ide-io.c revision 54688aa372cbc83c4361bfb9236f9bfe02168e19
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
50#include <linux/bitops.h>
51
52#include <asm/byteorder.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55#include <asm/io.h>
56
57static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58			     int uptodate, unsigned int nr_bytes, int dequeue)
59{
60	int ret = 1;
61
62	/*
63	 * if failfast is set on a request, override number of sectors and
64	 * complete the whole request right now
65	 */
66	if (blk_noretry_request(rq) && end_io_error(uptodate))
67		nr_bytes = rq->hard_nr_sectors << 9;
68
69	if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70		rq->errors = -EIO;
71
72	/*
73	 * decide whether to reenable DMA -- 3 is a random magic for now,
74	 * if we DMA timeout more than 3 times, just stay in PIO
75	 */
76	if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77		drive->state = 0;
78		HWGROUP(drive)->hwif->ide_dma_on(drive);
79	}
80
81	if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82		add_disk_randomness(rq->rq_disk);
83		if (dequeue) {
84			if (!list_empty(&rq->queuelist))
85				blkdev_dequeue_request(rq);
86			HWGROUP(drive)->rq = NULL;
87		}
88		end_that_request_last(rq, uptodate);
89		ret = 0;
90	}
91
92	return ret;
93}
94
95/**
96 *	ide_end_request		-	complete an IDE I/O
97 *	@drive: IDE device for the I/O
98 *	@uptodate:
99 *	@nr_sectors: number of sectors completed
100 *
101 *	This is our end_request wrapper function. We complete the I/O
102 *	update random number input and dequeue the request, which if
103 *	it was tagged may be out of order.
104 */
105
106int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107{
108	unsigned int nr_bytes = nr_sectors << 9;
109	struct request *rq;
110	unsigned long flags;
111	int ret = 1;
112
113	/*
114	 * room for locking improvements here, the calls below don't
115	 * need the queue lock held at all
116	 */
117	spin_lock_irqsave(&ide_lock, flags);
118	rq = HWGROUP(drive)->rq;
119
120	if (!nr_bytes) {
121		if (blk_pc_request(rq))
122			nr_bytes = rq->data_len;
123		else
124			nr_bytes = rq->hard_cur_sectors << 9;
125	}
126
127	ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128
129	spin_unlock_irqrestore(&ide_lock, flags);
130	return ret;
131}
132EXPORT_SYMBOL(ide_end_request);
133
134/*
135 * Power Management state machine. This one is rather trivial for now,
136 * we should probably add more, like switching back to PIO on suspend
137 * to help some BIOSes, re-do the door locking on resume, etc...
138 */
139
140enum {
141	ide_pm_flush_cache	= ide_pm_state_start_suspend,
142	idedisk_pm_standby,
143
144	idedisk_pm_restore_pio	= ide_pm_state_start_resume,
145	idedisk_pm_idle,
146	ide_pm_restore_dma,
147};
148
149static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150{
151	struct request_pm_state *pm = rq->data;
152
153	if (drive->media != ide_disk)
154		return;
155
156	switch (pm->pm_step) {
157	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) complete */
158		if (pm->pm_state == PM_EVENT_FREEZE)
159			pm->pm_step = ide_pm_state_completed;
160		else
161			pm->pm_step = idedisk_pm_standby;
162		break;
163	case idedisk_pm_standby:	/* Suspend step 2 (standby) complete */
164		pm->pm_step = ide_pm_state_completed;
165		break;
166	case idedisk_pm_restore_pio:	/* Resume step 1 complete */
167		pm->pm_step = idedisk_pm_idle;
168		break;
169	case idedisk_pm_idle:		/* Resume step 2 (idle) complete */
170		pm->pm_step = ide_pm_restore_dma;
171		break;
172	}
173}
174
175static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176{
177	struct request_pm_state *pm = rq->data;
178	ide_task_t *args = rq->special;
179
180	memset(args, 0, sizeof(*args));
181
182	switch (pm->pm_step) {
183	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) */
184		if (drive->media != ide_disk)
185			break;
186		/* Not supported? Switch to next step now. */
187		if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188			ide_complete_power_step(drive, rq, 0, 0);
189			return ide_stopped;
190		}
191		if (ide_id_has_flush_cache_ext(drive->id))
192			args->tf.command = WIN_FLUSH_CACHE_EXT;
193		else
194			args->tf.command = WIN_FLUSH_CACHE;
195		goto out_do_tf;
196
197	case idedisk_pm_standby:	/* Suspend step 2 (standby) */
198		args->tf.command = WIN_STANDBYNOW1;
199		goto out_do_tf;
200
201	case idedisk_pm_restore_pio:	/* Resume step 1 (restore PIO) */
202		ide_set_max_pio(drive);
203		/*
204		 * skip idedisk_pm_idle for ATAPI devices
205		 */
206		if (drive->media != ide_disk)
207			pm->pm_step = ide_pm_restore_dma;
208		else
209			ide_complete_power_step(drive, rq, 0, 0);
210		return ide_stopped;
211
212	case idedisk_pm_idle:		/* Resume step 2 (idle) */
213		args->tf.command = WIN_IDLEIMMEDIATE;
214		goto out_do_tf;
215
216	case ide_pm_restore_dma:	/* Resume step 3 (restore DMA) */
217		/*
218		 * Right now, all we do is call ide_set_dma(drive),
219		 * we could be smarter and check for current xfer_speed
220		 * in struct drive etc...
221		 */
222		if (drive->hwif->ide_dma_on == NULL)
223			break;
224		drive->hwif->dma_off_quietly(drive);
225		/*
226		 * TODO: respect ->using_dma setting
227		 */
228		ide_set_dma(drive);
229		break;
230	}
231	pm->pm_step = ide_pm_state_completed;
232	return ide_stopped;
233
234out_do_tf:
235	args->tf_flags = IDE_TFLAG_OUT_TF;
236	if (drive->addressing == 1)
237		args->tf_flags |= (IDE_TFLAG_LBA48 | IDE_TFLAG_OUT_HOB);
238	args->command_type = IDE_DRIVE_TASK_NO_DATA;
239	args->handler      = task_no_data_intr;
240	return do_rw_taskfile(drive, args);
241}
242
243/**
244 *	ide_end_dequeued_request	-	complete an IDE I/O
245 *	@drive: IDE device for the I/O
246 *	@uptodate:
247 *	@nr_sectors: number of sectors completed
248 *
249 *	Complete an I/O that is no longer on the request queue. This
250 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
251 *	We must still finish the old request but we must not tamper with the
252 *	queue in the meantime.
253 *
254 *	NOTE: This path does not handle barrier, but barrier is not supported
255 *	on ide-cd anyway.
256 */
257
258int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
259			     int uptodate, int nr_sectors)
260{
261	unsigned long flags;
262	int ret;
263
264	spin_lock_irqsave(&ide_lock, flags);
265	BUG_ON(!blk_rq_started(rq));
266	ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
267	spin_unlock_irqrestore(&ide_lock, flags);
268
269	return ret;
270}
271EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
272
273
274/**
275 *	ide_complete_pm_request - end the current Power Management request
276 *	@drive: target drive
277 *	@rq: request
278 *
279 *	This function cleans up the current PM request and stops the queue
280 *	if necessary.
