ide-io.c revision 6b7d8fc36272169d1d07a07174f2c8a7909c025e
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/hdreg.h>
44#include <linux/completion.h>
45#include <linux/reboot.h>
46#include <linux/cdrom.h>
47#include <linux/seq_file.h>
48#include <linux/device.h>
49#include <linux/kmod.h>
50#include <linux/scatterlist.h>
51#include <linux/bitops.h>
52
53#include <asm/byteorder.h>
54#include <asm/irq.h>
55#include <asm/uaccess.h>
56#include <asm/io.h>
57
58static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59			     int uptodate, unsigned int nr_bytes, int dequeue)
60{
61	int ret = 1;
62	int error = 0;
63
64	if (uptodate <= 0)
65		error = uptodate ? uptodate : -EIO;
66
67	/*
68	 * if failfast is set on a request, override number of sectors and
69	 * complete the whole request right now
70	 */
71	if (blk_noretry_request(rq) && error)
72		nr_bytes = rq->hard_nr_sectors << 9;
73
74	if (!blk_fs_request(rq) && error && !rq->errors)
75		rq->errors = -EIO;
76
77	/*
78	 * decide whether to reenable DMA -- 3 is a random magic for now,
79	 * if we DMA timeout more than 3 times, just stay in PIO
80	 */
81	if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82	    drive->retry_pio <= 3) {
83		drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84		ide_dma_on(drive);
85	}
86
87	if (!__blk_end_request(rq, error, nr_bytes)) {
88		if (dequeue)
89			HWGROUP(drive)->rq = NULL;
90		ret = 0;
91	}
92
93	return ret;
94}
95
96/**
97 *	ide_end_request		-	complete an IDE I/O
98 *	@drive: IDE device for the I/O
99 *	@uptodate:
100 *	@nr_sectors: number of sectors completed
101 *
102 *	This is our end_request wrapper function. We complete the I/O
103 *	update random number input and dequeue the request, which if
104 *	it was tagged may be out of order.
105 */
106
107int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108{
109	unsigned int nr_bytes = nr_sectors << 9;
110	struct request *rq;
111	unsigned long flags;
112	int ret = 1;
113
114	/*
115	 * room for locking improvements here, the calls below don't
116	 * need the queue lock held at all
117	 */
118	spin_lock_irqsave(&ide_lock, flags);
119	rq = HWGROUP(drive)->rq;
120
121	if (!nr_bytes) {
122		if (blk_pc_request(rq))
123			nr_bytes = rq->data_len;
124		else
125			nr_bytes = rq->hard_cur_sectors << 9;
126	}
127
128	ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
129
130	spin_unlock_irqrestore(&ide_lock, flags);
131	return ret;
132}
133EXPORT_SYMBOL(ide_end_request);
134
135static void ide_complete_power_step(ide_drive_t *drive, struct request *rq)
136{
137	struct request_pm_state *pm = rq->data;
138
139#ifdef DEBUG_PM
140	printk(KERN_INFO "%s: complete_power_step(step: %d)\n",
141		drive->name, pm->pm_step);
142#endif
143	if (drive->media != ide_disk)
144		return;
145
146	switch (pm->pm_step) {
147	case IDE_PM_FLUSH_CACHE:	/* Suspend step 1 (flush cache) */
148		if (pm->pm_state == PM_EVENT_FREEZE)
149			pm->pm_step = IDE_PM_COMPLETED;
150		else
151			pm->pm_step = IDE_PM_STANDBY;
152		break;
153	case IDE_PM_STANDBY:		/* Suspend step 2 (standby) */
154		pm->pm_step = IDE_PM_COMPLETED;
155		break;
156	case IDE_PM_RESTORE_PIO:	/* Resume step 1 (restore PIO) */
157		pm->pm_step = IDE_PM_IDLE;
158		break;
159	case IDE_PM_IDLE:		/* Resume step 2 (idle)*/
160		pm->pm_step = IDE_PM_RESTORE_DMA;
161		break;
162	}
163}
164
165static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
166{
167	struct request_pm_state *pm = rq->data;
168	ide_task_t *args = rq->special;
169
170	memset(args, 0, sizeof(*args));
171
172	switch (pm->pm_step) {
173	case IDE_PM_FLUSH_CACHE:	/* Suspend step 1 (flush cache) */
174		if (drive->media != ide_disk)
175			break;
176		/* Not supported? Switch to next step now. */
177		if (ata_id_flush_enabled(drive->id) == 0 ||
178		    (drive->dev_flags & IDE_DFLAG_WCACHE) == 0) {
179			ide_complete_power_step(drive, rq);
180			return ide_stopped;
181		}
182		if (ata_id_flush_ext_enabled(drive->id))
183			args->tf.command = ATA_CMD_FLUSH_EXT;
184		else
185			args->tf.command = ATA_CMD_FLUSH;
186		goto out_do_tf;
187	case IDE_PM_STANDBY:		/* Suspend step 2 (standby) */
188		args->tf.command = ATA_CMD_STANDBYNOW1;
189		goto out_do_tf;
190	case IDE_PM_RESTORE_PIO:	/* Resume step 1 (restore PIO) */
191		ide_set_max_pio(drive);
192		/*
193		 * skip IDE_PM_IDLE for ATAPI devices
194		 */
195		if (drive->media != ide_disk)
196			pm->pm_step = IDE_PM_RESTORE_DMA;
197		else
198			ide_complete_power_step(drive, rq);
199		return ide_stopped;
200	case IDE_PM_IDLE:		/* Resume step 2 (idle) */
201		args->tf.command = ATA_CMD_IDLEIMMEDIATE;
202		goto out_do_tf;
203	case IDE_PM_RESTORE_DMA:	/* Resume step 3 (restore DMA) */
204		/*
205		 * Right now, all we do is call ide_set_dma(drive),
206		 * we could be smarter and check for current xfer_speed
207		 * in struct drive etc...
