ide-io.c revision 2624565caacedd740fce7803fe2c162842aa5df4
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
50#include <linux/bitops.h>
51
52#include <asm/byteorder.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55#include <asm/io.h>
56
57static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58			     int uptodate, unsigned int nr_bytes, int dequeue)
59{
60	int ret = 1;
61
62	/*
63	 * if failfast is set on a request, override number of sectors and
64	 * complete the whole request right now
65	 */
66	if (blk_noretry_request(rq) && end_io_error(uptodate))
67		nr_bytes = rq->hard_nr_sectors << 9;
68
69	if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70		rq->errors = -EIO;
71
72	/*
73	 * decide whether to reenable DMA -- 3 is a random magic for now,
74	 * if we DMA timeout more than 3 times, just stay in PIO
75	 */
76	if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77		drive->state = 0;
78		ide_dma_on(drive);
79	}
80
81	if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82		add_disk_randomness(rq->rq_disk);
83		if (dequeue) {
84			if (!list_empty(&rq->queuelist))
85				blkdev_dequeue_request(rq);
86			HWGROUP(drive)->rq = NULL;
87		}
88		end_that_request_last(rq, uptodate);
89		ret = 0;
90	}
91
92	return ret;
93}
94
95/**
96 *	ide_end_request		-	complete an IDE I/O
97 *	@drive: IDE device for the I/O
98 *	@uptodate:
99 *	@nr_sectors: number of sectors completed
100 *
101 *	This is our end_request wrapper function. We complete the I/O
102 *	update random number input and dequeue the request, which if
103 *	it was tagged may be out of order.
104 */
105
106int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107{
108	unsigned int nr_bytes = nr_sectors << 9;
109	struct request *rq;
110	unsigned long flags;
111	int ret = 1;
112
113	/*
114	 * room for locking improvements here, the calls below don't
115	 * need the queue lock held at all
116	 */
117	spin_lock_irqsave(&ide_lock, flags);
118	rq = HWGROUP(drive)->rq;
119
120	if (!nr_bytes) {
121		if (blk_pc_request(rq))
122			nr_bytes = rq->data_len;
123		else
124			nr_bytes = rq->hard_cur_sectors << 9;
125	}
126
127	ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128
129	spin_unlock_irqrestore(&ide_lock, flags);
130	return ret;
131}
132EXPORT_SYMBOL(ide_end_request);
133
134/*
135 * Power Management state machine. This one is rather trivial for now,
136 * we should probably add more, like switching back to PIO on suspend
137 * to help some BIOSes, re-do the door locking on resume, etc...
138 */
139
140enum {
141	ide_pm_flush_cache	= ide_pm_state_start_suspend,
142	idedisk_pm_standby,
143
144	idedisk_pm_restore_pio	= ide_pm_state_start_resume,
145	idedisk_pm_idle,
146	ide_pm_restore_dma,
147};
148
149static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150{
151	struct request_pm_state *pm = rq->data;
152
153	if (drive->media != ide_disk)
154		return;
155
156	switch (pm->pm_step) {
157	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) complete */
158		if (pm->pm_state == PM_EVENT_FREEZE)
159			pm->pm_step = ide_pm_state_completed;
160		else
161			pm->pm_step = idedisk_pm_standby;
162		break;
163	case idedisk_pm_standby:	/* Suspend step 2 (standby) complete */
164		pm->pm_step = ide_pm_state_completed;
165		break;
166	case idedisk_pm_restore_pio:	/* Resume step 1 complete */
167		pm->pm_step = idedisk_pm_idle;
168		break;
169	case idedisk_pm_idle:		/* Resume step 2 (idle) complete */
170		pm->pm_step = ide_pm_restore_dma;
171		break;
172	}
173}
174
175static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176{
177	struct request_pm_state *pm = rq->data;
178	ide_task_t *args = rq->special;
179
180	memset(args, 0, sizeof(*args));
181
182	switch (pm->pm_step) {
183	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) */
184		if (drive->media != ide_disk)
185			break;
186		/* Not supported? Switch to next step now. */
187		if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188			ide_complete_power_step(drive, rq, 0, 0);
189			return ide_stopped;
190		}
191		if (ide_id_has_flush_cache_ext(drive->id))
192			args->tf.command = WIN_FLUSH_CACHE_EXT;
193		else
194			args->tf.command = WIN_FLUSH_CACHE;
195		goto out_do_tf;
196
197	case idedisk_pm_standby:	/* Suspend step 2 (standby) */
198		args->tf.command = WIN_STANDBYNOW1;
199		goto out_do_tf;
200
201	case idedisk_pm_restore_pio:	/* Resume step 1 (restore PIO) */
202		ide_set_max_pio(drive);
203		/*
204		 * skip idedisk_pm_idle for ATAPI devices
205		 */
206		if (drive->media != ide_disk)
207			pm->pm_step = ide_pm_restore_dma;
208		else
209			ide_complete_power_step(drive, rq, 0, 0);
210		return ide_stopped;
211
212	case idedisk_pm_idle:		/* Resume step 2 (idle) */
213		args->tf.command = WIN_IDLEIMMEDIATE;
214		goto out_do_tf;
215
216	case ide_pm_restore_dma:	/* Resume step 3 (restore DMA) */
217		/*
218		 * Right now, all we do is call ide_set_dma(drive),
219		 * we could be smarter and check for current xfer_speed
220		 * in struct drive etc...
221		 */
222		if (drive->hwif->dma_host_set == NULL)
223			break;
224		/*
225		 * TODO: respect ->using_dma setting
226		 */
227		ide_set_dma(drive);
228		break;
229	}
230	pm->pm_step = ide_pm_state_completed;
231	return ide_stopped;
232
233out_do_tf:
234	args->tf_flags	 = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
235	args->data_phase = TASKFILE_NO_DATA;
236	return do_rw_taskfile(drive, args);
237}
238
239/**
240 *	ide_end_dequeued_request	-	complete an IDE I/O
241 *	@drive: IDE device for the I/O
242 *	@uptodate:
243 *	@nr_sectors: number of sectors completed
244 *
245 *	Complete an I/O that is no longer on the request queue. This
246 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
247 *	We must still finish the old request but we must not tamper with the
248 *	queue in the meantime.
249 *
250 *	NOTE: This path does not handle barrier, but barrier is not supported
251 *	on ide-cd anyway.
252 */
253
254int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
255			     int uptodate, int nr_sectors)
256{
257	unsigned long flags;
258	int ret;
259
260	spin_lock_irqsave(&ide_lock, flags);
261	BUG_ON(!blk_rq_started(rq));
262	ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
263	spin_unlock_irqrestore(&ide_lock, flags);
264
265	return ret;
266}
267EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
268
269
270/**
271 *	ide_complete_pm_request - end the current Power Management request
272 *	@drive: target drive
273 *	@rq: request
274 *
275 *	This function cleans up the current PM request and stops the queue
276 *	if necessary.