281 */
282static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
283{
284	unsigned long flags;
285
286#ifdef DEBUG_PM
287	printk("%s: completing PM request, %s\n", drive->name,
288	       blk_pm_suspend_request(rq) ? "suspend" : "resume");
289#endif
290	spin_lock_irqsave(&ide_lock, flags);
291	if (blk_pm_suspend_request(rq)) {
292		blk_stop_queue(drive->queue);
293	} else {
294		drive->blocked = 0;
295		blk_start_queue(drive->queue);
296	}
297	blkdev_dequeue_request(rq);
298	HWGROUP(drive)->rq = NULL;
299	end_that_request_last(rq, 1);
300	spin_unlock_irqrestore(&ide_lock, flags);
301}
302
303/**
304 *	ide_end_drive_cmd	-	end an explicit drive command
305 *	@drive: command
306 *	@stat: status bits
307 *	@err: error bits
308 *
309 *	Clean up after success/failure of an explicit drive command.
310 *	These get thrown onto the queue so they are synchronized with
311 *	real I/O operations on the drive.
312 *
313 *	In LBA48 mode we have to read the register set twice to get
314 *	all the extra information out.
315 */
316
317void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
318{
319	ide_hwif_t *hwif = HWIF(drive);
320	unsigned long flags;
321	struct request *rq;
322
323	spin_lock_irqsave(&ide_lock, flags);
324	rq = HWGROUP(drive)->rq;
325	spin_unlock_irqrestore(&ide_lock, flags);
326
327	if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
328		u8 *args = (u8 *) rq->buffer;
329		if (rq->errors == 0)
330			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
331
332		if (args) {
333			args[0] = stat;
334			args[1] = err;
335			args[2] = hwif->INB(IDE_NSECTOR_REG);
336		}
337	} else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
338		u8 *args = (u8 *) rq->buffer;
339		if (rq->errors == 0)
340			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
341
342		if (args) {
343			args[0] = stat;
344			args[1] = err;
345			/* be sure we're looking at the low order bits */
346			hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
347			args[2] = hwif->INB(IDE_NSECTOR_REG);
348			args[3] = hwif->INB(IDE_SECTOR_REG);
349			args[4] = hwif->INB(IDE_LCYL_REG);
350			args[5] = hwif->INB(IDE_HCYL_REG);
351			args[6] = hwif->INB(IDE_SELECT_REG);
352		}
353	} else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
354		ide_task_t *args = (ide_task_t *) rq->special;
355		if (rq->errors == 0)
356			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
357
358		if (args) {
359			struct ide_taskfile *tf = &args->tf;
360
361			if (args->tf_in_flags.b.data) {
362				u16 data = hwif->INW(IDE_DATA_REG);
363
364				tf->data = data & 0xff;
365				tf->hob_data = (data >> 8) & 0xff;
366			}
367			tf->error = err;
368			/* be sure we're looking at the low order bits */
369			hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
370			tf->nsect  = hwif->INB(IDE_NSECTOR_REG);
371			tf->lbal   = hwif->INB(IDE_SECTOR_REG);
372			tf->lbam   = hwif->INB(IDE_LCYL_REG);
373			tf->lbah   = hwif->INB(IDE_HCYL_REG);
374			tf->device = hwif->INB(IDE_SELECT_REG);
375			tf->status = stat;
376
377			if (drive->addressing == 1) {
378				hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
379				tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
380				tf->hob_nsect   = hwif->INB(IDE_NSECTOR_REG);
381				tf->hob_lbal    = hwif->INB(IDE_SECTOR_REG);
382				tf->hob_lbam    = hwif->INB(IDE_LCYL_REG);
383				tf->hob_lbah    = hwif->INB(IDE_HCYL_REG);
384			}
385		}
386	} else if (blk_pm_request(rq)) {
387		struct request_pm_state *pm = rq->data;
388#ifdef DEBUG_PM
389		printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
390			drive->name, rq->pm->pm_step, stat, err);
391#endif
392		ide_complete_power_step(drive, rq, stat, err);
393		if (pm->pm_step == ide_pm_state_completed)
394			ide_complete_pm_request(drive, rq);
395		return;
396	}
397
398	spin_lock_irqsave(&ide_lock, flags);
399	blkdev_dequeue_request(rq);
400	HWGROUP(drive)->rq = NULL;
401	rq->errors = err;
402	end_that_request_last(rq, !rq->errors);
403	spin_unlock_irqrestore(&ide_lock, flags);
404}
405
406EXPORT_SYMBOL(ide_end_drive_cmd);
407
408/**
409 *	try_to_flush_leftover_data	-	flush junk
410 *	@drive: drive to flush
411 *
412 *	try_to_flush_leftover_data() is invoked in response to a drive
413 *	unexpectedly having its DRQ_STAT bit set.  As an alternative to
414 *	resetting the drive, this routine tries to clear the condition
415 *	by read a sector's worth of data from the drive.  Of course,
416 *	this may not help if the drive is *waiting* for data from *us*.
417 */
418static void try_to_flush_leftover_data (ide_drive_t *drive)
419{
420	int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
421
422	if (drive->media != ide_disk)
423		return;
424	while (i > 0) {
425		u32 buffer[16];
426		u32 wcount = (i > 16) ? 16 : i;
427
428		i -= wcount;
429		HWIF(drive)->ata_input_data(drive, buffer, wcount);
430	}
431}
432
433static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
434{
435	if (rq->rq_disk) {
436		ide_driver_t *drv;
437
438		drv = *(ide_driver_t **)rq->rq_disk->private_data;
439		drv->end_request(drive, 0, 0);
440	} else
441		ide_end_request(drive, 0, 0);
442}
443
444static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
445{
446	ide_hwif_t *hwif = drive->hwif;
447
448	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
449		/* other bits are useless when BUSY */
450		rq->errors |= ERROR_RESET;
451	} else if (stat & ERR_STAT) {
452		/* err has different meaning on cdrom and tape */
453		if (err == ABRT_ERR) {
454			if (drive->select.b.lba &&
455			    /* some newer drives don't support WIN_SPECIFY */
456			    hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
457				return ide_stopped;
458		} else if ((err & BAD_CRC) == BAD_CRC) {
459			/* UDMA crc error, just retry the operation */
460			drive->crc_count++;
461		} else if (err & (BBD_ERR | ECC_ERR)) {
462			/* retries won't help these */
463			rq->errors = ERROR_MAX;
464		} else if (err & TRK0_ERR) {
465			/* help it find track zero */
466			rq->errors |= ERROR_RECAL;
467		}
468	}
469
470	if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
471	    (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
472		try_to_flush_leftover_data(drive);
473
474	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
475		ide_kill_rq(drive, rq);
476		return ide_stopped;
477	}
478
479	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
480		rq->errors |= ERROR_RESET;
481
482	if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
483		++rq->errors;
484		return ide_do_reset(drive);
485	}
486
487	if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
488		drive->special.b.recalibrate = 1;
489
490	++rq->errors;
491
492	return ide_stopped;
493}
494
495static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
496{
497	ide_hwif_t *hwif = drive->hwif;
498
499	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
500		/* other bits are useless when BUSY */
501		rq->errors |= ERROR_RESET;
502	} else {
503		/* add decoding error stuff */
504	}
505
506	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
507		/* force an abort */
508		hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
509
510	if (rq->errors >= ERROR_MAX) {
511		ide_kill_rq(drive, rq);
512	} else {
513		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
514			++rq->errors;
515			return ide_do_reset(drive);
516		}
517		++rq->errors;
518	}
519
520	return ide_stopped;
521}
522
523ide_startstop_t
524__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
525{
526	if (drive->media == ide_disk)
527		return ide_ata_error(drive, rq, stat, err);
528	return ide_atapi_error(drive, rq, stat, err);
529}
530
531EXPORT_SYMBOL_GPL(__ide_error);
532
533/**
534 *	ide_error	-	handle an error on the IDE
535 *	@drive: drive the error occurred on
536 *	@msg: message to report
537 *	@stat: status bits
538 *
539 *	ide_error() takes action based on the error returned by the drive.
