ide-io.c revision 295f00042aaf6b553b5f37348f89bab463d4a469
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/hdreg.h>
44#include <linux/completion.h>
45#include <linux/reboot.h>
46#include <linux/cdrom.h>
47#include <linux/seq_file.h>
48#include <linux/device.h>
49#include <linux/kmod.h>
50#include <linux/scatterlist.h>
51#include <linux/bitops.h>
52
53#include <asm/byteorder.h>
54#include <asm/irq.h>
55#include <asm/uaccess.h>
56#include <asm/io.h>
57
58static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59			     int uptodate, unsigned int nr_bytes, int dequeue)
60{
61	int ret = 1;
62	int error = 0;
63
64	if (uptodate <= 0)
65		error = uptodate ? uptodate : -EIO;
66
67	/*
68	 * if failfast is set on a request, override number of sectors and
69	 * complete the whole request right now
70	 */
71	if (blk_noretry_request(rq) && error)
72		nr_bytes = rq->hard_nr_sectors << 9;
73
74	if (!blk_fs_request(rq) && error && !rq->errors)
75		rq->errors = -EIO;
76
77	/*
78	 * decide whether to reenable DMA -- 3 is a random magic for now,
79	 * if we DMA timeout more than 3 times, just stay in PIO
80	 */
81	if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82	    drive->retry_pio <= 3) {
83		drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84		ide_dma_on(drive);
85	}
86
87	if (!blk_end_request(rq, error, nr_bytes))
88		ret = 0;
89
90	if (ret == 0 && dequeue)
91		drive->hwif->hwgroup->rq = NULL;
92
93	return ret;
94}
95
96/**
97 *	ide_end_request		-	complete an IDE I/O
98 *	@drive: IDE device for the I/O
99 *	@uptodate:
100 *	@nr_sectors: number of sectors completed
101 *
102 *	This is our end_request wrapper function. We complete the I/O
103 *	update random number input and dequeue the request, which if
104 *	it was tagged may be out of order.
105 */
106
107int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108{
109	unsigned int nr_bytes = nr_sectors << 9;
110	struct request *rq = drive->hwif->hwgroup->rq;
111
112	if (!nr_bytes) {
113		if (blk_pc_request(rq))
114			nr_bytes = rq->data_len;
115		else
116			nr_bytes = rq->hard_cur_sectors << 9;
117	}
118
119	return __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
120}
121EXPORT_SYMBOL(ide_end_request);
122
123/**
124 *	ide_end_dequeued_request	-	complete an IDE I/O
125 *	@drive: IDE device for the I/O
126 *	@uptodate:
127 *	@nr_sectors: number of sectors completed
128 *
129 *	Complete an I/O that is no longer on the request queue. This
130 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
131 *	We must still finish the old request but we must not tamper with the
132 *	queue in the meantime.
133 *
134 *	NOTE: This path does not handle barrier, but barrier is not supported
135 *	on ide-cd anyway.
136 */
137
138int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
139			     int uptodate, int nr_sectors)
140{
141	BUG_ON(!blk_rq_started(rq));
142
143	return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
144}
145EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
146
147/**
148 *	ide_end_drive_cmd	-	end an explicit drive command
149 *	@drive: command
150 *	@stat: status bits
151 *	@err: error bits
152 *
153 *	Clean up after success/failure of an explicit drive command.
154 *	These get thrown onto the queue so they are synchronized with
155 *	real I/O operations on the drive.
156 *
157 *	In LBA48 mode we have to read the register set twice to get
158 *	all the extra information out.
159 */
160
161void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
162{
163	ide_hwgroup_t *hwgroup = drive->hwif->hwgroup;
164	struct request *rq = hwgroup->rq;
165
166	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
167		ide_task_t *task = (ide_task_t *)rq->special;
168
169		if (task) {
170			struct ide_taskfile *tf = &task->tf;
171
172			tf->error = err;
173			tf->status = stat;
174
175			drive->hwif->tp_ops->tf_read(drive, task);
176
177			if (task->tf_flags & IDE_TFLAG_DYN)
178				kfree(task);
179		}
180	} else if (blk_pm_request(rq)) {
181		struct request_pm_state *pm = rq->data;
182
183		ide_complete_power_step(drive, rq);
184		if (pm->pm_step == IDE_PM_COMPLETED)
185			ide_complete_pm_request(drive, rq);
186		return;
187	}
188
189	hwgroup->rq = NULL;
190
191	rq->errors = err;
192
193	if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0),
194				     blk_rq_bytes(rq))))
195		BUG();
196}
197EXPORT_SYMBOL(ide_end_drive_cmd);
198
199static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
200{
201	if (rq->rq_disk) {
202		ide_driver_t *drv;
203
204		drv = *(ide_driver_t **)rq->rq_disk->private_data;
205		drv->end_request(drive, 0, 0);
206	} else
207		ide_end_request(drive, 0, 0);
208}
209
210static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
211{
212	ide_hwif_t *hwif = drive->hwif;
213
214	if ((stat & ATA_BUSY) ||
215	    ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
216		/* other bits are useless when BUSY */
217		rq->errors |= ERROR_RESET;
218	} else if (stat & ATA_ERR) {
219		/* err has different meaning on cdrom and tape */
220		if (err == ATA_ABORTED) {
221			if ((drive->dev_flags & IDE_DFLAG_LBA) &&