277 */
278static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
279{
280	unsigned long flags;
281
282#ifdef DEBUG_PM
283	printk("%s: completing PM request, %s\n", drive->name,
284	       blk_pm_suspend_request(rq) ? "suspend" : "resume");
285#endif
286	spin_lock_irqsave(&ide_lock, flags);
287	if (blk_pm_suspend_request(rq)) {
288		blk_stop_queue(drive->queue);
289	} else {
290		drive->blocked = 0;
291		blk_start_queue(drive->queue);
292	}
293	blkdev_dequeue_request(rq);
294	HWGROUP(drive)->rq = NULL;
295	end_that_request_last(rq, 1);
296	spin_unlock_irqrestore(&ide_lock, flags);
297}
298
299void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
300{
301	ide_hwif_t *hwif = drive->hwif;
302	struct ide_taskfile *tf = &task->tf;
303
304	if (task->tf_flags & IDE_TFLAG_IN_DATA) {
305		u16 data = hwif->INW(IDE_DATA_REG);
306
307		tf->data = data & 0xff;
308		tf->hob_data = (data >> 8) & 0xff;
309	}
310
311	/* be sure we're looking at the low order bits */
312	hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
313
314	if (task->tf_flags & IDE_TFLAG_IN_NSECT)
315		tf->nsect  = hwif->INB(IDE_NSECTOR_REG);
316	if (task->tf_flags & IDE_TFLAG_IN_LBAL)
317		tf->lbal   = hwif->INB(IDE_SECTOR_REG);
318	if (task->tf_flags & IDE_TFLAG_IN_LBAM)
319		tf->lbam   = hwif->INB(IDE_LCYL_REG);
320	if (task->tf_flags & IDE_TFLAG_IN_LBAH)
321		tf->lbah   = hwif->INB(IDE_HCYL_REG);
322	if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
323		tf->device = hwif->INB(IDE_SELECT_REG);
324
325	if (task->tf_flags & IDE_TFLAG_LBA48) {
326		hwif->OUTB(drive->ctl | 0x80, IDE_CONTROL_REG);
327
328		if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
329			tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
330		if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
331			tf->hob_nsect   = hwif->INB(IDE_NSECTOR_REG);
332		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
333			tf->hob_lbal    = hwif->INB(IDE_SECTOR_REG);
334		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
335			tf->hob_lbam    = hwif->INB(IDE_LCYL_REG);
336		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
337			tf->hob_lbah    = hwif->INB(IDE_HCYL_REG);
338	}
339}
340
341/**
342 *	ide_end_drive_cmd	-	end an explicit drive command
343 *	@drive: command
344 *	@stat: status bits
345 *	@err: error bits
346 *
347 *	Clean up after success/failure of an explicit drive command.
348 *	These get thrown onto the queue so they are synchronized with
349 *	real I/O operations on the drive.
350 *
351 *	In LBA48 mode we have to read the register set twice to get
352 *	all the extra information out.
353 */
354
355void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
356{
357	ide_hwif_t *hwif = HWIF(drive);
358	unsigned long flags;
359	struct request *rq;
360
361	spin_lock_irqsave(&ide_lock, flags);
362	rq = HWGROUP(drive)->rq;
363	spin_unlock_irqrestore(&ide_lock, flags);
364
365	if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
366		u8 *args = (u8 *) rq->buffer;
367		if (rq->errors == 0)
368			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
369
370		if (args) {
371			args[0] = stat;
372			args[1] = err;
373			/* be sure we're looking at the low order bits */
374			hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
375			args[2] = hwif->INB(IDE_NSECTOR_REG);
376		}
377	} else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
378		ide_task_t *args = (ide_task_t *) rq->special;
379		if (rq->errors == 0)
380			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
381
382		if (args) {
383			struct ide_taskfile *tf = &args->tf;
384
385			tf->error = err;
386			tf->status = stat;
387
388			ide_tf_read(drive, args);
389		}
390	} else if (blk_pm_request(rq)) {
391		struct request_pm_state *pm = rq->data;
392#ifdef DEBUG_PM
393		printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
394			drive->name, rq->pm->pm_step, stat, err);
395#endif
396		ide_complete_power_step(drive, rq, stat, err);
397		if (pm->pm_step == ide_pm_state_completed)
398			ide_complete_pm_request(drive, rq);
399		return;
400	}
401
402	spin_lock_irqsave(&ide_lock, flags);
403	blkdev_dequeue_request(rq);
404	HWGROUP(drive)->rq = NULL;
405	rq->errors = err;
406	end_that_request_last(rq, !rq->errors);
407	spin_unlock_irqrestore(&ide_lock, flags);
408}
409
410EXPORT_SYMBOL(ide_end_drive_cmd);
411
412/**
413 *	try_to_flush_leftover_data	-	flush junk
414 *	@drive: drive to flush
415 *
416 *	try_to_flush_leftover_data() is invoked in response to a drive
417 *	unexpectedly having its DRQ_STAT bit set.  As an alternative to
418 *	resetting the drive, this routine tries to clear the condition
419 *	by read a sector's worth of data from the drive.  Of course,
420 *	this may not help if the drive is *waiting* for data from *us*.
421 */
422static void try_to_flush_leftover_data (ide_drive_t *drive)
423{
424	int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
425
426	if (drive->media != ide_disk)
427		return;
428	while (i > 0) {
429		u32 buffer[16];
430		u32 wcount = (i > 16) ? 16 : i;
431
432		i -= wcount;
433		HWIF(drive)->ata_input_data(drive, buffer, wcount);
434	}
435}
436
437static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
438{
439	if (rq->rq_disk) {
440		ide_driver_t *drv;
441
442		drv = *(ide_driver_t **)rq->rq_disk->private_data;
443		drv->end_request(drive, 0, 0);
444	} else
445		ide_end_request(drive, 0, 0);
446}
447
448static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
449{
450	ide_hwif_t *hwif = drive->hwif;
451
452	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
453		/* other bits are useless when BUSY */
454		rq->errors |= ERROR_RESET;
455	} else if (stat & ERR_STAT) {
456		/* err has different meaning on cdrom and tape */
457		if (err == ABRT_ERR) {
458			if (drive->select.b.lba &&
459			    /* some newer drives don't support WIN_SPECIFY */
460			    hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
461				return ide_stopped;
462		} else if ((err & BAD_CRC) == BAD_CRC) {
463			/* UDMA crc error, just retry the operation */
464			drive->crc_count++;
465		} else if (err & (BBD_ERR | ECC_ERR)) {
466			/* retries won't help these */
467			rq->errors = ERROR_MAX;
468		} else if (err & TRK0_ERR) {
469			/* help it find track zero */
470			rq->errors |= ERROR_RECAL;
471		}
472	}
473
474	if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
475	    (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
476		try_to_flush_leftover_data(drive);
477
478	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
479		ide_kill_rq(drive, rq);
480		return ide_stopped;
481	}
482
483	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
484		rq->errors |= ERROR_RESET;
485
486	if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
487		++rq->errors;
488		return ide_do_reset(drive);
489	}
490
491	if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
492		drive->special.b.recalibrate = 1;
493
494	++rq->errors;
495
496	return ide_stopped;
497}
498
499static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
500{
501	ide_hwif_t *hwif = drive->hwif;
502
503	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
504		/* other bits are useless when BUSY */
505		rq->errors |= ERROR_RESET;
506	} else {
507		/* add decoding error stuff */
508	}
509
510	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
511		/* force an abort */
512		hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
513
514	if (rq->errors >= ERROR_MAX) {
515		ide_kill_rq(drive, rq);
516	} else {
517		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
518			++rq->errors;
519			return ide_do_reset(drive);
520		}
521		++rq->errors;
522	}
523
524	return ide_stopped;
525}
526
527ide_startstop_t
528__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
529{
530	if (drive->media == ide_disk)
531		return ide_ata_error(drive, rq, stat, err);
532	return ide_atapi_error(drive, rq, stat, err);
533}
534
535EXPORT_SYMBOL_GPL(__ide_error);
536
537/**
538 *	ide_error	-	handle an error on the IDE
539 *	@drive: drive the error occurred on
540 *	@msg: message to report
541 *	@stat: status bits
542 *
543 *	ide_error() takes action based on the error returned by the drive.
