ide-io.c revision 2c316bb57ad4e9f0f3de2d7ef1ae85530c2a7e69
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
50#include <linux/bitops.h>
51
52#include <asm/byteorder.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55#include <asm/io.h>
56
57int ide_end_rq(ide_drive_t *drive, struct request *rq, int error,
58	       unsigned int nr_bytes)
59{
60	/*
61	 * decide whether to reenable DMA -- 3 is a random magic for now,
62	 * if we DMA timeout more than 3 times, just stay in PIO
63	 */
64	if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
65	    drive->retry_pio <= 3) {
66		drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
67		ide_dma_on(drive);
68	}
69
70	return blk_end_request(rq, error, nr_bytes);
71}
72EXPORT_SYMBOL_GPL(ide_end_rq);
73
74void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err)
75{
76	const struct ide_tp_ops *tp_ops = drive->hwif->tp_ops;
77	struct ide_taskfile *tf = &cmd->tf;
78	struct request *rq = cmd->rq;
79	u8 tf_cmd = tf->command;
80
81	tf->error = err;
82	tf->status = stat;
83
84	if (cmd->ftf_flags & IDE_FTFLAG_IN_DATA) {
85		u8 data[2];
86
87		tp_ops->input_data(drive, cmd, data, 2);
88
89		cmd->tf.data  = data[0];
90		cmd->hob.data = data[1];
91	}
92
93	ide_tf_readback(drive, cmd);
94
95	if ((cmd->tf_flags & IDE_TFLAG_CUSTOM_HANDLER) &&
96	    tf_cmd == ATA_CMD_IDLEIMMEDIATE) {
97		if (tf->lbal != 0xc4) {
98			printk(KERN_ERR "%s: head unload failed!\n",
99			       drive->name);
100			ide_tf_dump(drive->name, cmd);
101		} else
102			drive->dev_flags |= IDE_DFLAG_PARKED;
103	}
104
105	if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
106		struct ide_cmd *orig_cmd = rq->special;
107
108		if (cmd->tf_flags & IDE_TFLAG_DYN)
109			kfree(orig_cmd);
110		else
111			memcpy(orig_cmd, cmd, sizeof(*cmd));
112	}
113}
114
115/* obsolete, blk_rq_bytes() should be used instead */
116unsigned int ide_rq_bytes(struct request *rq)
117{
118	if (blk_pc_request(rq))
119		return rq->data_len;
120	else
121		return rq->hard_cur_sectors << 9;
122}
123EXPORT_SYMBOL_GPL(ide_rq_bytes);
124
125int ide_complete_rq(ide_drive_t *drive, int error, unsigned int nr_bytes)
126{
127	ide_hwif_t *hwif = drive->hwif;
128	struct request *rq = hwif->rq;
129	int rc;
130
131	/*
132	 * if failfast is set on a request, override number of sectors
133	 * and complete the whole request right now
134	 */
135	if (blk_noretry_request(rq) && error <= 0)
136		nr_bytes = rq->hard_nr_sectors << 9;
137
138	rc = ide_end_rq(drive, rq, error, nr_bytes);
139	if (rc == 0)
140		hwif->rq = NULL;
141
142	return rc;
143}
144EXPORT_SYMBOL(ide_complete_rq);
145
146void ide_kill_rq(ide_drive_t *drive, struct request *rq)
147{
148	u8 drv_req = blk_special_request(rq) && rq->rq_disk;
149	u8 media = drive->media;
150
151	drive->failed_pc = NULL;
152
153	if ((media == ide_floppy || media == ide_tape) && drv_req) {
154		rq->errors = 0;
155		ide_complete_rq(drive, 0, blk_rq_bytes(rq));
156	} else {
157		if (media == ide_tape)
158			rq->errors = IDE_DRV_ERROR_GENERAL;
159		else if (blk_fs_request(rq) == 0 && rq->errors == 0)
160			rq->errors = -EIO;
161		ide_complete_rq(drive, -EIO, ide_rq_bytes(rq));
162	}
163}
164
165static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
166{
167	tf->nsect   = drive->sect;
168	tf->lbal    = drive->sect;
169	tf->lbam    = drive->cyl;
170	tf->lbah    = drive->cyl >> 8;
171	tf->device  = (drive->head - 1) | drive->select;
