926 			hwif->OUTB(args[1],IDE_SECTOR_REG);
927 			ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
928 			return ide_started;
929 		}
930 		hwif->OUTB(args[2],IDE_FEATURE_REG);
931 		ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
932 		return ide_started;
933 	}
934
935done:
936 	/*
937 	 * NULL is actually a valid way of waiting for
938 	 * all current requests to be flushed from the queue.
939 	 */
940#ifdef DEBUG
941 	printk("%s: DRIVE_CMD (null)\n", drive->name);
942#endif
943 	ide_end_drive_cmd(drive,
944			hwif->INB(IDE_STATUS_REG),
945			hwif->INB(IDE_ERROR_REG));
946 	return ide_stopped;
947}
948
949static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
950{
951	struct request_pm_state *pm = rq->data;
952
953	if (blk_pm_suspend_request(rq) &&
954	    pm->pm_step == ide_pm_state_start_suspend)
955		/* Mark drive blocked when starting the suspend sequence. */
956		drive->blocked = 1;
957	else if (blk_pm_resume_request(rq) &&
958		 pm->pm_step == ide_pm_state_start_resume) {
959		/*
960		 * The first thing we do on wakeup is to wait for BSY bit to
961		 * go away (with a looong timeout) as a drive on this hwif may
962		 * just be POSTing itself.
963		 * We do that before even selecting as the "other" device on
964		 * the bus may be broken enough to walk on our toes at this
965		 * point.
966		 */
967		int rc;
968#ifdef DEBUG_PM
969		printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
970#endif
971		rc = ide_wait_not_busy(HWIF(drive), 35000);
972		if (rc)
973			printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
974		SELECT_DRIVE(drive);
975		HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]);
976		rc = ide_wait_not_busy(HWIF(drive), 100000);
977		if (rc)
978			printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
979	}
980}
981
982/**
983 *	start_request	-	start of I/O and command issuing for IDE
984 *
985 *	start_request() initiates handling of a new I/O request. It
986 *	accepts commands and I/O (read/write) requests. It also does
987 *	the final remapping for weird stuff like EZDrive. Once
988 *	device mapper can work sector level the EZDrive stuff can go away
989 *
990 *	FIXME: this function needs a rename
991 */
992
993static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
994{
995	ide_startstop_t startstop;
996	sector_t block;
997
998	BUG_ON(!blk_rq_started(rq));
999
1000#ifdef DEBUG
1001	printk("%s: start_request: current=0x%08lx\n",
1002		HWIF(drive)->name, (unsigned long) rq);
1003#endif
1004
1005	/* bail early if we've exceeded max_failures */
1006	if (drive->max_failures && (drive->failures > drive->max_failures)) {
1007		goto kill_rq;
1008	}
1009
1010	block    = rq->sector;
1011	if (blk_fs_request(rq) &&
1012	    (drive->media == ide_disk || drive->media == ide_floppy)) {
1013		block += drive->sect0;
1014	}
1015	/* Yecch - this will shift the entire interval,
1016	   possibly killing some innocent following sector */
1017	if (block == 0 && drive->remap_0_to_1 == 1)
1018		block = 1;  /* redirect MBR access to EZ-Drive partn table */
1019
1020	if (blk_pm_request(rq))
1021		ide_check_pm_state(drive, rq);
1022
1023	SELECT_DRIVE(drive);
1024	if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
1025		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
1026		return startstop;
1027	}
1028	if (!drive->special.all) {
1029		ide_driver_t *drv;
1030
1031		/*
1032		 * We reset the drive so we need to issue a SETFEATURES.
1033		 * Do it _after_ do_special() restored device parameters.
