ide-io.c revision 57279a7a401eed844ded4346c5ff512e622ac1de
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
50#include <linux/bitops.h>
51
52#include <asm/byteorder.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55#include <asm/io.h>
56
57static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58			     int uptodate, unsigned int nr_bytes, int dequeue)
59{
60	int ret = 1;
61	int error = 0;
62
63	if (uptodate <= 0)
64		error = uptodate ? uptodate : -EIO;
65
66	/*
67	 * if failfast is set on a request, override number of sectors and
68	 * complete the whole request right now
69	 */
70	if (blk_noretry_request(rq) && error)
71		nr_bytes = rq->hard_nr_sectors << 9;
72
73	if (!blk_fs_request(rq) && error && !rq->errors)
74		rq->errors = -EIO;
75
76	/*
77	 * decide whether to reenable DMA -- 3 is a random magic for now,
78	 * if we DMA timeout more than 3 times, just stay in PIO
79	 */
80	if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
81		drive->state = 0;
82		ide_dma_on(drive);
83	}
84
85	if (!__blk_end_request(rq, error, nr_bytes)) {
86		if (dequeue)
87			HWGROUP(drive)->rq = NULL;
88		ret = 0;
89	}
90
91	return ret;
92}
93
94/**
95 *	ide_end_request		-	complete an IDE I/O
96 *	@drive: IDE device for the I/O
97 *	@uptodate:
98 *	@nr_sectors: number of sectors completed
99 *
100 *	This is our end_request wrapper function. We complete the I/O
101 *	update random number input and dequeue the request, which if
102 *	it was tagged may be out of order.
103 */
104
105int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
106{
107	unsigned int nr_bytes = nr_sectors << 9;
108	struct request *rq;
109	unsigned long flags;
110	int ret = 1;
111
112	/*
113	 * room for locking improvements here, the calls below don't
114	 * need the queue lock held at all
115	 */
116	spin_lock_irqsave(&ide_lock, flags);
117	rq = HWGROUP(drive)->rq;
118
119	if (!nr_bytes) {
120		if (blk_pc_request(rq))
121			nr_bytes = rq->data_len;
122		else
123			nr_bytes = rq->hard_cur_sectors << 9;
124	}
125
126	ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
127
128	spin_unlock_irqrestore(&ide_lock, flags);
129	return ret;
130}
131EXPORT_SYMBOL(ide_end_request);
132
133/*
134 * Power Management state machine. This one is rather trivial for now,
135 * we should probably add more, like switching back to PIO on suspend
136 * to help some BIOSes, re-do the door locking on resume, etc...
137 */
138
139enum {
140	ide_pm_flush_cache	= ide_pm_state_start_suspend,
141	idedisk_pm_standby,
142
143	idedisk_pm_restore_pio	= ide_pm_state_start_resume,
144	idedisk_pm_idle,
145	ide_pm_restore_dma,
146};
147
148static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
149{
150	struct request_pm_state *pm = rq->data;
151
152	if (drive->media != ide_disk)
153		return;
154
155	switch (pm->pm_step) {
156	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) complete */
157		if (pm->pm_state == PM_EVENT_FREEZE)
158			pm->pm_step = ide_pm_state_completed;
159		else
160			pm->pm_step = idedisk_pm_standby;
161		break;
162	case idedisk_pm_standby:	/* Suspend step 2 (standby) complete */
163		pm->pm_step = ide_pm_state_completed;
164		break;
165	case idedisk_pm_restore_pio:	/* Resume step 1 complete */
166		pm->pm_step = idedisk_pm_idle;
167		break;
168	case idedisk_pm_idle:		/* Resume step 2 (idle) complete */
169		pm->pm_step = ide_pm_restore_dma;
170		break;
171	}
172}
173
174static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
175{
176	struct request_pm_state *pm = rq->data;
177	ide_task_t *args = rq->special;
178
179	memset(args, 0, sizeof(*args));
180
181	switch (pm->pm_step) {
182	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) */
183		if (drive->media != ide_disk)
184			break;
185		/* Not supported? Switch to next step now. */
186		if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
187			ide_complete_power_step(drive, rq, 0, 0);
188			return ide_stopped;
189		}
190		if (ide_id_has_flush_cache_ext(drive->id))
191			args->tf.command = WIN_FLUSH_CACHE_EXT;
192		else
193			args->tf.command = WIN_FLUSH_CACHE;
194		goto out_do_tf;
195
196	case idedisk_pm_standby:	/* Suspend step 2 (standby) */
197		args->tf.command = WIN_STANDBYNOW1;
198		goto out_do_tf;
199
200	case idedisk_pm_restore_pio:	/* Resume step 1 (restore PIO) */
201		ide_set_max_pio(drive);
202		/*
203		 * skip idedisk_pm_idle for ATAPI devices
204		 */
205		if (drive->media != ide_disk)
206			pm->pm_step = ide_pm_restore_dma;
207		else
208			ide_complete_power_step(drive, rq, 0, 0);
209		return ide_stopped;
210
211	case idedisk_pm_idle:		/* Resume step 2 (idle) */
212		args->tf.command = WIN_IDLEIMMEDIATE;
213		goto out_do_tf;
214
215	case ide_pm_restore_dma:	/* Resume step 3 (restore DMA) */
216		/*
217		 * Right now, all we do is call ide_set_dma(drive),
218		 * we could be smarter and check for current xfer_speed
219		 * in struct drive etc...
220		 */
221		if (drive->hwif->dma_ops == NULL)
222			break;
223		/*
224		 * TODO: respect ->using_dma setting
225		 */
226		ide_set_dma(drive);
227		break;
228	}
229	pm->pm_step = ide_pm_state_completed;
230	return ide_stopped;
231
232out_do_tf:
233	args->tf_flags	 = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
234	args->data_phase = TASKFILE_NO_DATA;
235	return do_rw_taskfile(drive, args);
236}
237
238/**
239 *	ide_end_dequeued_request	-	complete an IDE I/O
240 *	@drive: IDE device for the I/O
241 *	@uptodate:
242 *	@nr_sectors: number of sectors completed
243 *
244 *	Complete an I/O that is no longer on the request queue. This
245 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
246 *	We must still finish the old request but we must not tamper with the
247 *	queue in the meantime.
248 *
249 *	NOTE: This path does not handle barrier, but barrier is not supported
250 *	on ide-cd anyway.