222			    /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
223			    hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
224				return ide_stopped;
225		} else if ((err & BAD_CRC) == BAD_CRC) {
226			/* UDMA crc error, just retry the operation */
227			drive->crc_count++;
228		} else if (err & (ATA_BBK | ATA_UNC)) {
229			/* retries won't help these */
230			rq->errors = ERROR_MAX;
231		} else if (err & ATA_TRK0NF) {
232			/* help it find track zero */
233			rq->errors |= ERROR_RECAL;
234		}
235	}
236
237	if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
238	    (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
239		int nsect = drive->mult_count ? drive->mult_count : 1;
240
241		ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
242	}
243
244	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
245		ide_kill_rq(drive, rq);
246		return ide_stopped;
247	}
248
249	if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
250		rq->errors |= ERROR_RESET;
251
252	if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
253		++rq->errors;
254		return ide_do_reset(drive);
255	}
256
257	if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
258		drive->special.b.recalibrate = 1;
259
260	++rq->errors;
261
262	return ide_stopped;
263}
264
265static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
266{
267	ide_hwif_t *hwif = drive->hwif;
268
269	if ((stat & ATA_BUSY) ||
270	    ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
271		/* other bits are useless when BUSY */
272		rq->errors |= ERROR_RESET;
273	} else {
274		/* add decoding error stuff */
275	}
276
277	if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
278		/* force an abort */
279		hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
280
281	if (rq->errors >= ERROR_MAX) {
282		ide_kill_rq(drive, rq);
283	} else {
284		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
285			++rq->errors;
286			return ide_do_reset(drive);
287		}
288		++rq->errors;
289	}
290
291	return ide_stopped;
292}
293
294ide_startstop_t
295__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
296{
297	if (drive->media == ide_disk)
298		return ide_ata_error(drive, rq, stat, err);
299	return ide_atapi_error(drive, rq, stat, err);
300}
301
302EXPORT_SYMBOL_GPL(__ide_error);
303
304/**
305 *	ide_error	-	handle an error on the IDE
306 *	@drive: drive the error occurred on
307 *	@msg: message to report
308 *	@stat: status bits
309 *
310 *	ide_error() takes action based on the error returned by the drive.
311 *	For normal I/O that may well include retries. We deal with
312 *	both new-style (taskfile) and old style command handling here.
313 *	In the case of taskfile command handling there is work left to
314 *	do
315 */
316
317ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
318{
319	struct request *rq;
320	u8 err;
321
322	err = ide_dump_status(drive, msg, stat);
323
324	if ((rq = HWGROUP(drive)->rq) == NULL)
325		return ide_stopped;
326
327	/* retry only "normal" I/O: */
328	if (!blk_fs_request(rq)) {
329		rq->errors = 1;
330		ide_end_drive_cmd(drive, stat, err);
331		return ide_stopped;
332	}
333
334	if (rq->rq_disk) {
335		ide_driver_t *drv;
336
337		drv = *(ide_driver_t **)rq->rq_disk->private_data;
338		return drv->error(drive, rq, stat, err);
339	} else
340		return __ide_error(drive, rq, stat, err);
341}
342
343EXPORT_SYMBOL_GPL(ide_error);
344
345static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
346{
347	tf->nsect   = drive->sect;
348	tf->lbal    = drive->sect;
349	tf->lbam    = drive->cyl;
350	tf->lbah    = drive->cyl >> 8;
351	tf->device  = (drive->head - 1) | drive->select;
352	tf->command = ATA_CMD_INIT_DEV_PARAMS;
353}
354
355static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
356{
357	tf->nsect   = drive->sect;
358	tf->command = ATA_CMD_RESTORE;
359}
360
361static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
362{
363	tf->nsect   = drive->mult_req;
364	tf->command = ATA_CMD_SET_MULTI;
365}
366
367static ide_startstop_t ide_disk_special(ide_drive_t *drive)
368{
369	special_t *s = &drive->special;
370	ide_task_t args;
371
372	memset(&args, 0, sizeof(ide_task_t));
373	args.data_phase = TASKFILE_NO_DATA;
374
375	if (s->b.set_geometry) {
376		s->b.set_geometry = 0;
377		ide_tf_set_specify_cmd(drive, &args.tf);
378	} else if (s->b.recalibrate) {
379		s->b.recalibrate = 0;
380		ide_tf_set_restore_cmd(drive, &args.tf);
381	} else if (s->b.set_multmode) {
382		s->b.set_multmode = 0;
383		ide_tf_set_setmult_cmd(drive, &args.tf);
384	} else if (s->all) {
385		int special = s->all;
386		s->all = 0;
387		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
388		return ide_stopped;
389	}
390
391	args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
392			IDE_TFLAG_CUSTOM_HANDLER;
393
394	do_rw_taskfile(drive, &args);
395
396	return ide_started;
397}
398
399/**
400 *	do_special		-	issue some special commands
401 *	@drive: drive the command is for
402 *
403 *	do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
404 *	ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
405 *
406 *	It used to do much more, but has been scaled back.