208		 */
209		if (drive->hwif->dma_ops == NULL)
210			break;
211		if (drive->dev_flags & IDE_DFLAG_USING_DMA)
212			ide_set_dma(drive);
213		break;
214	}
215
216	pm->pm_step = IDE_PM_COMPLETED;
217	return ide_stopped;
218
219out_do_tf:
220	args->tf_flags	 = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
221	args->data_phase = TASKFILE_NO_DATA;
222	return do_rw_taskfile(drive, args);
223}
224
225/**
226 *	ide_end_dequeued_request	-	complete an IDE I/O
227 *	@drive: IDE device for the I/O
228 *	@uptodate:
229 *	@nr_sectors: number of sectors completed
230 *
231 *	Complete an I/O that is no longer on the request queue. This
232 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
233 *	We must still finish the old request but we must not tamper with the
234 *	queue in the meantime.
235 *
236 *	NOTE: This path does not handle barrier, but barrier is not supported
237 *	on ide-cd anyway.
238 */
239
240int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
241			     int uptodate, int nr_sectors)
242{
243	unsigned long flags;
244	int ret;
245
246	spin_lock_irqsave(&ide_lock, flags);
247	BUG_ON(!blk_rq_started(rq));
248	ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
249	spin_unlock_irqrestore(&ide_lock, flags);
250
251	return ret;
252}
253EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
254
255
256/**
257 *	ide_complete_pm_request - end the current Power Management request
258 *	@drive: target drive
259 *	@rq: request
260 *
261 *	This function cleans up the current PM request and stops the queue
262 *	if necessary.
263 */
264static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
265{
266	unsigned long flags;
267
268#ifdef DEBUG_PM
269	printk("%s: completing PM request, %s\n", drive->name,
270	       blk_pm_suspend_request(rq) ? "suspend" : "resume");
271#endif
272	spin_lock_irqsave(&ide_lock, flags);
273	if (blk_pm_suspend_request(rq)) {
274		blk_stop_queue(drive->queue);
275	} else {
276		drive->dev_flags &= ~IDE_DFLAG_BLOCKED;
277		blk_start_queue(drive->queue);
278	}
279	HWGROUP(drive)->rq = NULL;
280	if (__blk_end_request(rq, 0, 0))
281		BUG();
282	spin_unlock_irqrestore(&ide_lock, flags);
283}
284
285/**
286 *	ide_end_drive_cmd	-	end an explicit drive command
287 *	@drive: command
288 *	@stat: status bits
289 *	@err: error bits
290 *
291 *	Clean up after success/failure of an explicit drive command.
292 *	These get thrown onto the queue so they are synchronized with
293 *	real I/O operations on the drive.
294 *
295 *	In LBA48 mode we have to read the register set twice to get
296 *	all the extra information out.
297 */
298
299void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
300{
301	unsigned long flags;
302	struct request *rq;
303
304	spin_lock_irqsave(&ide_lock, flags);
305	rq = HWGROUP(drive)->rq;
306	spin_unlock_irqrestore(&ide_lock, flags);
307
308	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
309		ide_task_t *task = (ide_task_t *)rq->special;
310
311		if (rq->errors == 0)
312			rq->errors = !OK_STAT(stat, ATA_DRDY, BAD_STAT);
313
314		if (task) {
315			struct ide_taskfile *tf = &task->tf;
316
317			tf->error = err;
318			tf->status = stat;
319
320			drive->hwif->tp_ops->tf_read(drive, task);
321
322			if (task->tf_flags & IDE_TFLAG_DYN)
323				kfree(task);
324		}
325	} else if (blk_pm_request(rq)) {
326		struct request_pm_state *pm = rq->data;
327
328		ide_complete_power_step(drive, rq);
329		if (pm->pm_step == IDE_PM_COMPLETED)
330			ide_complete_pm_request(drive, rq);
331		return;
332	}
333
334	spin_lock_irqsave(&ide_lock, flags);
335	HWGROUP(drive)->rq = NULL;
336	rq->errors = err;
337	if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
338				       blk_rq_bytes(rq))))
339		BUG();
340	spin_unlock_irqrestore(&ide_lock, flags);
341}
342
343EXPORT_SYMBOL(ide_end_drive_cmd);
344
345static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
346{
347	if (rq->rq_disk) {
348		ide_driver_t *drv;
349
350		drv = *(ide_driver_t **)rq->rq_disk->private_data;
351		drv->end_request(drive, 0, 0);
352	} else
353		ide_end_request(drive, 0, 0);
354}
355
356static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
357{
358	ide_hwif_t *hwif = drive->hwif;
359
360	if ((stat & ATA_BUSY) ||
361	    ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
362		/* other bits are useless when BUSY */
363		rq->errors |= ERROR_RESET;
364	} else if (stat & ATA_ERR) {
365		/* err has different meaning on cdrom and tape */
366		if (err == ATA_ABORTED) {
367			if ((drive->dev_flags & IDE_DFLAG_LBA) &&
368			    /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
369			    hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
370				return ide_stopped;
371		} else if ((err & BAD_CRC) == BAD_CRC) {
372			/* UDMA crc error, just retry the operation */
373			drive->crc_count++;
374		} else if (err & (ATA_BBK | ATA_UNC)) {
375			/* retries won't help these */
376			rq->errors = ERROR_MAX;
377		} else if (err & ATA_TRK0NF) {
378			/* help it find track zero */
379			rq->errors |= ERROR_RECAL;
380		}
381	}
382
383	if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
384	    (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
385		int nsect = drive->mult_count ? drive->mult_count : 1;
386
387		ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
388	}
389
390	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
391		ide_kill_rq(drive, rq);
392		return ide_stopped;
393	}
394
395	if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
396		rq->errors |= ERROR_RESET;
397
398	if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
399		++rq->errors;
400		return ide_do_reset(drive);
401	}
402
403	if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
404		drive->special.b.recalibrate = 1;
405
406	++rq->errors;
407
408	return ide_stopped;
409}
410
411static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
412{
413	ide_hwif_t *hwif = drive->hwif;
414
415	if ((stat & ATA_BUSY) ||
416	    ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
417		/* other bits are useless when BUSY */
418		rq->errors |= ERROR_RESET;
419	} else {
420		/* add decoding error stuff */
421	}
422
423	if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
424		/* force an abort */
425		hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
426
427	if (rq->errors >= ERROR_MAX) {
428		ide_kill_rq(drive, rq);
429	} else {
430		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
431			++rq->errors;
432			return ide_do_reset(drive);
433		}
434		++rq->errors;
435	}
436
437	return ide_stopped;
438}
439
440ide_startstop_t
441__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
442{
443	if (drive->media == ide_disk)
444		return ide_ata_error(drive, rq, stat, err);
445	return ide_atapi_error(drive, rq, stat, err);
446}
447
448EXPORT_SYMBOL_GPL(__ide_error);
449
450/**
451 *	ide_error	-	handle an error on the IDE
452 *	@drive: drive the error occurred on
453 *	@msg: message to report
454 *	@stat: status bits
455 *
456 *	ide_error() takes action based on the error returned by the drive.
