ide-io.c revision 395d8ef5bebe547a80737692f9789d2e36da16f2
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
50#include <linux/bitops.h>
51
52#include <asm/byteorder.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55#include <asm/io.h>
56
57static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58			     int uptodate, unsigned int nr_bytes, int dequeue)
59{
60	int ret = 1;
61	int error = 0;
62
63	if (uptodate <= 0)
64		error = uptodate ? uptodate : -EIO;
65
66	/*
67	 * if failfast is set on a request, override number of sectors and
68	 * complete the whole request right now
69	 */
70	if (blk_noretry_request(rq) && error)
71		nr_bytes = rq->hard_nr_sectors << 9;
72
73	if (!blk_fs_request(rq) && error && !rq->errors)
74		rq->errors = -EIO;
75
76	/*
77	 * decide whether to reenable DMA -- 3 is a random magic for now,
78	 * if we DMA timeout more than 3 times, just stay in PIO
79	 */
80	if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
81		drive->state = 0;
82		ide_dma_on(drive);
83	}
84
85	if (!__blk_end_request(rq, error, nr_bytes)) {
86		if (dequeue)
87			HWGROUP(drive)->rq = NULL;
88		ret = 0;
89	}
90
91	return ret;
92}
93
94/**
95 *	ide_end_request		-	complete an IDE I/O
96 *	@drive: IDE device for the I/O
97 *	@uptodate:
98 *	@nr_sectors: number of sectors completed
99 *
100 *	This is our end_request wrapper function. We complete the I/O
101 *	update random number input and dequeue the request, which if
102 *	it was tagged may be out of order.
103 */
104
105int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
106{
107	unsigned int nr_bytes = nr_sectors << 9;
108	struct request *rq;
109	unsigned long flags;
110	int ret = 1;
111
112	/*
113	 * room for locking improvements here, the calls below don't
114	 * need the queue lock held at all
115	 */
116	spin_lock_irqsave(&ide_lock, flags);
117	rq = HWGROUP(drive)->rq;
118
119	if (!nr_bytes) {
120		if (blk_pc_request(rq))
121			nr_bytes = rq->data_len;
122		else
123			nr_bytes = rq->hard_cur_sectors << 9;
124	}
125
126	ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
127
128	spin_unlock_irqrestore(&ide_lock, flags);
129	return ret;
130}
131EXPORT_SYMBOL(ide_end_request);
132
133/*
134 * Power Management state machine. This one is rather trivial for now,
135 * we should probably add more, like switching back to PIO on suspend
136 * to help some BIOSes, re-do the door locking on resume, etc...
137 */
138
139enum {
140	ide_pm_flush_cache	= ide_pm_state_start_suspend,
141	idedisk_pm_standby,
142
143	idedisk_pm_restore_pio	= ide_pm_state_start_resume,
144	idedisk_pm_idle,
145	ide_pm_restore_dma,
146};
147
148static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
149{
150	struct request_pm_state *pm = rq->data;
151
152	if (drive->media != ide_disk)
153		return;
154
155	switch (pm->pm_step) {
156	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) complete */
157		if (pm->pm_state == PM_EVENT_FREEZE)
158			pm->pm_step = ide_pm_state_completed;
159		else
160			pm->pm_step = idedisk_pm_standby;
161		break;
162	case idedisk_pm_standby:	/* Suspend step 2 (standby) complete */
163		pm->pm_step = ide_pm_state_completed;
164		break;
165	case idedisk_pm_restore_pio:	/* Resume step 1 complete */
166		pm->pm_step = idedisk_pm_idle;
167		break;
168	case idedisk_pm_idle:		/* Resume step 2 (idle) complete */
169		pm->pm_step = ide_pm_restore_dma;
170		break;
171	}
172}
173
174static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
175{
176	struct request_pm_state *pm = rq->data;
177	ide_task_t *args = rq->special;
178
179	memset(args, 0, sizeof(*args));
180
181	switch (pm->pm_step) {
182	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) */
183		if (drive->media != ide_disk)
184			break;
185		/* Not supported? Switch to next step now. */
186		if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
187			ide_complete_power_step(drive, rq, 0, 0);
188			return ide_stopped;
189		}
190		if (ide_id_has_flush_cache_ext(drive->id))
191			args->tf.command = WIN_FLUSH_CACHE_EXT;
192		else
193			args->tf.command = WIN_FLUSH_CACHE;
194		goto out_do_tf;
195
196	case idedisk_pm_standby:	/* Suspend step 2 (standby) */
197		args->tf.command = WIN_STANDBYNOW1;
198		goto out_do_tf;
199
200	case idedisk_pm_restore_pio:	/* Resume step 1 (restore PIO) */
201		ide_set_max_pio(drive);
202		/*
203		 * skip idedisk_pm_idle for ATAPI devices
204		 */
205		if (drive->media != ide_disk)
206			pm->pm_step = ide_pm_restore_dma;
207		else
208			ide_complete_power_step(drive, rq, 0, 0);
209		return ide_stopped;
210
211	case idedisk_pm_idle:		/* Resume step 2 (idle) */
212		args->tf.command = WIN_IDLEIMMEDIATE;
213		goto out_do_tf;
214
215	case ide_pm_restore_dma:	/* Resume step 3 (restore DMA) */
216		/*
217		 * Right now, all we do is call ide_set_dma(drive),
218		 * we could be smarter and check for current xfer_speed
219		 * in struct drive etc...
220		 */
221		if (drive->hwif->dma_host_set == NULL)
222			break;
223		/*
224		 * TODO: respect ->using_dma setting
225		 */
226		ide_set_dma(drive);
227		break;
228	}
229	pm->pm_step = ide_pm_state_completed;
230	return ide_stopped;
231
232out_do_tf:
233	args->tf_flags	 = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
234	args->data_phase = TASKFILE_NO_DATA;
235	return do_rw_taskfile(drive, args);
236}
237
238/**
239 *	ide_end_dequeued_request	-	complete an IDE I/O
240 *	@drive: IDE device for the I/O
241 *	@uptodate:
242 *	@nr_sectors: number of sectors completed
243 *
244 *	Complete an I/O that is no longer on the request queue. This
245 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
246 *	We must still finish the old request but we must not tamper with the
247 *	queue in the meantime.
248 *
249 *	NOTE: This path does not handle barrier, but barrier is not supported
250 *	on ide-cd anyway.
251 */
252
253int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
254			     int uptodate, int nr_sectors)
255{
256	unsigned long flags;
257	int ret;
258
259	spin_lock_irqsave(&ide_lock, flags);
260	BUG_ON(!blk_rq_started(rq));
261	ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
262	spin_unlock_irqrestore(&ide_lock, flags);
263
264	return ret;
265}
266EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
267
268
269/**
270 *	ide_complete_pm_request - end the current Power Management request
271 *	@drive: target drive
272 *	@rq: request
273 *
274 *	This function cleans up the current PM request and stops the queue
275 *	if necessary.