544 *	For normal I/O that may well include retries. We deal with
545 *	both new-style (taskfile) and old style command handling here.
546 *	In the case of taskfile command handling there is work left to
547 *	do
548 */
549
550ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
551{
552	struct request *rq;
553	u8 err;
554
555	err = ide_dump_status(drive, msg, stat);
556
557	if ((rq = HWGROUP(drive)->rq) == NULL)
558		return ide_stopped;
559
560	/* retry only "normal" I/O: */
561	if (!blk_fs_request(rq)) {
562		rq->errors = 1;
563		ide_end_drive_cmd(drive, stat, err);
564		return ide_stopped;
565	}
566
567	if (rq->rq_disk) {
568		ide_driver_t *drv;
569
570		drv = *(ide_driver_t **)rq->rq_disk->private_data;
571		return drv->error(drive, rq, stat, err);
572	} else
573		return __ide_error(drive, rq, stat, err);
574}
575
576EXPORT_SYMBOL_GPL(ide_error);
577
578ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
579{
580	if (drive->media != ide_disk)
581		rq->errors |= ERROR_RESET;
582
583	ide_kill_rq(drive, rq);
584
585	return ide_stopped;
586}
587
588EXPORT_SYMBOL_GPL(__ide_abort);
589
590/**
591 *	ide_abort	-	abort pending IDE operations
592 *	@drive: drive the error occurred on
593 *	@msg: message to report
594 *
595 *	ide_abort kills and cleans up when we are about to do a
596 *	host initiated reset on active commands. Longer term we
597 *	want handlers to have sensible abort handling themselves
598 *
599 *	This differs fundamentally from ide_error because in
600 *	this case the command is doing just fine when we
601 *	blow it away.
602 */
603
604ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
605{
606	struct request *rq;
607
608	if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
609		return ide_stopped;
610
611	/* retry only "normal" I/O: */
612	if (!blk_fs_request(rq)) {
613		rq->errors = 1;
614		ide_end_drive_cmd(drive, BUSY_STAT, 0);
615		return ide_stopped;
616	}
617
618	if (rq->rq_disk) {
619		ide_driver_t *drv;
620
621		drv = *(ide_driver_t **)rq->rq_disk->private_data;
622		return drv->abort(drive, rq);
623	} else
624		return __ide_abort(drive, rq);
625}
626
627/**
628 *	drive_cmd_intr		- 	drive command completion interrupt
629 *	@drive: drive the completion interrupt occurred on
630 *
631 *	drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
632 *	We do any necessary data reading and then wait for the drive to
633 *	go non busy. At that point we may read the error data and complete
634 *	the request
635 */
636
637static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
638{
639	struct request *rq = HWGROUP(drive)->rq;
640	ide_hwif_t *hwif = HWIF(drive);
641	u8 *args = (u8 *) rq->buffer;
642	u8 stat = hwif->INB(IDE_STATUS_REG);
643
644	local_irq_enable_in_hardirq();
645	if (rq->cmd_type == REQ_TYPE_ATA_CMD &&
646	    (stat & DRQ_STAT) && args && args[3]) {
647		u8 io_32bit = drive->io_32bit;
648		drive->io_32bit = 0;
649		hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
650		drive->io_32bit = io_32bit;
651		stat = wait_drive_not_busy(drive);
652	}
653
654	if (!OK_STAT(stat, READY_STAT, BAD_STAT))
655		return ide_error(drive, "drive_cmd", stat);
656		/* calls ide_end_drive_cmd */
657	ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
658	return ide_stopped;
659}
660
661static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
662{
663	tf->nsect   = drive->sect;
664	tf->lbal    = drive->sect;
665	tf->lbam    = drive->cyl;
666	tf->lbah    = drive->cyl >> 8;
667	tf->device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
668	tf->command = WIN_SPECIFY;
669}
670
671static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
672{
673	tf->nsect   = drive->sect;
674	tf->command = WIN_RESTORE;
675}
676
677static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
678{
679	tf->nsect   = drive->mult_req;
680	tf->command = WIN_SETMULT;
681}
682
683static ide_startstop_t ide_disk_special(ide_drive_t *drive)
684{
685	special_t *s = &drive->special;
686	ide_task_t args;
687
688	memset(&args, 0, sizeof(ide_task_t));
689	args.data_phase = TASKFILE_NO_DATA;
690
691	if (s->b.set_geometry) {
692		s->b.set_geometry = 0;
693		ide_tf_set_specify_cmd(drive, &args.tf);
694	} else if (s->b.recalibrate) {
695		s->b.recalibrate = 0;
696		ide_tf_set_restore_cmd(drive, &args.tf);
697	} else if (s->b.set_multmode) {
698		s->b.set_multmode = 0;
699		if (drive->mult_req > drive->id->max_multsect)
700			drive->mult_req = drive->id->max_multsect;
701		ide_tf_set_setmult_cmd(drive, &args.tf);
702	} else if (s->all) {
703		int special = s->all;
704		s->all = 0;
705		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
706		return ide_stopped;
707	}
708
709	args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
710			IDE_TFLAG_CUSTOM_HANDLER;
711
712	do_rw_taskfile(drive, &args);
713
714	return ide_started;
715}
716
717/*
718 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
719 */
720static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
721{
722	switch (req_pio) {
723	case 202:
724	case 201:
725	case 200:
726	case 102:
727	case 101:
728	case 100:
729		return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
730	case 9:
731	case 8:
732		return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
733	case 7:
734	case 6:
735		return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
736	default:
737		return 0;
738	}
739}
740
741/**
742 *	do_special		-	issue some special commands
743 *	@drive: drive the command is for
744 *
745 *	do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
746 *	commands to a drive.  It used to do much more, but has been scaled
747 *	back.