251 */
252
253int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
254			     int uptodate, int nr_sectors)
255{
256	unsigned long flags;
257	int ret;
258
259	spin_lock_irqsave(&ide_lock, flags);
260	BUG_ON(!blk_rq_started(rq));
261	ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
262	spin_unlock_irqrestore(&ide_lock, flags);
263
264	return ret;
265}
266EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
267
268
269/**
270 *	ide_complete_pm_request - end the current Power Management request
271 *	@drive: target drive
272 *	@rq: request
273 *
274 *	This function cleans up the current PM request and stops the queue
275 *	if necessary.
276 */
277static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
278{
279	unsigned long flags;
280
281#ifdef DEBUG_PM
282	printk("%s: completing PM request, %s\n", drive->name,
283	       blk_pm_suspend_request(rq) ? "suspend" : "resume");
284#endif
285	spin_lock_irqsave(&ide_lock, flags);
286	if (blk_pm_suspend_request(rq)) {
287		blk_stop_queue(drive->queue);
288	} else {
289		drive->blocked = 0;
290		blk_start_queue(drive->queue);
291	}
292	HWGROUP(drive)->rq = NULL;
293	if (__blk_end_request(rq, 0, 0))
294		BUG();
295	spin_unlock_irqrestore(&ide_lock, flags);
296}
297
298/**
299 *	ide_end_drive_cmd	-	end an explicit drive command
300 *	@drive: command
301 *	@stat: status bits
302 *	@err: error bits
303 *
304 *	Clean up after success/failure of an explicit drive command.
305 *	These get thrown onto the queue so they are synchronized with
306 *	real I/O operations on the drive.
307 *
308 *	In LBA48 mode we have to read the register set twice to get
309 *	all the extra information out.
310 */
311
312void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
313{
314	unsigned long flags;
315	struct request *rq;
316
317	spin_lock_irqsave(&ide_lock, flags);
318	rq = HWGROUP(drive)->rq;
319	spin_unlock_irqrestore(&ide_lock, flags);
320
321	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
322		ide_task_t *task = (ide_task_t *)rq->special;
323
324		if (rq->errors == 0)
325			rq->errors = !OK_STAT(stat, READY_STAT, BAD_STAT);
326
327		if (task) {
328			struct ide_taskfile *tf = &task->tf;
329
330			tf->error = err;
331			tf->status = stat;
332
333			drive->hwif->tf_read(drive, task);
334
335			if (task->tf_flags & IDE_TFLAG_DYN)
336				kfree(task);
337		}
338	} else if (blk_pm_request(rq)) {
339		struct request_pm_state *pm = rq->data;
340#ifdef DEBUG_PM
341		printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
342			drive->name, rq->pm->pm_step, stat, err);
343#endif
344		ide_complete_power_step(drive, rq, stat, err);
345		if (pm->pm_step == ide_pm_state_completed)
346			ide_complete_pm_request(drive, rq);
347		return;
348	}
349
350	spin_lock_irqsave(&ide_lock, flags);
351	HWGROUP(drive)->rq = NULL;
352	rq->errors = err;
353	if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
354				       blk_rq_bytes(rq))))
355		BUG();
356	spin_unlock_irqrestore(&ide_lock, flags);
357}
358
359EXPORT_SYMBOL(ide_end_drive_cmd);
360
361static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
362{
363	if (rq->rq_disk) {
364		ide_driver_t *drv;
365
366		drv = *(ide_driver_t **)rq->rq_disk->private_data;
367		drv->end_request(drive, 0, 0);
368	} else
369		ide_end_request(drive, 0, 0);
370}
371
372static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
373{
374	ide_hwif_t *hwif = drive->hwif;
375
376	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
377		/* other bits are useless when BUSY */
378		rq->errors |= ERROR_RESET;
379	} else if (stat & ERR_STAT) {
380		/* err has different meaning on cdrom and tape */
381		if (err == ABRT_ERR) {
382			if (drive->select.b.lba &&
383			    /* some newer drives don't support WIN_SPECIFY */
384			    hwif->INB(hwif->io_ports.command_addr) ==
385				WIN_SPECIFY)
386				return ide_stopped;
387		} else if ((err & BAD_CRC) == BAD_CRC) {
388			/* UDMA crc error, just retry the operation */
389			drive->crc_count++;
390		} else if (err & (BBD_ERR | ECC_ERR)) {
391			/* retries won't help these */
392			rq->errors = ERROR_MAX;
393		} else if (err & TRK0_ERR) {
394			/* help it find track zero */
395			rq->errors |= ERROR_RECAL;
396		}
397	}
398
399	if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
400	    (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
401		int nsect = drive->mult_count ? drive->mult_count : 1;
402
403		ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
404	}
405
406	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
407		ide_kill_rq(drive, rq);
408		return ide_stopped;
409	}
410
411	if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT))
412		rq->errors |= ERROR_RESET;
413
414	if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
415		++rq->errors;
416		return ide_do_reset(drive);
417	}
418
419	if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
420		drive->special.b.recalibrate = 1;
421
422	++rq->errors;
423
424	return ide_stopped;
425}
426
427static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
428{
429	ide_hwif_t *hwif = drive->hwif;
430
431	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
432		/* other bits are useless when BUSY */
433		rq->errors |= ERROR_RESET;
434	} else {
435		/* add decoding error stuff */
436	}
437
438	if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT))
439		/* force an abort */
440		hwif->OUTBSYNC(drive, WIN_IDLEIMMEDIATE,
441			       hwif->io_ports.command_addr);
442
443	if (rq->errors >= ERROR_MAX) {
444		ide_kill_rq(drive, rq);
445	} else {
446		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
447			++rq->errors;
448			return ide_do_reset(drive);
449		}
450		++rq->errors;
451	}
452
453	return ide_stopped;
454}
455
456ide_startstop_t
457__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
458{
459	if (drive->media == ide_disk)
460		return ide_ata_error(drive, rq, stat, err);
461	return ide_atapi_error(drive, rq, stat, err);
462}
463
464EXPORT_SYMBOL_GPL(__ide_error);
465
466/**
467 *	ide_error	-	handle an error on the IDE
468 *	@drive: drive the error occurred on
469 *	@msg: message to report
470 *	@stat: status bits
471 *
472 *	ide_error() takes action based on the error returned by the drive.