457 *	For normal I/O that may well include retries. We deal with
458 *	both new-style (taskfile) and old style command handling here.
459 *	In the case of taskfile command handling there is work left to
460 *	do
461 */
462
463ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
464{
465	struct request *rq;
466	u8 err;
467
468	err = ide_dump_status(drive, msg, stat);
469
470	if ((rq = HWGROUP(drive)->rq) == NULL)
471		return ide_stopped;
472
473	/* retry only "normal" I/O: */
474	if (!blk_fs_request(rq)) {
475		rq->errors = 1;
476		ide_end_drive_cmd(drive, stat, err);
477		return ide_stopped;
478	}
479
480	if (rq->rq_disk) {
481		ide_driver_t *drv;
482
483		drv = *(ide_driver_t **)rq->rq_disk->private_data;
484		return drv->error(drive, rq, stat, err);
485	} else
486		return __ide_error(drive, rq, stat, err);
487}
488
489EXPORT_SYMBOL_GPL(ide_error);
490
491static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
492{
493	tf->nsect   = drive->sect;
494	tf->lbal    = drive->sect;
495	tf->lbam    = drive->cyl;
496	tf->lbah    = drive->cyl >> 8;
497	tf->device  = (drive->head - 1) | drive->select;
498	tf->command = ATA_CMD_INIT_DEV_PARAMS;
499}
500
501static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
502{
503	tf->nsect   = drive->sect;
504	tf->command = ATA_CMD_RESTORE;
505}
506
507static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
508{
509	tf->nsect   = drive->mult_req;
510	tf->command = ATA_CMD_SET_MULTI;
511}
512
513static ide_startstop_t ide_disk_special(ide_drive_t *drive)
514{
515	special_t *s = &drive->special;
516	ide_task_t args;
517
518	memset(&args, 0, sizeof(ide_task_t));
519	args.data_phase = TASKFILE_NO_DATA;
520
521	if (s->b.set_geometry) {
522		s->b.set_geometry = 0;
523		ide_tf_set_specify_cmd(drive, &args.tf);
524	} else if (s->b.recalibrate) {
525		s->b.recalibrate = 0;
526		ide_tf_set_restore_cmd(drive, &args.tf);
527	} else if (s->b.set_multmode) {
528		s->b.set_multmode = 0;
529		ide_tf_set_setmult_cmd(drive, &args.tf);
530	} else if (s->all) {
531		int special = s->all;
532		s->all = 0;
533		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
534		return ide_stopped;
535	}
536
537	args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
538			IDE_TFLAG_CUSTOM_HANDLER;
539
540	do_rw_taskfile(drive, &args);
541
542	return ide_started;
543}
544
545/**
546 *	do_special		-	issue some special commands
547 *	@drive: drive the command is for
548 *
549 *	do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
550 *	ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
551 *
552 *	It used to do much more, but has been scaled back.
553 */
554
555static ide_startstop_t do_special (ide_drive_t *drive)
556{
557	special_t *s = &drive->special;
558
559#ifdef DEBUG
560	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
561#endif
562	if (drive->media == ide_disk)
563		return ide_disk_special(drive);
564
565	s->all = 0;
566	drive->mult_req = 0;
567	return ide_stopped;
568}
569
570void ide_map_sg(ide_drive_t *drive, struct request *rq)
571{
572	ide_hwif_t *hwif = drive->hwif;
573	struct scatterlist *sg = hwif->sg_table;
574
575	if (hwif->sg_mapped)	/* needed by ide-scsi */
576		return;
577
578	if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
579		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
580	} else {
581		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
582		hwif->sg_nents = 1;
583	}
584}
585
586EXPORT_SYMBOL_GPL(ide_map_sg);
587
588void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
589{
590	ide_hwif_t *hwif = drive->hwif;
591
592	hwif->nsect = hwif->nleft = rq->nr_sectors;
593	hwif->cursg_ofs = 0;
594	hwif->cursg = NULL;
595}
596
597EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
598
599/**
600 *	execute_drive_command	-	issue special drive command
601 *	@drive: the drive to issue the command on
602 *	@rq: the request structure holding the command
603 *
604 *	execute_drive_cmd() issues a special drive command,  usually
605 *	initiated by ioctl() from the external hdparm program. The
606 *	command can be a drive command, drive task or taskfile
607 *	operation. Weirdly you can call it with NULL to wait for
608 *	all commands to finish. Don't do this as that is due to change
609 */
610
611static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
612		struct request *rq)
613{
614	ide_hwif_t *hwif = HWIF(drive);
615	ide_task_t *task = rq->special;
616
617	if (task) {
618		hwif->data_phase = task->data_phase;
619
620		switch (hwif->data_phase) {
621		case TASKFILE_MULTI_OUT:
622		case TASKFILE_OUT:
623		case TASKFILE_MULTI_IN:
624		case TASKFILE_IN:
625			ide_init_sg_cmd(drive, rq);
626			ide_map_sg(drive, rq);
627		default:
628			break;
629		}
630
631		return do_rw_taskfile(drive, task);
632	}
633
634 	/*
635 	 * NULL is actually a valid way of waiting for
636 	 * all current requests to be flushed from the queue.