276 */
277static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
278{
279	unsigned long flags;
280
281#ifdef DEBUG_PM
282	printk("%s: completing PM request, %s\n", drive->name,
283	       blk_pm_suspend_request(rq) ? "suspend" : "resume");
284#endif
285	spin_lock_irqsave(&ide_lock, flags);
286	if (blk_pm_suspend_request(rq)) {
287		blk_stop_queue(drive->queue);
288	} else {
289		drive->blocked = 0;
290		blk_start_queue(drive->queue);
291	}
292	HWGROUP(drive)->rq = NULL;
293	if (__blk_end_request(rq, 0, 0))
294		BUG();
295	spin_unlock_irqrestore(&ide_lock, flags);
296}
297
298void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
299{
300	ide_hwif_t *hwif = drive->hwif;
301	struct ide_taskfile *tf = &task->tf;
302
303	if (task->tf_flags & IDE_TFLAG_IN_DATA) {
304		u16 data = hwif->INW(IDE_DATA_REG);
305
306		tf->data = data & 0xff;
307		tf->hob_data = (data >> 8) & 0xff;
308	}
309
310	/* be sure we're looking at the low order bits */
311	hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
312
313	if (task->tf_flags & IDE_TFLAG_IN_NSECT)
314		tf->nsect  = hwif->INB(IDE_NSECTOR_REG);
315	if (task->tf_flags & IDE_TFLAG_IN_LBAL)
316		tf->lbal   = hwif->INB(IDE_SECTOR_REG);
317	if (task->tf_flags & IDE_TFLAG_IN_LBAM)
318		tf->lbam   = hwif->INB(IDE_LCYL_REG);
319	if (task->tf_flags & IDE_TFLAG_IN_LBAH)
320		tf->lbah   = hwif->INB(IDE_HCYL_REG);
321	if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
322		tf->device = hwif->INB(IDE_SELECT_REG);
323
324	if (task->tf_flags & IDE_TFLAG_LBA48) {
325		hwif->OUTB(drive->ctl | 0x80, IDE_CONTROL_REG);
326
327		if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
328			tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
329		if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
330			tf->hob_nsect   = hwif->INB(IDE_NSECTOR_REG);
331		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
332			tf->hob_lbal    = hwif->INB(IDE_SECTOR_REG);
333		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
334			tf->hob_lbam    = hwif->INB(IDE_LCYL_REG);
335		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
336			tf->hob_lbah    = hwif->INB(IDE_HCYL_REG);
337	}
338}
339
340/**
341 *	ide_end_drive_cmd	-	end an explicit drive command
342 *	@drive: command
343 *	@stat: status bits
344 *	@err: error bits
345 *
346 *	Clean up after success/failure of an explicit drive command.
347 *	These get thrown onto the queue so they are synchronized with
348 *	real I/O operations on the drive.
349 *
350 *	In LBA48 mode we have to read the register set twice to get
351 *	all the extra information out.
352 */
353
354void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
355{
356	unsigned long flags;
357	struct request *rq;
358
359	spin_lock_irqsave(&ide_lock, flags);
360	rq = HWGROUP(drive)->rq;
361	spin_unlock_irqrestore(&ide_lock, flags);
362
363	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
364		ide_task_t *task = (ide_task_t *)rq->special;
365
366		if (rq->errors == 0)
367			rq->errors = !OK_STAT(stat, READY_STAT, BAD_STAT);
368
369		if (task) {
370			struct ide_taskfile *tf = &task->tf;
371
372			tf->error = err;
373			tf->status = stat;
374
375			ide_tf_read(drive, task);
376
377			if (task->tf_flags & IDE_TFLAG_DYN)
378				kfree(task);
379		}
380	} else if (blk_pm_request(rq)) {
381		struct request_pm_state *pm = rq->data;
382#ifdef DEBUG_PM
383		printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
384			drive->name, rq->pm->pm_step, stat, err);
385#endif
386		ide_complete_power_step(drive, rq, stat, err);
387		if (pm->pm_step == ide_pm_state_completed)
388			ide_complete_pm_request(drive, rq);
389		return;
390	}
391
392	spin_lock_irqsave(&ide_lock, flags);
393	HWGROUP(drive)->rq = NULL;
394	rq->errors = err;
395	if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
396				       blk_rq_bytes(rq))))
397		BUG();
398	spin_unlock_irqrestore(&ide_lock, flags);
399}
400
401EXPORT_SYMBOL(ide_end_drive_cmd);
402
403/**
404 *	try_to_flush_leftover_data	-	flush junk
405 *	@drive: drive to flush
406 *
407 *	try_to_flush_leftover_data() is invoked in response to a drive
408 *	unexpectedly having its DRQ_STAT bit set.  As an alternative to
409 *	resetting the drive, this routine tries to clear the condition
410 *	by read a sector's worth of data from the drive.  Of course,
411 *	this may not help if the drive is *waiting* for data from *us*.
412 */
413static void try_to_flush_leftover_data (ide_drive_t *drive)
414{
415	int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
416
417	if (drive->media != ide_disk)
418		return;
419	while (i > 0) {
420		u32 buffer[16];
421		u32 wcount = (i > 16) ? 16 : i;
422
423		i -= wcount;
424		HWIF(drive)->ata_input_data(drive, buffer, wcount);
425	}
426}
427
428static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
429{
430	if (rq->rq_disk) {
431		ide_driver_t *drv;
432
433		drv = *(ide_driver_t **)rq->rq_disk->private_data;
434		drv->end_request(drive, 0, 0);
435	} else
436		ide_end_request(drive, 0, 0);
437}
438
439static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
440{
441	ide_hwif_t *hwif = drive->hwif;
442
443	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
444		/* other bits are useless when BUSY */
445		rq->errors |= ERROR_RESET;
446	} else if (stat & ERR_STAT) {
447		/* err has different meaning on cdrom and tape */
448		if (err == ABRT_ERR) {
449			if (drive->select.b.lba &&
450			    /* some newer drives don't support WIN_SPECIFY */
451			    hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
452				return ide_stopped;
453		} else if ((err & BAD_CRC) == BAD_CRC) {
454			/* UDMA crc error, just retry the operation */
455			drive->crc_count++;
456		} else if (err & (BBD_ERR | ECC_ERR)) {
457			/* retries won't help these */
458			rq->errors = ERROR_MAX;
459		} else if (err & TRK0_ERR) {
460			/* help it find track zero */
461			rq->errors |= ERROR_RECAL;
462		}
463	}
464
465	if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
466	    (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
467		try_to_flush_leftover_data(drive);
468
469	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
470		ide_kill_rq(drive, rq);
471		return ide_stopped;
472	}
473
474	if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT))
475		rq->errors |= ERROR_RESET;
476
477	if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
478		++rq->errors;
479		return ide_do_reset(drive);
480	}
481
482	if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
483		drive->special.b.recalibrate = 1;
484
485	++rq->errors;
486
487	return ide_stopped;
488}
489
490static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
491{
492	ide_hwif_t *hwif = drive->hwif;
493
494	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
495		/* other bits are useless when BUSY */
496		rq->errors |= ERROR_RESET;
497	} else {
498		/* add decoding error stuff */
499	}
500
501	if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT))
502		/* force an abort */
503		hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
504
505	if (rq->errors >= ERROR_MAX) {
506		ide_kill_rq(drive, rq);
507	} else {
508		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
509			++rq->errors;
510			return ide_do_reset(drive);
511		}
512		++rq->errors;
513	}
514
515	return ide_stopped;
516}
517
518ide_startstop_t
519__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
520{
521	if (drive->media == ide_disk)
522		return ide_ata_error(drive, rq, stat, err);
523	return ide_atapi_error(drive, rq, stat, err);
524}
525
526EXPORT_SYMBOL_GPL(__ide_error);
527
528/**
529 *	ide_error	-	handle an error on the IDE
530 *	@drive: drive the error occurred on
531 *	@msg: message to report
532 *	@stat: status bits
533 *
534 *	ide_error() takes action based on the error returned by the drive.