540 *	For normal I/O that may well include retries. We deal with
541 *	both new-style (taskfile) and old style command handling here.
542 *	In the case of taskfile command handling there is work left to
543 *	do
544 */
545
546ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
547{
548	struct request *rq;
549	u8 err;
550
551	err = ide_dump_status(drive, msg, stat);
552
553	if ((rq = HWGROUP(drive)->rq) == NULL)
554		return ide_stopped;
555
556	/* retry only "normal" I/O: */
557	if (!blk_fs_request(rq)) {
558		rq->errors = 1;
559		ide_end_drive_cmd(drive, stat, err);
560		return ide_stopped;
561	}
562
563	if (rq->rq_disk) {
564		ide_driver_t *drv;
565
566		drv = *(ide_driver_t **)rq->rq_disk->private_data;
567		return drv->error(drive, rq, stat, err);
568	} else
569		return __ide_error(drive, rq, stat, err);
570}
571
572EXPORT_SYMBOL_GPL(ide_error);
573
574ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
575{
576	if (drive->media != ide_disk)
577		rq->errors |= ERROR_RESET;
578
579	ide_kill_rq(drive, rq);
580
581	return ide_stopped;
582}
583
584EXPORT_SYMBOL_GPL(__ide_abort);
585
586/**
587 *	ide_abort	-	abort pending IDE operations
588 *	@drive: drive the error occurred on
589 *	@msg: message to report
590 *
591 *	ide_abort kills and cleans up when we are about to do a
592 *	host initiated reset on active commands. Longer term we
593 *	want handlers to have sensible abort handling themselves
594 *
595 *	This differs fundamentally from ide_error because in
596 *	this case the command is doing just fine when we
597 *	blow it away.
598 */
599
600ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
601{
602	struct request *rq;
603
604	if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
605		return ide_stopped;
606
607	/* retry only "normal" I/O: */
608	if (!blk_fs_request(rq)) {
609		rq->errors = 1;
610		ide_end_drive_cmd(drive, BUSY_STAT, 0);
611		return ide_stopped;
612	}
613
614	if (rq->rq_disk) {
615		ide_driver_t *drv;
616
617		drv = *(ide_driver_t **)rq->rq_disk->private_data;
618		return drv->abort(drive, rq);
619	} else
620		return __ide_abort(drive, rq);
621}
622
623/**
624 *	drive_cmd_intr		- 	drive command completion interrupt
625 *	@drive: drive the completion interrupt occurred on
626 *
627 *	drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
628 *	We do any necessary data reading and then wait for the drive to
629 *	go non busy. At that point we may read the error data and complete
630 *	the request
631 */
632
633static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
634{
635	struct request *rq = HWGROUP(drive)->rq;
636	ide_hwif_t *hwif = HWIF(drive);
637	u8 *args = (u8 *) rq->buffer;
638	u8 stat = hwif->INB(IDE_STATUS_REG);
639	int retries = 10;
640
641	local_irq_enable_in_hardirq();
642	if (rq->cmd_type == REQ_TYPE_ATA_CMD &&
643	    (stat & DRQ_STAT) && args && args[3]) {
644		u8 io_32bit = drive->io_32bit;
645		drive->io_32bit = 0;
646		hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
647		drive->io_32bit = io_32bit;
648		while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
649			udelay(100);
650	}
651
652	if (!OK_STAT(stat, READY_STAT, BAD_STAT))
653		return ide_error(drive, "drive_cmd", stat);
654		/* calls ide_end_drive_cmd */
655	ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
656	return ide_stopped;
657}
658
659static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
660{
661	task->tf.nsect   = drive->sect;
662	task->tf.lbal    = drive->sect;
663	task->tf.lbam    = drive->cyl;
664	task->tf.lbah    = drive->cyl >> 8;
665	task->tf.device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
666	task->tf.command = WIN_SPECIFY;
667
668	task->handler = &set_geometry_intr;
669}
670
671static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
672{
673	task->tf.nsect   = drive->sect;
674	task->tf.command = WIN_RESTORE;
675
676	task->handler = &recal_intr;
677}
678
679static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
680{
681	task->tf.nsect   = drive->mult_req;
682	task->tf.command = WIN_SETMULT;
683
684	task->handler = &set_multmode_intr;
685}
686
687static ide_startstop_t ide_disk_special(ide_drive_t *drive)
688{
689	special_t *s = &drive->special;
690	ide_task_t args;
691
692	memset(&args, 0, sizeof(ide_task_t));
693	args.command_type = IDE_DRIVE_TASK_NO_DATA;
694
695	if (s->b.set_geometry) {
696		s->b.set_geometry = 0;
697		ide_init_specify_cmd(drive, &args);
698	} else if (s->b.recalibrate) {
699		s->b.recalibrate = 0;
700		ide_init_restore_cmd(drive, &args);
701	} else if (s->b.set_multmode) {
702		s->b.set_multmode = 0;
703		if (drive->mult_req > drive->id->max_multsect)
704			drive->mult_req = drive->id->max_multsect;
705		ide_init_setmult_cmd(drive, &args);
706	} else if (s->all) {
707		int special = s->all;
708		s->all = 0;
709		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
710		return ide_stopped;
711	}
712
713	args.tf_flags = IDE_TFLAG_OUT_TF;
714	if (drive->addressing == 1)
715		args.tf_flags |= (IDE_TFLAG_LBA48 | IDE_TFLAG_OUT_HOB);
716
717	do_rw_taskfile(drive, &args);
718
719	return ide_started;
720}
721
722/*
723 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
724 */
725static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
726{
727	switch (req_pio) {
728	case 202:
729	case 201:
730	case 200:
731	case 102:
732	case 101:
733	case 100:
734		return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
735	case 9:
736	case 8:
737		return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
738	case 7:
739	case 6:
740		return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
741	default:
742		return 0;
743	}
744}
745
746/**
747 *	do_special		-	issue some special commands
748 *	@drive: drive the command is for
749 *
750 *	do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
751 *	commands to a drive.  It used to do much more, but has been scaled
752 *	back.