637 	 */
638#ifdef DEBUG
639 	printk("%s: DRIVE_CMD (null)\n", drive->name);
640#endif
641	ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
642			  ide_read_error(drive));
643
644 	return ide_stopped;
645}
646
647int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
648		       int arg)
649{
650	struct request_queue *q = drive->queue;
651	struct request *rq;
652	int ret = 0;
653
654	if (!(setting->flags & DS_SYNC))
655		return setting->set(drive, arg);
656
657	rq = blk_get_request(q, READ, __GFP_WAIT);
658	rq->cmd_type = REQ_TYPE_SPECIAL;
659	rq->cmd_len = 5;
660	rq->cmd[0] = REQ_DEVSET_EXEC;
661	*(int *)&rq->cmd[1] = arg;
662	rq->special = setting->set;
663
664	if (blk_execute_rq(q, NULL, rq, 0))
665		ret = rq->errors;
666	blk_put_request(rq);
667
668	return ret;
669}
670EXPORT_SYMBOL_GPL(ide_devset_execute);
671
672static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
673{
674	u8 cmd = rq->cmd[0];
675
676	if (cmd == REQ_PARK_HEADS || cmd == REQ_UNPARK_HEADS) {
677		ide_task_t task;
678		struct ide_taskfile *tf = &task.tf;
679
680		memset(&task, 0, sizeof(task));
681		if (cmd == REQ_PARK_HEADS) {
682			drive->sleep = *(unsigned long *)rq->special;
683			drive->dev_flags |= IDE_DFLAG_SLEEPING;
684			tf->command = ATA_CMD_IDLEIMMEDIATE;
685			tf->feature = 0x44;
686			tf->lbal = 0x4c;
687			tf->lbam = 0x4e;
688			tf->lbah = 0x55;
689			task.tf_flags |= IDE_TFLAG_CUSTOM_HANDLER;
690		} else		/* cmd == REQ_UNPARK_HEADS */
691			tf->command = ATA_CMD_CHK_POWER;
692
693		task.tf_flags |= IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
694		task.rq = rq;
695		drive->hwif->data_phase = task.data_phase = TASKFILE_NO_DATA;
696		return do_rw_taskfile(drive, &task);
697	}
698
699	switch (cmd) {
700	case REQ_DEVSET_EXEC:
701	{
702		int err, (*setfunc)(ide_drive_t *, int) = rq->special;
703
704		err = setfunc(drive, *(int *)&rq->cmd[1]);
705		if (err)
706			rq->errors = err;
707		else
708			err = 1;
709		ide_end_request(drive, err, 0);
710		return ide_stopped;
711	}
712	case REQ_DRIVE_RESET:
713		return ide_do_reset(drive);
714	default:
715		blk_dump_rq_flags(rq, "ide_special_rq - bad request");
716		ide_end_request(drive, 0, 0);
717		return ide_stopped;
718	}
719}
720
721static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
722{
723	struct request_pm_state *pm = rq->data;
724
725	if (blk_pm_suspend_request(rq) &&
726	    pm->pm_step == IDE_PM_START_SUSPEND)
727		/* Mark drive blocked when starting the suspend sequence. */
728		drive->dev_flags |= IDE_DFLAG_BLOCKED;
729	else if (blk_pm_resume_request(rq) &&
730		 pm->pm_step == IDE_PM_START_RESUME) {
731		/*
732		 * The first thing we do on wakeup is to wait for BSY bit to
733		 * go away (with a looong timeout) as a drive on this hwif may
734		 * just be POSTing itself.
735		 * We do that before even selecting as the "other" device on
736		 * the bus may be broken enough to walk on our toes at this
737		 * point.
738		 */
739		ide_hwif_t *hwif = drive->hwif;
740		int rc;
741#ifdef DEBUG_PM
742		printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
743#endif
744		rc = ide_wait_not_busy(hwif, 35000);
745		if (rc)
746			printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
747		SELECT_DRIVE(drive);
748		hwif->tp_ops->set_irq(hwif, 1);
749		rc = ide_wait_not_busy(hwif, 100000);
750		if (rc)
751			printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
752	}
753}
754
755/**
756 *	start_request	-	start of I/O and command issuing for IDE
757 *
758 *	start_request() initiates handling of a new I/O request. It
759 *	accepts commands and I/O (read/write) requests.
760 *
761 *	FIXME: this function needs a rename
762 */
763
764static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
765{
766	ide_startstop_t startstop;
767
768	BUG_ON(!blk_rq_started(rq));
769
770#ifdef DEBUG
771	printk("%s: start_request: current=0x%08lx\n",
772		HWIF(drive)->name, (unsigned long) rq);
773#endif
774
775	/* bail early if we've exceeded max_failures */
776	if (drive->max_failures && (drive->failures > drive->max_failures)) {
777		rq->cmd_flags |= REQ_FAILED;
778		goto kill_rq;
779	}
780
781	if (blk_pm_request(rq))
782		ide_check_pm_state(drive, rq);
783
784	SELECT_DRIVE(drive);
785	if (ide_wait_stat(&startstop, drive, drive->ready_stat,
786			  ATA_BUSY | ATA_DRQ, WAIT_READY)) {
787		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
788		return startstop;
789	}
790	if (!drive->special.all) {
791		ide_driver_t *drv;
792
793		/*
794		 * We reset the drive so we need to issue a SETFEATURES.
795		 * Do it _after_ do_special() restored device parameters.
796		 */
797		if (drive->current_speed == 0xff)
798			ide_config_drive_speed(drive, drive->desired_speed);
799
800		if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
801			return execute_drive_cmd(drive, rq);
802		else if (blk_pm_request(rq)) {
803			struct request_pm_state *pm = rq->data;
804#ifdef DEBUG_PM
805			printk("%s: start_power_step(step: %d)\n",
806				drive->name, pm->pm_step);
807#endif
808			startstop = ide_start_power_step(drive, rq);
809			if (startstop == ide_stopped &&
810			    pm->pm_step == IDE_PM_COMPLETED)
811				ide_complete_pm_request(drive, rq);
812			return startstop;
813		} else if (!rq->rq_disk && blk_special_request(rq))
814			/*
815			 * TODO: Once all ULDs have been modified to
816			 * check for specific op codes rather than
817			 * blindly accepting any special request, the
818			 * check for ->rq_disk above may be replaced
819			 * by a more suitable mechanism or even
820			 * dropped entirely.
821			 */
822			return ide_special_rq(drive, rq);
823
824		drv = *(ide_driver_t **)rq->rq_disk->private_data;
825
826		return drv->do_request(drive, rq, rq->sector);
827	}
828	return do_special(drive);
829kill_rq:
830	ide_kill_rq(drive, rq);
831	return ide_stopped;
832}
833
834/**
835 *	ide_stall_queue		-	pause an IDE device
836 *	@drive: drive to stall
837 *	@timeout: time to stall for (jiffies)
838 *
839 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
840 *	to the hwgroup by sleeping for timeout jiffies.