407 */
408
409static ide_startstop_t do_special (ide_drive_t *drive)
410{
411	special_t *s = &drive->special;
412
413#ifdef DEBUG
414	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
415#endif
416	if (drive->media == ide_disk)
417		return ide_disk_special(drive);
418
419	s->all = 0;
420	drive->mult_req = 0;
421	return ide_stopped;
422}
423
424void ide_map_sg(ide_drive_t *drive, struct request *rq)
425{
426	ide_hwif_t *hwif = drive->hwif;
427	struct scatterlist *sg = hwif->sg_table;
428
429	if (hwif->sg_mapped)	/* needed by ide-scsi */
430		return;
431
432	if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
433		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
434	} else {
435		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
436		hwif->sg_nents = 1;
437	}
438}
439
440EXPORT_SYMBOL_GPL(ide_map_sg);
441
442void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
443{
444	ide_hwif_t *hwif = drive->hwif;
445
446	hwif->nsect = hwif->nleft = rq->nr_sectors;
447	hwif->cursg_ofs = 0;
448	hwif->cursg = NULL;
449}
450
451EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
452
453/**
454 *	execute_drive_command	-	issue special drive command
455 *	@drive: the drive to issue the command on
456 *	@rq: the request structure holding the command
457 *
458 *	execute_drive_cmd() issues a special drive command,  usually
459 *	initiated by ioctl() from the external hdparm program. The
460 *	command can be a drive command, drive task or taskfile
461 *	operation. Weirdly you can call it with NULL to wait for
462 *	all commands to finish. Don't do this as that is due to change
463 */
464
465static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
466		struct request *rq)
467{
468	ide_hwif_t *hwif = HWIF(drive);
469	ide_task_t *task = rq->special;
470
471	if (task) {
472		hwif->data_phase = task->data_phase;
473
474		switch (hwif->data_phase) {
475		case TASKFILE_MULTI_OUT:
476		case TASKFILE_OUT:
477		case TASKFILE_MULTI_IN:
478		case TASKFILE_IN:
479			ide_init_sg_cmd(drive, rq);
480			ide_map_sg(drive, rq);
481		default:
482			break;
483		}
484
485		return do_rw_taskfile(drive, task);
486	}
487
488 	/*
489 	 * NULL is actually a valid way of waiting for
490 	 * all current requests to be flushed from the queue.
491 	 */
492#ifdef DEBUG
493 	printk("%s: DRIVE_CMD (null)\n", drive->name);
494#endif
495	ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
496			  ide_read_error(drive));
497
498 	return ide_stopped;
499}
500
501int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
502		       int arg)
503{
504	struct request_queue *q = drive->queue;
505	struct request *rq;
506	int ret = 0;
507
508	if (!(setting->flags & DS_SYNC))
509		return setting->set(drive, arg);
510
511	rq = blk_get_request(q, READ, __GFP_WAIT);
512	rq->cmd_type = REQ_TYPE_SPECIAL;
513	rq->cmd_len = 5;
514	rq->cmd[0] = REQ_DEVSET_EXEC;
515	*(int *)&rq->cmd[1] = arg;
516	rq->special = setting->set;
517
518	if (blk_execute_rq(q, NULL, rq, 0))
519		ret = rq->errors;
520	blk_put_request(rq);
521
522	return ret;
523}
524EXPORT_SYMBOL_GPL(ide_devset_execute);
525
526static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
527{
528	u8 cmd = rq->cmd[0];
529
530	if (cmd == REQ_PARK_HEADS || cmd == REQ_UNPARK_HEADS) {
531		ide_task_t task;
532		struct ide_taskfile *tf = &task.tf;
533
534		memset(&task, 0, sizeof(task));
535		if (cmd == REQ_PARK_HEADS) {
536			drive->sleep = *(unsigned long *)rq->special;
537			drive->dev_flags |= IDE_DFLAG_SLEEPING;
538			tf->command = ATA_CMD_IDLEIMMEDIATE;
539			tf->feature = 0x44;
540			tf->lbal = 0x4c;
541			tf->lbam = 0x4e;
542			tf->lbah = 0x55;
543			task.tf_flags |= IDE_TFLAG_CUSTOM_HANDLER;
544		} else		/* cmd == REQ_UNPARK_HEADS */
545			tf->command = ATA_CMD_CHK_POWER;
546
547		task.tf_flags |= IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
548		task.rq = rq;
549		drive->hwif->data_phase = task.data_phase = TASKFILE_NO_DATA;
550		return do_rw_taskfile(drive, &task);
551	}
552
553	switch (cmd) {
554	case REQ_DEVSET_EXEC:
555	{
556		int err, (*setfunc)(ide_drive_t *, int) = rq->special;
557
558		err = setfunc(drive, *(int *)&rq->cmd[1]);
559		if (err)
560			rq->errors = err;
561		else
562			err = 1;
563		ide_end_request(drive, err, 0);
564		return ide_stopped;
565	}
566	case REQ_DRIVE_RESET:
567		return ide_do_reset(drive);
568	default:
569		blk_dump_rq_flags(rq, "ide_special_rq - bad request");
570		ide_end_request(drive, 0, 0);
571		return ide_stopped;
572	}
573}
574
575/**
576 *	start_request	-	start of I/O and command issuing for IDE
577 *
578 *	start_request() initiates handling of a new I/O request. It
579 *	accepts commands and I/O (read/write) requests.
580 *
581 *	FIXME: this function needs a rename
582 */
583
584static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
585{
586	ide_startstop_t startstop;
587
588	BUG_ON(!blk_rq_started(rq));
589
590#ifdef DEBUG
591	printk("%s: start_request: current=0x%08lx\n",
592		HWIF(drive)->name, (unsigned long) rq);
593#endif
594
595	/* bail early if we've exceeded max_failures */
596	if (drive->max_failures && (drive->failures > drive->max_failures)) {
597		rq->cmd_flags |= REQ_FAILED;
598		goto kill_rq;
599	}
600
601	if (blk_pm_request(rq))
602		ide_check_pm_state(drive, rq);
603
604	SELECT_DRIVE(drive);
605	if (ide_wait_stat(&startstop, drive, drive->ready_stat,
606			  ATA_BUSY | ATA_DRQ, WAIT_READY)) {
607		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
608		return startstop;
609	}
610	if (!drive->special.all) {
611		ide_driver_t *drv;
612
613		/*
614		 * We reset the drive so we need to issue a SETFEATURES.