172	tf->command = ATA_CMD_INIT_DEV_PARAMS;
173}
174
175static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
176{
177	tf->nsect   = drive->sect;
178	tf->command = ATA_CMD_RESTORE;
179}
180
181static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
182{
183	tf->nsect   = drive->mult_req;
184	tf->command = ATA_CMD_SET_MULTI;
185}
186
187static ide_startstop_t ide_disk_special(ide_drive_t *drive)
188{
189	special_t *s = &drive->special;
190	struct ide_cmd cmd;
191
192	memset(&cmd, 0, sizeof(cmd));
193	cmd.protocol = ATA_PROT_NODATA;
194
195	if (s->b.set_geometry) {
196		s->b.set_geometry = 0;
197		ide_tf_set_specify_cmd(drive, &cmd.tf);
198	} else if (s->b.recalibrate) {
199		s->b.recalibrate = 0;
200		ide_tf_set_restore_cmd(drive, &cmd.tf);
201	} else if (s->b.set_multmode) {
202		s->b.set_multmode = 0;
203		ide_tf_set_setmult_cmd(drive, &cmd.tf);
204	} else if (s->all) {
205		int special = s->all;
206		s->all = 0;
207		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
208		return ide_stopped;
209	}
210
211	cmd.valid.out.tf = IDE_VALID_OUT_TF | IDE_VALID_DEVICE;
212	cmd.valid.in.tf  = IDE_VALID_IN_TF  | IDE_VALID_DEVICE;
213	cmd.tf_flags = IDE_TFLAG_CUSTOM_HANDLER;
214
215	do_rw_taskfile(drive, &cmd);
216
217	return ide_started;
218}
219
220/**
221 *	do_special		-	issue some special commands
222 *	@drive: drive the command is for
223 *
224 *	do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
225 *	ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
226 *
227 *	It used to do much more, but has been scaled back.
228 */
229
230static ide_startstop_t do_special (ide_drive_t *drive)
231{
232	special_t *s = &drive->special;
233
234#ifdef DEBUG
235	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
236#endif
237	if (drive->media == ide_disk)
238		return ide_disk_special(drive);
239
240	s->all = 0;
241	drive->mult_req = 0;
242	return ide_stopped;
243}
244
245void ide_map_sg(ide_drive_t *drive, struct ide_cmd *cmd)
246{
247	ide_hwif_t *hwif = drive->hwif;
248	struct scatterlist *sg = hwif->sg_table;
249	struct request *rq = cmd->rq;
250
251	cmd->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
252}
253EXPORT_SYMBOL_GPL(ide_map_sg);
254
255void ide_init_sg_cmd(struct ide_cmd *cmd, unsigned int nr_bytes)
256{
257	cmd->nbytes = cmd->nleft = nr_bytes;
258	cmd->cursg_ofs = 0;
259	cmd->cursg = NULL;
260}
261EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
262
263/**
264 *	execute_drive_command	-	issue special drive command
265 *	@drive: the drive to issue the command on
266 *	@rq: the request structure holding the command
267 *
268 *	execute_drive_cmd() issues a special drive command,  usually
269 *	initiated by ioctl() from the external hdparm program. The
270 *	command can be a drive command, drive task or taskfile
271 *	operation. Weirdly you can call it with NULL to wait for
272 *	all commands to finish. Don't do this as that is due to change
273 */
274
275static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
276		struct request *rq)
277{
278	struct ide_cmd *cmd = rq->special;
279
280	if (cmd) {
281		if (cmd->protocol == ATA_PROT_PIO) {
282			ide_init_sg_cmd(cmd, rq->nr_sectors << 9);
283			ide_map_sg(drive, cmd);
284		}
285
286		return do_rw_taskfile(drive, cmd);
287	}
288
289 	/*
290 	 * NULL is actually a valid way of waiting for
291 	 * all current requests to be flushed from the queue.