473 *	For normal I/O that may well include retries. We deal with
474 *	both new-style (taskfile) and old style command handling here.
475 *	In the case of taskfile command handling there is work left to
476 *	do
477 */
478
479ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
480{
481	struct request *rq;
482	u8 err;
483
484	err = ide_dump_status(drive, msg, stat);
485
486	if ((rq = HWGROUP(drive)->rq) == NULL)
487		return ide_stopped;
488
489	/* retry only "normal" I/O: */
490	if (!blk_fs_request(rq)) {
491		rq->errors = 1;
492		ide_end_drive_cmd(drive, stat, err);
493		return ide_stopped;
494	}
495
496	if (rq->rq_disk) {
497		ide_driver_t *drv;
498
499		drv = *(ide_driver_t **)rq->rq_disk->private_data;
500		return drv->error(drive, rq, stat, err);
501	} else
502		return __ide_error(drive, rq, stat, err);
503}
504
505EXPORT_SYMBOL_GPL(ide_error);
506
507ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
508{
509	if (drive->media != ide_disk)
510		rq->errors |= ERROR_RESET;
511
512	ide_kill_rq(drive, rq);
513
514	return ide_stopped;
515}
516
517EXPORT_SYMBOL_GPL(__ide_abort);
518
519/**
520 *	ide_abort	-	abort pending IDE operations
521 *	@drive: drive the error occurred on
522 *	@msg: message to report
523 *
524 *	ide_abort kills and cleans up when we are about to do a
525 *	host initiated reset on active commands. Longer term we
526 *	want handlers to have sensible abort handling themselves
527 *
528 *	This differs fundamentally from ide_error because in
529 *	this case the command is doing just fine when we
530 *	blow it away.
531 */
532
533ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
534{
535	struct request *rq;
536
537	if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
538		return ide_stopped;
539
540	/* retry only "normal" I/O: */
541	if (!blk_fs_request(rq)) {
542		rq->errors = 1;
543		ide_end_drive_cmd(drive, BUSY_STAT, 0);
544		return ide_stopped;
545	}
546
547	if (rq->rq_disk) {
548		ide_driver_t *drv;
549
550		drv = *(ide_driver_t **)rq->rq_disk->private_data;
551		return drv->abort(drive, rq);
552	} else
553		return __ide_abort(drive, rq);
554}
555
556static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
557{
558	tf->nsect   = drive->sect;
559	tf->lbal    = drive->sect;
560	tf->lbam    = drive->cyl;
561	tf->lbah    = drive->cyl >> 8;
562	tf->device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
563	tf->command = WIN_SPECIFY;
564}
565
566static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
567{
568	tf->nsect   = drive->sect;
569	tf->command = WIN_RESTORE;
570}
571
572static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
573{
574	tf->nsect   = drive->mult_req;
575	tf->command = WIN_SETMULT;
576}
577
578static ide_startstop_t ide_disk_special(ide_drive_t *drive)
579{
580	special_t *s = &drive->special;
581	ide_task_t args;
582
583	memset(&args, 0, sizeof(ide_task_t));
584	args.data_phase = TASKFILE_NO_DATA;
585
586	if (s->b.set_geometry) {
587		s->b.set_geometry = 0;
588		ide_tf_set_specify_cmd(drive, &args.tf);
589	} else if (s->b.recalibrate) {
590		s->b.recalibrate = 0;
591		ide_tf_set_restore_cmd(drive, &args.tf);
592	} else if (s->b.set_multmode) {
593		s->b.set_multmode = 0;
594		if (drive->mult_req > drive->id->max_multsect)
595			drive->mult_req = drive->id->max_multsect;
596		ide_tf_set_setmult_cmd(drive, &args.tf);
597	} else if (s->all) {
598		int special = s->all;
599		s->all = 0;
600		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
601		return ide_stopped;
602	}
603
604	args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
605			IDE_TFLAG_CUSTOM_HANDLER;
606
607	do_rw_taskfile(drive, &args);
608
609	return ide_started;
610}
611
612/*
613 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
614 */
615static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
616{
617	switch (req_pio) {
618	case 202:
619	case 201:
620	case 200:
621	case 102:
622	case 101:
623	case 100:
624		return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
625	case 9:
626	case 8:
627		return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
628	case 7:
629	case 6:
630		return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
631	default:
632		return 0;
633	}
634}
635
636/**
637 *	do_special		-	issue some special commands
638 *	@drive: drive the command is for
639 *
640 *	do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
641 *	commands to a drive.  It used to do much more, but has been scaled
642 *	back.
643 */
644
645static ide_startstop_t do_special (ide_drive_t *drive)
646{
647	special_t *s = &drive->special;
648
649#ifdef DEBUG
650	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
651#endif
652	if (s->b.set_tune) {
653		ide_hwif_t *hwif = drive->hwif;
654		const struct ide_port_ops *port_ops = hwif->port_ops;
655		u8 req_pio = drive->tune_req;
656
657		s->b.set_tune = 0;
658
659		if (set_pio_mode_abuse(drive->hwif, req_pio)) {
660			/*
661			 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
662			 */
663			if (req_pio == 8 || req_pio == 9) {
664				unsigned long flags;
665
666				spin_lock_irqsave(&ide_lock, flags);
667				port_ops->set_pio_mode(drive, req_pio);
668				spin_unlock_irqrestore(&ide_lock, flags);
669			} else
670				port_ops->set_pio_mode(drive, req_pio);
671		} else {
672			int keep_dma = drive->using_dma;
673
674			ide_set_pio(drive, req_pio);
675
676			if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
677				if (keep_dma)
678					ide_dma_on(drive);
679			}
680		}
681
682		return ide_stopped;
683	} else {
684		if (drive->media == ide_disk)
685			return ide_disk_special(drive);
686
687		s->all = 0;
688		drive->mult_req = 0;
689		return ide_stopped;
690	}
691}
692
693void ide_map_sg(ide_drive_t *drive, struct request *rq)
694{
695	ide_hwif_t *hwif = drive->hwif;
696	struct scatterlist *sg = hwif->sg_table;
697
698	if (hwif->sg_mapped)	/* needed by ide-scsi */
699		return;
700
701	if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
702		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
703	} else {
704		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
705		hwif->sg_nents = 1;
706	}
707}
708
709EXPORT_SYMBOL_GPL(ide_map_sg);
710
711void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
712{
713	ide_hwif_t *hwif = drive->hwif;
714
715	hwif->nsect = hwif->nleft = rq->nr_sectors;
716	hwif->cursg_ofs = 0;
717	hwif->cursg = NULL;
718}
719
720EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
721
722/**
723 *	execute_drive_command	-	issue special drive command
724 *	@drive: the drive to issue the command on
725 *	@rq: the request structure holding the command
726 *
727 *	execute_drive_cmd() issues a special drive command,  usually
728 *	initiated by ioctl() from the external hdparm program. The
729 *	command can be a drive command, drive task or taskfile
730 *	operation. Weirdly you can call it with NULL to wait for
731 *	all commands to finish. Don't do this as that is due to change
732 */
733
734static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
735		struct request *rq)
736{
737	ide_hwif_t *hwif = HWIF(drive);
738	ide_task_t *task = rq->special;
739
740	if (task) {
741		hwif->data_phase = task->data_phase;
742
743		switch (hwif->data_phase) {
744		case TASKFILE_MULTI_OUT:
745		case TASKFILE_OUT:
746		case TASKFILE_MULTI_IN:
747		case TASKFILE_IN:
748			ide_init_sg_cmd(drive, rq);
749			ide_map_sg(drive, rq);
750		default:
751			break;
752		}
753
754		return do_rw_taskfile(drive, task);
755	}
756
757 	/*
758 	 * NULL is actually a valid way of waiting for
759 	 * all current requests to be flushed from the queue.