535 *	For normal I/O that may well include retries. We deal with
536 *	both new-style (taskfile) and old style command handling here.
537 *	In the case of taskfile command handling there is work left to
538 *	do
539 */
540
541ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
542{
543	struct request *rq;
544	u8 err;
545
546	err = ide_dump_status(drive, msg, stat);
547
548	if ((rq = HWGROUP(drive)->rq) == NULL)
549		return ide_stopped;
550
551	/* retry only "normal" I/O: */
552	if (!blk_fs_request(rq)) {
553		rq->errors = 1;
554		ide_end_drive_cmd(drive, stat, err);
555		return ide_stopped;
556	}
557
558	if (rq->rq_disk) {
559		ide_driver_t *drv;
560
561		drv = *(ide_driver_t **)rq->rq_disk->private_data;
562		return drv->error(drive, rq, stat, err);
563	} else
564		return __ide_error(drive, rq, stat, err);
565}
566
567EXPORT_SYMBOL_GPL(ide_error);
568
569ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
570{
571	if (drive->media != ide_disk)
572		rq->errors |= ERROR_RESET;
573
574	ide_kill_rq(drive, rq);
575
576	return ide_stopped;
577}
578
579EXPORT_SYMBOL_GPL(__ide_abort);
580
581/**
582 *	ide_abort	-	abort pending IDE operations
583 *	@drive: drive the error occurred on
584 *	@msg: message to report
585 *
586 *	ide_abort kills and cleans up when we are about to do a
587 *	host initiated reset on active commands. Longer term we
588 *	want handlers to have sensible abort handling themselves
589 *
590 *	This differs fundamentally from ide_error because in
591 *	this case the command is doing just fine when we
592 *	blow it away.
593 */
594
595ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
596{
597	struct request *rq;
598
599	if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
600		return ide_stopped;
601
602	/* retry only "normal" I/O: */
603	if (!blk_fs_request(rq)) {
604		rq->errors = 1;
605		ide_end_drive_cmd(drive, BUSY_STAT, 0);
606		return ide_stopped;
607	}
608
609	if (rq->rq_disk) {
610		ide_driver_t *drv;
611
612		drv = *(ide_driver_t **)rq->rq_disk->private_data;
613		return drv->abort(drive, rq);
614	} else
615		return __ide_abort(drive, rq);
616}
617
618static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
619{
620	tf->nsect   = drive->sect;
621	tf->lbal    = drive->sect;
622	tf->lbam    = drive->cyl;
623	tf->lbah    = drive->cyl >> 8;
624	tf->device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
625	tf->command = WIN_SPECIFY;
626}
627
628static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
629{
630	tf->nsect   = drive->sect;
631	tf->command = WIN_RESTORE;
632}
633
634static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
635{
636	tf->nsect   = drive->mult_req;
637	tf->command = WIN_SETMULT;
638}
639
640static ide_startstop_t ide_disk_special(ide_drive_t *drive)
641{
642	special_t *s = &drive->special;
643	ide_task_t args;
644
645	memset(&args, 0, sizeof(ide_task_t));
646	args.data_phase = TASKFILE_NO_DATA;
647
648	if (s->b.set_geometry) {
649		s->b.set_geometry = 0;
650		ide_tf_set_specify_cmd(drive, &args.tf);
651	} else if (s->b.recalibrate) {
652		s->b.recalibrate = 0;
653		ide_tf_set_restore_cmd(drive, &args.tf);
654	} else if (s->b.set_multmode) {
655		s->b.set_multmode = 0;
656		if (drive->mult_req > drive->id->max_multsect)
657			drive->mult_req = drive->id->max_multsect;
658		ide_tf_set_setmult_cmd(drive, &args.tf);
659	} else if (s->all) {
660		int special = s->all;
661		s->all = 0;
662		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
663		return ide_stopped;
664	}
665
666	args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
667			IDE_TFLAG_CUSTOM_HANDLER;
668
669	do_rw_taskfile(drive, &args);
670
671	return ide_started;
672}
673
674/*
675 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
676 */
677static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
678{
679	switch (req_pio) {
680	case 202:
681	case 201:
682	case 200:
683	case 102:
684	case 101:
685	case 100:
686		return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
687	case 9:
688	case 8:
689		return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
690	case 7:
691	case 6:
692		return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
693	default:
694		return 0;
695	}
696}
697
698/**
699 *	do_special		-	issue some special commands
700 *	@drive: drive the command is for
701 *
702 *	do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
703 *	commands to a drive.  It used to do much more, but has been scaled
704 *	back.