292 	 */
293#ifdef DEBUG
294 	printk("%s: DRIVE_CMD (null)\n", drive->name);
295#endif
296	rq->errors = 0;
297	ide_complete_rq(drive, 0, blk_rq_bytes(rq));
298
299 	return ide_stopped;
300}
301
302static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
303{
304	u8 cmd = rq->cmd[0];
305
306	switch (cmd) {
307	case REQ_PARK_HEADS:
308	case REQ_UNPARK_HEADS:
309		return ide_do_park_unpark(drive, rq);
310	case REQ_DEVSET_EXEC:
311		return ide_do_devset(drive, rq);
312	case REQ_DRIVE_RESET:
313		return ide_do_reset(drive);
314	default:
315		BUG();
316	}
317}
318
319/**
320 *	start_request	-	start of I/O and command issuing for IDE
321 *
322 *	start_request() initiates handling of a new I/O request. It
323 *	accepts commands and I/O (read/write) requests.
324 *
325 *	FIXME: this function needs a rename
326 */
327
328static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
329{
330	ide_startstop_t startstop;
331
332	BUG_ON(!blk_rq_started(rq));
333
334#ifdef DEBUG
335	printk("%s: start_request: current=0x%08lx\n",
336		drive->hwif->name, (unsigned long) rq);
337#endif
338
339	/* bail early if we've exceeded max_failures */
340	if (drive->max_failures && (drive->failures > drive->max_failures)) {
341		rq->cmd_flags |= REQ_FAILED;
342		goto kill_rq;
343	}
344
345	if (blk_pm_request(rq))
346		ide_check_pm_state(drive, rq);
347
348	drive->hwif->tp_ops->dev_select(drive);
349	if (ide_wait_stat(&startstop, drive, drive->ready_stat,
350			  ATA_BUSY | ATA_DRQ, WAIT_READY)) {
351		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
352		return startstop;
353	}
354	if (!drive->special.all) {
355		struct ide_driver *drv;
356
357		/*
358		 * We reset the drive so we need to issue a SETFEATURES.
359		 * Do it _after_ do_special() restored device parameters.
360		 */
361		if (drive->current_speed == 0xff)
362			ide_config_drive_speed(drive, drive->desired_speed);
363
364		if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
365			return execute_drive_cmd(drive, rq);
366		else if (blk_pm_request(rq)) {
367			struct request_pm_state *pm = rq->special;
368#ifdef DEBUG_PM
369			printk("%s: start_power_step(step: %d)\n",
370				drive->name, pm->pm_step);
371#endif
372			startstop = ide_start_power_step(drive, rq);
373			if (startstop == ide_stopped &&
374			    pm->pm_step == IDE_PM_COMPLETED)
375				ide_complete_pm_rq(drive, rq);
376			return startstop;
377		} else if (!rq->rq_disk && blk_special_request(rq))
378			/*
379			 * TODO: Once all ULDs have been modified to
380			 * check for specific op codes rather than
381			 * blindly accepting any special request, the
382			 * check for ->rq_disk above may be replaced
383			 * by a more suitable mechanism or even
384			 * dropped entirely.
385			 */
386			return ide_special_rq(drive, rq);
387
388		drv = *(struct ide_driver **)rq->rq_disk->private_data;
389
390		return drv->do_request(drive, rq, rq->sector);
391	}
392	return do_special(drive);
393kill_rq:
394	ide_kill_rq(drive, rq);
395	return ide_stopped;
396}
397
398/**
399 *	ide_stall_queue		-	pause an IDE device
400 *	@drive: drive to stall
401 *	@timeout: time to stall for (jiffies)
402 *
403 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
404 *	to the port by sleeping for timeout jiffies.