615		 * Do it _after_ do_special() restored device parameters.
616		 */
617		if (drive->current_speed == 0xff)
618			ide_config_drive_speed(drive, drive->desired_speed);
619
620		if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
621			return execute_drive_cmd(drive, rq);
622		else if (blk_pm_request(rq)) {
623			struct request_pm_state *pm = rq->data;
624#ifdef DEBUG_PM
625			printk("%s: start_power_step(step: %d)\n",
626				drive->name, pm->pm_step);
627#endif
628			startstop = ide_start_power_step(drive, rq);
629			if (startstop == ide_stopped &&
630			    pm->pm_step == IDE_PM_COMPLETED)
631				ide_complete_pm_request(drive, rq);
632			return startstop;
633		} else if (!rq->rq_disk && blk_special_request(rq))
634			/*
635			 * TODO: Once all ULDs have been modified to
636			 * check for specific op codes rather than
637			 * blindly accepting any special request, the
638			 * check for ->rq_disk above may be replaced
639			 * by a more suitable mechanism or even
640			 * dropped entirely.
641			 */
642			return ide_special_rq(drive, rq);
643
644		drv = *(ide_driver_t **)rq->rq_disk->private_data;
645
646		return drv->do_request(drive, rq, rq->sector);
647	}
648	return do_special(drive);
649kill_rq:
650	ide_kill_rq(drive, rq);
651	return ide_stopped;
652}
653
654/**
655 *	ide_stall_queue		-	pause an IDE device
656 *	@drive: drive to stall
657 *	@timeout: time to stall for (jiffies)
658 *
659 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
660 *	to the hwgroup by sleeping for timeout jiffies.
661 */
662
663void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
664{
665	if (timeout > WAIT_WORSTCASE)
666		timeout = WAIT_WORSTCASE;
667	drive->sleep = timeout + jiffies;
668	drive->dev_flags |= IDE_DFLAG_SLEEPING;
669}
670
671EXPORT_SYMBOL(ide_stall_queue);
672
673#define WAKEUP(drive)	((drive)->service_start + 2 * (drive)->service_time)
674
675/**
676 *	choose_drive		-	select a drive to service
677 *	@hwgroup: hardware group to select on
678 *
679 *	choose_drive() selects the next drive which will be serviced.
680 *	This is necessary because the IDE layer can't issue commands
681 *	to both drives on the same cable, unlike SCSI.
682 */
683
684static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
685{
686	ide_drive_t *drive, *best;
687
688repeat:
689	best = NULL;
690	drive = hwgroup->drive;
691
692	/*
693	 * drive is doing pre-flush, ordered write, post-flush sequence. even
694	 * though that is 3 requests, it must be seen as a single transaction.
695	 * we must not preempt this drive until that is complete
696	 */
697	if (blk_queue_flushing(drive->queue)) {
698		/*
699		 * small race where queue could get replugged during
700		 * the 3-request flush cycle, just yank the plug since
701		 * we want it to finish asap
702		 */
703		blk_remove_plug(drive->queue);
704		return drive;
705	}
706
707	do {
708		u8 dev_s = !!(drive->dev_flags & IDE_DFLAG_SLEEPING);
709		u8 best_s = (best && !!(best->dev_flags & IDE_DFLAG_SLEEPING));
710
711		if ((dev_s == 0 || time_after_eq(jiffies, drive->sleep)) &&
712		    !elv_queue_empty(drive->queue)) {
713			if (best == NULL ||
714			    (dev_s && (best_s == 0 || time_before(drive->sleep, best->sleep))) ||
715			    (best_s == 0 && time_before(WAKEUP(drive), WAKEUP(best)))) {
716				if (!blk_queue_plugged(drive->queue))
717					best = drive;
718			}
719		}
720	} while ((drive = drive->next) != hwgroup->drive);
721
722	if (best && (best->dev_flags & IDE_DFLAG_NICE1) &&
723	    (best->dev_flags & IDE_DFLAG_SLEEPING) == 0 &&
724	    best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
725		long t = (signed long)(WAKEUP(best) - jiffies);
726		if (t >= WAIT_MIN_SLEEP) {
727		/*
728		 * We *may* have some time to spare, but first let's see if
729		 * someone can potentially benefit from our nice mood today..
730		 */
731			drive = best->next;
732			do {
733				if ((drive->dev_flags & IDE_DFLAG_SLEEPING) == 0
734				 && time_before(jiffies - best->service_time, WAKEUP(drive))
735				 && time_before(WAKEUP(drive), jiffies + t))
736				{
737					ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
738					goto repeat;
739				}
740			} while ((drive = drive->next) != best);
741		}
742	}
743	return best;
744}
745
746/*
747 * Issue a new request to a drive from hwgroup
748 * Caller must have already done spin_lock_irqsave(&hwgroup->lock, ..);
749 *
750 * A hwgroup is a serialized group of IDE interfaces.  Usually there is
751 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
752 * may have both interfaces in a single hwgroup to "serialize" access.