753 */
754
755static ide_startstop_t do_special (ide_drive_t *drive)
756{
757	special_t *s = &drive->special;
758
759#ifdef DEBUG
760	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
761#endif
762	if (s->b.set_tune) {
763		ide_hwif_t *hwif = drive->hwif;
764		u8 req_pio = drive->tune_req;
765
766		s->b.set_tune = 0;
767
768		if (set_pio_mode_abuse(drive->hwif, req_pio)) {
769
770			if (hwif->set_pio_mode == NULL)
771				return ide_stopped;
772
773			/*
774			 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
775			 */
776			if (req_pio == 8 || req_pio == 9) {
777				unsigned long flags;
778
779				spin_lock_irqsave(&ide_lock, flags);
780				hwif->set_pio_mode(drive, req_pio);
781				spin_unlock_irqrestore(&ide_lock, flags);
782			} else
783				hwif->set_pio_mode(drive, req_pio);
784		} else {
785			int keep_dma = drive->using_dma;
786
787			ide_set_pio(drive, req_pio);
788
789			if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
790				if (keep_dma)
791					hwif->ide_dma_on(drive);
792			}
793		}
794
795		return ide_stopped;
796	} else {
797		if (drive->media == ide_disk)
798			return ide_disk_special(drive);
799
800		s->all = 0;
801		drive->mult_req = 0;
802		return ide_stopped;
803	}
804}
805
806void ide_map_sg(ide_drive_t *drive, struct request *rq)
807{
808	ide_hwif_t *hwif = drive->hwif;
809	struct scatterlist *sg = hwif->sg_table;
810
811	if (hwif->sg_mapped)	/* needed by ide-scsi */
812		return;
813
814	if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
815		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
816	} else {
817		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
818		hwif->sg_nents = 1;
819	}
820}
821
822EXPORT_SYMBOL_GPL(ide_map_sg);
823
824void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
825{
826	ide_hwif_t *hwif = drive->hwif;
827
828	hwif->nsect = hwif->nleft = rq->nr_sectors;
829	hwif->cursg_ofs = 0;
830	hwif->cursg = NULL;
831}
832
833EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
834
835/**
836 *	execute_drive_command	-	issue special drive command
837 *	@drive: the drive to issue the command on
838 *	@rq: the request structure holding the command
839 *
840 *	execute_drive_cmd() issues a special drive command,  usually
841 *	initiated by ioctl() from the external hdparm program. The
842 *	command can be a drive command, drive task or taskfile
843 *	operation. Weirdly you can call it with NULL to wait for
844 *	all commands to finish. Don't do this as that is due to change
845 */
846
847static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
848		struct request *rq)
849{
850	ide_hwif_t *hwif = HWIF(drive);
851	u8 *args = rq->buffer;
852
853	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
854		ide_task_t *task = rq->special;
855
856		if (task == NULL)
857			goto done;
858
859		hwif->data_phase = task->data_phase;
860
861		switch (hwif->data_phase) {
862		case TASKFILE_MULTI_OUT:
863		case TASKFILE_OUT:
864		case TASKFILE_MULTI_IN:
865		case TASKFILE_IN:
866			ide_init_sg_cmd(drive, rq);
867			ide_map_sg(drive, rq);
868		default:
869			break;
870		}
871
872		if (task->tf_flags & IDE_TFLAG_FLAGGED)
873			return flagged_taskfile(drive, task);
874
875		task->tf_flags |= IDE_TFLAG_OUT_TF;
876		if (drive->addressing == 1)
877			task->tf_flags |= (IDE_TFLAG_LBA48 | IDE_TFLAG_OUT_HOB);
878
879		return do_rw_taskfile(drive, task);
880	}
881
882	if (args == NULL)
883		goto done;
884
885	if (IDE_CONTROL_REG)
886		hwif->OUTB(drive->ctl, IDE_CONTROL_REG); /* clear nIEN */
887
888	SELECT_MASK(drive, 0);
889
890	if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
891#ifdef DEBUG
892 		printk("%s: DRIVE_TASK_CMD ", drive->name);
893 		printk("cmd=0x%02x ", args[0]);
894 		printk("fr=0x%02x ", args[1]);
895 		printk("ns=0x%02x ", args[2]);
896 		printk("sc=0x%02x ", args[3]);
897 		printk("lcyl=0x%02x ", args[4]);
898 		printk("hcyl=0x%02x ", args[5]);
899 		printk("sel=0x%02x\n", args[6]);
900#endif
901 		hwif->OUTB(args[1], IDE_FEATURE_REG);
902		hwif->OUTB(args[2], IDE_NSECTOR_REG);
903 		hwif->OUTB(args[3], IDE_SECTOR_REG);
904 		hwif->OUTB(args[4], IDE_LCYL_REG);
905 		hwif->OUTB(args[5], IDE_HCYL_REG);
906 		hwif->OUTB((args[6] & 0xEF)|drive->select.all, IDE_SELECT_REG);
907	} else { /* rq->cmd_type == REQ_TYPE_ATA_CMD */
908#ifdef DEBUG
909 		printk("%s: DRIVE_CMD ", drive->name);
910 		printk("cmd=0x%02x ", args[0]);
911 		printk("sc=0x%02x ", args[1]);
912 		printk("fr=0x%02x ", args[2]);
913 		printk("xx=0x%02x\n", args[3]);
914#endif
915		hwif->OUTB(args[2], IDE_FEATURE_REG);
916 		if (args[0] == WIN_SMART) {
917			hwif->OUTB(args[3],IDE_NSECTOR_REG);
918 			hwif->OUTB(args[1],IDE_SECTOR_REG);
919			hwif->OUTB(0x4f, IDE_LCYL_REG);
920			hwif->OUTB(0xc2, IDE_HCYL_REG);
921		} else
922			hwif->OUTB(args[1], IDE_NSECTOR_REG);
923 	}
924
925	ide_execute_command(drive, args[0], &drive_cmd_intr, WAIT_CMD, NULL);
926	return ide_started;
927
928done:
929 	/*
930 	 * NULL is actually a valid way of waiting for
931 	 * all current requests to be flushed from the queue.
932 	 */
933#ifdef DEBUG
934 	printk("%s: DRIVE_CMD (null)\n", drive->name);
935#endif
936 	ide_end_drive_cmd(drive,
937			hwif->INB(IDE_STATUS_REG),
938			hwif->INB(IDE_ERROR_REG));
939 	return ide_stopped;
940}
941
942static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
943{
944	struct request_pm_state *pm = rq->data;
945
946	if (blk_pm_suspend_request(rq) &&
947	    pm->pm_step == ide_pm_state_start_suspend)
948		/* Mark drive blocked when starting the suspend sequence. */
949		drive->blocked = 1;
950	else if (blk_pm_resume_request(rq) &&
951		 pm->pm_step == ide_pm_state_start_resume) {
952		/*
953		 * The first thing we do on wakeup is to wait for BSY bit to
954		 * go away (with a looong timeout) as a drive on this hwif may
955		 * just be POSTing itself.
956		 * We do that before even selecting as the "other" device on
957		 * the bus may be broken enough to walk on our toes at this
958		 * point.