405 */
406
407void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
408{
409	if (timeout > WAIT_WORSTCASE)
410		timeout = WAIT_WORSTCASE;
411	drive->sleep = timeout + jiffies;
412	drive->dev_flags |= IDE_DFLAG_SLEEPING;
413}
414EXPORT_SYMBOL(ide_stall_queue);
415
416static inline int ide_lock_port(ide_hwif_t *hwif)
417{
418	if (hwif->busy)
419		return 1;
420
421	hwif->busy = 1;
422
423	return 0;
424}
425
426static inline void ide_unlock_port(ide_hwif_t *hwif)
427{
428	hwif->busy = 0;
429}
430
431static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
432{
433	int rc = 0;
434
435	if (host->host_flags & IDE_HFLAG_SERIALIZE) {
436		rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
437		if (rc == 0) {
438			if (host->get_lock)
439				host->get_lock(ide_intr, hwif);
440		}
441	}
442	return rc;
443}
444
445static inline void ide_unlock_host(struct ide_host *host)
446{
447	if (host->host_flags & IDE_HFLAG_SERIALIZE) {
448		if (host->release_lock)
449			host->release_lock();
450		clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
451	}
452}
453
454/*
455 * Issue a new request to a device.
456 */
457void do_ide_request(struct request_queue *q)
458{
459	ide_drive_t	*drive = q->queuedata;
460	ide_hwif_t	*hwif = drive->hwif;
461	struct ide_host *host = hwif->host;
462	struct request	*rq = NULL;
463	ide_startstop_t	startstop;
464
465	/*
466	 * drive is doing pre-flush, ordered write, post-flush sequence. even
467	 * though that is 3 requests, it must be seen as a single transaction.
468	 * we must not preempt this drive until that is complete
469	 */
470	if (blk_queue_flushing(q))
471		/*
472		 * small race where queue could get replugged during
473		 * the 3-request flush cycle, just yank the plug since
474		 * we want it to finish asap
475		 */
476		blk_remove_plug(q);
477
478	spin_unlock_irq(q->queue_lock);
479
480	/* HLD do_request() callback might sleep, make sure it's okay */
481	might_sleep();
482
483	if (ide_lock_host(host, hwif))
484		goto plug_device_2;
485
486	spin_lock_irq(&hwif->lock);
487
488	if (!ide_lock_port(hwif)) {
489		ide_hwif_t *prev_port;
490repeat:
491		prev_port = hwif->host->cur_port;
492		hwif->rq = NULL;
493
494		if (drive->dev_flags & IDE_DFLAG_SLEEPING &&
495		    time_after(drive->sleep, jiffies)) {
496			ide_unlock_port(hwif);
497			goto plug_device;
498		}
499
500		if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
501		    hwif != prev_port) {
502			/*
503			 * set nIEN for previous port, drives in the
504			 * quirk_list may not like intr setups/cleanups
505			 */
506			if (prev_port && prev_port->cur_dev->quirk_list == 0)
507				prev_port->tp_ops->write_devctl(prev_port,
508								ATA_NIEN |
509								ATA_DEVCTL_OBS);
510
511			hwif->host->cur_port = hwif;
512		}
513		hwif->cur_dev = drive;
514		drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
515
516		spin_unlock_irq(&hwif->lock);
517		spin_lock_irq(q->queue_lock);
518		/*
519		 * we know that the queue isn't empty, but this can happen
520		 * if the q->prep_rq_fn() decides to kill a request
521		 */
522		rq = elv_next_request(drive->queue);
523		spin_unlock_irq(q->queue_lock);
524		spin_lock_irq(&hwif->lock);
525
526		if (!rq) {
527			ide_unlock_port(hwif);
528			goto out;
529		}
530
531		/*
532		 * Sanity: don't accept a request that isn't a PM request
533		 * if we are currently power managed. This is very important as
534		 * blk_stop_queue() doesn't prevent the elv_next_request()
535		 * above to return us whatever is in the queue. Since we call
536		 * ide_do_request() ourselves, we end up taking requests while
537		 * the queue is blocked...
538		 *
539		 * We let requests forced at head of queue with ide-preempt
540		 * though. I hope that doesn't happen too much, hopefully not
541		 * unless the subdriver triggers such a thing in its own PM
542		 * state machine.