753 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
754 * together into one hwgroup for serialized access.
755 *
756 * Note also that several hwgroups can end up sharing a single IRQ,
757 * possibly along with many other devices.  This is especially common in
758 * PCI-based systems with off-board IDE controller cards.
759 *
760 * The IDE driver uses a per-hwgroup spinlock to protect
761 * access to the request queues, and to protect the hwgroup->busy flag.
762 *
763 * The first thread into the driver for a particular hwgroup sets the
764 * hwgroup->busy flag to indicate that this hwgroup is now active,
765 * and then initiates processing of the top request from the request queue.
766 *
767 * Other threads attempting entry notice the busy setting, and will simply
768 * queue their new requests and exit immediately.  Note that hwgroup->busy
769 * remains set even when the driver is merely awaiting the next interrupt.
770 * Thus, the meaning is "this hwgroup is busy processing a request".
771 *
772 * When processing of a request completes, the completing thread or IRQ-handler
773 * will start the next request from the queue.  If no more work remains,
774 * the driver will clear the hwgroup->busy flag and exit.
775 *
776 * The per-hwgroup spinlock is used to protect all access to the
777 * hwgroup->busy flag, but is otherwise not needed for most processing in
778 * the driver.  This makes the driver much more friendlier to shared IRQs
779 * than previous designs, while remaining 100% (?) SMP safe and capable.
780 */
781void do_ide_request(struct request_queue *q)
782{
783	ide_drive_t	*orig_drive = q->queuedata;
784	ide_hwgroup_t	*hwgroup = orig_drive->hwif->hwgroup;
785	ide_drive_t	*drive;
786	ide_hwif_t	*hwif;
787	struct request	*rq;
788	ide_startstop_t	startstop;
789	int             loops = 0;
790
791	/* caller must own hwgroup->lock */
792	BUG_ON(!irqs_disabled());
793
794	while (!hwgroup->busy) {
795		hwgroup->busy = 1;
796		/* for atari only */
797		ide_get_lock(ide_intr, hwgroup);
798		drive = choose_drive(hwgroup);
799		if (drive == NULL) {
800			int sleeping = 0;
801			unsigned long sleep = 0; /* shut up, gcc */
802			hwgroup->rq = NULL;
803			drive = hwgroup->drive;
804			do {
805				if ((drive->dev_flags & IDE_DFLAG_SLEEPING) &&
806				    (sleeping == 0 ||
807				     time_before(drive->sleep, sleep))) {
808					sleeping = 1;
809					sleep = drive->sleep;
810				}
811			} while ((drive = drive->next) != hwgroup->drive);
812			if (sleeping) {
813		/*
814		 * Take a short snooze, and then wake up this hwgroup again.
815		 * This gives other hwgroups on the same a chance to
816		 * play fairly with us, just in case there are big differences
817		 * in relative throughputs.. don't want to hog the cpu too much.
818		 */
819				if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
820					sleep = jiffies + WAIT_MIN_SLEEP;
821#if 1
822				if (timer_pending(&hwgroup->timer))
823					printk(KERN_CRIT "ide_set_handler: timer already active\n");
824#endif
825				/* so that ide_timer_expiry knows what to do */
826				hwgroup->sleeping = 1;
827				hwgroup->req_gen_timer = hwgroup->req_gen;
828				mod_timer(&hwgroup->timer, sleep);
829				/* we purposely leave hwgroup->busy==1
830				 * while sleeping */
831			} else {
832				/* Ugly, but how can we sleep for the lock
833				 * otherwise? perhaps from tq_disk?
834				 */
835
836				/* for atari only */
837				ide_release_lock();
838				hwgroup->busy = 0;
839			}
840
841			/* no more work for this hwgroup (for now) */
842			goto plug_device;
843		}
844
845		if (drive != orig_drive)
846			goto plug_device;
847again:
848		hwif = drive->hwif;
849
850		if (hwif != hwgroup->hwif) {
851			/*
852			 * set nIEN for previous hwif, drives in the
853			 * quirk_list may not like intr setups/cleanups
854			 */
855			if (drive->quirk_list == 0)
856				hwif->tp_ops->set_irq(hwif, 0);
857		}
858		hwgroup->hwif = hwif;
859		hwgroup->drive = drive;
860		drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
861		drive->service_start = jiffies;
862
863		/*
864		 * we know that the queue isn't empty, but this can happen
865		 * if the q->prep_rq_fn() decides to kill a request
866		 */
867		rq = elv_next_request(drive->queue);
868		if (!rq) {
869			hwgroup->busy = 0;
870			break;
871		}
872
873		/*
874		 * Sanity: don't accept a request that isn't a PM request
875		 * if we are currently power managed. This is very important as
876		 * blk_stop_queue() doesn't prevent the elv_next_request()
877		 * above to return us whatever is in the queue. Since we call
878		 * ide_do_request() ourselves, we end up taking requests while
879		 * the queue is blocked...
880		 *
881		 * We let requests forced at head of queue with ide-preempt
882		 * though. I hope that doesn't happen too much, hopefully not
883		 * unless the subdriver triggers such a thing in its own PM
884		 * state machine.