760 	 */
761#ifdef DEBUG
762 	printk("%s: DRIVE_CMD (null)\n", drive->name);
763#endif
764	ide_end_drive_cmd(drive, ide_read_status(drive), ide_read_error(drive));
765
766 	return ide_stopped;
767}
768
769static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
770{
771	struct request_pm_state *pm = rq->data;
772
773	if (blk_pm_suspend_request(rq) &&
774	    pm->pm_step == ide_pm_state_start_suspend)
775		/* Mark drive blocked when starting the suspend sequence. */
776		drive->blocked = 1;
777	else if (blk_pm_resume_request(rq) &&
778		 pm->pm_step == ide_pm_state_start_resume) {
779		/*
780		 * The first thing we do on wakeup is to wait for BSY bit to
781		 * go away (with a looong timeout) as a drive on this hwif may
782		 * just be POSTing itself.
783		 * We do that before even selecting as the "other" device on
784		 * the bus may be broken enough to walk on our toes at this
785		 * point.
786		 */
787		int rc;
788#ifdef DEBUG_PM
789		printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
790#endif
791		rc = ide_wait_not_busy(HWIF(drive), 35000);
792		if (rc)
793			printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
794		SELECT_DRIVE(drive);
795		ide_set_irq(drive, 1);
796		rc = ide_wait_not_busy(HWIF(drive), 100000);
797		if (rc)
798			printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
799	}
800}
801
802/**
803 *	start_request	-	start of I/O and command issuing for IDE
804 *
805 *	start_request() initiates handling of a new I/O request. It
806 *	accepts commands and I/O (read/write) requests. It also does
807 *	the final remapping for weird stuff like EZDrive. Once
808 *	device mapper can work sector level the EZDrive stuff can go away
809 *
810 *	FIXME: this function needs a rename
811 */
812
813static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
814{
815	ide_startstop_t startstop;
816	sector_t block;
817
818	BUG_ON(!blk_rq_started(rq));
819
820#ifdef DEBUG
821	printk("%s: start_request: current=0x%08lx\n",
822		HWIF(drive)->name, (unsigned long) rq);
823#endif
824
825	/* bail early if we've exceeded max_failures */
826	if (drive->max_failures && (drive->failures > drive->max_failures)) {
827		rq->cmd_flags |= REQ_FAILED;
828		goto kill_rq;
829	}
830
831	block    = rq->sector;
832	if (blk_fs_request(rq) &&
833	    (drive->media == ide_disk || drive->media == ide_floppy)) {
834		block += drive->sect0;
835	}
836	/* Yecch - this will shift the entire interval,
837	   possibly killing some innocent following sector */
838	if (block == 0 && drive->remap_0_to_1 == 1)
839		block = 1;  /* redirect MBR access to EZ-Drive partn table */
840
841	if (blk_pm_request(rq))
842		ide_check_pm_state(drive, rq);
843
844	SELECT_DRIVE(drive);
845	if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
846		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
847		return startstop;
848	}
849	if (!drive->special.all) {
850		ide_driver_t *drv;
851
852		/*
853		 * We reset the drive so we need to issue a SETFEATURES.
854		 * Do it _after_ do_special() restored device parameters.
855		 */
856		if (drive->current_speed == 0xff)
857			ide_config_drive_speed(drive, drive->desired_speed);
858
859		if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
860			return execute_drive_cmd(drive, rq);
861		else if (blk_pm_request(rq)) {
862			struct request_pm_state *pm = rq->data;
863#ifdef DEBUG_PM
864			printk("%s: start_power_step(step: %d)\n",
865				drive->name, rq->pm->pm_step);
866#endif
867			startstop = ide_start_power_step(drive, rq);
868			if (startstop == ide_stopped &&
869			    pm->pm_step == ide_pm_state_completed)
870				ide_complete_pm_request(drive, rq);
871			return startstop;
872		}
873
874		drv = *(ide_driver_t **)rq->rq_disk->private_data;
875		return drv->do_request(drive, rq, block);
876	}
877	return do_special(drive);
878kill_rq:
879	ide_kill_rq(drive, rq);
880	return ide_stopped;
881}
882
883/**
884 *	ide_stall_queue		-	pause an IDE device
885 *	@drive: drive to stall
886 *	@timeout: time to stall for (jiffies)
887 *
888 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
889 *	to the hwgroup by sleeping for timeout jiffies.
890 */
891
892void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
893{
894	if (timeout > WAIT_WORSTCASE)
895		timeout = WAIT_WORSTCASE;
896	drive->sleep = timeout + jiffies;
897	drive->sleeping = 1;
898}
899
900EXPORT_SYMBOL(ide_stall_queue);
901
902#define WAKEUP(drive)	((drive)->service_start + 2 * (drive)->service_time)
903
904/**
905 *	choose_drive		-	select a drive to service
906 *	@hwgroup: hardware group to select on
907 *
908 *	choose_drive() selects the next drive which will be serviced.