748 */
749
750static ide_startstop_t do_special (ide_drive_t *drive)
751{
752	special_t *s = &drive->special;
753
754#ifdef DEBUG
755	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
756#endif
757	if (s->b.set_tune) {
758		ide_hwif_t *hwif = drive->hwif;
759		u8 req_pio = drive->tune_req;
760
761		s->b.set_tune = 0;
762
763		if (set_pio_mode_abuse(drive->hwif, req_pio)) {
764
765			if (hwif->set_pio_mode == NULL)
766				return ide_stopped;
767
768			/*
769			 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
770			 */
771			if (req_pio == 8 || req_pio == 9) {
772				unsigned long flags;
773
774				spin_lock_irqsave(&ide_lock, flags);
775				hwif->set_pio_mode(drive, req_pio);
776				spin_unlock_irqrestore(&ide_lock, flags);
777			} else
778				hwif->set_pio_mode(drive, req_pio);
779		} else {
780			int keep_dma = drive->using_dma;
781
782			ide_set_pio(drive, req_pio);
783
784			if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
785				if (keep_dma)
786					ide_dma_on(drive);
787			}
788		}
789
790		return ide_stopped;
791	} else {
792		if (drive->media == ide_disk)
793			return ide_disk_special(drive);
794
795		s->all = 0;
796		drive->mult_req = 0;
797		return ide_stopped;
798	}
799}
800
801void ide_map_sg(ide_drive_t *drive, struct request *rq)
802{
803	ide_hwif_t *hwif = drive->hwif;
804	struct scatterlist *sg = hwif->sg_table;
805
806	if (hwif->sg_mapped)	/* needed by ide-scsi */
807		return;
808
809	if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
810		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
811	} else {
812		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
813		hwif->sg_nents = 1;
814	}
815}
816
817EXPORT_SYMBOL_GPL(ide_map_sg);
818
819void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
820{
821	ide_hwif_t *hwif = drive->hwif;
822
823	hwif->nsect = hwif->nleft = rq->nr_sectors;
824	hwif->cursg_ofs = 0;
825	hwif->cursg = NULL;
826}
827
828EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
829
830/**
831 *	execute_drive_command	-	issue special drive command
832 *	@drive: the drive to issue the command on
833 *	@rq: the request structure holding the command
834 *
835 *	execute_drive_cmd() issues a special drive command,  usually
836 *	initiated by ioctl() from the external hdparm program. The
837 *	command can be a drive command, drive task or taskfile
838 *	operation. Weirdly you can call it with NULL to wait for
839 *	all commands to finish. Don't do this as that is due to change
840 */
841
842static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
843		struct request *rq)
844{
845	ide_hwif_t *hwif = HWIF(drive);
846	u8 *args = rq->buffer;
847	ide_task_t ltask;
848	struct ide_taskfile *tf = &ltask.tf;
849
850	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
851		ide_task_t *task = rq->special;
852
853		if (task == NULL)
854			goto done;
855
856		hwif->data_phase = task->data_phase;
857
858		switch (hwif->data_phase) {
859		case TASKFILE_MULTI_OUT:
860		case TASKFILE_OUT:
861		case TASKFILE_MULTI_IN:
862		case TASKFILE_IN:
863			ide_init_sg_cmd(drive, rq);
864			ide_map_sg(drive, rq);
865		default:
866			break;
867		}
868
869		return do_rw_taskfile(drive, task);
870	}
871
872	if (args == NULL)
873		goto done;
874
875	memset(&ltask, 0, sizeof(ltask));
876	if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
877#ifdef DEBUG
878		printk("%s: DRIVE_CMD\n", drive->name);
879#endif
880		tf->feature = args[2];
881		if (args[0] == WIN_SMART) {
882			tf->nsect = args[3];
883			tf->lbal  = args[1];
884			tf->lbam  = 0x4f;
885			tf->lbah  = 0xc2;
886			ltask.tf_flags = IDE_TFLAG_OUT_TF;
887		} else {
888			tf->nsect = args[1];
889			ltask.tf_flags = IDE_TFLAG_OUT_FEATURE |
890					 IDE_TFLAG_OUT_NSECT;
891		}
892 	}
893	tf->command = args[0];
894	ide_tf_load(drive, &ltask);
895	ide_execute_command(drive, args[0], &drive_cmd_intr, WAIT_WORSTCASE, NULL);
896	return ide_started;
897
898done:
899 	/*
900 	 * NULL is actually a valid way of waiting for
901 	 * all current requests to be flushed from the queue.
902 	 */
903#ifdef DEBUG
904 	printk("%s: DRIVE_CMD (null)\n", drive->name);
905#endif
906 	ide_end_drive_cmd(drive,
907			hwif->INB(IDE_STATUS_REG),
908			hwif->INB(IDE_ERROR_REG));
909 	return ide_stopped;
910}
911
912static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
913{
914	struct request_pm_state *pm = rq->data;
915
916	if (blk_pm_suspend_request(rq) &&
917	    pm->pm_step == ide_pm_state_start_suspend)
918		/* Mark drive blocked when starting the suspend sequence. */
919		drive->blocked = 1;
920	else if (blk_pm_resume_request(rq) &&
921		 pm->pm_step == ide_pm_state_start_resume) {
922		/*
923		 * The first thing we do on wakeup is to wait for BSY bit to
924		 * go away (with a looong timeout) as a drive on this hwif may
925		 * just be POSTing itself.
926		 * We do that before even selecting as the "other" device on
927		 * the bus may be broken enough to walk on our toes at this
928		 * point.
929		 */
930		int rc;
931#ifdef DEBUG_PM
932		printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
933#endif
934		rc = ide_wait_not_busy(HWIF(drive), 35000);
935		if (rc)
936			printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
937		SELECT_DRIVE(drive);
938		ide_set_irq(drive, 1);
939		rc = ide_wait_not_busy(HWIF(drive), 100000);
940		if (rc)
941			printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
942	}
943}
944
945/**
946 *	start_request	-	start of I/O and command issuing for IDE
947 *
948 *	start_request() initiates handling of a new I/O request. It
949 *	accepts commands and I/O (read/write) requests. It also does
950 *	the final remapping for weird stuff like EZDrive. Once
951 *	device mapper can work sector level the EZDrive stuff can go away
952 *
953 *	FIXME: this function needs a rename
954 */
955
956static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
957{
958	ide_startstop_t startstop;
959	sector_t block;
960
961	BUG_ON(!blk_rq_started(rq));
962
963#ifdef DEBUG
964	printk("%s: start_request: current=0x%08lx\n",
965		HWIF(drive)->name, (unsigned long) rq);
966#endif
967
968	/* bail early if we've exceeded max_failures */
969	if (drive->max_failures && (drive->failures > drive->max_failures)) {
970		rq->cmd_flags |= REQ_FAILED;
971		goto kill_rq;
972	}
973
974	block    = rq->sector;
975	if (blk_fs_request(rq) &&
976	    (drive->media == ide_disk || drive->media == ide_floppy)) {
977		block += drive->sect0;
978	}
979	/* Yecch - this will shift the entire interval,
980	   possibly killing some innocent following sector */
981	if (block == 0 && drive->remap_0_to_1 == 1)
982		block = 1;  /* redirect MBR access to EZ-Drive partn table */
983
984	if (blk_pm_request(rq))
985		ide_check_pm_state(drive, rq);
986
987	SELECT_DRIVE(drive);
988	if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
989		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
990		return startstop;
991	}
992	if (!drive->special.all) {
993		ide_driver_t *drv;
994
995		/*
996		 * We reset the drive so we need to issue a SETFEATURES.