885		 *
886		 * We count how many times we loop here to make sure we service
887		 * all drives in the hwgroup without looping for ever
888		 */
889		if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
890		    blk_pm_request(rq) == 0 &&
891		    (rq->cmd_flags & REQ_PREEMPT) == 0) {
892			drive = drive->next ? drive->next : hwgroup->drive;
893			if (loops++ < 4 && !blk_queue_plugged(drive->queue))
894				goto again;
895			/* We clear busy, there should be no pending ATA command at this point. */
896			hwgroup->busy = 0;
897			goto plug_device;
898		}
899
900		hwgroup->rq = rq;
901
902		spin_unlock_irq(&hwgroup->lock);
903		startstop = start_request(drive, rq);
904		spin_lock_irq(&hwgroup->lock);
905
906		if (startstop == ide_stopped) {
907			hwgroup->busy = 0;
908			if (!elv_queue_empty(orig_drive->queue))
909				blk_plug_device(orig_drive->queue);
910		}
911	}
912	return;
913
914plug_device:
915	if (!elv_queue_empty(orig_drive->queue))
916		blk_plug_device(orig_drive->queue);
917}
918
919/*
920 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
921 * retry the current request in pio mode instead of risking tossing it
922 * all away
923 */
924static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
925{
926	ide_hwif_t *hwif = HWIF(drive);
927	struct request *rq;
928	ide_startstop_t ret = ide_stopped;
929
930	/*
931	 * end current dma transaction
932	 */
933
934	if (error < 0) {
935		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
936		(void)hwif->dma_ops->dma_end(drive);
937		ret = ide_error(drive, "dma timeout error",
938				hwif->tp_ops->read_status(hwif));
939	} else {
940		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
941		hwif->dma_ops->dma_timeout(drive);
942	}
943
944	/*
945	 * disable dma for now, but remember that we did so because of
946	 * a timeout -- we'll reenable after we finish this next request
947	 * (or rather the first chunk of it) in pio.
948	 */
949	drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY;
950	drive->retry_pio++;
951	ide_dma_off_quietly(drive);
952
953	/*
954	 * un-busy drive etc (hwgroup->busy is cleared on return) and
955	 * make sure request is sane
956	 */
957	rq = HWGROUP(drive)->rq;
958
959	if (!rq)
960		goto out;
961
962	HWGROUP(drive)->rq = NULL;
963
964	rq->errors = 0;
965
966	if (!rq->bio)
967		goto out;
968
969	rq->sector = rq->bio->bi_sector;
970	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
971	rq->hard_cur_sectors = rq->current_nr_sectors;
972	rq->buffer = bio_data(rq->bio);
973out:
974	return ret;
975}
976
977/**
978 *	ide_timer_expiry	-	handle lack of an IDE interrupt
979 *	@data: timer callback magic (hwgroup)
980 *
981 *	An IDE command has timed out before the expected drive return
982 *	occurred. At this point we attempt to clean up the current
983 *	mess. If the current handler includes an expiry handler then
984 *	we invoke the expiry handler, and providing it is happy the
985 *	work is done. If that fails we apply generic recovery rules
986 *	invoking the handler and checking the drive DMA status. We
987 *	have an excessively incestuous relationship with the DMA
988 *	logic that wants cleaning up.
989 */
990
991void ide_timer_expiry (unsigned long data)
992{
993	ide_hwgroup_t	*hwgroup = (ide_hwgroup_t *) data;
994	ide_handler_t	*handler;
995	ide_expiry_t	*expiry;
996	unsigned long	flags;
997	unsigned long	wait = -1;
998
999	spin_lock_irqsave(&hwgroup->lock, flags);
1000
1001	if (((handler = hwgroup->handler) == NULL) ||
1002	    (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1003		/*
1004		 * Either a marginal timeout occurred
1005		 * (got the interrupt just as timer expired),
1006		 * or we were "sleeping" to give other devices a chance.
1007		 * Either way, we don't really want to complain about anything.
1008		 */
1009		if (hwgroup->sleeping) {
1010			hwgroup->sleeping = 0;
1011			hwgroup->busy = 0;
1012		}
1013	} else {
1014		ide_drive_t *drive = hwgroup->drive;
1015		if (!drive) {
1016			printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1017			hwgroup->handler = NULL;
1018		} else {
1019			ide_hwif_t *hwif;
1020			ide_startstop_t startstop = ide_stopped;
1021			if (!hwgroup->busy) {
1022				hwgroup->busy = 1;	/* paranoia */
1023				printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1024			}
1025			if ((expiry = hwgroup->expiry) != NULL) {
1026				/* continue */
1027				if ((wait = expiry(drive)) > 0) {
1028					/* reset timer */
1029					hwgroup->timer.expires  = jiffies + wait;
1030					hwgroup->req_gen_timer = hwgroup->req_gen;
1031					add_timer(&hwgroup->timer);
1032					spin_unlock_irqrestore(&hwgroup->lock, flags);
1033					return;
1034				}
1035			}
1036			hwgroup->handler = NULL;
1037			/*
1038			 * We need to simulate a real interrupt when invoking
1039			 * the handler() function, which means we need to
1040			 * globally mask the specific IRQ:
1041			 */
1042			spin_unlock(&hwgroup->lock);
1043			hwif  = HWIF(drive);
1044			/* disable_irq_nosync ?? */
1045			disable_irq(hwif->irq);
1046			/* local CPU only,
1047			 * as if we were handling an interrupt */
1048			local_irq_disable();
1049			if (hwgroup->polling) {
1050				startstop = handler(drive);
1051			} else if (drive_is_ready(drive)) {
1052				if (drive->waiting_for_dma)
1053					hwif->dma_ops->dma_lost_irq(drive);
1054				(void)ide_ack_intr(hwif);
1055				printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1056				startstop = handler(drive);
1057			} else {
1058				if (drive->waiting_for_dma) {
1059					startstop = ide_dma_timeout_retry(drive, wait);
1060				} else
1061					startstop =
1062					ide_error(drive, "irq timeout",
1063						  hwif->tp_ops->read_status(hwif));
1064			}
1065			drive->service_time = jiffies - drive->service_start;
1066			spin_lock_irq(&hwgroup->lock);
1067			enable_irq(hwif->irq);
1068			if (startstop == ide_stopped) {
1069				hwgroup->busy = 0;
1070				if (!elv_queue_empty(drive->queue))
1071					blk_plug_device(drive->queue);
1072			}
1073		}
1074	}
1075	spin_unlock_irqrestore(&hwgroup->lock, flags);
1076}
1077
1078/**
1079 *	unexpected_intr		-	handle an unexpected IDE interrupt
1080 *	@irq: interrupt line
1081 *	@hwgroup: hwgroup being processed
1082 *
1083 *	There's nothing really useful we can do with an unexpected interrupt,
1084 *	other than reading the status register (to clear it), and logging it.