841 */
842
843void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
844{
845	if (timeout > WAIT_WORSTCASE)
846		timeout = WAIT_WORSTCASE;
847	drive->sleep = timeout + jiffies;
848	drive->dev_flags |= IDE_DFLAG_SLEEPING;
849}
850
851EXPORT_SYMBOL(ide_stall_queue);
852
853#define WAKEUP(drive)	((drive)->service_start + 2 * (drive)->service_time)
854
855/**
856 *	choose_drive		-	select a drive to service
857 *	@hwgroup: hardware group to select on
858 *
859 *	choose_drive() selects the next drive which will be serviced.
860 *	This is necessary because the IDE layer can't issue commands
861 *	to both drives on the same cable, unlike SCSI.
862 */
863
864static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
865{
866	ide_drive_t *drive, *best;
867
868repeat:
869	best = NULL;
870	drive = hwgroup->drive;
871
872	/*
873	 * drive is doing pre-flush, ordered write, post-flush sequence. even
874	 * though that is 3 requests, it must be seen as a single transaction.
875	 * we must not preempt this drive until that is complete
876	 */
877	if (blk_queue_flushing(drive->queue)) {
878		/*
879		 * small race where queue could get replugged during
880		 * the 3-request flush cycle, just yank the plug since
881		 * we want it to finish asap
882		 */
883		blk_remove_plug(drive->queue);
884		return drive;
885	}
886
887	do {
888		u8 dev_s = !!(drive->dev_flags & IDE_DFLAG_SLEEPING);
889		u8 best_s = (best && !!(best->dev_flags & IDE_DFLAG_SLEEPING));
890
891		if ((dev_s == 0 || time_after_eq(jiffies, drive->sleep)) &&
892		    !elv_queue_empty(drive->queue)) {
893			if (best == NULL ||
894			    (dev_s && (best_s == 0 || time_before(drive->sleep, best->sleep))) ||
895			    (best_s == 0 && time_before(WAKEUP(drive), WAKEUP(best)))) {
896				if (!blk_queue_plugged(drive->queue))
897					best = drive;
898			}
899		}
900	} while ((drive = drive->next) != hwgroup->drive);
901
902	if (best && (best->dev_flags & IDE_DFLAG_NICE1) &&
903	    (best->dev_flags & IDE_DFLAG_SLEEPING) == 0 &&
904	    best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
905		long t = (signed long)(WAKEUP(best) - jiffies);
906		if (t >= WAIT_MIN_SLEEP) {
907		/*
908		 * We *may* have some time to spare, but first let's see if
909		 * someone can potentially benefit from our nice mood today..
910		 */
911			drive = best->next;
912			do {
913				if ((drive->dev_flags & IDE_DFLAG_SLEEPING) == 0
914				 && time_before(jiffies - best->service_time, WAKEUP(drive))
915				 && time_before(WAKEUP(drive), jiffies + t))
916				{
917					ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
918					goto repeat;
919				}
920			} while ((drive = drive->next) != best);
921		}
922	}
923	return best;
924}
925
926/*
927 * Issue a new request to a drive from hwgroup
928 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
929 *
930 * A hwgroup is a serialized group of IDE interfaces.  Usually there is
931 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
932 * may have both interfaces in a single hwgroup to "serialize" access.
933 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
934 * together into one hwgroup for serialized access.
935 *
936 * Note also that several hwgroups can end up sharing a single IRQ,
937 * possibly along with many other devices.  This is especially common in
938 * PCI-based systems with off-board IDE controller cards.
939 *
940 * The IDE driver uses the single global ide_lock spinlock to protect
941 * access to the request queues, and to protect the hwgroup->busy flag.
942 *
943 * The first thread into the driver for a particular hwgroup sets the
944 * hwgroup->busy flag to indicate that this hwgroup is now active,
945 * and then initiates processing of the top request from the request queue.
946 *
947 * Other threads attempting entry notice the busy setting, and will simply
948 * queue their new requests and exit immediately.  Note that hwgroup->busy
949 * remains set even when the driver is merely awaiting the next interrupt.
950 * Thus, the meaning is "this hwgroup is busy processing a request".
951 *
952 * When processing of a request completes, the completing thread or IRQ-handler
953 * will start the next request from the queue.  If no more work remains,
954 * the driver will clear the hwgroup->busy flag and exit.
955 *
956 * The ide_lock (spinlock) is used to protect all access to the
957 * hwgroup->busy flag, but is otherwise not needed for most processing in
958 * the driver.  This makes the driver much more friendlier to shared IRQs
959 * than previous designs, while remaining 100% (?) SMP safe and capable.
960 */
961static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
962{
963	ide_drive_t	*drive;
964	ide_hwif_t	*hwif;
965	struct request	*rq;
966	ide_startstop_t	startstop;
967	int             loops = 0;
968
969	/* caller must own ide_lock */
970	BUG_ON(!irqs_disabled());
971
972	while (!hwgroup->busy) {
973		hwgroup->busy = 1;
974		/* for atari only */
975		ide_get_lock(ide_intr, hwgroup);
976		drive = choose_drive(hwgroup);
977		if (drive == NULL) {
978			int sleeping = 0;
979			unsigned long sleep = 0; /* shut up, gcc */
980			hwgroup->rq = NULL;
981			drive = hwgroup->drive;
982			do {
983				if ((drive->dev_flags & IDE_DFLAG_SLEEPING) &&
984				    (sleeping == 0 ||
985				     time_before(drive->sleep, sleep))) {
986					sleeping = 1;
987					sleep = drive->sleep;
988				}
989			} while ((drive = drive->next) != hwgroup->drive);
990			if (sleeping) {
991		/*
992		 * Take a short snooze, and then wake up this hwgroup again.
993		 * This gives other hwgroups on the same a chance to
994		 * play fairly with us, just in case there are big differences
995		 * in relative throughputs.. don't want to hog the cpu too much.
996		 */
997				if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
998					sleep = jiffies + WAIT_MIN_SLEEP;
999#if 1
1000				if (timer_pending(&hwgroup->timer))
1001					printk(KERN_CRIT "ide_set_handler: timer already active\n");
1002#endif
1003				/* so that ide_timer_expiry knows what to do */
1004				hwgroup->sleeping = 1;
1005				hwgroup->req_gen_timer = hwgroup->req_gen;
1006				mod_timer(&hwgroup->timer, sleep);
1007				/* we purposely leave hwgroup->busy==1
1008				 * while sleeping */
1009			} else {
1010				/* Ugly, but how can we sleep for the lock
1011				 * otherwise? perhaps from tq_disk?