909 *	This is necessary because the IDE layer can't issue commands
910 *	to both drives on the same cable, unlike SCSI.
911 */
912
913static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
914{
915	ide_drive_t *drive, *best;
916
917repeat:
918	best = NULL;
919	drive = hwgroup->drive;
920
921	/*
922	 * drive is doing pre-flush, ordered write, post-flush sequence. even
923	 * though that is 3 requests, it must be seen as a single transaction.
924	 * we must not preempt this drive until that is complete
925	 */
926	if (blk_queue_flushing(drive->queue)) {
927		/*
928		 * small race where queue could get replugged during
929		 * the 3-request flush cycle, just yank the plug since
930		 * we want it to finish asap
931		 */
932		blk_remove_plug(drive->queue);
933		return drive;
934	}
935
936	do {
937		if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
938		    && !elv_queue_empty(drive->queue)) {
939			if (!best
940			 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
941			 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
942			{
943				if (!blk_queue_plugged(drive->queue))
944					best = drive;
945			}
946		}
947	} while ((drive = drive->next) != hwgroup->drive);
948	if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
949		long t = (signed long)(WAKEUP(best) - jiffies);
950		if (t >= WAIT_MIN_SLEEP) {
951		/*
952		 * We *may* have some time to spare, but first let's see if
953		 * someone can potentially benefit from our nice mood today..
954		 */
955			drive = best->next;
956			do {
957				if (!drive->sleeping
958				 && time_before(jiffies - best->service_time, WAKEUP(drive))
959				 && time_before(WAKEUP(drive), jiffies + t))
960				{
961					ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
962					goto repeat;
963				}
964			} while ((drive = drive->next) != best);
965		}
966	}
967	return best;
968}
969
970/*
971 * Issue a new request to a drive from hwgroup
972 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
973 *
974 * A hwgroup is a serialized group of IDE interfaces.  Usually there is
975 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
976 * may have both interfaces in a single hwgroup to "serialize" access.
977 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
978 * together into one hwgroup for serialized access.
979 *
980 * Note also that several hwgroups can end up sharing a single IRQ,
981 * possibly along with many other devices.  This is especially common in
982 * PCI-based systems with off-board IDE controller cards.
983 *
984 * The IDE driver uses the single global ide_lock spinlock to protect
985 * access to the request queues, and to protect the hwgroup->busy flag.
986 *
987 * The first thread into the driver for a particular hwgroup sets the
988 * hwgroup->busy flag to indicate that this hwgroup is now active,
989 * and then initiates processing of the top request from the request queue.
990 *
991 * Other threads attempting entry notice the busy setting, and will simply
992 * queue their new requests and exit immediately.  Note that hwgroup->busy
993 * remains set even when the driver is merely awaiting the next interrupt.
994 * Thus, the meaning is "this hwgroup is busy processing a request".
995 *
996 * When processing of a request completes, the completing thread or IRQ-handler
997 * will start the next request from the queue.  If no more work remains,
998 * the driver will clear the hwgroup->busy flag and exit.
999 *
1000 * The ide_lock (spinlock) is used to protect all access to the
1001 * hwgroup->busy flag, but is otherwise not needed for most processing in
1002 * the driver.  This makes the driver much more friendlier to shared IRQs
1003 * than previous designs, while remaining 100% (?) SMP safe and capable.
1004 */
1005static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1006{
1007	ide_drive_t	*drive;
1008	ide_hwif_t	*hwif;
1009	struct request	*rq;
1010	ide_startstop_t	startstop;
1011	int             loops = 0;
1012
1013	/* for atari only: POSSIBLY BROKEN HERE(?) */
1014	ide_get_lock(ide_intr, hwgroup);
1015
1016	/* caller must own ide_lock */
1017	BUG_ON(!irqs_disabled());
1018
1019	while (!hwgroup->busy) {
1020		hwgroup->busy = 1;
1021		drive = choose_drive(hwgroup);
1022		if (drive == NULL) {
1023			int sleeping = 0;
1024			unsigned long sleep = 0; /* shut up, gcc */
1025			hwgroup->rq = NULL;
1026			drive = hwgroup->drive;
1027			do {
1028				if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1029					sleeping = 1;
1030					sleep = drive->sleep;
1031				}
1032			} while ((drive = drive->next) != hwgroup->drive);
1033			if (sleeping) {
1034		/*
1035		 * Take a short snooze, and then wake up this hwgroup again.
1036		 * This gives other hwgroups on the same a chance to
1037		 * play fairly with us, just in case there are big differences
1038		 * in relative throughputs.. don't want to hog the cpu too much.
1039		 */
1040				if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1041					sleep = jiffies + WAIT_MIN_SLEEP;
1042#if 1
1043				if (timer_pending(&hwgroup->timer))
1044					printk(KERN_CRIT "ide_set_handler: timer already active\n");
1045#endif
1046				/* so that ide_timer_expiry knows what to do */
1047				hwgroup->sleeping = 1;
1048				hwgroup->req_gen_timer = hwgroup->req_gen;
1049				mod_timer(&hwgroup->timer, sleep);
1050				/* we purposely leave hwgroup->busy==1
1051				 * while sleeping */
1052			} else {
1053				/* Ugly, but how can we sleep for the lock
1054				 * otherwise? perhaps from tq_disk?
1055				 */
1056
1057				/* for atari only */
1058				ide_release_lock();
1059				hwgroup->busy = 0;
1060			}
1061
1062			/* no more work for this hwgroup (for now) */
1063			return;
1064		}
1065	again:
1066		hwif = HWIF(drive);
1067		if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1068			/*
1069			 * set nIEN for previous hwif, drives in the
1070			 * quirk_list may not like intr setups/cleanups
1071			 */
1072			if (drive->quirk_list != 1)
1073				ide_set_irq(drive, 0);
1074		}
1075		hwgroup->hwif = hwif;
1076		hwgroup->drive = drive;
1077		drive->sleeping = 0;
1078		drive->service_start = jiffies;
1079
1080		if (blk_queue_plugged(drive->queue)) {
1081			printk(KERN_ERR "ide: huh? queue was plugged!\n");
1082			break;
1083		}
1084
1085		/*
1086		 * we know that the queue isn't empty, but this can happen
1087		 * if the q->prep_rq_fn() decides to kill a request
1088		 */
1089		rq = elv_next_request(drive->queue);
1090		if (!rq) {
1091			hwgroup->busy = 0;
1092			break;
1093		}
1094
1095		/*
1096		 * Sanity: don't accept a request that isn't a PM request
1097		 * if we are currently power managed. This is very important as
1098		 * blk_stop_queue() doesn't prevent the elv_next_request()
1099		 * above to return us whatever is in the queue. Since we call
1100		 * ide_do_request() ourselves, we end up taking requests while
1101		 * the queue is blocked...