705 */
706
707static ide_startstop_t do_special (ide_drive_t *drive)
708{
709	special_t *s = &drive->special;
710
711#ifdef DEBUG
712	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
713#endif
714	if (s->b.set_tune) {
715		ide_hwif_t *hwif = drive->hwif;
716		u8 req_pio = drive->tune_req;
717
718		s->b.set_tune = 0;
719
720		if (set_pio_mode_abuse(drive->hwif, req_pio)) {
721
722			if (hwif->set_pio_mode == NULL)
723				return ide_stopped;
724
725			/*
726			 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
727			 */
728			if (req_pio == 8 || req_pio == 9) {
729				unsigned long flags;
730
731				spin_lock_irqsave(&ide_lock, flags);
732				hwif->set_pio_mode(drive, req_pio);
733				spin_unlock_irqrestore(&ide_lock, flags);
734			} else
735				hwif->set_pio_mode(drive, req_pio);
736		} else {
737			int keep_dma = drive->using_dma;
738
739			ide_set_pio(drive, req_pio);
740
741			if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
742				if (keep_dma)
743					ide_dma_on(drive);
744			}
745		}
746
747		return ide_stopped;
748	} else {
749		if (drive->media == ide_disk)
750			return ide_disk_special(drive);
751
752		s->all = 0;
753		drive->mult_req = 0;
754		return ide_stopped;
755	}
756}
757
758void ide_map_sg(ide_drive_t *drive, struct request *rq)
759{
760	ide_hwif_t *hwif = drive->hwif;
761	struct scatterlist *sg = hwif->sg_table;
762
763	if (hwif->sg_mapped)	/* needed by ide-scsi */
764		return;
765
766	if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
767		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
768	} else {
769		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
770		hwif->sg_nents = 1;
771	}
772}
773
774EXPORT_SYMBOL_GPL(ide_map_sg);
775
776void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
777{
778	ide_hwif_t *hwif = drive->hwif;
779
780	hwif->nsect = hwif->nleft = rq->nr_sectors;
781	hwif->cursg_ofs = 0;
782	hwif->cursg = NULL;
783}
784
785EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
786
787/**
788 *	execute_drive_command	-	issue special drive command
789 *	@drive: the drive to issue the command on
790 *	@rq: the request structure holding the command
791 *
792 *	execute_drive_cmd() issues a special drive command,  usually
793 *	initiated by ioctl() from the external hdparm program. The
794 *	command can be a drive command, drive task or taskfile
795 *	operation. Weirdly you can call it with NULL to wait for
796 *	all commands to finish. Don't do this as that is due to change
797 */
798
799static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
800		struct request *rq)
801{
802	ide_hwif_t *hwif = HWIF(drive);
803	ide_task_t *task = rq->special;
804
805	if (task) {
806		hwif->data_phase = task->data_phase;
807
808		switch (hwif->data_phase) {
809		case TASKFILE_MULTI_OUT:
810		case TASKFILE_OUT:
811		case TASKFILE_MULTI_IN:
812		case TASKFILE_IN:
813			ide_init_sg_cmd(drive, rq);
814			ide_map_sg(drive, rq);
815		default:
816			break;
817		}
818
819		return do_rw_taskfile(drive, task);
820	}
821
822 	/*
823 	 * NULL is actually a valid way of waiting for
824 	 * all current requests to be flushed from the queue.
825 	 */
826#ifdef DEBUG
827 	printk("%s: DRIVE_CMD (null)\n", drive->name);
828#endif
829	ide_end_drive_cmd(drive, ide_read_status(drive), ide_read_error(drive));
830
831 	return ide_stopped;
832}
833
834static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
835{
836	struct request_pm_state *pm = rq->data;
837
838	if (blk_pm_suspend_request(rq) &&
839	    pm->pm_step == ide_pm_state_start_suspend)
840		/* Mark drive blocked when starting the suspend sequence. */
841		drive->blocked = 1;
842	else if (blk_pm_resume_request(rq) &&
843		 pm->pm_step == ide_pm_state_start_resume) {
844		/*
845		 * The first thing we do on wakeup is to wait for BSY bit to
846		 * go away (with a looong timeout) as a drive on this hwif may
847		 * just be POSTing itself.
848		 * We do that before even selecting as the "other" device on
849		 * the bus may be broken enough to walk on our toes at this
850		 * point.
851		 */
852		int rc;
853#ifdef DEBUG_PM
854		printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
855#endif
856		rc = ide_wait_not_busy(HWIF(drive), 35000);
857		if (rc)
858			printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
859		SELECT_DRIVE(drive);
860		ide_set_irq(drive, 1);
861		rc = ide_wait_not_busy(HWIF(drive), 100000);
862		if (rc)
863			printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
864	}
865}
866
867/**
868 *	start_request	-	start of I/O and command issuing for IDE
869 *
870 *	start_request() initiates handling of a new I/O request. It
871 *	accepts commands and I/O (read/write) requests. It also does
872 *	the final remapping for weird stuff like EZDrive. Once
873 *	device mapper can work sector level the EZDrive stuff can go away
874 *
875 *	FIXME: this function needs a rename
876 */
877
878static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
879{
880	ide_startstop_t startstop;
881	sector_t block;
882
883	BUG_ON(!blk_rq_started(rq));
884
885#ifdef DEBUG
886	printk("%s: start_request: current=0x%08lx\n",
887		HWIF(drive)->name, (unsigned long) rq);
888#endif
889
890	/* bail early if we've exceeded max_failures */
891	if (drive->max_failures && (drive->failures > drive->max_failures)) {
892		rq->cmd_flags |= REQ_FAILED;
893		goto kill_rq;
894	}
895
896	block    = rq->sector;
897	if (blk_fs_request(rq) &&
898	    (drive->media == ide_disk || drive->media == ide_floppy)) {
899		block += drive->sect0;
900	}
901	/* Yecch - this will shift the entire interval,
902	   possibly killing some innocent following sector */
903	if (block == 0 && drive->remap_0_to_1 == 1)
904		block = 1;  /* redirect MBR access to EZ-Drive partn table */
905
906	if (blk_pm_request(rq))
907		ide_check_pm_state(drive, rq);
908
909	SELECT_DRIVE(drive);
910	if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
911		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
912		return startstop;
913	}
914	if (!drive->special.all) {
915		ide_driver_t *drv;
916
917		/*
918		 * We reset the drive so we need to issue a SETFEATURES.
919		 * Do it _after_ do_special() restored device parameters.
920		 */
921		if (drive->current_speed == 0xff)
922			ide_config_drive_speed(drive, drive->desired_speed);
923
924		if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
925			return execute_drive_cmd(drive, rq);
926		else if (blk_pm_request(rq)) {
927			struct request_pm_state *pm = rq->data;
928#ifdef DEBUG_PM
929			printk("%s: start_power_step(step: %d)\n",
930				drive->name, rq->pm->pm_step);
931#endif
932			startstop = ide_start_power_step(drive, rq);
933			if (startstop == ide_stopped &&
934			    pm->pm_step == ide_pm_state_completed)
935				ide_complete_pm_request(drive, rq);
936			return startstop;
937		}
938
939		drv = *(ide_driver_t **)rq->rq_disk->private_data;
940		return drv->do_request(drive, rq, block);
941	}
942	return do_special(drive);
943kill_rq:
944	ide_kill_rq(drive, rq);
945	return ide_stopped;
946}
947
948/**
949 *	ide_stall_queue		-	pause an IDE device
950 *	@drive: drive to stall
951 *	@timeout: time to stall for (jiffies)
952 *
953 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
954 *	to the hwgroup by sleeping for timeout jiffies.