997		 * Do it _after_ do_special() restored device parameters.
998		 */
999		if (drive->current_speed == 0xff)
1000			ide_config_drive_speed(drive, drive->desired_speed);
1001
1002		if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1003		    rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1004			return execute_drive_cmd(drive, rq);
1005		else if (blk_pm_request(rq)) {
1006			struct request_pm_state *pm = rq->data;
1007#ifdef DEBUG_PM
1008			printk("%s: start_power_step(step: %d)\n",
1009				drive->name, rq->pm->pm_step);
1010#endif
1011			startstop = ide_start_power_step(drive, rq);
1012			if (startstop == ide_stopped &&
1013			    pm->pm_step == ide_pm_state_completed)
1014				ide_complete_pm_request(drive, rq);
1015			return startstop;
1016		}
1017
1018		drv = *(ide_driver_t **)rq->rq_disk->private_data;
1019		return drv->do_request(drive, rq, block);
1020	}
1021	return do_special(drive);
1022kill_rq:
1023	ide_kill_rq(drive, rq);
1024	return ide_stopped;
1025}
1026
1027/**
1028 *	ide_stall_queue		-	pause an IDE device
1029 *	@drive: drive to stall
1030 *	@timeout: time to stall for (jiffies)
1031 *
1032 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
1033 *	to the hwgroup by sleeping for timeout jiffies.
1034 */
1035
1036void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1037{
1038	if (timeout > WAIT_WORSTCASE)
1039		timeout = WAIT_WORSTCASE;
1040	drive->sleep = timeout + jiffies;
1041	drive->sleeping = 1;
1042}
1043
1044EXPORT_SYMBOL(ide_stall_queue);
1045
1046#define WAKEUP(drive)	((drive)->service_start + 2 * (drive)->service_time)
1047
1048/**
1049 *	choose_drive		-	select a drive to service
1050 *	@hwgroup: hardware group to select on
1051 *
1052 *	choose_drive() selects the next drive which will be serviced.
1053 *	This is necessary because the IDE layer can't issue commands
1054 *	to both drives on the same cable, unlike SCSI.
1055 */
1056
1057static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1058{
1059	ide_drive_t *drive, *best;
1060
1061repeat:
1062	best = NULL;
1063	drive = hwgroup->drive;
1064
1065	/*
1066	 * drive is doing pre-flush, ordered write, post-flush sequence. even
1067	 * though that is 3 requests, it must be seen as a single transaction.
1068	 * we must not preempt this drive until that is complete
1069	 */
1070	if (blk_queue_flushing(drive->queue)) {
1071		/*
1072		 * small race where queue could get replugged during
1073		 * the 3-request flush cycle, just yank the plug since
1074		 * we want it to finish asap
1075		 */
1076		blk_remove_plug(drive->queue);
1077		return drive;
1078	}
1079
1080	do {
1081		if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1082		    && !elv_queue_empty(drive->queue)) {
1083			if (!best
1084			 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1085			 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1086			{
1087				if (!blk_queue_plugged(drive->queue))
1088					best = drive;
1089			}
1090		}
1091	} while ((drive = drive->next) != hwgroup->drive);
1092	if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1093		long t = (signed long)(WAKEUP(best) - jiffies);
1094		if (t >= WAIT_MIN_SLEEP) {
1095		/*
1096		 * We *may* have some time to spare, but first let's see if
1097		 * someone can potentially benefit from our nice mood today..
1098		 */
1099			drive = best->next;
1100			do {
1101				if (!drive->sleeping
1102				 && time_before(jiffies - best->service_time, WAKEUP(drive))
1103				 && time_before(WAKEUP(drive), jiffies + t))
1104				{
1105					ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1106					goto repeat;
1107				}
1108			} while ((drive = drive->next) != best);
1109		}
1110	}
1111	return best;
1112}
1113
1114/*
1115 * Issue a new request to a drive from hwgroup
1116 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1117 *
1118 * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1119 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1120 * may have both interfaces in a single hwgroup to "serialize" access.
1121 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1122 * together into one hwgroup for serialized access.
1123 *
1124 * Note also that several hwgroups can end up sharing a single IRQ,
1125 * possibly along with many other devices.  This is especially common in
1126 * PCI-based systems with off-board IDE controller cards.
1127 *
1128 * The IDE driver uses the single global ide_lock spinlock to protect
1129 * access to the request queues, and to protect the hwgroup->busy flag.
1130 *
1131 * The first thread into the driver for a particular hwgroup sets the
1132 * hwgroup->busy flag to indicate that this hwgroup is now active,
1133 * and then initiates processing of the top request from the request queue.
1134 *
1135 * Other threads attempting entry notice the busy setting, and will simply
1136 * queue their new requests and exit immediately.  Note that hwgroup->busy
1137 * remains set even when the driver is merely awaiting the next interrupt.
1138 * Thus, the meaning is "this hwgroup is busy processing a request".
1139 *
1140 * When processing of a request completes, the completing thread or IRQ-handler
1141 * will start the next request from the queue.  If no more work remains,
1142 * the driver will clear the hwgroup->busy flag and exit.
1143 *
1144 * The ide_lock (spinlock) is used to protect all access to the
1145 * hwgroup->busy flag, but is otherwise not needed for most processing in
1146 * the driver.  This makes the driver much more friendlier to shared IRQs
1147 * than previous designs, while remaining 100% (?) SMP safe and capable.
1148 */
1149static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1150{
1151	ide_drive_t	*drive;
1152	ide_hwif_t	*hwif;
1153	struct request	*rq;
1154	ide_startstop_t	startstop;
1155	int             loops = 0;
1156
1157	/* for atari only: POSSIBLY BROKEN HERE(?) */
1158	ide_get_lock(ide_intr, hwgroup);
1159
1160	/* caller must own ide_lock */
1161	BUG_ON(!irqs_disabled());
1162
1163	while (!hwgroup->busy) {
1164		hwgroup->busy = 1;
1165		drive = choose_drive(hwgroup);
1166		if (drive == NULL) {
1167			int sleeping = 0;
1168			unsigned long sleep = 0; /* shut up, gcc */
1169			hwgroup->rq = NULL;
1170			drive = hwgroup->drive;
1171			do {
1172				if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1173					sleeping = 1;
1174					sleep = drive->sleep;
1175				}
1176			} while ((drive = drive->next) != hwgroup->drive);
1177			if (sleeping) {
1178		/*
1179		 * Take a short snooze, and then wake up this hwgroup again.
1180		 * This gives other hwgroups on the same a chance to
1181		 * play fairly with us, just in case there are big differences
1182		 * in relative throughputs.. don't want to hog the cpu too much.