1034		 */
1035		if (drive->current_speed == 0xff)
1036			ide_config_drive_speed(drive, drive->desired_speed);
1037
1038		if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1039		    rq->cmd_type == REQ_TYPE_ATA_TASK ||
1040		    rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1041			return execute_drive_cmd(drive, rq);
1042		else if (blk_pm_request(rq)) {
1043			struct request_pm_state *pm = rq->data;
1044#ifdef DEBUG_PM
1045			printk("%s: start_power_step(step: %d)\n",
1046				drive->name, rq->pm->pm_step);
1047#endif
1048			startstop = ide_start_power_step(drive, rq);
1049			if (startstop == ide_stopped &&
1050			    pm->pm_step == ide_pm_state_completed)
1051				ide_complete_pm_request(drive, rq);
1052			return startstop;
1053		}
1054
1055		drv = *(ide_driver_t **)rq->rq_disk->private_data;
1056		return drv->do_request(drive, rq, block);
1057	}
1058	return do_special(drive);
1059kill_rq:
1060	ide_kill_rq(drive, rq);
1061	return ide_stopped;
1062}
1063
1064/**
1065 *	ide_stall_queue		-	pause an IDE device
1066 *	@drive: drive to stall
1067 *	@timeout: time to stall for (jiffies)
1068 *
1069 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
1070 *	to the hwgroup by sleeping for timeout jiffies.
1071 */
1072
1073void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1074{
1075	if (timeout > WAIT_WORSTCASE)
1076		timeout = WAIT_WORSTCASE;
1077	drive->sleep = timeout + jiffies;
1078	drive->sleeping = 1;
1079}
1080
1081EXPORT_SYMBOL(ide_stall_queue);
1082
1083#define WAKEUP(drive)	((drive)->service_start + 2 * (drive)->service_time)
1084
1085/**
1086 *	choose_drive		-	select a drive to service
1087 *	@hwgroup: hardware group to select on
1088 *
1089 *	choose_drive() selects the next drive which will be serviced.
1090 *	This is necessary because the IDE layer can't issue commands
1091 *	to both drives on the same cable, unlike SCSI.
1092 */
1093
1094static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1095{
1096	ide_drive_t *drive, *best;
1097
1098repeat:
1099	best = NULL;
1100	drive = hwgroup->drive;
1101
1102	/*
1103	 * drive is doing pre-flush, ordered write, post-flush sequence. even
1104	 * though that is 3 requests, it must be seen as a single transaction.
1105	 * we must not preempt this drive until that is complete
1106	 */
1107	if (blk_queue_flushing(drive->queue)) {
1108		/*
1109		 * small race where queue could get replugged during
1110		 * the 3-request flush cycle, just yank the plug since
1111		 * we want it to finish asap
1112		 */
1113		blk_remove_plug(drive->queue);
1114		return drive;
1115	}
1116
1117	do {
1118		if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1119		    && !elv_queue_empty(drive->queue)) {
1120			if (!best
1121			 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1122			 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1123			{
1124				if (!blk_queue_plugged(drive->queue))
1125					best = drive;
1126			}
1127		}
1128	} while ((drive = drive->next) != hwgroup->drive);
1129	if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1130		long t = (signed long)(WAKEUP(best) - jiffies);
1131		if (t >= WAIT_MIN_SLEEP) {
1132		/*
1133		 * We *may* have some time to spare, but first let's see if
1134		 * someone can potentially benefit from our nice mood today..
1135		 */
1136			drive = best->next;
1137			do {
1138				if (!drive->sleeping
1139				 && time_before(jiffies - best->service_time, WAKEUP(drive))
1140				 && time_before(WAKEUP(drive), jiffies + t))
1141				{
1142					ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1143					goto repeat;
1144				}
1145			} while ((drive = drive->next) != best);
1146		}
1147	}
1148	return best;
1149}
1150
1151/*
1152 * Issue a new request to a drive from hwgroup
1153 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1154 *
1155 * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1156 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1157 * may have both interfaces in a single hwgroup to "serialize" access.
1158 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1159 * together into one hwgroup for serialized access.
1160 *
1161 * Note also that several hwgroups can end up sharing a single IRQ,
1162 * possibly along with many other devices.  This is especially common in
1163 * PCI-based systems with off-board IDE controller cards.