955 */
956
957void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
958{
959	if (timeout > WAIT_WORSTCASE)
960		timeout = WAIT_WORSTCASE;
961	drive->sleep = timeout + jiffies;
962	drive->sleeping = 1;
963}
964
965EXPORT_SYMBOL(ide_stall_queue);
966
967#define WAKEUP(drive)	((drive)->service_start + 2 * (drive)->service_time)
968
969/**
970 *	choose_drive		-	select a drive to service
971 *	@hwgroup: hardware group to select on
972 *
973 *	choose_drive() selects the next drive which will be serviced.
974 *	This is necessary because the IDE layer can't issue commands
975 *	to both drives on the same cable, unlike SCSI.
976 */
977
978static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
979{
980	ide_drive_t *drive, *best;
981
982repeat:
983	best = NULL;
984	drive = hwgroup->drive;
985
986	/*
987	 * drive is doing pre-flush, ordered write, post-flush sequence. even
988	 * though that is 3 requests, it must be seen as a single transaction.
989	 * we must not preempt this drive until that is complete
990	 */
991	if (blk_queue_flushing(drive->queue)) {
992		/*
993		 * small race where queue could get replugged during
994		 * the 3-request flush cycle, just yank the plug since
995		 * we want it to finish asap
996		 */
997		blk_remove_plug(drive->queue);
998		return drive;
999	}
1000
1001	do {
1002		if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1003		    && !elv_queue_empty(drive->queue)) {
1004			if (!best
1005			 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1006			 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1007			{
1008				if (!blk_queue_plugged(drive->queue))
1009					best = drive;
1010			}
1011		}
1012	} while ((drive = drive->next) != hwgroup->drive);
1013	if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1014		long t = (signed long)(WAKEUP(best) - jiffies);
1015		if (t >= WAIT_MIN_SLEEP) {
1016		/*
1017		 * We *may* have some time to spare, but first let's see if
1018		 * someone can potentially benefit from our nice mood today..
1019		 */
1020			drive = best->next;
1021			do {
1022				if (!drive->sleeping
1023				 && time_before(jiffies - best->service_time, WAKEUP(drive))
1024				 && time_before(WAKEUP(drive), jiffies + t))
1025				{
1026					ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1027					goto repeat;
1028				}
1029			} while ((drive = drive->next) != best);
1030		}
1031	}
1032	return best;
1033}
1034
1035/*
1036 * Issue a new request to a drive from hwgroup
1037 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1038 *
1039 * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1040 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1041 * may have both interfaces in a single hwgroup to "serialize" access.
1042 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1043 * together into one hwgroup for serialized access.
1044 *
1045 * Note also that several hwgroups can end up sharing a single IRQ,
1046 * possibly along with many other devices.  This is especially common in
1047 * PCI-based systems with off-board IDE controller cards.
1048 *
1049 * The IDE driver uses the single global ide_lock spinlock to protect
1050 * access to the request queues, and to protect the hwgroup->busy flag.
1051 *
1052 * The first thread into the driver for a particular hwgroup sets the
1053 * hwgroup->busy flag to indicate that this hwgroup is now active,
1054 * and then initiates processing of the top request from the request queue.
1055 *
1056 * Other threads attempting entry notice the busy setting, and will simply
1057 * queue their new requests and exit immediately.  Note that hwgroup->busy
1058 * remains set even when the driver is merely awaiting the next interrupt.
1059 * Thus, the meaning is "this hwgroup is busy processing a request".
1060 *
1061 * When processing of a request completes, the completing thread or IRQ-handler
1062 * will start the next request from the queue.  If no more work remains,
1063 * the driver will clear the hwgroup->busy flag and exit.
1064 *
1065 * The ide_lock (spinlock) is used to protect all access to the
1066 * hwgroup->busy flag, but is otherwise not needed for most processing in
1067 * the driver.  This makes the driver much more friendlier to shared IRQs
1068 * than previous designs, while remaining 100% (?) SMP safe and capable.
1069 */
1070static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1071{
1072	ide_drive_t	*drive;
1073	ide_hwif_t	*hwif;
1074	struct request	*rq;
1075	ide_startstop_t	startstop;
1076	int             loops = 0;
1077
1078	/* for atari only: POSSIBLY BROKEN HERE(?) */
1079	ide_get_lock(ide_intr, hwgroup);
1080
1081	/* caller must own ide_lock */
1082	BUG_ON(!irqs_disabled());
1083
1084	while (!hwgroup->busy) {
1085		hwgroup->busy = 1;
1086		drive = choose_drive(hwgroup);
1087		if (drive == NULL) {
1088			int sleeping = 0;
1089			unsigned long sleep = 0; /* shut up, gcc */
1090			hwgroup->rq = NULL;
1091			drive = hwgroup->drive;
1092			do {
1093				if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1094					sleeping = 1;
1095					sleep = drive->sleep;
1096				}
1097			} while ((drive = drive->next) != hwgroup->drive);
1098			if (sleeping) {
1099		/*
1100		 * Take a short snooze, and then wake up this hwgroup again.
1101		 * This gives other hwgroups on the same a chance to
1102		 * play fairly with us, just in case there are big differences
1103		 * in relative throughputs.. don't want to hog the cpu too much.
1104		 */
1105				if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1106					sleep = jiffies + WAIT_MIN_SLEEP;
1107#if 1
1108				if (timer_pending(&hwgroup->timer))
1109					printk(KERN_CRIT "ide_set_handler: timer already active\n");
1110#endif
1111				/* so that ide_timer_expiry knows what to do */
1112				hwgroup->sleeping = 1;
1113				hwgroup->req_gen_timer = hwgroup->req_gen;
1114				mod_timer(&hwgroup->timer, sleep);
1115				/* we purposely leave hwgroup->busy==1
1116				 * while sleeping */
1117			} else {
1118				/* Ugly, but how can we sleep for the lock
1119				 * otherwise? perhaps from tq_disk?