1183		 */
1184				if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1185					sleep = jiffies + WAIT_MIN_SLEEP;
1186#if 1
1187				if (timer_pending(&hwgroup->timer))
1188					printk(KERN_CRIT "ide_set_handler: timer already active\n");
1189#endif
1190				/* so that ide_timer_expiry knows what to do */
1191				hwgroup->sleeping = 1;
1192				hwgroup->req_gen_timer = hwgroup->req_gen;
1193				mod_timer(&hwgroup->timer, sleep);
1194				/* we purposely leave hwgroup->busy==1
1195				 * while sleeping */
1196			} else {
1197				/* Ugly, but how can we sleep for the lock
1198				 * otherwise? perhaps from tq_disk?
1199				 */
1200
1201				/* for atari only */
1202				ide_release_lock();
1203				hwgroup->busy = 0;
1204			}
1205
1206			/* no more work for this hwgroup (for now) */
1207			return;
1208		}
1209	again:
1210		hwif = HWIF(drive);
1211		if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1212			/*
1213			 * set nIEN for previous hwif, drives in the
1214			 * quirk_list may not like intr setups/cleanups
1215			 */
1216			if (drive->quirk_list != 1)
1217				ide_set_irq(drive, 0);
1218		}
1219		hwgroup->hwif = hwif;
1220		hwgroup->drive = drive;
1221		drive->sleeping = 0;
1222		drive->service_start = jiffies;
1223
1224		if (blk_queue_plugged(drive->queue)) {
1225			printk(KERN_ERR "ide: huh? queue was plugged!\n");
1226			break;
1227		}
1228
1229		/*
1230		 * we know that the queue isn't empty, but this can happen
1231		 * if the q->prep_rq_fn() decides to kill a request
1232		 */
1233		rq = elv_next_request(drive->queue);
1234		if (!rq) {
1235			hwgroup->busy = 0;
1236			break;
1237		}
1238
1239		/*
1240		 * Sanity: don't accept a request that isn't a PM request
1241		 * if we are currently power managed. This is very important as
1242		 * blk_stop_queue() doesn't prevent the elv_next_request()
1243		 * above to return us whatever is in the queue. Since we call
1244		 * ide_do_request() ourselves, we end up taking requests while
1245		 * the queue is blocked...
1246		 *
1247		 * We let requests forced at head of queue with ide-preempt
1248		 * though. I hope that doesn't happen too much, hopefully not
1249		 * unless the subdriver triggers such a thing in its own PM
1250		 * state machine.
1251		 *
1252		 * We count how many times we loop here to make sure we service
1253		 * all drives in the hwgroup without looping for ever
1254		 */
1255		if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1256			drive = drive->next ? drive->next : hwgroup->drive;
1257			if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1258				goto again;
1259			/* We clear busy, there should be no pending ATA command at this point. */
1260			hwgroup->busy = 0;
1261			break;
1262		}
1263
1264		hwgroup->rq = rq;
1265
1266		/*
1267		 * Some systems have trouble with IDE IRQs arriving while
1268		 * the driver is still setting things up.  So, here we disable
1269		 * the IRQ used by this interface while the request is being started.
1270		 * This may look bad at first, but pretty much the same thing
1271		 * happens anyway when any interrupt comes in, IDE or otherwise
1272		 *  -- the kernel masks the IRQ while it is being handled.
1273		 */
1274		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1275			disable_irq_nosync(hwif->irq);
1276		spin_unlock(&ide_lock);
1277		local_irq_enable_in_hardirq();
1278			/* allow other IRQs while we start this request */
1279		startstop = start_request(drive, rq);
1280		spin_lock_irq(&ide_lock);
1281		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1282			enable_irq(hwif->irq);
1283		if (startstop == ide_stopped)
1284			hwgroup->busy = 0;
1285	}
1286}
1287
1288/*
1289 * Passes the stuff to ide_do_request
1290 */
1291void do_ide_request(struct request_queue *q)
1292{
1293	ide_drive_t *drive = q->queuedata;
1294
1295	ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1296}
1297
1298/*
1299 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1300 * retry the current request in pio mode instead of risking tossing it
1301 * all away
1302 */
1303static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1304{
1305	ide_hwif_t *hwif = HWIF(drive);
1306	struct request *rq;
1307	ide_startstop_t ret = ide_stopped;
1308
1309	/*
1310	 * end current dma transaction
1311	 */
1312
1313	if (error < 0) {
1314		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1315		(void)HWIF(drive)->ide_dma_end(drive);
1316		ret = ide_error(drive, "dma timeout error",
1317						hwif->INB(IDE_STATUS_REG));
1318	} else {
1319		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1320		hwif->dma_timeout(drive);
1321	}
1322
1323	/*
1324	 * disable dma for now, but remember that we did so because of
1325	 * a timeout -- we'll reenable after we finish this next request
1326	 * (or rather the first chunk of it) in pio.
1327	 */
1328	drive->retry_pio++;
1329	drive->state = DMA_PIO_RETRY;
1330	ide_dma_off_quietly(drive);
1331
1332	/*
1333	 * un-busy drive etc (hwgroup->busy is cleared on return) and
1334	 * make sure request is sane
1335	 */
1336	rq = HWGROUP(drive)->rq;
1337
1338	if (!rq)
1339		goto out;
1340
1341	HWGROUP(drive)->rq = NULL;
1342
1343	rq->errors = 0;
1344
1345	if (!rq->bio)
1346		goto out;
1347
1348	rq->sector = rq->bio->bi_sector;
1349	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1350	rq->hard_cur_sectors = rq->current_nr_sectors;
1351	rq->buffer = bio_data(rq->bio);
1352out:
1353	return ret;
1354}
1355
1356/**
1357 *	ide_timer_expiry	-	handle lack of an IDE interrupt
1358 *	@data: timer callback magic (hwgroup)
1359 *
1360 *	An IDE command has timed out before the expected drive return
1361 *	occurred. At this point we attempt to clean up the current
1362 *	mess. If the current handler includes an expiry handler then
1363 *	we invoke the expiry handler, and providing it is happy the
1364 *	work is done. If that fails we apply generic recovery rules
1365 *	invoking the handler and checking the drive DMA status. We
1366 *	have an excessively incestuous relationship with the DMA
1367 *	logic that wants cleaning up.
1368 */
1369
1370void ide_timer_expiry (unsigned long data)
1371{
1372	ide_hwgroup_t	*hwgroup = (ide_hwgroup_t *) data;
1373	ide_handler_t	*handler;
1374	ide_expiry_t	*expiry;
1375	unsigned long	flags;
1376	unsigned long	wait = -1;
1377
1378	spin_lock_irqsave(&ide_lock, flags);
1379
1380	if (((handler = hwgroup->handler) == NULL) ||
1381	    (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1382		/*
1383		 * Either a marginal timeout occurred
1384		 * (got the interrupt just as timer expired),
1385		 * or we were "sleeping" to give other devices a chance.
1386		 * Either way, we don't really want to complain about anything.