1102		 *
1103		 * We let requests forced at head of queue with ide-preempt
1104		 * though. I hope that doesn't happen too much, hopefully not
1105		 * unless the subdriver triggers such a thing in its own PM
1106		 * state machine.
1107		 *
1108		 * We count how many times we loop here to make sure we service
1109		 * all drives in the hwgroup without looping for ever
1110		 */
1111		if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1112			drive = drive->next ? drive->next : hwgroup->drive;
1113			if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1114				goto again;
1115			/* We clear busy, there should be no pending ATA command at this point. */
1116			hwgroup->busy = 0;
1117			break;
1118		}
1119
1120		hwgroup->rq = rq;
1121
1122		/*
1123		 * Some systems have trouble with IDE IRQs arriving while
1124		 * the driver is still setting things up.  So, here we disable
1125		 * the IRQ used by this interface while the request is being started.
1126		 * This may look bad at first, but pretty much the same thing
1127		 * happens anyway when any interrupt comes in, IDE or otherwise
1128		 *  -- the kernel masks the IRQ while it is being handled.
1129		 */
1130		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1131			disable_irq_nosync(hwif->irq);
1132		spin_unlock(&ide_lock);
1133		local_irq_enable_in_hardirq();
1134			/* allow other IRQs while we start this request */
1135		startstop = start_request(drive, rq);
1136		spin_lock_irq(&ide_lock);
1137		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1138			enable_irq(hwif->irq);
1139		if (startstop == ide_stopped)
1140			hwgroup->busy = 0;
1141	}
1142}
1143
1144/*
1145 * Passes the stuff to ide_do_request
1146 */
1147void do_ide_request(struct request_queue *q)
1148{
1149	ide_drive_t *drive = q->queuedata;
1150
1151	ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1152}
1153
1154/*
1155 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1156 * retry the current request in pio mode instead of risking tossing it
1157 * all away
1158 */
1159static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1160{
1161	ide_hwif_t *hwif = HWIF(drive);
1162	struct request *rq;
1163	ide_startstop_t ret = ide_stopped;
1164
1165	/*
1166	 * end current dma transaction
1167	 */
1168
1169	if (error < 0) {
1170		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1171		(void)hwif->dma_ops->dma_end(drive);
1172		ret = ide_error(drive, "dma timeout error",
1173				ide_read_status(drive));
1174	} else {
1175		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1176		hwif->dma_ops->dma_timeout(drive);
1177	}
1178
1179	/*
1180	 * disable dma for now, but remember that we did so because of
1181	 * a timeout -- we'll reenable after we finish this next request
1182	 * (or rather the first chunk of it) in pio.
1183	 */
1184	drive->retry_pio++;
1185	drive->state = DMA_PIO_RETRY;
1186	ide_dma_off_quietly(drive);
1187
1188	/*
1189	 * un-busy drive etc (hwgroup->busy is cleared on return) and
1190	 * make sure request is sane
1191	 */
1192	rq = HWGROUP(drive)->rq;
1193
1194	if (!rq)
1195		goto out;
1196
1197	HWGROUP(drive)->rq = NULL;
1198
1199	rq->errors = 0;
1200
1201	if (!rq->bio)
1202		goto out;
1203
1204	rq->sector = rq->bio->bi_sector;
1205	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1206	rq->hard_cur_sectors = rq->current_nr_sectors;
1207	rq->buffer = bio_data(rq->bio);
1208out:
1209	return ret;
1210}
1211
1212/**
1213 *	ide_timer_expiry	-	handle lack of an IDE interrupt
1214 *	@data: timer callback magic (hwgroup)
1215 *
1216 *	An IDE command has timed out before the expected drive return
1217 *	occurred. At this point we attempt to clean up the current
1218 *	mess. If the current handler includes an expiry handler then
1219 *	we invoke the expiry handler, and providing it is happy the
1220 *	work is done. If that fails we apply generic recovery rules
1221 *	invoking the handler and checking the drive DMA status. We
1222 *	have an excessively incestuous relationship with the DMA
1223 *	logic that wants cleaning up.
1224 */
1225
1226void ide_timer_expiry (unsigned long data)
1227{
1228	ide_hwgroup_t	*hwgroup = (ide_hwgroup_t *) data;
1229	ide_handler_t	*handler;
1230	ide_expiry_t	*expiry;
1231	unsigned long	flags;
1232	unsigned long	wait = -1;
1233
1234	spin_lock_irqsave(&ide_lock, flags);
1235
1236	if (((handler = hwgroup->handler) == NULL) ||
1237	    (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1238		/*
1239		 * Either a marginal timeout occurred
1240		 * (got the interrupt just as timer expired),
1241		 * or we were "sleeping" to give other devices a chance.
1242		 * Either way, we don't really want to complain about anything.