543		 */
544		if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
545		    blk_pm_request(rq) == 0 &&
546		    (rq->cmd_flags & REQ_PREEMPT) == 0) {
547			/* there should be no pending command at this point */
548			ide_unlock_port(hwif);
549			goto plug_device;
550		}
551
552		hwif->rq = rq;
553
554		spin_unlock_irq(&hwif->lock);
555		startstop = start_request(drive, rq);
556		spin_lock_irq(&hwif->lock);
557
558		if (startstop == ide_stopped)
559			goto repeat;
560	} else
561		goto plug_device;
562out:
563	spin_unlock_irq(&hwif->lock);
564	if (rq == NULL)
565		ide_unlock_host(host);
566	spin_lock_irq(q->queue_lock);
567	return;
568
569plug_device:
570	spin_unlock_irq(&hwif->lock);
571	ide_unlock_host(host);
572plug_device_2:
573	spin_lock_irq(q->queue_lock);
574
575	if (!elv_queue_empty(q))
576		blk_plug_device(q);
577}
578
579static void ide_plug_device(ide_drive_t *drive)
580{
581	struct request_queue *q = drive->queue;
582	unsigned long flags;
583
584	spin_lock_irqsave(q->queue_lock, flags);
585	if (!elv_queue_empty(q))
586		blk_plug_device(q);
587	spin_unlock_irqrestore(q->queue_lock, flags);
588}
589
590static int drive_is_ready(ide_drive_t *drive)
591{
592	ide_hwif_t *hwif = drive->hwif;
593	u8 stat = 0;
594
595	if (drive->waiting_for_dma)
596		return hwif->dma_ops->dma_test_irq(drive);
597
598	if (hwif->io_ports.ctl_addr &&
599	    (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
600		stat = hwif->tp_ops->read_altstatus(hwif);
601	else
602		/* Note: this may clear a pending IRQ!! */
603		stat = hwif->tp_ops->read_status(hwif);
604
605	if (stat & ATA_BUSY)
606		/* drive busy: definitely not interrupting */
607		return 0;
608
609	/* drive ready: *might* be interrupting */
610	return 1;
611}
612
613/**
614 *	ide_timer_expiry	-	handle lack of an IDE interrupt
615 *	@data: timer callback magic (hwif)
616 *
617 *	An IDE command has timed out before the expected drive return
618 *	occurred. At this point we attempt to clean up the current
619 *	mess. If the current handler includes an expiry handler then
620 *	we invoke the expiry handler, and providing it is happy the
621 *	work is done. If that fails we apply generic recovery rules
622 *	invoking the handler and checking the drive DMA status. We
623 *	have an excessively incestuous relationship with the DMA
624 *	logic that wants cleaning up.
625 */
626
627void ide_timer_expiry (unsigned long data)
628{
629	ide_hwif_t	*hwif = (ide_hwif_t *)data;
630	ide_drive_t	*uninitialized_var(drive);
631	ide_handler_t	*handler;
632	unsigned long	flags;
633	int		wait = -1;
634	int		plug_device = 0;
635
636	spin_lock_irqsave(&hwif->lock, flags);
637
638	handler = hwif->handler;
639
640	if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
641		/*
642		 * Either a marginal timeout occurred
643		 * (got the interrupt just as timer expired),
644		 * or we were "sleeping" to give other devices a chance.
645		 * Either way, we don't really want to complain about anything.