1387		 */
1388		if (hwgroup->sleeping) {
1389			hwgroup->sleeping = 0;
1390			hwgroup->busy = 0;
1391		}
1392	} else {
1393		ide_drive_t *drive = hwgroup->drive;
1394		if (!drive) {
1395			printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1396			hwgroup->handler = NULL;
1397		} else {
1398			ide_hwif_t *hwif;
1399			ide_startstop_t startstop = ide_stopped;
1400			if (!hwgroup->busy) {
1401				hwgroup->busy = 1;	/* paranoia */
1402				printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1403			}
1404			if ((expiry = hwgroup->expiry) != NULL) {
1405				/* continue */
1406				if ((wait = expiry(drive)) > 0) {
1407					/* reset timer */
1408					hwgroup->timer.expires  = jiffies + wait;
1409					hwgroup->req_gen_timer = hwgroup->req_gen;
1410					add_timer(&hwgroup->timer);
1411					spin_unlock_irqrestore(&ide_lock, flags);
1412					return;
1413				}
1414			}
1415			hwgroup->handler = NULL;
1416			/*
1417			 * We need to simulate a real interrupt when invoking
1418			 * the handler() function, which means we need to
1419			 * globally mask the specific IRQ:
1420			 */
1421			spin_unlock(&ide_lock);
1422			hwif  = HWIF(drive);
1423			/* disable_irq_nosync ?? */
1424			disable_irq(hwif->irq);
1425			/* local CPU only,
1426			 * as if we were handling an interrupt */
1427			local_irq_disable();
1428			if (hwgroup->polling) {
1429				startstop = handler(drive);
1430			} else if (drive_is_ready(drive)) {
1431				if (drive->waiting_for_dma)
1432					hwgroup->hwif->dma_lost_irq(drive);
1433				(void)ide_ack_intr(hwif);
1434				printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1435				startstop = handler(drive);
1436			} else {
1437				if (drive->waiting_for_dma) {
1438					startstop = ide_dma_timeout_retry(drive, wait);
1439				} else
1440					startstop =
1441					ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1442			}
1443			drive->service_time = jiffies - drive->service_start;
1444			spin_lock_irq(&ide_lock);
1445			enable_irq(hwif->irq);
1446			if (startstop == ide_stopped)
1447				hwgroup->busy = 0;
1448		}
1449	}
1450	ide_do_request(hwgroup, IDE_NO_IRQ);
1451	spin_unlock_irqrestore(&ide_lock, flags);
1452}
1453
1454/**
1455 *	unexpected_intr		-	handle an unexpected IDE interrupt
1456 *	@irq: interrupt line
1457 *	@hwgroup: hwgroup being processed
1458 *
1459 *	There's nothing really useful we can do with an unexpected interrupt,
1460 *	other than reading the status register (to clear it), and logging it.
1461 *	There should be no way that an irq can happen before we're ready for it,
1462 *	so we needn't worry much about losing an "important" interrupt here.
1463 *
1464 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1465 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
1466 *	looks "good", we just ignore the interrupt completely.
1467 *
1468 *	This routine assumes __cli() is in effect when called.
1469 *
1470 *	If an unexpected interrupt happens on irq15 while we are handling irq14
1471 *	and if the two interfaces are "serialized" (CMD640), then it looks like
1472 *	we could screw up by interfering with a new request being set up for
1473 *	irq15.
1474 *
1475 *	In reality, this is a non-issue.  The new command is not sent unless
1476 *	the drive is ready to accept one, in which case we know the drive is
1477 *	not trying to interrupt us.  And ide_set_handler() is always invoked
1478 *	before completing the issuance of any new drive command, so we will not
1479 *	be accidentally invoked as a result of any valid command completion
1480 *	interrupt.
1481 *
1482 *	Note that we must walk the entire hwgroup here. We know which hwif
1483 *	is doing the current command, but we don't know which hwif burped
1484 *	mysteriously.
1485 */
1486
1487static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1488{
1489	u8 stat;
1490	ide_hwif_t *hwif = hwgroup->hwif;
1491
1492	/*
1493	 * handle the unexpected interrupt
1494	 */
1495	do {
1496		if (hwif->irq == irq) {
1497			stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1498			if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1499				/* Try to not flood the console with msgs */
1500				static unsigned long last_msgtime, count;
1501				++count;
1502				if (time_after(jiffies, last_msgtime + HZ)) {
1503					last_msgtime = jiffies;
1504					printk(KERN_ERR "%s%s: unexpected interrupt, "
1505						"status=0x%02x, count=%ld\n",
1506						hwif->name,
1507						(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1508				}
1509			}
1510		}
1511	} while ((hwif = hwif->next) != hwgroup->hwif);
1512}
1513
1514/**
1515 *	ide_intr	-	default IDE interrupt handler
1516 *	@irq: interrupt number
1517 *	@dev_id: hwif group
1518 *	@regs: unused weirdness from the kernel irq layer
1519 *
1520 *	This is the default IRQ handler for the IDE layer. You should
1521 *	not need to override it. If you do be aware it is subtle in
1522 *	places
1523 *
1524 *	hwgroup->hwif is the interface in the group currently performing
1525 *	a command. hwgroup->drive is the drive and hwgroup->handler is
1526 *	the IRQ handler to call. As we issue a command the handlers
1527 *	step through multiple states, reassigning the handler to the
1528 *	next step in the process. Unlike a smart SCSI controller IDE
1529 *	expects the main processor to sequence the various transfer
1530 *	stages. We also manage a poll timer to catch up with most
1531 *	timeout situations. There are still a few where the handlers
1532 *	don't ever decide to give up.
1533 *
1534 *	The handler eventually returns ide_stopped to indicate the
1535 *	request completed. At this point we issue the next request
1536 *	on the hwgroup and the process begins again.
1537 */
1538
1539irqreturn_t ide_intr (int irq, void *dev_id)
1540{
1541	unsigned long flags;
1542	ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1543	ide_hwif_t *hwif;
1544	ide_drive_t *drive;
1545	ide_handler_t *handler;
1546	ide_startstop_t startstop;
1547
1548	spin_lock_irqsave(&ide_lock, flags);
1549	hwif = hwgroup->hwif;
1550
1551	if (!ide_ack_intr(hwif)) {
1552		spin_unlock_irqrestore(&ide_lock, flags);
1553		return IRQ_NONE;
1554	}
1555
1556	if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1557		/*
1558		 * Not expecting an interrupt from this drive.
1559		 * That means this could be:
1560		 *	(1) an interrupt from another PCI device
1561		 *	sharing the same PCI INT# as us.
1562		 * or	(2) a drive just entered sleep or standby mode,
1563		 *	and is interrupting to let us know.
1564		 * or	(3) a spurious interrupt of unknown origin.
1565		 *
1566		 * For PCI, we cannot tell the difference,
1567		 * so in that case we just ignore it and hope it goes away.
1568		 *
1569		 * FIXME: unexpected_intr should be hwif-> then we can
1570		 * remove all the ifdef PCI crap
1571		 */
1572#ifdef CONFIG_BLK_DEV_IDEPCI
1573		if (hwif->pci_dev && !hwif->pci_dev->vendor)
1574#endif	/* CONFIG_BLK_DEV_IDEPCI */
1575		{
1576			/*
1577			 * Probably not a shared PCI interrupt,
1578			 * so we can safely try to do something about it:
1579			 */
1580			unexpected_intr(irq, hwgroup);
1581#ifdef CONFIG_BLK_DEV_IDEPCI
1582		} else {
1583			/*
1584			 * Whack the status register, just in case
1585			 * we have a leftover pending IRQ.