1164 *
1165 * The IDE driver uses the single global ide_lock spinlock to protect
1166 * access to the request queues, and to protect the hwgroup->busy flag.
1167 *
1168 * The first thread into the driver for a particular hwgroup sets the
1169 * hwgroup->busy flag to indicate that this hwgroup is now active,
1170 * and then initiates processing of the top request from the request queue.
1171 *
1172 * Other threads attempting entry notice the busy setting, and will simply
1173 * queue their new requests and exit immediately.  Note that hwgroup->busy
1174 * remains set even when the driver is merely awaiting the next interrupt.
1175 * Thus, the meaning is "this hwgroup is busy processing a request".
1176 *
1177 * When processing of a request completes, the completing thread or IRQ-handler
1178 * will start the next request from the queue.  If no more work remains,
1179 * the driver will clear the hwgroup->busy flag and exit.
1180 *
1181 * The ide_lock (spinlock) is used to protect all access to the
1182 * hwgroup->busy flag, but is otherwise not needed for most processing in
1183 * the driver.  This makes the driver much more friendlier to shared IRQs
1184 * than previous designs, while remaining 100% (?) SMP safe and capable.
1185 */
1186static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1187{
1188	ide_drive_t	*drive;
1189	ide_hwif_t	*hwif;
1190	struct request	*rq;
1191	ide_startstop_t	startstop;
1192	int             loops = 0;
1193
1194	/* for atari only: POSSIBLY BROKEN HERE(?) */
1195	ide_get_lock(ide_intr, hwgroup);
1196
1197	/* caller must own ide_lock */
1198	BUG_ON(!irqs_disabled());
1199
1200	while (!hwgroup->busy) {
1201		hwgroup->busy = 1;
1202		drive = choose_drive(hwgroup);
1203		if (drive == NULL) {
1204			int sleeping = 0;
1205			unsigned long sleep = 0; /* shut up, gcc */
1206			hwgroup->rq = NULL;
1207			drive = hwgroup->drive;
1208			do {
1209				if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1210					sleeping = 1;
1211					sleep = drive->sleep;
1212				}
1213			} while ((drive = drive->next) != hwgroup->drive);
1214			if (sleeping) {
1215		/*
1216		 * Take a short snooze, and then wake up this hwgroup again.
1217		 * This gives other hwgroups on the same a chance to
1218		 * play fairly with us, just in case there are big differences
1219		 * in relative throughputs.. don't want to hog the cpu too much.
1220		 */
1221				if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1222					sleep = jiffies + WAIT_MIN_SLEEP;
1223#if 1
1224				if (timer_pending(&hwgroup->timer))
1225					printk(KERN_CRIT "ide_set_handler: timer already active\n");
1226#endif
1227				/* so that ide_timer_expiry knows what to do */
1228				hwgroup->sleeping = 1;
1229				hwgroup->req_gen_timer = hwgroup->req_gen;
1230				mod_timer(&hwgroup->timer, sleep);
1231				/* we purposely leave hwgroup->busy==1
1232				 * while sleeping */
1233			} else {
1234				/* Ugly, but how can we sleep for the lock
1235				 * otherwise? perhaps from tq_disk?
1236				 */
1237
1238				/* for atari only */
1239				ide_release_lock();
1240				hwgroup->busy = 0;
1241			}
1242
1243			/* no more work for this hwgroup (for now) */
1244			return;
1245		}
1246	again:
1247		hwif = HWIF(drive);
1248		if (hwgroup->hwif->sharing_irq &&
1249		    hwif != hwgroup->hwif &&
1250		    hwif->io_ports[IDE_CONTROL_OFFSET]) {
1251			/* set nIEN for previous hwif */
1252			SELECT_INTERRUPT(drive);
1253		}
1254		hwgroup->hwif = hwif;
1255		hwgroup->drive = drive;
1256		drive->sleeping = 0;
1257		drive->service_start = jiffies;
1258
1259		if (blk_queue_plugged(drive->queue)) {
1260			printk(KERN_ERR "ide: huh? queue was plugged!\n");
1261			break;
1262		}
1263
1264		/*
1265		 * we know that the queue isn't empty, but this can happen
1266		 * if the q->prep_rq_fn() decides to kill a request
1267		 */
1268		rq = elv_next_request(drive->queue);
1269		if (!rq) {
1270			hwgroup->busy = 0;
1271			break;
1272		}
1273
1274		/*
1275		 * Sanity: don't accept a request that isn't a PM request
1276		 * if we are currently power managed. This is very important as
1277		 * blk_stop_queue() doesn't prevent the elv_next_request()
1278		 * above to return us whatever is in the queue. Since we call
1279		 * ide_do_request() ourselves, we end up taking requests while
1280		 * the queue is blocked...