646		 */
647	} else {
648		ide_expiry_t *expiry = hwif->expiry;
649		ide_startstop_t startstop = ide_stopped;
650
651		drive = hwif->cur_dev;
652
653		if (expiry) {
654			wait = expiry(drive);
655			if (wait > 0) { /* continue */
656				/* reset timer */
657				hwif->timer.expires = jiffies + wait;
658				hwif->req_gen_timer = hwif->req_gen;
659				add_timer(&hwif->timer);
660				spin_unlock_irqrestore(&hwif->lock, flags);
661				return;
662			}
663		}
664		hwif->handler = NULL;
665		hwif->expiry = NULL;
666		/*
667		 * We need to simulate a real interrupt when invoking
668		 * the handler() function, which means we need to
669		 * globally mask the specific IRQ:
670		 */
671		spin_unlock(&hwif->lock);
672		/* disable_irq_nosync ?? */
673		disable_irq(hwif->irq);
674		/* local CPU only, as if we were handling an interrupt */
675		local_irq_disable();
676		if (hwif->polling) {
677			startstop = handler(drive);
678		} else if (drive_is_ready(drive)) {
679			if (drive->waiting_for_dma)
680				hwif->dma_ops->dma_lost_irq(drive);
681			if (hwif->ack_intr)
682				hwif->ack_intr(hwif);
683			printk(KERN_WARNING "%s: lost interrupt\n",
684				drive->name);
685			startstop = handler(drive);
686		} else {
687			if (drive->waiting_for_dma)
688				startstop = ide_dma_timeout_retry(drive, wait);
689			else
690				startstop = ide_error(drive, "irq timeout",
691					hwif->tp_ops->read_status(hwif));
692		}
693		spin_lock_irq(&hwif->lock);
694		enable_irq(hwif->irq);
695		if (startstop == ide_stopped) {
696			ide_unlock_port(hwif);
697			plug_device = 1;
698		}
699	}
700	spin_unlock_irqrestore(&hwif->lock, flags);
701
702	if (plug_device) {
703		ide_unlock_host(hwif->host);
704		ide_plug_device(drive);
705	}
706}
707
708/**
709 *	unexpected_intr		-	handle an unexpected IDE interrupt
710 *	@irq: interrupt line
711 *	@hwif: port being processed
712 *
713 *	There's nothing really useful we can do with an unexpected interrupt,
714 *	other than reading the status register (to clear it), and logging it.
715 *	There should be no way that an irq can happen before we're ready for it,
716 *	so we needn't worry much about losing an "important" interrupt here.
717 *
718 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
719 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
720 *	looks "good", we just ignore the interrupt completely.
721 *
722 *	This routine assumes __cli() is in effect when called.
723 *
724 *	If an unexpected interrupt happens on irq15 while we are handling irq14
725 *	and if the two interfaces are "serialized" (CMD640), then it looks like
726 *	we could screw up by interfering with a new request being set up for
727 *	irq15.
728 *
729 *	In reality, this is a non-issue.  The new command is not sent unless
730 *	the drive is ready to accept one, in which case we know the drive is
731 *	not trying to interrupt us.  And ide_set_handler() is always invoked
732 *	before completing the issuance of any new drive command, so we will not
733 *	be accidentally invoked as a result of any valid command completion
734 *	interrupt.
735 */
736
737static void unexpected_intr(int irq, ide_hwif_t *hwif)
738{
739	u8 stat = hwif->tp_ops->read_status(hwif);
740
741	if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
742		/* Try to not flood the console with msgs */
743		static unsigned long last_msgtime, count;
744		++count;
745
746		if (time_after(jiffies, last_msgtime + HZ)) {
747			last_msgtime = jiffies;
748			printk(KERN_ERR "%s: unexpected interrupt, "
749				"status=0x%02x, count=%ld\n",
750				hwif->name, stat, count);
751		}
752	}
753}
754
755/**
756 *	ide_intr	-	default IDE interrupt handler
757 *	@irq: interrupt number
758 *	@dev_id: hwif
759 *	@regs: unused weirdness from the kernel irq layer
760 *
761 *	This is the default IRQ handler for the IDE layer. You should
762 *	not need to override it. If you do be aware it is subtle in
763 *	places
764 *
765 *	hwif is the interface in the group currently performing
766 *	a command. hwif->cur_dev is the drive and hwif->handler is
767 *	the IRQ handler to call. As we issue a command the handlers
768 *	step through multiple states, reassigning the handler to the
769 *	next step in the process. Unlike a smart SCSI controller IDE
770 *	expects the main processor to sequence the various transfer
771 *	stages. We also manage a poll timer to catch up with most
772 *	timeout situations. There are still a few where the handlers
773 *	don't ever decide to give up.
774 *
775 *	The handler eventually returns ide_stopped to indicate the
776 *	request completed. At this point we issue the next request
777 *	on the port and the process begins again.