959		 */
960		int rc;
961#ifdef DEBUG_PM
962		printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
963#endif
964		rc = ide_wait_not_busy(HWIF(drive), 35000);
965		if (rc)
966			printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
967		SELECT_DRIVE(drive);
968		if (IDE_CONTROL_REG)
969			HWIF(drive)->OUTB(drive->ctl, IDE_CONTROL_REG);
970		rc = ide_wait_not_busy(HWIF(drive), 100000);
971		if (rc)
972			printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
973	}
974}
975
976/**
977 *	start_request	-	start of I/O and command issuing for IDE
978 *
979 *	start_request() initiates handling of a new I/O request. It
980 *	accepts commands and I/O (read/write) requests. It also does
981 *	the final remapping for weird stuff like EZDrive. Once
982 *	device mapper can work sector level the EZDrive stuff can go away
983 *
984 *	FIXME: this function needs a rename
985 */
986
987static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
988{
989	ide_startstop_t startstop;
990	sector_t block;
991
992	BUG_ON(!blk_rq_started(rq));
993
994#ifdef DEBUG
995	printk("%s: start_request: current=0x%08lx\n",
996		HWIF(drive)->name, (unsigned long) rq);
997#endif
998
999	/* bail early if we've exceeded max_failures */
1000	if (drive->max_failures && (drive->failures > drive->max_failures)) {
1001		rq->cmd_flags |= REQ_FAILED;
1002		goto kill_rq;
1003	}
1004
1005	block    = rq->sector;
1006	if (blk_fs_request(rq) &&
1007	    (drive->media == ide_disk || drive->media == ide_floppy)) {
1008		block += drive->sect0;
1009	}
1010	/* Yecch - this will shift the entire interval,
1011	   possibly killing some innocent following sector */
1012	if (block == 0 && drive->remap_0_to_1 == 1)
1013		block = 1;  /* redirect MBR access to EZ-Drive partn table */
1014
1015	if (blk_pm_request(rq))
1016		ide_check_pm_state(drive, rq);
1017
1018	SELECT_DRIVE(drive);
1019	if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
1020		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
1021		return startstop;
1022	}
1023	if (!drive->special.all) {
1024		ide_driver_t *drv;
1025
1026		/*
1027		 * We reset the drive so we need to issue a SETFEATURES.
1028		 * Do it _after_ do_special() restored device parameters.
1029		 */
1030		if (drive->current_speed == 0xff)
1031			ide_config_drive_speed(drive, drive->desired_speed);
1032
1033		if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1034		    rq->cmd_type == REQ_TYPE_ATA_TASK ||
1035		    rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1036			return execute_drive_cmd(drive, rq);
1037		else if (blk_pm_request(rq)) {
1038			struct request_pm_state *pm = rq->data;
1039#ifdef DEBUG_PM
1040			printk("%s: start_power_step(step: %d)\n",
1041				drive->name, rq->pm->pm_step);
1042#endif
1043			startstop = ide_start_power_step(drive, rq);
1044			if (startstop == ide_stopped &&
1045			    pm->pm_step == ide_pm_state_completed)
1046				ide_complete_pm_request(drive, rq);
1047			return startstop;
1048		}
1049
1050		drv = *(ide_driver_t **)rq->rq_disk->private_data;
1051		return drv->do_request(drive, rq, block);
1052	}
1053	return do_special(drive);
1054kill_rq:
1055	ide_kill_rq(drive, rq);
1056	return ide_stopped;
1057}
1058
1059/**
1060 *	ide_stall_queue		-	pause an IDE device
1061 *	@drive: drive to stall
1062 *	@timeout: time to stall for (jiffies)
1063 *
1064 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
1065 *	to the hwgroup by sleeping for timeout jiffies.
1066 */
1067
1068void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1069{
1070	if (timeout > WAIT_WORSTCASE)
1071		timeout = WAIT_WORSTCASE;
1072	drive->sleep = timeout + jiffies;
1073	drive->sleeping = 1;
1074}
1075
1076EXPORT_SYMBOL(ide_stall_queue);
1077
1078#define WAKEUP(drive)	((drive)->service_start + 2 * (drive)->service_time)
1079
1080/**
1081 *	choose_drive		-	select a drive to service
1082 *	@hwgroup: hardware group to select on
1083 *
1084 *	choose_drive() selects the next drive which will be serviced.
1085 *	This is necessary because the IDE layer can't issue commands
1086 *	to both drives on the same cable, unlike SCSI.
1087 */
1088
1089static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1090{
1091	ide_drive_t *drive, *best;
1092
1093repeat:
1094	best = NULL;
1095	drive = hwgroup->drive;
1096
1097	/*
1098	 * drive is doing pre-flush, ordered write, post-flush sequence. even
1099	 * though that is 3 requests, it must be seen as a single transaction.
1100	 * we must not preempt this drive until that is complete
1101	 */
1102	if (blk_queue_flushing(drive->queue)) {
1103		/*
1104		 * small race where queue could get replugged during
1105		 * the 3-request flush cycle, just yank the plug since
1106		 * we want it to finish asap
1107		 */
1108		blk_remove_plug(drive->queue);
1109		return drive;
1110	}
1111
1112	do {
1113		if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1114		    && !elv_queue_empty(drive->queue)) {
1115			if (!best
1116			 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1117			 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1118			{
1119				if (!blk_queue_plugged(drive->queue))
1120					best = drive;
1121			}
1122		}
1123	} while ((drive = drive->next) != hwgroup->drive);
1124	if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1125		long t = (signed long)(WAKEUP(best) - jiffies);
1126		if (t >= WAIT_MIN_SLEEP) {
1127		/*
1128		 * We *may* have some time to spare, but first let's see if
1129		 * someone can potentially benefit from our nice mood today..
1130		 */
1131			drive = best->next;
1132			do {
1133				if (!drive->sleeping
1134				 && time_before(jiffies - best->service_time, WAKEUP(drive))
1135				 && time_before(WAKEUP(drive), jiffies + t))
1136				{
1137					ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1138					goto repeat;
1139				}
1140			} while ((drive = drive->next) != best);
1141		}
1142	}
1143	return best;
1144}
1145
1146/*
1147 * Issue a new request to a drive from hwgroup
1148 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1149 *
1150 * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1151 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1152 * may have both interfaces in a single hwgroup to "serialize" access.
1153 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1154 * together into one hwgroup for serialized access.
1155 *
1156 * Note also that several hwgroups can end up sharing a single IRQ,
1157 * possibly along with many other devices.  This is especially common in
1158 * PCI-based systems with off-board IDE controller cards.
1159 *
1160 * The IDE driver uses the single global ide_lock spinlock to protect
1161 * access to the request queues, and to protect the hwgroup->busy flag.
1162 *
1163 * The first thread into the driver for a particular hwgroup sets the
1164 * hwgroup->busy flag to indicate that this hwgroup is now active,
1165 * and then initiates processing of the top request from the request queue.
1166 *
1167 * Other threads attempting entry notice the busy setting, and will simply
1168 * queue their new requests and exit immediately.  Note that hwgroup->busy
1169 * remains set even when the driver is merely awaiting the next interrupt.
1170 * Thus, the meaning is "this hwgroup is busy processing a request".
1171 *
1172 * When processing of a request completes, the completing thread or IRQ-handler
1173 * will start the next request from the queue.  If no more work remains,
1174 * the driver will clear the hwgroup->busy flag and exit.
1175 *
1176 * The ide_lock (spinlock) is used to protect all access to the
1177 * hwgroup->busy flag, but is otherwise not needed for most processing in
1178 * the driver.  This makes the driver much more friendlier to shared IRQs
1179 * than previous designs, while remaining 100% (?) SMP safe and capable.