1120				 */
1121
1122				/* for atari only */
1123				ide_release_lock();
1124				hwgroup->busy = 0;
1125			}
1126
1127			/* no more work for this hwgroup (for now) */
1128			return;
1129		}
1130	again:
1131		hwif = HWIF(drive);
1132		if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1133			/*
1134			 * set nIEN for previous hwif, drives in the
1135			 * quirk_list may not like intr setups/cleanups
1136			 */
1137			if (drive->quirk_list != 1)
1138				ide_set_irq(drive, 0);
1139		}
1140		hwgroup->hwif = hwif;
1141		hwgroup->drive = drive;
1142		drive->sleeping = 0;
1143		drive->service_start = jiffies;
1144
1145		if (blk_queue_plugged(drive->queue)) {
1146			printk(KERN_ERR "ide: huh? queue was plugged!\n");
1147			break;
1148		}
1149
1150		/*
1151		 * we know that the queue isn't empty, but this can happen
1152		 * if the q->prep_rq_fn() decides to kill a request
1153		 */
1154		rq = elv_next_request(drive->queue);
1155		if (!rq) {
1156			hwgroup->busy = 0;
1157			break;
1158		}
1159
1160		/*
1161		 * Sanity: don't accept a request that isn't a PM request
1162		 * if we are currently power managed. This is very important as
1163		 * blk_stop_queue() doesn't prevent the elv_next_request()
1164		 * above to return us whatever is in the queue. Since we call
1165		 * ide_do_request() ourselves, we end up taking requests while
1166		 * the queue is blocked...
1167		 *
1168		 * We let requests forced at head of queue with ide-preempt
1169		 * though. I hope that doesn't happen too much, hopefully not
1170		 * unless the subdriver triggers such a thing in its own PM
1171		 * state machine.
1172		 *
1173		 * We count how many times we loop here to make sure we service
1174		 * all drives in the hwgroup without looping for ever
1175		 */
1176		if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1177			drive = drive->next ? drive->next : hwgroup->drive;
1178			if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1179				goto again;
1180			/* We clear busy, there should be no pending ATA command at this point. */
1181			hwgroup->busy = 0;
1182			break;
1183		}
1184
1185		hwgroup->rq = rq;
1186
1187		/*
1188		 * Some systems have trouble with IDE IRQs arriving while
1189		 * the driver is still setting things up.  So, here we disable
1190		 * the IRQ used by this interface while the request is being started.
1191		 * This may look bad at first, but pretty much the same thing
1192		 * happens anyway when any interrupt comes in, IDE or otherwise
1193		 *  -- the kernel masks the IRQ while it is being handled.
1194		 */
1195		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1196			disable_irq_nosync(hwif->irq);
1197		spin_unlock(&ide_lock);
1198		local_irq_enable_in_hardirq();
1199			/* allow other IRQs while we start this request */
1200		startstop = start_request(drive, rq);
1201		spin_lock_irq(&ide_lock);
1202		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1203			enable_irq(hwif->irq);
1204		if (startstop == ide_stopped)
1205			hwgroup->busy = 0;
1206	}
1207}
1208
1209/*
1210 * Passes the stuff to ide_do_request
1211 */
1212void do_ide_request(struct request_queue *q)
1213{
1214	ide_drive_t *drive = q->queuedata;
1215
1216	ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1217}
1218
1219/*
1220 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1221 * retry the current request in pio mode instead of risking tossing it
1222 * all away
1223 */
1224static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1225{
1226	ide_hwif_t *hwif = HWIF(drive);
1227	struct request *rq;
1228	ide_startstop_t ret = ide_stopped;
1229
1230	/*
1231	 * end current dma transaction
1232	 */
1233
1234	if (error < 0) {
1235		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1236		(void)HWIF(drive)->ide_dma_end(drive);
1237		ret = ide_error(drive, "dma timeout error",
1238				ide_read_status(drive));
1239	} else {
1240		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1241		hwif->dma_timeout(drive);
1242	}
1243
1244	/*
1245	 * disable dma for now, but remember that we did so because of
1246	 * a timeout -- we'll reenable after we finish this next request
1247	 * (or rather the first chunk of it) in pio.
1248	 */
1249	drive->retry_pio++;
1250	drive->state = DMA_PIO_RETRY;
1251	ide_dma_off_quietly(drive);
1252
1253	/*
1254	 * un-busy drive etc (hwgroup->busy is cleared on return) and
1255	 * make sure request is sane
1256	 */
1257	rq = HWGROUP(drive)->rq;
1258
1259	if (!rq)
1260		goto out;
1261
1262	HWGROUP(drive)->rq = NULL;
1263
1264	rq->errors = 0;
1265
1266	if (!rq->bio)
1267		goto out;
1268
1269	rq->sector = rq->bio->bi_sector;
1270	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1271	rq->hard_cur_sectors = rq->current_nr_sectors;
1272	rq->buffer = bio_data(rq->bio);
1273out:
1274	return ret;
1275}
1276
1277/**
1278 *	ide_timer_expiry	-	handle lack of an IDE interrupt
1279 *	@data: timer callback magic (hwgroup)
1280 *
1281 *	An IDE command has timed out before the expected drive return
1282 *	occurred. At this point we attempt to clean up the current
1283 *	mess. If the current handler includes an expiry handler then
1284 *	we invoke the expiry handler, and providing it is happy the
1285 *	work is done. If that fails we apply generic recovery rules
1286 *	invoking the handler and checking the drive DMA status. We
1287 *	have an excessively incestuous relationship with the DMA
1288 *	logic that wants cleaning up.
1289 */
1290
1291void ide_timer_expiry (unsigned long data)
1292{
1293	ide_hwgroup_t	*hwgroup = (ide_hwgroup_t *) data;
1294	ide_handler_t	*handler;
1295	ide_expiry_t	*expiry;
1296	unsigned long	flags;
1297	unsigned long	wait = -1;
1298
1299	spin_lock_irqsave(&ide_lock, flags);
1300
1301	if (((handler = hwgroup->handler) == NULL) ||
1302	    (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1303		/*
1304		 * Either a marginal timeout occurred
1305		 * (got the interrupt just as timer expired),
1306		 * or we were "sleeping" to give other devices a chance.
1307		 * Either way, we don't really want to complain about anything.