1085 *	There should be no way that an irq can happen before we're ready for it,
1086 *	so we needn't worry much about losing an "important" interrupt here.
1087 *
1088 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1089 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
1090 *	looks "good", we just ignore the interrupt completely.
1091 *
1092 *	This routine assumes __cli() is in effect when called.
1093 *
1094 *	If an unexpected interrupt happens on irq15 while we are handling irq14
1095 *	and if the two interfaces are "serialized" (CMD640), then it looks like
1096 *	we could screw up by interfering with a new request being set up for
1097 *	irq15.
1098 *
1099 *	In reality, this is a non-issue.  The new command is not sent unless
1100 *	the drive is ready to accept one, in which case we know the drive is
1101 *	not trying to interrupt us.  And ide_set_handler() is always invoked
1102 *	before completing the issuance of any new drive command, so we will not
1103 *	be accidentally invoked as a result of any valid command completion
1104 *	interrupt.
1105 *
1106 *	Note that we must walk the entire hwgroup here. We know which hwif
1107 *	is doing the current command, but we don't know which hwif burped
1108 *	mysteriously.
1109 */
1110
1111static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1112{
1113	u8 stat;
1114	ide_hwif_t *hwif = hwgroup->hwif;
1115
1116	/*
1117	 * handle the unexpected interrupt
1118	 */
1119	do {
1120		if (hwif->irq == irq) {
1121			stat = hwif->tp_ops->read_status(hwif);
1122
1123			if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1124				/* Try to not flood the console with msgs */
1125				static unsigned long last_msgtime, count;
1126				++count;
1127				if (time_after(jiffies, last_msgtime + HZ)) {
1128					last_msgtime = jiffies;
1129					printk(KERN_ERR "%s%s: unexpected interrupt, "
1130						"status=0x%02x, count=%ld\n",
1131						hwif->name,
1132						(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1133				}
1134			}
1135		}
1136	} while ((hwif = hwif->next) != hwgroup->hwif);
1137}
1138
1139/**
1140 *	ide_intr	-	default IDE interrupt handler
1141 *	@irq: interrupt number
1142 *	@dev_id: hwif group
1143 *	@regs: unused weirdness from the kernel irq layer
1144 *
1145 *	This is the default IRQ handler for the IDE layer. You should
1146 *	not need to override it. If you do be aware it is subtle in
1147 *	places
1148 *
1149 *	hwgroup->hwif is the interface in the group currently performing
1150 *	a command. hwgroup->drive is the drive and hwgroup->handler is
1151 *	the IRQ handler to call. As we issue a command the handlers
1152 *	step through multiple states, reassigning the handler to the
1153 *	next step in the process. Unlike a smart SCSI controller IDE
1154 *	expects the main processor to sequence the various transfer
1155 *	stages. We also manage a poll timer to catch up with most
1156 *	timeout situations. There are still a few where the handlers
1157 *	don't ever decide to give up.
1158 *
1159 *	The handler eventually returns ide_stopped to indicate the
1160 *	request completed. At this point we issue the next request
1161 *	on the hwgroup and the process begins again.
1162 */
1163
1164irqreturn_t ide_intr (int irq, void *dev_id)
1165{
1166	unsigned long flags;
1167	ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1168	ide_hwif_t *hwif = hwgroup->hwif;
1169	ide_drive_t *drive;
1170	ide_handler_t *handler;
1171	ide_startstop_t startstop;
1172	irqreturn_t irq_ret = IRQ_NONE;
1173
1174	spin_lock_irqsave(&hwgroup->lock, flags);
1175
1176	if (!ide_ack_intr(hwif))
1177		goto out;
1178
1179	if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1180		/*
1181		 * Not expecting an interrupt from this drive.
1182		 * That means this could be:
1183		 *	(1) an interrupt from another PCI device
1184		 *	sharing the same PCI INT# as us.
1185		 * or	(2) a drive just entered sleep or standby mode,
1186		 *	and is interrupting to let us know.
1187		 * or	(3) a spurious interrupt of unknown origin.
1188		 *
1189		 * For PCI, we cannot tell the difference,
1190		 * so in that case we just ignore it and hope it goes away.