1281		 *
1282		 * We let requests forced at head of queue with ide-preempt
1283		 * though. I hope that doesn't happen too much, hopefully not
1284		 * unless the subdriver triggers such a thing in its own PM
1285		 * state machine.
1286		 *
1287		 * We count how many times we loop here to make sure we service
1288		 * all drives in the hwgroup without looping for ever
1289		 */
1290		if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1291			drive = drive->next ? drive->next : hwgroup->drive;
1292			if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1293				goto again;
1294			/* We clear busy, there should be no pending ATA command at this point. */
1295			hwgroup->busy = 0;
1296			break;
1297		}
1298
1299		hwgroup->rq = rq;
1300
1301		/*
1302		 * Some systems have trouble with IDE IRQs arriving while
1303		 * the driver is still setting things up.  So, here we disable
1304		 * the IRQ used by this interface while the request is being started.
1305		 * This may look bad at first, but pretty much the same thing
1306		 * happens anyway when any interrupt comes in, IDE or otherwise
1307		 *  -- the kernel masks the IRQ while it is being handled.
1308		 */
1309		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1310			disable_irq_nosync(hwif->irq);
1311		spin_unlock(&ide_lock);
1312		local_irq_enable_in_hardirq();
1313			/* allow other IRQs while we start this request */
1314		startstop = start_request(drive, rq);
1315		spin_lock_irq(&ide_lock);
1316		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1317			enable_irq(hwif->irq);
1318		if (startstop == ide_stopped)
1319			hwgroup->busy = 0;
1320	}
1321}
1322
1323/*
1324 * Passes the stuff to ide_do_request
1325 */
1326void do_ide_request(request_queue_t *q)
1327{
1328	ide_drive_t *drive = q->queuedata;
1329
1330	ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1331}
1332
1333/*
1334 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1335 * retry the current request in pio mode instead of risking tossing it
1336 * all away
1337 */
1338static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1339{
1340	ide_hwif_t *hwif = HWIF(drive);
1341	struct request *rq;
1342	ide_startstop_t ret = ide_stopped;
1343
1344	/*
1345	 * end current dma transaction
1346	 */
1347
1348	if (error < 0) {
1349		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1350		(void)HWIF(drive)->ide_dma_end(drive);
1351		ret = ide_error(drive, "dma timeout error",
1352						hwif->INB(IDE_STATUS_REG));
1353	} else {
1354		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1355		(void) hwif->ide_dma_timeout(drive);
1356	}
1357
1358	/*
1359	 * disable dma for now, but remember that we did so because of
1360	 * a timeout -- we'll reenable after we finish this next request
1361	 * (or rather the first chunk of it) in pio.