1012				 */
1013
1014				/* for atari only */
1015				ide_release_lock();
1016				hwgroup->busy = 0;
1017			}
1018
1019			/* no more work for this hwgroup (for now) */
1020			return;
1021		}
1022	again:
1023		hwif = HWIF(drive);
1024		if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1025			/*
1026			 * set nIEN for previous hwif, drives in the
1027			 * quirk_list may not like intr setups/cleanups
1028			 */
1029			if (drive->quirk_list != 1)
1030				hwif->tp_ops->set_irq(hwif, 0);
1031		}
1032		hwgroup->hwif = hwif;
1033		hwgroup->drive = drive;
1034		drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
1035		drive->service_start = jiffies;
1036
1037		if (blk_queue_plugged(drive->queue)) {
1038			printk(KERN_ERR "ide: huh? queue was plugged!\n");
1039			break;
1040		}
1041
1042		/*
1043		 * we know that the queue isn't empty, but this can happen
1044		 * if the q->prep_rq_fn() decides to kill a request
1045		 */
1046		rq = elv_next_request(drive->queue);
1047		if (!rq) {
1048			hwgroup->busy = 0;
1049			break;
1050		}
1051
1052		/*
1053		 * Sanity: don't accept a request that isn't a PM request
1054		 * if we are currently power managed. This is very important as
1055		 * blk_stop_queue() doesn't prevent the elv_next_request()
1056		 * above to return us whatever is in the queue. Since we call
1057		 * ide_do_request() ourselves, we end up taking requests while
1058		 * the queue is blocked...
1059		 *
1060		 * We let requests forced at head of queue with ide-preempt
1061		 * though. I hope that doesn't happen too much, hopefully not
1062		 * unless the subdriver triggers such a thing in its own PM
1063		 * state machine.
1064		 *
1065		 * We count how many times we loop here to make sure we service
1066		 * all drives in the hwgroup without looping for ever
1067		 */
1068		if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
1069		    blk_pm_request(rq) == 0 &&
1070		    (rq->cmd_flags & REQ_PREEMPT) == 0) {
1071			drive = drive->next ? drive->next : hwgroup->drive;
1072			if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1073				goto again;
1074			/* We clear busy, there should be no pending ATA command at this point. */
1075			hwgroup->busy = 0;
1076			break;
1077		}
1078
1079		hwgroup->rq = rq;
1080
1081		/*
1082		 * Some systems have trouble with IDE IRQs arriving while
1083		 * the driver is still setting things up.  So, here we disable
1084		 * the IRQ used by this interface while the request is being started.
1085		 * This may look bad at first, but pretty much the same thing
1086		 * happens anyway when any interrupt comes in, IDE or otherwise
1087		 *  -- the kernel masks the IRQ while it is being handled.
1088		 */
1089		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1090			disable_irq_nosync(hwif->irq);
1091		spin_unlock(&ide_lock);
1092		local_irq_enable_in_hardirq();
1093			/* allow other IRQs while we start this request */
1094		startstop = start_request(drive, rq);
1095		spin_lock_irq(&ide_lock);
1096		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1097			enable_irq(hwif->irq);
1098		if (startstop == ide_stopped)
1099			hwgroup->busy = 0;
1100	}
1101}
1102
1103/*
1104 * Passes the stuff to ide_do_request
1105 */
1106void do_ide_request(struct request_queue *q)
1107{
1108	ide_drive_t *drive = q->queuedata;
1109
1110	ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1111}
1112
1113/*
1114 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1115 * retry the current request in pio mode instead of risking tossing it
1116 * all away
1117 */
1118static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1119{
1120	ide_hwif_t *hwif = HWIF(drive);
1121	struct request *rq;
1122	ide_startstop_t ret = ide_stopped;
1123
1124	/*
1125	 * end current dma transaction
1126	 */
1127
1128	if (error < 0) {
1129		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1130		(void)hwif->dma_ops->dma_end(drive);
1131		ret = ide_error(drive, "dma timeout error",
1132				hwif->tp_ops->read_status(hwif));
1133	} else {
1134		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1135		hwif->dma_ops->dma_timeout(drive);
1136	}
1137
1138	/*
1139	 * disable dma for now, but remember that we did so because of
1140	 * a timeout -- we'll reenable after we finish this next request
1141	 * (or rather the first chunk of it) in pio.
1142	 */
1143	drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY;
1144	drive->retry_pio++;
1145	ide_dma_off_quietly(drive);
1146
1147	/*
1148	 * un-busy drive etc (hwgroup->busy is cleared on return) and
1149	 * make sure request is sane
1150	 */
1151	rq = HWGROUP(drive)->rq;
1152
1153	if (!rq)
1154		goto out;
1155
1156	HWGROUP(drive)->rq = NULL;
1157
1158	rq->errors = 0;
1159
1160	if (!rq->bio)
1161		goto out;
1162
1163	rq->sector = rq->bio->bi_sector;
1164	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1165	rq->hard_cur_sectors = rq->current_nr_sectors;
1166	rq->buffer = bio_data(rq->bio);
1167out:
1168	return ret;
1169}
1170
1171/**
1172 *	ide_timer_expiry	-	handle lack of an IDE interrupt
1173 *	@data: timer callback magic (hwgroup)
1174 *
1175 *	An IDE command has timed out before the expected drive return
1176 *	occurred. At this point we attempt to clean up the current
1177 *	mess. If the current handler includes an expiry handler then
1178 *	we invoke the expiry handler, and providing it is happy the
1179 *	work is done. If that fails we apply generic recovery rules
1180 *	invoking the handler and checking the drive DMA status. We
1181 *	have an excessively incestuous relationship with the DMA
1182 *	logic that wants cleaning up.
1183 */
1184
1185void ide_timer_expiry (unsigned long data)
1186{
1187	ide_hwgroup_t	*hwgroup = (ide_hwgroup_t *) data;
1188	ide_handler_t	*handler;
1189	ide_expiry_t	*expiry;
1190	unsigned long	flags;
1191	unsigned long	wait = -1;
1192
1193	spin_lock_irqsave(&ide_lock, flags);
1194
1195	if (((handler = hwgroup->handler) == NULL) ||
1196	    (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1197		/*
1198		 * Either a marginal timeout occurred
1199		 * (got the interrupt just as timer expired),
1200		 * or we were "sleeping" to give other devices a chance.