1308		 */
1309		if (hwgroup->sleeping) {
1310			hwgroup->sleeping = 0;
1311			hwgroup->busy = 0;
1312		}
1313	} else {
1314		ide_drive_t *drive = hwgroup->drive;
1315		if (!drive) {
1316			printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1317			hwgroup->handler = NULL;
1318		} else {
1319			ide_hwif_t *hwif;
1320			ide_startstop_t startstop = ide_stopped;
1321			if (!hwgroup->busy) {
1322				hwgroup->busy = 1;	/* paranoia */
1323				printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1324			}
1325			if ((expiry = hwgroup->expiry) != NULL) {
1326				/* continue */
1327				if ((wait = expiry(drive)) > 0) {
1328					/* reset timer */
1329					hwgroup->timer.expires  = jiffies + wait;
1330					hwgroup->req_gen_timer = hwgroup->req_gen;
1331					add_timer(&hwgroup->timer);
1332					spin_unlock_irqrestore(&ide_lock, flags);
1333					return;
1334				}
1335			}
1336			hwgroup->handler = NULL;
1337			/*
1338			 * We need to simulate a real interrupt when invoking
1339			 * the handler() function, which means we need to
1340			 * globally mask the specific IRQ:
1341			 */
1342			spin_unlock(&ide_lock);
1343			hwif  = HWIF(drive);
1344			/* disable_irq_nosync ?? */
1345			disable_irq(hwif->irq);
1346			/* local CPU only,
1347			 * as if we were handling an interrupt */
1348			local_irq_disable();
1349			if (hwgroup->polling) {
1350				startstop = handler(drive);
1351			} else if (drive_is_ready(drive)) {
1352				if (drive->waiting_for_dma)
1353					hwgroup->hwif->dma_lost_irq(drive);
1354				(void)ide_ack_intr(hwif);
1355				printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1356				startstop = handler(drive);
1357			} else {
1358				if (drive->waiting_for_dma) {
1359					startstop = ide_dma_timeout_retry(drive, wait);
1360				} else
1361					startstop =
1362					ide_error(drive, "irq timeout",
1363						  ide_read_status(drive));
1364			}
1365			drive->service_time = jiffies - drive->service_start;
1366			spin_lock_irq(&ide_lock);
1367			enable_irq(hwif->irq);
1368			if (startstop == ide_stopped)
1369				hwgroup->busy = 0;
1370		}
1371	}
1372	ide_do_request(hwgroup, IDE_NO_IRQ);
1373	spin_unlock_irqrestore(&ide_lock, flags);
1374}
1375
1376/**
1377 *	unexpected_intr		-	handle an unexpected IDE interrupt
1378 *	@irq: interrupt line
1379 *	@hwgroup: hwgroup being processed
1380 *
1381 *	There's nothing really useful we can do with an unexpected interrupt,
1382 *	other than reading the status register (to clear it), and logging it.
1383 *	There should be no way that an irq can happen before we're ready for it,
1384 *	so we needn't worry much about losing an "important" interrupt here.
1385 *
1386 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1387 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
1388 *	looks "good", we just ignore the interrupt completely.
1389 *
1390 *	This routine assumes __cli() is in effect when called.
1391 *
1392 *	If an unexpected interrupt happens on irq15 while we are handling irq14
1393 *	and if the two interfaces are "serialized" (CMD640), then it looks like
1394 *	we could screw up by interfering with a new request being set up for
1395 *	irq15.
1396 *
1397 *	In reality, this is a non-issue.  The new command is not sent unless
1398 *	the drive is ready to accept one, in which case we know the drive is
1399 *	not trying to interrupt us.  And ide_set_handler() is always invoked
1400 *	before completing the issuance of any new drive command, so we will not
1401 *	be accidentally invoked as a result of any valid command completion
1402 *	interrupt.
1403 *
1404 *	Note that we must walk the entire hwgroup here. We know which hwif
1405 *	is doing the current command, but we don't know which hwif burped
1406 *	mysteriously.
1407 */
1408
1409static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1410{
1411	u8 stat;
1412	ide_hwif_t *hwif = hwgroup->hwif;
1413
1414	/*
1415	 * handle the unexpected interrupt
1416	 */
1417	do {
1418		if (hwif->irq == irq) {
1419			stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1420			if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1421				/* Try to not flood the console with msgs */
1422				static unsigned long last_msgtime, count;
1423				++count;
1424				if (time_after(jiffies, last_msgtime + HZ)) {
1425					last_msgtime = jiffies;
1426					printk(KERN_ERR "%s%s: unexpected interrupt, "
1427						"status=0x%02x, count=%ld\n",
1428						hwif->name,
1429						(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1430				}
1431			}
1432		}
1433	} while ((hwif = hwif->next) != hwgroup->hwif);
1434}
1435
1436/**
1437 *	ide_intr	-	default IDE interrupt handler
1438 *	@irq: interrupt number
1439 *	@dev_id: hwif group
1440 *	@regs: unused weirdness from the kernel irq layer
1441 *
1442 *	This is the default IRQ handler for the IDE layer. You should
1443 *	not need to override it. If you do be aware it is subtle in
1444 *	places
1445 *
1446 *	hwgroup->hwif is the interface in the group currently performing
1447 *	a command. hwgroup->drive is the drive and hwgroup->handler is
1448 *	the IRQ handler to call. As we issue a command the handlers
1449 *	step through multiple states, reassigning the handler to the
1450 *	next step in the process. Unlike a smart SCSI controller IDE
1451 *	expects the main processor to sequence the various transfer
1452 *	stages. We also manage a poll timer to catch up with most
1453 *	timeout situations. There are still a few where the handlers
1454 *	don't ever decide to give up.
1455 *
1456 *	The handler eventually returns ide_stopped to indicate the
1457 *	request completed. At this point we issue the next request
1458 *	on the hwgroup and the process begins again.
1459 */
1460
1461irqreturn_t ide_intr (int irq, void *dev_id)
1462{
1463	unsigned long flags;
1464	ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1465	ide_hwif_t *hwif;
1466	ide_drive_t *drive;
1467	ide_handler_t *handler;
1468	ide_startstop_t startstop;
1469
1470	spin_lock_irqsave(&ide_lock, flags);
1471	hwif = hwgroup->hwif;
1472
1473	if (!ide_ack_intr(hwif)) {
1474		spin_unlock_irqrestore(&ide_lock, flags);
1475		return IRQ_NONE;
1476	}
1477
1478	if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1479		/*
1480		 * Not expecting an interrupt from this drive.
1481		 * That means this could be:
1482		 *	(1) an interrupt from another PCI device
1483		 *	sharing the same PCI INT# as us.
1484		 * or	(2) a drive just entered sleep or standby mode,
1485		 *	and is interrupting to let us know.
1486		 * or	(3) a spurious interrupt of unknown origin.
1487		 *
1488		 * For PCI, we cannot tell the difference,
1489		 * so in that case we just ignore it and hope it goes away.
1490		 *
1491		 * FIXME: unexpected_intr should be hwif-> then we can
1492		 * remove all the ifdef PCI crap
1493		 */
1494#ifdef CONFIG_BLK_DEV_IDEPCI
1495		if (hwif->chipset != ide_pci)
1496#endif	/* CONFIG_BLK_DEV_IDEPCI */
1497		{
1498			/*
1499			 * Probably not a shared PCI interrupt,
1500			 * so we can safely try to do something about it:
1501			 */
1502			unexpected_intr(irq, hwgroup);
1503#ifdef CONFIG_BLK_DEV_IDEPCI
1504		} else {
1505			/*
1506			 * Whack the status register, just in case
1507			 * we have a leftover pending IRQ.