1362	 */
1363	drive->retry_pio++;
1364	drive->state = DMA_PIO_RETRY;
1365	hwif->dma_off_quietly(drive);
1366
1367	/*
1368	 * un-busy drive etc (hwgroup->busy is cleared on return) and
1369	 * make sure request is sane
1370	 */
1371	rq = HWGROUP(drive)->rq;
1372
1373	if (!rq)
1374		goto out;
1375
1376	HWGROUP(drive)->rq = NULL;
1377
1378	rq->errors = 0;
1379
1380	if (!rq->bio)
1381		goto out;
1382
1383	rq->sector = rq->bio->bi_sector;
1384	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1385	rq->hard_cur_sectors = rq->current_nr_sectors;
1386	rq->buffer = bio_data(rq->bio);
1387out:
1388	return ret;
1389}
1390
1391/**
1392 *	ide_timer_expiry	-	handle lack of an IDE interrupt
1393 *	@data: timer callback magic (hwgroup)
1394 *
1395 *	An IDE command has timed out before the expected drive return
1396 *	occurred. At this point we attempt to clean up the current
1397 *	mess. If the current handler includes an expiry handler then
1398 *	we invoke the expiry handler, and providing it is happy the
1399 *	work is done. If that fails we apply generic recovery rules
1400 *	invoking the handler and checking the drive DMA status. We
1401 *	have an excessively incestuous relationship with the DMA
1402 *	logic that wants cleaning up.
1403 */
1404
1405void ide_timer_expiry (unsigned long data)
1406{
1407	ide_hwgroup_t	*hwgroup = (ide_hwgroup_t *) data;
1408	ide_handler_t	*handler;
1409	ide_expiry_t	*expiry;
1410	unsigned long	flags;
1411	unsigned long	wait = -1;
1412
1413	spin_lock_irqsave(&ide_lock, flags);
1414
1415	if (((handler = hwgroup->handler) == NULL) ||
1416	    (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1417		/*
1418		 * Either a marginal timeout occurred
1419		 * (got the interrupt just as timer expired),
1420		 * or we were "sleeping" to give other devices a chance.
1421		 * Either way, we don't really want to complain about anything.
1422		 */
1423		if (hwgroup->sleeping) {
1424			hwgroup->sleeping = 0;
1425			hwgroup->busy = 0;
1426		}
1427	} else {
1428		ide_drive_t *drive = hwgroup->drive;
1429		if (!drive) {
1430			printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1431			hwgroup->handler = NULL;
1432		} else {
1433			ide_hwif_t *hwif;
1434			ide_startstop_t startstop = ide_stopped;
1435			if (!hwgroup->busy) {
1436				hwgroup->busy = 1;	/* paranoia */
1437				printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1438			}
1439			if ((expiry = hwgroup->expiry) != NULL) {
1440				/* continue */
1441				if ((wait = expiry(drive)) > 0) {
1442					/* reset timer */
1443					hwgroup->timer.expires  = jiffies + wait;
1444					hwgroup->req_gen_timer = hwgroup->req_gen;
1445					add_timer(&hwgroup->timer);
1446					spin_unlock_irqrestore(&ide_lock, flags);
1447					return;
1448				}
1449			}
1450			hwgroup->handler = NULL;
1451			/*
1452			 * We need to simulate a real interrupt when invoking
1453			 * the handler() function, which means we need to
1454			 * globally mask the specific IRQ:
1455			 */
1456			spin_unlock(&ide_lock);
1457			hwif  = HWIF(drive);
1458#if DISABLE_IRQ_NOSYNC
1459			disable_irq_nosync(hwif->irq);
1460#else
1461			/* disable_irq_nosync ?? */
1462			disable_irq(hwif->irq);
1463#endif /* DISABLE_IRQ_NOSYNC */
1464			/* local CPU only,
1465			 * as if we were handling an interrupt */
1466			local_irq_disable();
1467			if (hwgroup->polling) {
1468				startstop = handler(drive);
1469			} else if (drive_is_ready(drive)) {
1470				if (drive->waiting_for_dma)
1471					(void) hwgroup->hwif->ide_dma_lostirq(drive);
1472				(void)ide_ack_intr(hwif);
1473				printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1474				startstop = handler(drive);
1475			} else {
1476				if (drive->waiting_for_dma) {
1477					startstop = ide_dma_timeout_retry(drive, wait);
1478				} else
1479					startstop =
1480					ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1481			}
1482			drive->service_time = jiffies - drive->service_start;
1483			spin_lock_irq(&ide_lock);
1484			enable_irq(hwif->irq);
1485			if (startstop == ide_stopped)
1486				hwgroup->busy = 0;
1487		}
1488	}
1489	ide_do_request(hwgroup, IDE_NO_IRQ);
1490	spin_unlock_irqrestore(&ide_lock, flags);
1491}
1492
1493/**
1494 *	unexpected_intr		-	handle an unexpected IDE interrupt
1495 *	@irq: interrupt line
1496 *	@hwgroup: hwgroup being processed
1497 *
1498 *	There's nothing really useful we can do with an unexpected interrupt,
1499 *	other than reading the status register (to clear it), and logging it.