1180 */
1181static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1182{
1183	ide_drive_t	*drive;
1184	ide_hwif_t	*hwif;
1185	struct request	*rq;
1186	ide_startstop_t	startstop;
1187	int             loops = 0;
1188
1189	/* for atari only: POSSIBLY BROKEN HERE(?) */
1190	ide_get_lock(ide_intr, hwgroup);
1191
1192	/* caller must own ide_lock */
1193	BUG_ON(!irqs_disabled());
1194
1195	while (!hwgroup->busy) {
1196		hwgroup->busy = 1;
1197		drive = choose_drive(hwgroup);
1198		if (drive == NULL) {
1199			int sleeping = 0;
1200			unsigned long sleep = 0; /* shut up, gcc */
1201			hwgroup->rq = NULL;
1202			drive = hwgroup->drive;
1203			do {
1204				if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1205					sleeping = 1;
1206					sleep = drive->sleep;
1207				}
1208			} while ((drive = drive->next) != hwgroup->drive);
1209			if (sleeping) {
1210		/*
1211		 * Take a short snooze, and then wake up this hwgroup again.
1212		 * This gives other hwgroups on the same a chance to
1213		 * play fairly with us, just in case there are big differences
1214		 * in relative throughputs.. don't want to hog the cpu too much.
1215		 */
1216				if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1217					sleep = jiffies + WAIT_MIN_SLEEP;
1218#if 1
1219				if (timer_pending(&hwgroup->timer))
1220					printk(KERN_CRIT "ide_set_handler: timer already active\n");
1221#endif
1222				/* so that ide_timer_expiry knows what to do */
1223				hwgroup->sleeping = 1;
1224				hwgroup->req_gen_timer = hwgroup->req_gen;
1225				mod_timer(&hwgroup->timer, sleep);
1226				/* we purposely leave hwgroup->busy==1
1227				 * while sleeping */
1228			} else {
1229				/* Ugly, but how can we sleep for the lock
1230				 * otherwise? perhaps from tq_disk?
1231				 */
1232
1233				/* for atari only */
1234				ide_release_lock();
1235				hwgroup->busy = 0;
1236			}
1237
1238			/* no more work for this hwgroup (for now) */
1239			return;
1240		}
1241	again:
1242		hwif = HWIF(drive);
1243		if (hwgroup->hwif->sharing_irq &&
1244		    hwif != hwgroup->hwif &&
1245		    hwif->io_ports[IDE_CONTROL_OFFSET]) {
1246			/* set nIEN for previous hwif */
1247			SELECT_INTERRUPT(drive);
1248		}
1249		hwgroup->hwif = hwif;
1250		hwgroup->drive = drive;
1251		drive->sleeping = 0;
1252		drive->service_start = jiffies;
1253
1254		if (blk_queue_plugged(drive->queue)) {
1255			printk(KERN_ERR "ide: huh? queue was plugged!\n");
1256			break;
1257		}
1258
1259		/*
1260		 * we know that the queue isn't empty, but this can happen
1261		 * if the q->prep_rq_fn() decides to kill a request
1262		 */
1263		rq = elv_next_request(drive->queue);
1264		if (!rq) {
1265			hwgroup->busy = 0;
1266			break;
1267		}
1268
1269		/*
1270		 * Sanity: don't accept a request that isn't a PM request
1271		 * if we are currently power managed. This is very important as
1272		 * blk_stop_queue() doesn't prevent the elv_next_request()
1273		 * above to return us whatever is in the queue. Since we call
1274		 * ide_do_request() ourselves, we end up taking requests while
1275		 * the queue is blocked...
1276		 *
1277		 * We let requests forced at head of queue with ide-preempt
1278		 * though. I hope that doesn't happen too much, hopefully not
1279		 * unless the subdriver triggers such a thing in its own PM
1280		 * state machine.
1281		 *
1282		 * We count how many times we loop here to make sure we service
1283		 * all drives in the hwgroup without looping for ever
1284		 */
1285		if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1286			drive = drive->next ? drive->next : hwgroup->drive;
1287			if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1288				goto again;
1289			/* We clear busy, there should be no pending ATA command at this point. */
1290			hwgroup->busy = 0;
1291			break;
1292		}
1293
1294		hwgroup->rq = rq;
1295
1296		/*
1297		 * Some systems have trouble with IDE IRQs arriving while
1298		 * the driver is still setting things up.  So, here we disable
1299		 * the IRQ used by this interface while the request is being started.
1300		 * This may look bad at first, but pretty much the same thing
1301		 * happens anyway when any interrupt comes in, IDE or otherwise
1302		 *  -- the kernel masks the IRQ while it is being handled.
1303		 */
1304		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1305			disable_irq_nosync(hwif->irq);
1306		spin_unlock(&ide_lock);
1307		local_irq_enable_in_hardirq();
1308			/* allow other IRQs while we start this request */
1309		startstop = start_request(drive, rq);
1310		spin_lock_irq(&ide_lock);
1311		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1312			enable_irq(hwif->irq);
1313		if (startstop == ide_stopped)
1314			hwgroup->busy = 0;
1315	}
1316}
1317
1318/*
1319 * Passes the stuff to ide_do_request
1320 */
1321void do_ide_request(struct request_queue *q)
1322{
1323	ide_drive_t *drive = q->queuedata;
1324
1325	ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1326}
1327
1328/*
1329 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1330 * retry the current request in pio mode instead of risking tossing it
1331 * all away
1332 */
1333static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1334{
1335	ide_hwif_t *hwif = HWIF(drive);
1336	struct request *rq;
1337	ide_startstop_t ret = ide_stopped;
1338
1339	/*
1340	 * end current dma transaction
1341	 */
1342
1343	if (error < 0) {
1344		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1345		(void)HWIF(drive)->ide_dma_end(drive);
1346		ret = ide_error(drive, "dma timeout error",
1347						hwif->INB(IDE_STATUS_REG));
1348	} else {
1349		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1350		hwif->dma_timeout(drive);
1351	}
1352
1353	/*
1354	 * disable dma for now, but remember that we did so because of
1355	 * a timeout -- we'll reenable after we finish this next request
1356	 * (or rather the first chunk of it) in pio.
1357	 */
1358	drive->retry_pio++;
1359	drive->state = DMA_PIO_RETRY;
1360	hwif->dma_off_quietly(drive);
1361
1362	/*
1363	 * un-busy drive etc (hwgroup->busy is cleared on return) and
1364	 * make sure request is sane
1365	 */
1366	rq = HWGROUP(drive)->rq;
1367
1368	if (!rq)
1369		goto out;
1370
1371	HWGROUP(drive)->rq = NULL;
1372
1373	rq->errors = 0;
1374
1375	if (!rq->bio)
1376		goto out;
1377
1378	rq->sector = rq->bio->bi_sector;
1379	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1380	rq->hard_cur_sectors = rq->current_nr_sectors;
1381	rq->buffer = bio_data(rq->bio);
1382out:
1383	return ret;
1384}
1385
1386/**
1387 *	ide_timer_expiry	-	handle lack of an IDE interrupt
1388 *	@data: timer callback magic (hwgroup)
1389 *
1390 *	An IDE command has timed out before the expected drive return
1391 *	occurred. At this point we attempt to clean up the current
1392 *	mess. If the current handler includes an expiry handler then
1393 *	we invoke the expiry handler, and providing it is happy the
1394 *	work is done. If that fails we apply generic recovery rules
1395 *	invoking the handler and checking the drive DMA status. We
1396 *	have an excessively incestuous relationship with the DMA
1397 *	logic that wants cleaning up.