778 */
779
780irqreturn_t ide_intr (int irq, void *dev_id)
781{
782	ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
783	struct ide_host *host = hwif->host;
784	ide_drive_t *uninitialized_var(drive);
785	ide_handler_t *handler;
786	unsigned long flags;
787	ide_startstop_t startstop;
788	irqreturn_t irq_ret = IRQ_NONE;
789	int plug_device = 0;
790
791	if (host->host_flags & IDE_HFLAG_SERIALIZE) {
792		if (hwif != host->cur_port)
793			goto out_early;
794	}
795
796	spin_lock_irqsave(&hwif->lock, flags);
797
798	if (hwif->ack_intr && hwif->ack_intr(hwif) == 0)
799		goto out;
800
801	handler = hwif->handler;
802
803	if (handler == NULL || hwif->polling) {
804		/*
805		 * Not expecting an interrupt from this drive.
806		 * That means this could be:
807		 *	(1) an interrupt from another PCI device
808		 *	sharing the same PCI INT# as us.
809		 * or	(2) a drive just entered sleep or standby mode,
810		 *	and is interrupting to let us know.
811		 * or	(3) a spurious interrupt of unknown origin.
812		 *
813		 * For PCI, we cannot tell the difference,
814		 * so in that case we just ignore it and hope it goes away.
815		 */
816		if ((host->irq_flags & IRQF_SHARED) == 0) {
817			/*
818			 * Probably not a shared PCI interrupt,
819			 * so we can safely try to do something about it:
820			 */
821			unexpected_intr(irq, hwif);
822		} else {
823			/*
824			 * Whack the status register, just in case
825			 * we have a leftover pending IRQ.
826			 */
827			(void)hwif->tp_ops->read_status(hwif);
828		}
829		goto out;
830	}
831
832	drive = hwif->cur_dev;
833
834	if (!drive_is_ready(drive))
835		/*
836		 * This happens regularly when we share a PCI IRQ with
837		 * another device.  Unfortunately, it can also happen
838		 * with some buggy drives that trigger the IRQ before
839		 * their status register is up to date.  Hopefully we have
840		 * enough advance overhead that the latter isn't a problem.
841		 */
842		goto out;
843
844	hwif->handler = NULL;
845	hwif->expiry = NULL;
846	hwif->req_gen++;
847	del_timer(&hwif->timer);
848	spin_unlock(&hwif->lock);
849
850	if (hwif->port_ops && hwif->port_ops->clear_irq)
851		hwif->port_ops->clear_irq(drive);
852
853	if (drive->dev_flags & IDE_DFLAG_UNMASK)
854		local_irq_enable_in_hardirq();
855
856	/* service this interrupt, may set handler for next interrupt */
857	startstop = handler(drive);
858
859	spin_lock_irq(&hwif->lock);
860	/*
861	 * Note that handler() may have set things up for another
862	 * interrupt to occur soon, but it cannot happen until
863	 * we exit from this routine, because it will be the
864	 * same irq as is currently being serviced here, and Linux
865	 * won't allow another of the same (on any CPU) until we return.
866	 */
867	if (startstop == ide_stopped) {
868		BUG_ON(hwif->handler);
869		ide_unlock_port(hwif);
870		plug_device = 1;
871	}
872	irq_ret = IRQ_HANDLED;
873out:
874	spin_unlock_irqrestore(&hwif->lock, flags);
875out_early:
876	if (plug_device) {
877		ide_unlock_host(hwif->host);
878		ide_plug_device(drive);
879	}
880
881	return irq_ret;
882}
883EXPORT_SYMBOL_GPL(ide_intr);
884
885void ide_pad_transfer(ide_drive_t *drive, int write, int len)
886{
887	ide_hwif_t *hwif = drive->hwif;
888	u8 buf[4] = { 0 };
889
890	while (len > 0) {
891		if (write)
892			hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
893		else
894			hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
895		len -= 4;
896	}
897}
898EXPORT_SYMBOL_GPL(ide_pad_transfer);
899