1500 *	There should be no way that an irq can happen before we're ready for it,
1501 *	so we needn't worry much about losing an "important" interrupt here.
1502 *
1503 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1504 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
1505 *	looks "good", we just ignore the interrupt completely.
1506 *
1507 *	This routine assumes __cli() is in effect when called.
1508 *
1509 *	If an unexpected interrupt happens on irq15 while we are handling irq14
1510 *	and if the two interfaces are "serialized" (CMD640), then it looks like
1511 *	we could screw up by interfering with a new request being set up for
1512 *	irq15.
1513 *
1514 *	In reality, this is a non-issue.  The new command is not sent unless
1515 *	the drive is ready to accept one, in which case we know the drive is
1516 *	not trying to interrupt us.  And ide_set_handler() is always invoked
1517 *	before completing the issuance of any new drive command, so we will not
1518 *	be accidentally invoked as a result of any valid command completion
1519 *	interrupt.
1520 *
1521 *	Note that we must walk the entire hwgroup here. We know which hwif
1522 *	is doing the current command, but we don't know which hwif burped
1523 *	mysteriously.
1524 */
1525
1526static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1527{
1528	u8 stat;
1529	ide_hwif_t *hwif = hwgroup->hwif;
1530
1531	/*
1532	 * handle the unexpected interrupt
1533	 */
1534	do {
1535		if (hwif->irq == irq) {
1536			stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1537			if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1538				/* Try to not flood the console with msgs */
1539				static unsigned long last_msgtime, count;
1540				++count;
1541				if (time_after(jiffies, last_msgtime + HZ)) {
1542					last_msgtime = jiffies;
1543					printk(KERN_ERR "%s%s: unexpected interrupt, "
1544						"status=0x%02x, count=%ld\n",
1545						hwif->name,
1546						(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1547				}
1548			}
1549		}
1550	} while ((hwif = hwif->next) != hwgroup->hwif);
1551}
1552
1553/**
1554 *	ide_intr	-	default IDE interrupt handler
1555 *	@irq: interrupt number
1556 *	@dev_id: hwif group
1557 *	@regs: unused weirdness from the kernel irq layer
1558 *
1559 *	This is the default IRQ handler for the IDE layer. You should
1560 *	not need to override it. If you do be aware it is subtle in
1561 *	places
1562 *
1563 *	hwgroup->hwif is the interface in the group currently performing
1564 *	a command. hwgroup->drive is the drive and hwgroup->handler is
1565 *	the IRQ handler to call. As we issue a command the handlers
1566 *	step through multiple states, reassigning the handler to the
1567 *	next step in the process. Unlike a smart SCSI controller IDE
1568 *	expects the main processor to sequence the various transfer
1569 *	stages. We also manage a poll timer to catch up with most
1570 *	timeout situations. There are still a few where the handlers
1571 *	don't ever decide to give up.
1572 *
1573 *	The handler eventually returns ide_stopped to indicate the
1574 *	request completed. At this point we issue the next request
1575 *	on the hwgroup and the process begins again.