1201		 * Either way, we don't really want to complain about anything.
1202		 */
1203		if (hwgroup->sleeping) {
1204			hwgroup->sleeping = 0;
1205			hwgroup->busy = 0;
1206		}
1207	} else {
1208		ide_drive_t *drive = hwgroup->drive;
1209		if (!drive) {
1210			printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1211			hwgroup->handler = NULL;
1212		} else {
1213			ide_hwif_t *hwif;
1214			ide_startstop_t startstop = ide_stopped;
1215			if (!hwgroup->busy) {
1216				hwgroup->busy = 1;	/* paranoia */
1217				printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1218			}
1219			if ((expiry = hwgroup->expiry) != NULL) {
1220				/* continue */
1221				if ((wait = expiry(drive)) > 0) {
1222					/* reset timer */
1223					hwgroup->timer.expires  = jiffies + wait;
1224					hwgroup->req_gen_timer = hwgroup->req_gen;
1225					add_timer(&hwgroup->timer);
1226					spin_unlock_irqrestore(&ide_lock, flags);
1227					return;
1228				}
1229			}
1230			hwgroup->handler = NULL;
1231			/*
1232			 * We need to simulate a real interrupt when invoking
1233			 * the handler() function, which means we need to
1234			 * globally mask the specific IRQ:
1235			 */
1236			spin_unlock(&ide_lock);
1237			hwif  = HWIF(drive);
1238			/* disable_irq_nosync ?? */
1239			disable_irq(hwif->irq);
1240			/* local CPU only,
1241			 * as if we were handling an interrupt */
1242			local_irq_disable();
1243			if (hwgroup->polling) {
1244				startstop = handler(drive);
1245			} else if (drive_is_ready(drive)) {
1246				if (drive->waiting_for_dma)
1247					hwif->dma_ops->dma_lost_irq(drive);
1248				(void)ide_ack_intr(hwif);
1249				printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1250				startstop = handler(drive);
1251			} else {
1252				if (drive->waiting_for_dma) {
1253					startstop = ide_dma_timeout_retry(drive, wait);
1254				} else
1255					startstop =
1256					ide_error(drive, "irq timeout",
1257						  hwif->tp_ops->read_status(hwif));
1258			}
1259			drive->service_time = jiffies - drive->service_start;
1260			spin_lock_irq(&ide_lock);
1261			enable_irq(hwif->irq);
1262			if (startstop == ide_stopped)
1263				hwgroup->busy = 0;
1264		}
1265	}
1266	ide_do_request(hwgroup, IDE_NO_IRQ);
1267	spin_unlock_irqrestore(&ide_lock, flags);
1268}
1269
1270/**
1271 *	unexpected_intr		-	handle an unexpected IDE interrupt
1272 *	@irq: interrupt line
1273 *	@hwgroup: hwgroup being processed
1274 *
1275 *	There's nothing really useful we can do with an unexpected interrupt,
1276 *	other than reading the status register (to clear it), and logging it.
1277 *	There should be no way that an irq can happen before we're ready for it,
1278 *	so we needn't worry much about losing an "important" interrupt here.
1279 *
1280 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1281 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
1282 *	looks "good", we just ignore the interrupt completely.
1283 *
1284 *	This routine assumes __cli() is in effect when called.
1285 *
1286 *	If an unexpected interrupt happens on irq15 while we are handling irq14
1287 *	and if the two interfaces are "serialized" (CMD640), then it looks like
1288 *	we could screw up by interfering with a new request being set up for
1289 *	irq15.
1290 *
1291 *	In reality, this is a non-issue.  The new command is not sent unless
1292 *	the drive is ready to accept one, in which case we know the drive is
1293 *	not trying to interrupt us.  And ide_set_handler() is always invoked
1294 *	before completing the issuance of any new drive command, so we will not
1295 *	be accidentally invoked as a result of any valid command completion
1296 *	interrupt.
1297 *
1298 *	Note that we must walk the entire hwgroup here. We know which hwif
1299 *	is doing the current command, but we don't know which hwif burped
1300 *	mysteriously.
1301 */
1302
1303static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1304{
1305	u8 stat;
1306	ide_hwif_t *hwif = hwgroup->hwif;
1307
1308	/*
1309	 * handle the unexpected interrupt
1310	 */
1311	do {
1312		if (hwif->irq == irq) {
1313			stat = hwif->tp_ops->read_status(hwif);
1314
1315			if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1316				/* Try to not flood the console with msgs */
1317				static unsigned long last_msgtime, count;
1318				++count;
1319				if (time_after(jiffies, last_msgtime + HZ)) {
1320					last_msgtime = jiffies;
1321					printk(KERN_ERR "%s%s: unexpected interrupt, "
1322						"status=0x%02x, count=%ld\n",
1323						hwif->name,
1324						(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1325				}
1326			}
1327		}
1328	} while ((hwif = hwif->next) != hwgroup->hwif);
1329}
1330
1331/**
1332 *	ide_intr	-	default IDE interrupt handler
1333 *	@irq: interrupt number
1334 *	@dev_id: hwif group
1335 *	@regs: unused weirdness from the kernel irq layer
1336 *
1337 *	This is the default IRQ handler for the IDE layer. You should
1338 *	not need to override it. If you do be aware it is subtle in
1339 *	places
1340 *
1341 *	hwgroup->hwif is the interface in the group currently performing
1342 *	a command. hwgroup->drive is the drive and hwgroup->handler is
1343 *	the IRQ handler to call. As we issue a command the handlers
1344 *	step through multiple states, reassigning the handler to the
1345 *	next step in the process. Unlike a smart SCSI controller IDE
1346 *	expects the main processor to sequence the various transfer
1347 *	stages. We also manage a poll timer to catch up with most
1348 *	timeout situations. There are still a few where the handlers
1349 *	don't ever decide to give up.
1350 *
1351 *	The handler eventually returns ide_stopped to indicate the
1352 *	request completed. At this point we issue the next request
1353 *	on the hwgroup and the process begins again.