1398 */
1399
1400void ide_timer_expiry (unsigned long data)
1401{
1402	ide_hwgroup_t	*hwgroup = (ide_hwgroup_t *) data;
1403	ide_handler_t	*handler;
1404	ide_expiry_t	*expiry;
1405	unsigned long	flags;
1406	unsigned long	wait = -1;
1407
1408	spin_lock_irqsave(&ide_lock, flags);
1409
1410	if (((handler = hwgroup->handler) == NULL) ||
1411	    (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1412		/*
1413		 * Either a marginal timeout occurred
1414		 * (got the interrupt just as timer expired),
1415		 * or we were "sleeping" to give other devices a chance.
1416		 * Either way, we don't really want to complain about anything.
1417		 */
1418		if (hwgroup->sleeping) {
1419			hwgroup->sleeping = 0;
1420			hwgroup->busy = 0;
1421		}
1422	} else {
1423		ide_drive_t *drive = hwgroup->drive;
1424		if (!drive) {
1425			printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1426			hwgroup->handler = NULL;
1427		} else {
1428			ide_hwif_t *hwif;
1429			ide_startstop_t startstop = ide_stopped;
1430			if (!hwgroup->busy) {
1431				hwgroup->busy = 1;	/* paranoia */
1432				printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1433			}
1434			if ((expiry = hwgroup->expiry) != NULL) {
1435				/* continue */
1436				if ((wait = expiry(drive)) > 0) {
1437					/* reset timer */
1438					hwgroup->timer.expires  = jiffies + wait;
1439					hwgroup->req_gen_timer = hwgroup->req_gen;
1440					add_timer(&hwgroup->timer);
1441					spin_unlock_irqrestore(&ide_lock, flags);
1442					return;
1443				}
1444			}
1445			hwgroup->handler = NULL;
1446			/*
1447			 * We need to simulate a real interrupt when invoking
1448			 * the handler() function, which means we need to
1449			 * globally mask the specific IRQ:
1450			 */
1451			spin_unlock(&ide_lock);
1452			hwif  = HWIF(drive);
1453			/* disable_irq_nosync ?? */
1454			disable_irq(hwif->irq);
1455			/* local CPU only,
1456			 * as if we were handling an interrupt */
1457			local_irq_disable();
1458			if (hwgroup->polling) {
1459				startstop = handler(drive);
1460			} else if (drive_is_ready(drive)) {
1461				if (drive->waiting_for_dma)
1462					hwgroup->hwif->dma_lost_irq(drive);
1463				(void)ide_ack_intr(hwif);
1464				printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1465				startstop = handler(drive);
1466			} else {
1467				if (drive->waiting_for_dma) {
1468					startstop = ide_dma_timeout_retry(drive, wait);
1469				} else
1470					startstop =
1471					ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1472			}
1473			drive->service_time = jiffies - drive->service_start;
1474			spin_lock_irq(&ide_lock);
1475			enable_irq(hwif->irq);
1476			if (startstop == ide_stopped)
1477				hwgroup->busy = 0;
1478		}
1479	}
1480	ide_do_request(hwgroup, IDE_NO_IRQ);
1481	spin_unlock_irqrestore(&ide_lock, flags);
1482}
1483
1484/**
1485 *	unexpected_intr		-	handle an unexpected IDE interrupt
1486 *	@irq: interrupt line
1487 *	@hwgroup: hwgroup being processed
1488 *
1489 *	There's nothing really useful we can do with an unexpected interrupt,
1490 *	other than reading the status register (to clear it), and logging it.
1491 *	There should be no way that an irq can happen before we're ready for it,
1492 *	so we needn't worry much about losing an "important" interrupt here.
1493 *
1494 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1495 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
1496 *	looks "good", we just ignore the interrupt completely.
1497 *
1498 *	This routine assumes __cli() is in effect when called.
1499 *
1500 *	If an unexpected interrupt happens on irq15 while we are handling irq14
1501 *	and if the two interfaces are "serialized" (CMD640), then it looks like
1502 *	we could screw up by interfering with a new request being set up for
1503 *	irq15.
1504 *
1505 *	In reality, this is a non-issue.  The new command is not sent unless
1506 *	the drive is ready to accept one, in which case we know the drive is
1507 *	not trying to interrupt us.  And ide_set_handler() is always invoked
1508 *	before completing the issuance of any new drive command, so we will not
1509 *	be accidentally invoked as a result of any valid command completion
1510 *	interrupt.
1511 *
1512 *	Note that we must walk the entire hwgroup here. We know which hwif
1513 *	is doing the current command, but we don't know which hwif burped
1514 *	mysteriously.
1515 */
1516
1517static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1518{
1519	u8 stat;
1520	ide_hwif_t *hwif = hwgroup->hwif;
1521
1522	/*
1523	 * handle the unexpected interrupt
1524	 */
1525	do {
1526		if (hwif->irq == irq) {
1527			stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1528			if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1529				/* Try to not flood the console with msgs */
1530				static unsigned long last_msgtime, count;
1531				++count;
1532				if (time_after(jiffies, last_msgtime + HZ)) {
1533					last_msgtime = jiffies;
1534					printk(KERN_ERR "%s%s: unexpected interrupt, "
1535						"status=0x%02x, count=%ld\n",
1536						hwif->name,
1537						(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1538				}
1539			}
1540		}
1541	} while ((hwif = hwif->next) != hwgroup->hwif);
1542}
1543
1544/**
1545 *	ide_intr	-	default IDE interrupt handler
1546 *	@irq: interrupt number
1547 *	@dev_id: hwif group
1548 *	@regs: unused weirdness from the kernel irq layer
1549 *
1550 *	This is the default IRQ handler for the IDE layer. You should
1551 *	not need to override it. If you do be aware it is subtle in
1552 *	places
1553 *
1554 *	hwgroup->hwif is the interface in the group currently performing
1555 *	a command. hwgroup->drive is the drive and hwgroup->handler is
1556 *	the IRQ handler to call. As we issue a command the handlers
1557 *	step through multiple states, reassigning the handler to the
1558 *	next step in the process. Unlike a smart SCSI controller IDE
1559 *	expects the main processor to sequence the various transfer
1560 *	stages. We also manage a poll timer to catch up with most
1561 *	timeout situations. There are still a few where the handlers
1562 *	don't ever decide to give up.
1563 *
1564 *	The handler eventually returns ide_stopped to indicate the
1565 *	request completed. At this point we issue the next request
1566 *	on the hwgroup and the process begins again.
1567 */
1568
1569irqreturn_t ide_intr (int irq, void *dev_id)
1570{
1571	unsigned long flags;
1572	ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1573	ide_hwif_t *hwif;
1574	ide_drive_t *drive;
1575	ide_handler_t *handler;
1576	ide_startstop_t startstop;
1577
1578	spin_lock_irqsave(&ide_lock, flags);
1579	hwif = hwgroup->hwif;
1580
1581	if (!ide_ack_intr(hwif)) {
1582		spin_unlock_irqrestore(&ide_lock, flags);
1583		return IRQ_NONE;
1584	}
1585
1586	if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1587		/*
1588		 * Not expecting an interrupt from this drive.
1589		 * That means this could be:
1590		 *	(1) an interrupt from another PCI device
1591		 *	sharing the same PCI INT# as us.