1576 */
1577
1578irqreturn_t ide_intr (int irq, void *dev_id)
1579{
1580	unsigned long flags;
1581	ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1582	ide_hwif_t *hwif;
1583	ide_drive_t *drive;
1584	ide_handler_t *handler;
1585	ide_startstop_t startstop;
1586
1587	spin_lock_irqsave(&ide_lock, flags);
1588	hwif = hwgroup->hwif;
1589
1590	if (!ide_ack_intr(hwif)) {
1591		spin_unlock_irqrestore(&ide_lock, flags);
1592		return IRQ_NONE;
1593	}
1594
1595	if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1596		/*
1597		 * Not expecting an interrupt from this drive.
1598		 * That means this could be:
1599		 *	(1) an interrupt from another PCI device
1600		 *	sharing the same PCI INT# as us.
1601		 * or	(2) a drive just entered sleep or standby mode,
1602		 *	and is interrupting to let us know.
1603		 * or	(3) a spurious interrupt of unknown origin.
1604		 *
1605		 * For PCI, we cannot tell the difference,
1606		 * so in that case we just ignore it and hope it goes away.
1607		 *
1608		 * FIXME: unexpected_intr should be hwif-> then we can
1609		 * remove all the ifdef PCI crap
1610		 */
1611#ifdef CONFIG_BLK_DEV_IDEPCI
1612		if (hwif->pci_dev && !hwif->pci_dev->vendor)
1613#endif	/* CONFIG_BLK_DEV_IDEPCI */
1614		{
1615			/*
1616			 * Probably not a shared PCI interrupt,
1617			 * so we can safely try to do something about it:
1618			 */
1619			unexpected_intr(irq, hwgroup);
1620#ifdef CONFIG_BLK_DEV_IDEPCI
1621		} else {
1622			/*
1623			 * Whack the status register, just in case
1624			 * we have a leftover pending IRQ.
1625			 */
1626			(void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1627#endif /* CONFIG_BLK_DEV_IDEPCI */
1628		}
1629		spin_unlock_irqrestore(&ide_lock, flags);
1630		return IRQ_NONE;
1631	}
1632	drive = hwgroup->drive;
1633	if (!drive) {
1634		/*
1635		 * This should NEVER happen, and there isn't much
1636		 * we could do about it here.
1637		 *
1638		 * [Note - this can occur if the drive is hot unplugged]
1639		 */
1640		spin_unlock_irqrestore(&ide_lock, flags);
1641		return IRQ_HANDLED;
1642	}
1643	if (!drive_is_ready(drive)) {
1644		/*
1645		 * This happens regularly when we share a PCI IRQ with
1646		 * another device.  Unfortunately, it can also happen
1647		 * with some buggy drives that trigger the IRQ before
1648		 * their status register is up to date.  Hopefully we have
1649		 * enough advance overhead that the latter isn't a problem.
1650		 */
1651		spin_unlock_irqrestore(&ide_lock, flags);
1652		return IRQ_NONE;
1653	}
1654	if (!hwgroup->busy) {
1655		hwgroup->busy = 1;	/* paranoia */
1656		printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1657	}
1658	hwgroup->handler = NULL;
1659	hwgroup->req_gen++;
1660	del_timer(&hwgroup->timer);
1661	spin_unlock(&ide_lock);
1662
1663	/* Some controllers might set DMA INTR no matter DMA or PIO;
1664	 * bmdma status might need to be cleared even for
1665	 * PIO interrupts to prevent spurious/lost irq.
1666	 */
1667	if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1668		/* ide_dma_end() needs bmdma status for error checking.
1669		 * So, skip clearing bmdma status here and leave it
1670		 * to ide_dma_end() if this is dma interrupt.
1671		 */
1672		hwif->ide_dma_clear_irq(drive);
1673
1674	if (drive->unmask)
1675		local_irq_enable_in_hardirq();
1676	/* service this interrupt, may set handler for next interrupt */
1677	startstop = handler(drive);
1678	spin_lock_irq(&ide_lock);
1679
1680	/*
1681	 * Note that handler() may have set things up for another
1682	 * interrupt to occur soon, but it cannot happen until
1683	 * we exit from this routine, because it will be the
1684	 * same irq as is currently being serviced here, and Linux
1685	 * won't allow another of the same (on any CPU) until we return.