1508			 */
1509			(void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1510#endif /* CONFIG_BLK_DEV_IDEPCI */
1511		}
1512		spin_unlock_irqrestore(&ide_lock, flags);
1513		return IRQ_NONE;
1514	}
1515	drive = hwgroup->drive;
1516	if (!drive) {
1517		/*
1518		 * This should NEVER happen, and there isn't much
1519		 * we could do about it here.
1520		 *
1521		 * [Note - this can occur if the drive is hot unplugged]
1522		 */
1523		spin_unlock_irqrestore(&ide_lock, flags);
1524		return IRQ_HANDLED;
1525	}
1526	if (!drive_is_ready(drive)) {
1527		/*
1528		 * This happens regularly when we share a PCI IRQ with
1529		 * another device.  Unfortunately, it can also happen
1530		 * with some buggy drives that trigger the IRQ before
1531		 * their status register is up to date.  Hopefully we have
1532		 * enough advance overhead that the latter isn't a problem.
1533		 */
1534		spin_unlock_irqrestore(&ide_lock, flags);
1535		return IRQ_NONE;
1536	}
1537	if (!hwgroup->busy) {
1538		hwgroup->busy = 1;	/* paranoia */
1539		printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1540	}
1541	hwgroup->handler = NULL;
1542	hwgroup->req_gen++;
1543	del_timer(&hwgroup->timer);
1544	spin_unlock(&ide_lock);
1545
1546	/* Some controllers might set DMA INTR no matter DMA or PIO;
1547	 * bmdma status might need to be cleared even for
1548	 * PIO interrupts to prevent spurious/lost irq.
1549	 */
1550	if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1551		/* ide_dma_end() needs bmdma status for error checking.
1552		 * So, skip clearing bmdma status here and leave it
1553		 * to ide_dma_end() if this is dma interrupt.
1554		 */
1555		hwif->ide_dma_clear_irq(drive);
1556
1557	if (drive->unmask)
1558		local_irq_enable_in_hardirq();
1559	/* service this interrupt, may set handler for next interrupt */
1560	startstop = handler(drive);
1561	spin_lock_irq(&ide_lock);
1562
1563	/*
1564	 * Note that handler() may have set things up for another
1565	 * interrupt to occur soon, but it cannot happen until
1566	 * we exit from this routine, because it will be the
1567	 * same irq as is currently being serviced here, and Linux
1568	 * won't allow another of the same (on any CPU) until we return.
1569	 */
1570	drive->service_time = jiffies - drive->service_start;
1571	if (startstop == ide_stopped) {
1572		if (hwgroup->handler == NULL) {	/* paranoia */
1573			hwgroup->busy = 0;
1574			ide_do_request(hwgroup, hwif->irq);
1575		} else {
1576			printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1577				"on exit\n", drive->name);
1578		}
1579	}
1580	spin_unlock_irqrestore(&ide_lock, flags);
1581	return IRQ_HANDLED;
1582}
1583
1584/**
1585 *	ide_init_drive_cmd	-	initialize a drive command request
1586 *	@rq: request object
1587 *
1588 *	Initialize a request before we fill it in and send it down to
1589 *	ide_do_drive_cmd. Commands must be set up by this function. Right
1590 *	now it doesn't do a lot, but if that changes abusers will have a
1591 *	nasty surprise.
1592 */
1593
1594void ide_init_drive_cmd (struct request *rq)
1595{
1596	memset(rq, 0, sizeof(*rq));
1597	rq->ref_count = 1;
1598}
1599
1600EXPORT_SYMBOL(ide_init_drive_cmd);
1601
1602/**
1603 *	ide_do_drive_cmd	-	issue IDE special command
1604 *	@drive: device to issue command
1605 *	@rq: request to issue
1606 *	@action: action for processing
1607 *
1608 *	This function issues a special IDE device request
1609 *	onto the request queue.
1610 *
1611 *	If action is ide_wait, then the rq is queued at the end of the
1612 *	request queue, and the function sleeps until it has been processed.
1613 *	This is for use when invoked from an ioctl handler.
1614 *
1615 *	If action is ide_preempt, then the rq is queued at the head of
1616 *	the request queue, displacing the currently-being-processed
1617 *	request and this function returns immediately without waiting
1618 *	for the new rq to be completed.  This is VERY DANGEROUS, and is
1619 *	intended for careful use by the ATAPI tape/cdrom driver code.
1620 *
1621 *	If action is ide_end, then the rq is queued at the end of the
1622 *	request queue, and the function returns immediately without waiting
1623 *	for the new rq to be completed. This is again intended for careful
1624 *	use by the ATAPI tape/cdrom driver code.
1625 */
1626
1627int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1628{
1629	unsigned long flags;
1630	ide_hwgroup_t *hwgroup = HWGROUP(drive);
1631	DECLARE_COMPLETION_ONSTACK(wait);
1632	int where = ELEVATOR_INSERT_BACK, err;
1633	int must_wait = (action == ide_wait || action == ide_head_wait);
1634
1635	rq->errors = 0;
1636
1637	/*
1638	 * we need to hold an extra reference to request for safe inspection
1639	 * after completion
1640	 */
1641	if (must_wait) {
1642		rq->ref_count++;
1643		rq->end_io_data = &wait;
1644		rq->end_io = blk_end_sync_rq;
1645	}
1646
1647	spin_lock_irqsave(&ide_lock, flags);
1648	if (action == ide_preempt)
1649		hwgroup->rq = NULL;
1650	if (action == ide_preempt || action == ide_head_wait) {
1651		where = ELEVATOR_INSERT_FRONT;
1652		rq->cmd_flags |= REQ_PREEMPT;
1653	}
1654	__elv_add_request(drive->queue, rq, where, 0);
1655	ide_do_request(hwgroup, IDE_NO_IRQ);
1656	spin_unlock_irqrestore(&ide_lock, flags);
1657
1658	err = 0;
1659	if (must_wait) {
1660		wait_for_completion(&wait);
1661		if (rq->errors)
1662			err = -EIO;
1663
1664		blk_put_request(rq);
1665	}
1666
1667	return err;
1668}
1669
1670EXPORT_SYMBOL(ide_do_drive_cmd);
1671
1672void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1673{
1674	ide_task_t task;
1675
1676	memset(&task, 0, sizeof(task));
1677	task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1678			IDE_TFLAG_OUT_FEATURE | tf_flags;
1679	task.tf.feature = dma;		/* Use PIO/DMA */
1680	task.tf.lbam    = bcount & 0xff;
1681	task.tf.lbah    = (bcount >> 8) & 0xff;
1682
1683	ide_tf_load(drive, &task);
1684}
1685
1686EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1687