1592		 * or	(2) a drive just entered sleep or standby mode,
1593		 *	and is interrupting to let us know.
1594		 * or	(3) a spurious interrupt of unknown origin.
1595		 *
1596		 * For PCI, we cannot tell the difference,
1597		 * so in that case we just ignore it and hope it goes away.
1598		 *
1599		 * FIXME: unexpected_intr should be hwif-> then we can
1600		 * remove all the ifdef PCI crap
1601		 */
1602#ifdef CONFIG_BLK_DEV_IDEPCI
1603		if (hwif->pci_dev && !hwif->pci_dev->vendor)
1604#endif	/* CONFIG_BLK_DEV_IDEPCI */
1605		{
1606			/*
1607			 * Probably not a shared PCI interrupt,
1608			 * so we can safely try to do something about it:
1609			 */
1610			unexpected_intr(irq, hwgroup);
1611#ifdef CONFIG_BLK_DEV_IDEPCI
1612		} else {
1613			/*
1614			 * Whack the status register, just in case
1615			 * we have a leftover pending IRQ.
1616			 */
1617			(void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1618#endif /* CONFIG_BLK_DEV_IDEPCI */
1619		}
1620		spin_unlock_irqrestore(&ide_lock, flags);
1621		return IRQ_NONE;
1622	}
1623	drive = hwgroup->drive;
1624	if (!drive) {
1625		/*
1626		 * This should NEVER happen, and there isn't much
1627		 * we could do about it here.
1628		 *
1629		 * [Note - this can occur if the drive is hot unplugged]
1630		 */
1631		spin_unlock_irqrestore(&ide_lock, flags);
1632		return IRQ_HANDLED;
1633	}
1634	if (!drive_is_ready(drive)) {
1635		/*
1636		 * This happens regularly when we share a PCI IRQ with
1637		 * another device.  Unfortunately, it can also happen
1638		 * with some buggy drives that trigger the IRQ before
1639		 * their status register is up to date.  Hopefully we have
1640		 * enough advance overhead that the latter isn't a problem.
1641		 */
1642		spin_unlock_irqrestore(&ide_lock, flags);
1643		return IRQ_NONE;
1644	}
1645	if (!hwgroup->busy) {
1646		hwgroup->busy = 1;	/* paranoia */
1647		printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1648	}
1649	hwgroup->handler = NULL;
1650	hwgroup->req_gen++;
1651	del_timer(&hwgroup->timer);
1652	spin_unlock(&ide_lock);
1653
1654	/* Some controllers might set DMA INTR no matter DMA or PIO;
1655	 * bmdma status might need to be cleared even for
1656	 * PIO interrupts to prevent spurious/lost irq.
1657	 */
1658	if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1659		/* ide_dma_end() needs bmdma status for error checking.
1660		 * So, skip clearing bmdma status here and leave it
1661		 * to ide_dma_end() if this is dma interrupt.
1662		 */
1663		hwif->ide_dma_clear_irq(drive);
1664
1665	if (drive->unmask)
1666		local_irq_enable_in_hardirq();
1667	/* service this interrupt, may set handler for next interrupt */
1668	startstop = handler(drive);
1669	spin_lock_irq(&ide_lock);
1670
1671	/*
1672	 * Note that handler() may have set things up for another
1673	 * interrupt to occur soon, but it cannot happen until
1674	 * we exit from this routine, because it will be the
1675	 * same irq as is currently being serviced here, and Linux
1676	 * won't allow another of the same (on any CPU) until we return.
1677	 */
1678	drive->service_time = jiffies - drive->service_start;
1679	if (startstop == ide_stopped) {
1680		if (hwgroup->handler == NULL) {	/* paranoia */
1681			hwgroup->busy = 0;
1682			ide_do_request(hwgroup, hwif->irq);
1683		} else {
1684			printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1685				"on exit\n", drive->name);
1686		}
1687	}
1688	spin_unlock_irqrestore(&ide_lock, flags);
1689	return IRQ_HANDLED;
1690}
1691
1692/**
1693 *	ide_init_drive_cmd	-	initialize a drive command request
1694 *	@rq: request object
1695 *
1696 *	Initialize a request before we fill it in and send it down to
1697 *	ide_do_drive_cmd. Commands must be set up by this function. Right
1698 *	now it doesn't do a lot, but if that changes abusers will have a
1699 *	nasty surprise.
1700 */
1701
1702void ide_init_drive_cmd (struct request *rq)
1703{
1704	memset(rq, 0, sizeof(*rq));
1705	rq->cmd_type = REQ_TYPE_ATA_CMD;
1706	rq->ref_count = 1;
1707}
1708
1709EXPORT_SYMBOL(ide_init_drive_cmd);
1710
1711/**
1712 *	ide_do_drive_cmd	-	issue IDE special command
1713 *	@drive: device to issue command
1714 *	@rq: request to issue
1715 *	@action: action for processing
1716 *
1717 *	This function issues a special IDE device request
1718 *	onto the request queue.
1719 *
1720 *	If action is ide_wait, then the rq is queued at the end of the
1721 *	request queue, and the function sleeps until it has been processed.
1722 *	This is for use when invoked from an ioctl handler.
1723 *
1724 *	If action is ide_preempt, then the rq is queued at the head of
1725 *	the request queue, displacing the currently-being-processed
1726 *	request and this function returns immediately without waiting
1727 *	for the new rq to be completed.  This is VERY DANGEROUS, and is
1728 *	intended for careful use by the ATAPI tape/cdrom driver code.
1729 *
1730 *	If action is ide_end, then the rq is queued at the end of the
1731 *	request queue, and the function returns immediately without waiting
1732 *	for the new rq to be completed. This is again intended for careful
1733 *	use by the ATAPI tape/cdrom driver code.
1734 */
1735
1736int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1737{
1738	unsigned long flags;
1739	ide_hwgroup_t *hwgroup = HWGROUP(drive);
1740	DECLARE_COMPLETION_ONSTACK(wait);
1741	int where = ELEVATOR_INSERT_BACK, err;
1742	int must_wait = (action == ide_wait || action == ide_head_wait);
1743
1744	rq->errors = 0;
1745
1746	/*
1747	 * we need to hold an extra reference to request for safe inspection
1748	 * after completion
1749	 */
1750	if (must_wait) {
1751		rq->ref_count++;
1752		rq->end_io_data = &wait;
1753		rq->end_io = blk_end_sync_rq;
1754	}
1755
1756	spin_lock_irqsave(&ide_lock, flags);
1757	if (action == ide_preempt)
1758		hwgroup->rq = NULL;
1759	if (action == ide_preempt || action == ide_head_wait) {
1760		where = ELEVATOR_INSERT_FRONT;
1761		rq->cmd_flags |= REQ_PREEMPT;
1762	}
1763	__elv_add_request(drive->queue, rq, where, 0);
1764	ide_do_request(hwgroup, IDE_NO_IRQ);
1765	spin_unlock_irqrestore(&ide_lock, flags);
1766
1767	err = 0;
1768	if (must_wait) {
1769		wait_for_completion(&wait);
1770		if (rq->errors)
1771			err = -EIO;
1772
1773		blk_put_request(rq);
1774	}
1775
1776	return err;
1777}
1778
1779EXPORT_SYMBOL(ide_do_drive_cmd);
1780