1686	 */
1687	drive->service_time = jiffies - drive->service_start;
1688	if (startstop == ide_stopped) {
1689		if (hwgroup->handler == NULL) {	/* paranoia */
1690			hwgroup->busy = 0;
1691			ide_do_request(hwgroup, hwif->irq);
1692		} else {
1693			printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1694				"on exit\n", drive->name);
1695		}
1696	}
1697	spin_unlock_irqrestore(&ide_lock, flags);
1698	return IRQ_HANDLED;
1699}
1700
1701/**
1702 *	ide_init_drive_cmd	-	initialize a drive command request
1703 *	@rq: request object
1704 *
1705 *	Initialize a request before we fill it in and send it down to
1706 *	ide_do_drive_cmd. Commands must be set up by this function. Right
1707 *	now it doesn't do a lot, but if that changes abusers will have a
1708 *	nasty surprise.
1709 */
1710
1711void ide_init_drive_cmd (struct request *rq)
1712{
1713	memset(rq, 0, sizeof(*rq));
1714	rq->cmd_type = REQ_TYPE_ATA_CMD;
1715	rq->ref_count = 1;
1716}
1717
1718EXPORT_SYMBOL(ide_init_drive_cmd);
1719
1720/**
1721 *	ide_do_drive_cmd	-	issue IDE special command
1722 *	@drive: device to issue command
1723 *	@rq: request to issue
1724 *	@action: action for processing
1725 *
1726 *	This function issues a special IDE device request
1727 *	onto the request queue.
1728 *
1729 *	If action is ide_wait, then the rq is queued at the end of the
1730 *	request queue, and the function sleeps until it has been processed.
1731 *	This is for use when invoked from an ioctl handler.
1732 *
1733 *	If action is ide_preempt, then the rq is queued at the head of
1734 *	the request queue, displacing the currently-being-processed
1735 *	request and this function returns immediately without waiting
1736 *	for the new rq to be completed.  This is VERY DANGEROUS, and is
1737 *	intended for careful use by the ATAPI tape/cdrom driver code.
1738 *
1739 *	If action is ide_end, then the rq is queued at the end of the
1740 *	request queue, and the function returns immediately without waiting
1741 *	for the new rq to be completed. This is again intended for careful
1742 *	use by the ATAPI tape/cdrom driver code.
1743 */
1744
1745int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1746{
1747	unsigned long flags;
1748	ide_hwgroup_t *hwgroup = HWGROUP(drive);
1749	DECLARE_COMPLETION_ONSTACK(wait);
1750	int where = ELEVATOR_INSERT_BACK, err;
1751	int must_wait = (action == ide_wait || action == ide_head_wait);
1752
1753	rq->errors = 0;
1754
1755	/*
1756	 * we need to hold an extra reference to request for safe inspection
1757	 * after completion
1758	 */
1759	if (must_wait) {
1760		rq->ref_count++;
1761		rq->end_io_data = &wait;
1762		rq->end_io = blk_end_sync_rq;
1763	}
1764
1765	spin_lock_irqsave(&ide_lock, flags);
1766	if (action == ide_preempt)
1767		hwgroup->rq = NULL;
1768	if (action == ide_preempt || action == ide_head_wait) {
1769		where = ELEVATOR_INSERT_FRONT;
1770		rq->cmd_flags |= REQ_PREEMPT;
1771	}
1772	__elv_add_request(drive->queue, rq, where, 0);
1773	ide_do_request(hwgroup, IDE_NO_IRQ);
1774	spin_unlock_irqrestore(&ide_lock, flags);
1775
1776	err = 0;
1777	if (must_wait) {
1778		wait_for_completion(&wait);
1779		if (rq->errors)
1780			err = -EIO;
1781
1782		blk_put_request(rq);
1783	}
1784
1785	return err;
1786}
1787
1788EXPORT_SYMBOL(ide_do_drive_cmd);
1789