1243		 */
1244		if (hwgroup->sleeping) {
1245			hwgroup->sleeping = 0;
1246			hwgroup->busy = 0;
1247		}
1248	} else {
1249		ide_drive_t *drive = hwgroup->drive;
1250		if (!drive) {
1251			printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1252			hwgroup->handler = NULL;
1253		} else {
1254			ide_hwif_t *hwif;
1255			ide_startstop_t startstop = ide_stopped;
1256			if (!hwgroup->busy) {
1257				hwgroup->busy = 1;	/* paranoia */
1258				printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1259			}
1260			if ((expiry = hwgroup->expiry) != NULL) {
1261				/* continue */
1262				if ((wait = expiry(drive)) > 0) {
1263					/* reset timer */
1264					hwgroup->timer.expires  = jiffies + wait;
1265					hwgroup->req_gen_timer = hwgroup->req_gen;
1266					add_timer(&hwgroup->timer);
1267					spin_unlock_irqrestore(&ide_lock, flags);
1268					return;
1269				}
1270			}
1271			hwgroup->handler = NULL;
1272			/*
1273			 * We need to simulate a real interrupt when invoking
1274			 * the handler() function, which means we need to
1275			 * globally mask the specific IRQ:
1276			 */
1277			spin_unlock(&ide_lock);
1278			hwif  = HWIF(drive);
1279			/* disable_irq_nosync ?? */
1280			disable_irq(hwif->irq);
1281			/* local CPU only,
1282			 * as if we were handling an interrupt */
1283			local_irq_disable();
1284			if (hwgroup->polling) {
1285				startstop = handler(drive);
1286			} else if (drive_is_ready(drive)) {
1287				if (drive->waiting_for_dma)
1288					hwif->dma_ops->dma_lost_irq(drive);
1289				(void)ide_ack_intr(hwif);
1290				printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1291				startstop = handler(drive);
1292			} else {
1293				if (drive->waiting_for_dma) {
1294					startstop = ide_dma_timeout_retry(drive, wait);
1295				} else
1296					startstop =
1297					ide_error(drive, "irq timeout",
1298						  ide_read_status(drive));
1299			}
1300			drive->service_time = jiffies - drive->service_start;
1301			spin_lock_irq(&ide_lock);
1302			enable_irq(hwif->irq);
1303			if (startstop == ide_stopped)
1304				hwgroup->busy = 0;
1305		}
1306	}
1307	ide_do_request(hwgroup, IDE_NO_IRQ);
1308	spin_unlock_irqrestore(&ide_lock, flags);
1309}
1310
1311/**
1312 *	unexpected_intr		-	handle an unexpected IDE interrupt
1313 *	@irq: interrupt line
1314 *	@hwgroup: hwgroup being processed
1315 *
1316 *	There's nothing really useful we can do with an unexpected interrupt,
1317 *	other than reading the status register (to clear it), and logging it.
1318 *	There should be no way that an irq can happen before we're ready for it,
1319 *	so we needn't worry much about losing an "important" interrupt here.
1320 *
1321 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1322 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
1323 *	looks "good", we just ignore the interrupt completely.
1324 *
1325 *	This routine assumes __cli() is in effect when called.
1326 *
1327 *	If an unexpected interrupt happens on irq15 while we are handling irq14
1328 *	and if the two interfaces are "serialized" (CMD640), then it looks like
1329 *	we could screw up by interfering with a new request being set up for
1330 *	irq15.
1331 *
1332 *	In reality, this is a non-issue.  The new command is not sent unless
1333 *	the drive is ready to accept one, in which case we know the drive is
1334 *	not trying to interrupt us.  And ide_set_handler() is always invoked
1335 *	before completing the issuance of any new drive command, so we will not
1336 *	be accidentally invoked as a result of any valid command completion
1337 *	interrupt.
1338 *
1339 *	Note that we must walk the entire hwgroup here. We know which hwif
1340 *	is doing the current command, but we don't know which hwif burped
1341 *	mysteriously.
1342 */
1343
1344static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1345{
1346	u8 stat;
1347	ide_hwif_t *hwif = hwgroup->hwif;
1348
1349	/*
1350	 * handle the unexpected interrupt
1351	 */
1352	do {
1353		if (hwif->irq == irq) {
1354			stat = hwif->INB(hwif->io_ports.status_addr);
1355			if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1356				/* Try to not flood the console with msgs */
1357				static unsigned long last_msgtime, count;
1358				++count;
1359				if (time_after(jiffies, last_msgtime + HZ)) {
1360					last_msgtime = jiffies;
1361					printk(KERN_ERR "%s%s: unexpected interrupt, "
1362						"status=0x%02x, count=%ld\n",
1363						hwif->name,
1364						(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1365				}
1366			}
1367		}
1368	} while ((hwif = hwif->next) != hwgroup->hwif);
1369}
1370
1371/**
1372 *	ide_intr	-	default IDE interrupt handler
1373 *	@irq: interrupt number
1374 *	@dev_id: hwif group
1375 *	@regs: unused weirdness from the kernel irq layer
1376 *
1377 *	This is the default IRQ handler for the IDE layer. You should
1378 *	not need to override it. If you do be aware it is subtle in
1379 *	places
1380 *
1381 *	hwgroup->hwif is the interface in the group currently performing
1382 *	a command. hwgroup->drive is the drive and hwgroup->handler is
1383 *	the IRQ handler to call. As we issue a command the handlers
1384 *	step through multiple states, reassigning the handler to the
1385 *	next step in the process. Unlike a smart SCSI controller IDE
1386 *	expects the main processor to sequence the various transfer
1387 *	stages. We also manage a poll timer to catch up with most
1388 *	timeout situations. There are still a few where the handlers
1389 *	don't ever decide to give up.
1390 *
1391 *	The handler eventually returns ide_stopped to indicate the
1392 *	request completed. At this point we issue the next request
1393 *	on the hwgroup and the process begins again.
1394 */
1395
1396irqreturn_t ide_intr (int irq, void *dev_id)
1397{
1398	unsigned long flags;
1399	ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1400	ide_hwif_t *hwif;
1401	ide_drive_t *drive;
1402	ide_handler_t *handler;
1403	ide_startstop_t startstop;
1404
1405	spin_lock_irqsave(&ide_lock, flags);
1406	hwif = hwgroup->hwif;
1407
1408	if (!ide_ack_intr(hwif)) {
1409		spin_unlock_irqrestore(&ide_lock, flags);
1410		return IRQ_NONE;
1411	}
1412
1413	if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1414		/*
1415		 * Not expecting an interrupt from this drive.
1416		 * That means this could be:
1417		 *	(1) an interrupt from another PCI device
1418		 *	sharing the same PCI INT# as us.
1419		 * or	(2) a drive just entered sleep or standby mode,
1420		 *	and is interrupting to let us know.
1421		 * or	(3) a spurious interrupt of unknown origin.
1422		 *
1423		 * For PCI, we cannot tell the difference,
1424		 * so in that case we just ignore it and hope it goes away.
1425		 *
1426		 * FIXME: unexpected_intr should be hwif-> then we can
1427		 * remove all the ifdef PCI crap
1428		 */
1429#ifdef CONFIG_BLK_DEV_IDEPCI
1430		if (hwif->chipset != ide_pci)
1431#endif	/* CONFIG_BLK_DEV_IDEPCI */
1432		{
1433			/*
1434			 * Probably not a shared PCI interrupt,
1435			 * so we can safely try to do something about it:
1436			 */
1437			unexpected_intr(irq, hwgroup);
1438#ifdef CONFIG_BLK_DEV_IDEPCI
1439		} else {
1440			/*
1441			 * Whack the status register, just in case
1442			 * we have a leftover pending IRQ.