1191		 *
1192		 * FIXME: unexpected_intr should be hwif-> then we can
1193		 * remove all the ifdef PCI crap
1194		 */
1195#ifdef CONFIG_BLK_DEV_IDEPCI
1196		if (hwif->chipset != ide_pci)
1197#endif	/* CONFIG_BLK_DEV_IDEPCI */
1198		{
1199			/*
1200			 * Probably not a shared PCI interrupt,
1201			 * so we can safely try to do something about it:
1202			 */
1203			unexpected_intr(irq, hwgroup);
1204#ifdef CONFIG_BLK_DEV_IDEPCI
1205		} else {
1206			/*
1207			 * Whack the status register, just in case
1208			 * we have a leftover pending IRQ.
1209			 */
1210			(void)hwif->tp_ops->read_status(hwif);
1211#endif /* CONFIG_BLK_DEV_IDEPCI */
1212		}
1213		goto out;
1214	}
1215
1216	drive = hwgroup->drive;
1217	if (!drive) {
1218		/*
1219		 * This should NEVER happen, and there isn't much
1220		 * we could do about it here.
1221		 *
1222		 * [Note - this can occur if the drive is hot unplugged]
1223		 */
1224		goto out_handled;
1225	}
1226
1227	if (!drive_is_ready(drive))
1228		/*
1229		 * This happens regularly when we share a PCI IRQ with
1230		 * another device.  Unfortunately, it can also happen
1231		 * with some buggy drives that trigger the IRQ before
1232		 * their status register is up to date.  Hopefully we have
1233		 * enough advance overhead that the latter isn't a problem.
1234		 */
1235		goto out;
1236
1237	if (!hwgroup->busy) {
1238		hwgroup->busy = 1;	/* paranoia */
1239		printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1240	}
1241	hwgroup->handler = NULL;
1242	hwgroup->req_gen++;
1243	del_timer(&hwgroup->timer);
1244	spin_unlock(&hwgroup->lock);
1245
1246	if (hwif->port_ops && hwif->port_ops->clear_irq)
1247		hwif->port_ops->clear_irq(drive);
1248
1249	if (drive->dev_flags & IDE_DFLAG_UNMASK)
1250		local_irq_enable_in_hardirq();
1251
1252	/* service this interrupt, may set handler for next interrupt */
1253	startstop = handler(drive);
1254
1255	spin_lock_irq(&hwgroup->lock);
1256	/*
1257	 * Note that handler() may have set things up for another
1258	 * interrupt to occur soon, but it cannot happen until
1259	 * we exit from this routine, because it will be the
1260	 * same irq as is currently being serviced here, and Linux
1261	 * won't allow another of the same (on any CPU) until we return.
1262	 */
1263	drive->service_time = jiffies - drive->service_start;
1264	if (startstop == ide_stopped) {
1265		if (hwgroup->handler == NULL) {	/* paranoia */
1266			hwgroup->busy = 0;
1267			if (!elv_queue_empty(drive->queue))
1268				blk_plug_device(drive->queue);
1269		} else
1270			printk(KERN_ERR "%s: %s: huh? expected NULL handler "
1271					"on exit\n", __func__, drive->name);
1272	}
1273out_handled:
1274	irq_ret = IRQ_HANDLED;
1275out:
1276	spin_unlock_irqrestore(&hwgroup->lock, flags);
1277	return irq_ret;
1278}
1279
1280/**
1281 *	ide_do_drive_cmd	-	issue IDE special command
1282 *	@drive: device to issue command
1283 *	@rq: request to issue
1284 *
1285 *	This function issues a special IDE device request
1286 *	onto the request queue.
1287 *
1288 *	the rq is queued at the head of the request queue, displacing
1289 *	the currently-being-processed request and this function
1290 *	returns immediately without waiting for the new rq to be
1291 *	completed.  This is VERY DANGEROUS, and is intended for
1292 *	careful use by the ATAPI tape/cdrom driver code.
1293 */
1294
1295void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1296{
1297	ide_hwgroup_t *hwgroup = drive->hwif->hwgroup;
1298	struct request_queue *q = drive->queue;
1299	unsigned long flags;
1300
1301	hwgroup->rq = NULL;
1302
1303	spin_lock_irqsave(q->queue_lock, flags);
1304	__elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0);
1305	blk_start_queueing(q);
1306	spin_unlock_irqrestore(q->queue_lock, flags);
1307}
1308EXPORT_SYMBOL(ide_do_drive_cmd);
1309
1310void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1311{
1312	ide_hwif_t *hwif = drive->hwif;
1313	ide_task_t task;
1314
1315	memset(&task, 0, sizeof(task));
1316	task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1317			IDE_TFLAG_OUT_FEATURE | tf_flags;
1318	task.tf.feature = dma;		/* Use PIO/DMA */
1319	task.tf.lbam    = bcount & 0xff;
1320	task.tf.lbah    = (bcount >> 8) & 0xff;
1321
1322	ide_tf_dump(drive->name, &task.tf);
1323	hwif->tp_ops->set_irq(hwif, 1);
1324	SELECT_MASK(drive, 0);
1325	hwif->tp_ops->tf_load(drive, &task);
1326}
1327
1328EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1329
1330void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1331{
1332	ide_hwif_t *hwif = drive->hwif;
1333	u8 buf[4] = { 0 };
1334
1335	while (len > 0) {
1336		if (write)
1337			hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1338		else
1339			hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1340		len -= 4;
1341	}
1342}
1343EXPORT_SYMBOL_GPL(ide_pad_transfer);
1344