1586			 */
1587			(void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1588#endif /* CONFIG_BLK_DEV_IDEPCI */
1589		}
1590		spin_unlock_irqrestore(&ide_lock, flags);
1591		return IRQ_NONE;
1592	}
1593	drive = hwgroup->drive;
1594	if (!drive) {
1595		/*
1596		 * This should NEVER happen, and there isn't much
1597		 * we could do about it here.
1598		 *
1599		 * [Note - this can occur if the drive is hot unplugged]
1600		 */
1601		spin_unlock_irqrestore(&ide_lock, flags);
1602		return IRQ_HANDLED;
1603	}
1604	if (!drive_is_ready(drive)) {
1605		/*
1606		 * This happens regularly when we share a PCI IRQ with
1607		 * another device.  Unfortunately, it can also happen
1608		 * with some buggy drives that trigger the IRQ before
1609		 * their status register is up to date.  Hopefully we have
1610		 * enough advance overhead that the latter isn't a problem.
1611		 */
1612		spin_unlock_irqrestore(&ide_lock, flags);
1613		return IRQ_NONE;
1614	}
1615	if (!hwgroup->busy) {
1616		hwgroup->busy = 1;	/* paranoia */
1617		printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1618	}
1619	hwgroup->handler = NULL;
1620	hwgroup->req_gen++;
1621	del_timer(&hwgroup->timer);
1622	spin_unlock(&ide_lock);
1623
1624	/* Some controllers might set DMA INTR no matter DMA or PIO;
1625	 * bmdma status might need to be cleared even for
1626	 * PIO interrupts to prevent spurious/lost irq.
1627	 */
1628	if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1629		/* ide_dma_end() needs bmdma status for error checking.
1630		 * So, skip clearing bmdma status here and leave it
1631		 * to ide_dma_end() if this is dma interrupt.
1632		 */
1633		hwif->ide_dma_clear_irq(drive);
1634
1635	if (drive->unmask)
1636		local_irq_enable_in_hardirq();
1637	/* service this interrupt, may set handler for next interrupt */
1638	startstop = handler(drive);
1639	spin_lock_irq(&ide_lock);
1640
1641	/*
1642	 * Note that handler() may have set things up for another
1643	 * interrupt to occur soon, but it cannot happen until
1644	 * we exit from this routine, because it will be the
1645	 * same irq as is currently being serviced here, and Linux
1646	 * won't allow another of the same (on any CPU) until we return.
1647	 */
1648	drive->service_time = jiffies - drive->service_start;
1649	if (startstop == ide_stopped) {
1650		if (hwgroup->handler == NULL) {	/* paranoia */
1651			hwgroup->busy = 0;
1652			ide_do_request(hwgroup, hwif->irq);
1653		} else {
1654			printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1655				"on exit\n", drive->name);
1656		}
1657	}
1658	spin_unlock_irqrestore(&ide_lock, flags);
1659	return IRQ_HANDLED;
1660}
1661
1662/**
1663 *	ide_init_drive_cmd	-	initialize a drive command request
1664 *	@rq: request object
1665 *
1666 *	Initialize a request before we fill it in and send it down to
1667 *	ide_do_drive_cmd. Commands must be set up by this function. Right
1668 *	now it doesn't do a lot, but if that changes abusers will have a
1669 *	nasty surprise.
1670 */
1671
1672void ide_init_drive_cmd (struct request *rq)
1673{
1674	memset(rq, 0, sizeof(*rq));
1675	rq->cmd_type = REQ_TYPE_ATA_CMD;
1676	rq->ref_count = 1;
1677}
1678
1679EXPORT_SYMBOL(ide_init_drive_cmd);
1680
1681/**
1682 *	ide_do_drive_cmd	-	issue IDE special command
1683 *	@drive: device to issue command
1684 *	@rq: request to issue
1685 *	@action: action for processing
1686 *
1687 *	This function issues a special IDE device request
1688 *	onto the request queue.
1689 *
1690 *	If action is ide_wait, then the rq is queued at the end of the
1691 *	request queue, and the function sleeps until it has been processed.
1692 *	This is for use when invoked from an ioctl handler.
1693 *
1694 *	If action is ide_preempt, then the rq is queued at the head of
1695 *	the request queue, displacing the currently-being-processed
1696 *	request and this function returns immediately without waiting
1697 *	for the new rq to be completed.  This is VERY DANGEROUS, and is
1698 *	intended for careful use by the ATAPI tape/cdrom driver code.
1699 *
1700 *	If action is ide_end, then the rq is queued at the end of the
1701 *	request queue, and the function returns immediately without waiting
1702 *	for the new rq to be completed. This is again intended for careful
1703 *	use by the ATAPI tape/cdrom driver code.
1704 */
1705
1706int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1707{
1708	unsigned long flags;
1709	ide_hwgroup_t *hwgroup = HWGROUP(drive);
1710	DECLARE_COMPLETION_ONSTACK(wait);
1711	int where = ELEVATOR_INSERT_BACK, err;
1712	int must_wait = (action == ide_wait || action == ide_head_wait);
1713
1714	rq->errors = 0;
1715
1716	/*
1717	 * we need to hold an extra reference to request for safe inspection
1718	 * after completion
1719	 */
1720	if (must_wait) {
1721		rq->ref_count++;
1722		rq->end_io_data = &wait;
1723		rq->end_io = blk_end_sync_rq;
1724	}
1725
1726	spin_lock_irqsave(&ide_lock, flags);
1727	if (action == ide_preempt)
1728		hwgroup->rq = NULL;
1729	if (action == ide_preempt || action == ide_head_wait) {
1730		where = ELEVATOR_INSERT_FRONT;
1731		rq->cmd_flags |= REQ_PREEMPT;
1732	}
1733	__elv_add_request(drive->queue, rq, where, 0);
1734	ide_do_request(hwgroup, IDE_NO_IRQ);
1735	spin_unlock_irqrestore(&ide_lock, flags);
1736
1737	err = 0;
1738	if (must_wait) {
1739		wait_for_completion(&wait);
1740		if (rq->errors)
1741			err = -EIO;
1742
1743		blk_put_request(rq);
1744	}
1745
1746	return err;
1747}
1748
1749EXPORT_SYMBOL(ide_do_drive_cmd);
1750
1751void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1752{
1753	ide_task_t task;
1754
1755	memset(&task, 0, sizeof(task));
1756	task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1757			IDE_TFLAG_OUT_FEATURE | tf_flags;
1758	task.tf.feature = dma;		/* Use PIO/DMA */
1759	task.tf.lbam    = bcount & 0xff;
1760	task.tf.lbah    = (bcount >> 8) & 0xff;
1761
1762	ide_tf_load(drive, &task);
1763}
1764
1765EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1766