1443			 */
1444			(void) hwif->INB(hwif->io_ports.status_addr);
1445#endif /* CONFIG_BLK_DEV_IDEPCI */
1446		}
1447		spin_unlock_irqrestore(&ide_lock, flags);
1448		return IRQ_NONE;
1449	}
1450	drive = hwgroup->drive;
1451	if (!drive) {
1452		/*
1453		 * This should NEVER happen, and there isn't much
1454		 * we could do about it here.
1455		 *
1456		 * [Note - this can occur if the drive is hot unplugged]
1457		 */
1458		spin_unlock_irqrestore(&ide_lock, flags);
1459		return IRQ_HANDLED;
1460	}
1461	if (!drive_is_ready(drive)) {
1462		/*
1463		 * This happens regularly when we share a PCI IRQ with
1464		 * another device.  Unfortunately, it can also happen
1465		 * with some buggy drives that trigger the IRQ before
1466		 * their status register is up to date.  Hopefully we have
1467		 * enough advance overhead that the latter isn't a problem.
1468		 */
1469		spin_unlock_irqrestore(&ide_lock, flags);
1470		return IRQ_NONE;
1471	}
1472	if (!hwgroup->busy) {
1473		hwgroup->busy = 1;	/* paranoia */
1474		printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1475	}
1476	hwgroup->handler = NULL;
1477	hwgroup->req_gen++;
1478	del_timer(&hwgroup->timer);
1479	spin_unlock(&ide_lock);
1480
1481	/* Some controllers might set DMA INTR no matter DMA or PIO;
1482	 * bmdma status might need to be cleared even for
1483	 * PIO interrupts to prevent spurious/lost irq.
1484	 */
1485	if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1486		/* ide_dma_end() needs bmdma status for error checking.
1487		 * So, skip clearing bmdma status here and leave it
1488		 * to ide_dma_end() if this is dma interrupt.
1489		 */
1490		hwif->ide_dma_clear_irq(drive);
1491
1492	if (drive->unmask)
1493		local_irq_enable_in_hardirq();
1494	/* service this interrupt, may set handler for next interrupt */
1495	startstop = handler(drive);
1496	spin_lock_irq(&ide_lock);
1497
1498	/*
1499	 * Note that handler() may have set things up for another
1500	 * interrupt to occur soon, but it cannot happen until
1501	 * we exit from this routine, because it will be the
1502	 * same irq as is currently being serviced here, and Linux
1503	 * won't allow another of the same (on any CPU) until we return.
1504	 */
1505	drive->service_time = jiffies - drive->service_start;
1506	if (startstop == ide_stopped) {
1507		if (hwgroup->handler == NULL) {	/* paranoia */
1508			hwgroup->busy = 0;
1509			ide_do_request(hwgroup, hwif->irq);
1510		} else {
1511			printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1512				"on exit\n", drive->name);
1513		}
1514	}
1515	spin_unlock_irqrestore(&ide_lock, flags);
1516	return IRQ_HANDLED;
1517}
1518
1519/**
1520 *	ide_do_drive_cmd	-	issue IDE special command
1521 *	@drive: device to issue command
1522 *	@rq: request to issue
1523 *	@action: action for processing
1524 *
1525 *	This function issues a special IDE device request
1526 *	onto the request queue.
1527 *
1528 *	If action is ide_wait, then the rq is queued at the end of the
1529 *	request queue, and the function sleeps until it has been processed.
1530 *	This is for use when invoked from an ioctl handler.
1531 *
1532 *	If action is ide_preempt, then the rq is queued at the head of
1533 *	the request queue, displacing the currently-being-processed
1534 *	request and this function returns immediately without waiting
1535 *	for the new rq to be completed.  This is VERY DANGEROUS, and is
1536 *	intended for careful use by the ATAPI tape/cdrom driver code.
1537 *
1538 *	If action is ide_end, then the rq is queued at the end of the
1539 *	request queue, and the function returns immediately without waiting
1540 *	for the new rq to be completed. This is again intended for careful
1541 *	use by the ATAPI tape/cdrom driver code.
1542 */
1543
1544int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1545{
1546	unsigned long flags;
1547	ide_hwgroup_t *hwgroup = HWGROUP(drive);
1548	int where = ELEVATOR_INSERT_BACK;
1549
1550	rq->errors = 0;
1551
1552	if (action == ide_preempt)
1553		where = ELEVATOR_INSERT_FRONT;
1554
1555	spin_lock_irqsave(&ide_lock, flags);
1556	if (action == ide_preempt)
1557		hwgroup->rq = NULL;
1558	__elv_add_request(drive->queue, rq, where, 1);
1559	__generic_unplug_device(drive->queue);
1560	/* the queue is stopped so it won't be plugged+unplugged */
1561	if (blk_pm_resume_request(rq))
1562		do_ide_request(drive->queue);
1563	spin_unlock_irqrestore(&ide_lock, flags);
1564
1565	return 0;
1566}
1567
1568EXPORT_SYMBOL(ide_do_drive_cmd);
1569
1570void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1571{
1572	ide_task_t task;
1573
1574	memset(&task, 0, sizeof(task));
1575	task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1576			IDE_TFLAG_OUT_FEATURE | tf_flags;
1577	task.tf.feature = dma;		/* Use PIO/DMA */
1578	task.tf.lbam    = bcount & 0xff;
1579	task.tf.lbah    = (bcount >> 8) & 0xff;
1580
1581	ide_tf_dump(drive->name, &task.tf);
1582	drive->hwif->tf_load(drive, &task);
1583}
1584
1585EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1586
1587void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1588{
1589	ide_hwif_t *hwif = drive->hwif;
1590	u8 buf[4] = { 0 };
1591
1592	while (len > 0) {
1593		if (write)
1594			hwif->output_data(drive, NULL, buf, min(4, len));
1595		else
1596			hwif->input_data(drive, NULL, buf, min(4, len));
1597		len -= 4;
1598	}
1599}
1600EXPORT_SYMBOL_GPL(ide_pad_transfer);
1601