1354 */
1355
1356irqreturn_t ide_intr (int irq, void *dev_id)
1357{
1358	unsigned long flags;
1359	ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1360	ide_hwif_t *hwif;
1361	ide_drive_t *drive;
1362	ide_handler_t *handler;
1363	ide_startstop_t startstop;
1364
1365	spin_lock_irqsave(&ide_lock, flags);
1366	hwif = hwgroup->hwif;
1367
1368	if (!ide_ack_intr(hwif)) {
1369		spin_unlock_irqrestore(&ide_lock, flags);
1370		return IRQ_NONE;
1371	}
1372
1373	if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1374		/*
1375		 * Not expecting an interrupt from this drive.
1376		 * That means this could be:
1377		 *	(1) an interrupt from another PCI device
1378		 *	sharing the same PCI INT# as us.
1379		 * or	(2) a drive just entered sleep or standby mode,
1380		 *	and is interrupting to let us know.
1381		 * or	(3) a spurious interrupt of unknown origin.
1382		 *
1383		 * For PCI, we cannot tell the difference,
1384		 * so in that case we just ignore it and hope it goes away.
1385		 *
1386		 * FIXME: unexpected_intr should be hwif-> then we can
1387		 * remove all the ifdef PCI crap
1388		 */
1389#ifdef CONFIG_BLK_DEV_IDEPCI
1390		if (hwif->chipset != ide_pci)
1391#endif	/* CONFIG_BLK_DEV_IDEPCI */
1392		{
1393			/*
1394			 * Probably not a shared PCI interrupt,
1395			 * so we can safely try to do something about it:
1396			 */
1397			unexpected_intr(irq, hwgroup);
1398#ifdef CONFIG_BLK_DEV_IDEPCI
1399		} else {
1400			/*
1401			 * Whack the status register, just in case
1402			 * we have a leftover pending IRQ.
1403			 */
1404			(void)hwif->tp_ops->read_status(hwif);
1405#endif /* CONFIG_BLK_DEV_IDEPCI */
1406		}
1407		spin_unlock_irqrestore(&ide_lock, flags);
1408		return IRQ_NONE;
1409	}
1410	drive = hwgroup->drive;
1411	if (!drive) {
1412		/*
1413		 * This should NEVER happen, and there isn't much
1414		 * we could do about it here.
1415		 *
1416		 * [Note - this can occur if the drive is hot unplugged]
1417		 */
1418		spin_unlock_irqrestore(&ide_lock, flags);
1419		return IRQ_HANDLED;
1420	}
1421	if (!drive_is_ready(drive)) {
1422		/*
1423		 * This happens regularly when we share a PCI IRQ with
1424		 * another device.  Unfortunately, it can also happen
1425		 * with some buggy drives that trigger the IRQ before
1426		 * their status register is up to date.  Hopefully we have
1427		 * enough advance overhead that the latter isn't a problem.
1428		 */
1429		spin_unlock_irqrestore(&ide_lock, flags);
1430		return IRQ_NONE;
1431	}
1432	if (!hwgroup->busy) {
1433		hwgroup->busy = 1;	/* paranoia */
1434		printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1435	}
1436	hwgroup->handler = NULL;
1437	hwgroup->req_gen++;
1438	del_timer(&hwgroup->timer);
1439	spin_unlock(&ide_lock);
1440
1441	if (hwif->port_ops && hwif->port_ops->clear_irq)
1442		hwif->port_ops->clear_irq(drive);
1443
1444	if (drive->dev_flags & IDE_DFLAG_UNMASK)
1445		local_irq_enable_in_hardirq();
1446
1447	/* service this interrupt, may set handler for next interrupt */
1448	startstop = handler(drive);
1449
1450	spin_lock_irq(&ide_lock);
1451	/*
1452	 * Note that handler() may have set things up for another
1453	 * interrupt to occur soon, but it cannot happen until
1454	 * we exit from this routine, because it will be the
1455	 * same irq as is currently being serviced here, and Linux
1456	 * won't allow another of the same (on any CPU) until we return.
1457	 */
1458	drive->service_time = jiffies - drive->service_start;
1459	if (startstop == ide_stopped) {
1460		if (hwgroup->handler == NULL) {	/* paranoia */
1461			hwgroup->busy = 0;
1462			ide_do_request(hwgroup, hwif->irq);
1463		} else {
1464			printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1465				"on exit\n", drive->name);
1466		}
1467	}
1468	spin_unlock_irqrestore(&ide_lock, flags);
1469	return IRQ_HANDLED;
1470}
1471
1472/**
1473 *	ide_do_drive_cmd	-	issue IDE special command
1474 *	@drive: device to issue command
1475 *	@rq: request to issue
1476 *
1477 *	This function issues a special IDE device request
1478 *	onto the request queue.
1479 *
1480 *	the rq is queued at the head of the request queue, displacing
1481 *	the currently-being-processed request and this function
1482 *	returns immediately without waiting for the new rq to be
1483 *	completed.  This is VERY DANGEROUS, and is intended for
1484 *	careful use by the ATAPI tape/cdrom driver code.
1485 */
1486
1487void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1488{
1489	unsigned long flags;
1490	ide_hwgroup_t *hwgroup = HWGROUP(drive);
1491
1492	spin_lock_irqsave(&ide_lock, flags);
1493	hwgroup->rq = NULL;
1494	__elv_add_request(drive->queue, rq, ELEVATOR_INSERT_FRONT, 0);
1495	blk_start_queueing(drive->queue);
1496	spin_unlock_irqrestore(&ide_lock, flags);
1497}
1498
1499EXPORT_SYMBOL(ide_do_drive_cmd);
1500
1501void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1502{
1503	ide_hwif_t *hwif = drive->hwif;
1504	ide_task_t task;
1505
1506	memset(&task, 0, sizeof(task));
1507	task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1508			IDE_TFLAG_OUT_FEATURE | tf_flags;
1509	task.tf.feature = dma;		/* Use PIO/DMA */
1510	task.tf.lbam    = bcount & 0xff;
1511	task.tf.lbah    = (bcount >> 8) & 0xff;
1512
1513	ide_tf_dump(drive->name, &task.tf);
1514	hwif->tp_ops->set_irq(hwif, 1);
1515	SELECT_MASK(drive, 0);
1516	hwif->tp_ops->tf_load(drive, &task);
1517}
1518
1519EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1520
1521void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1522{
1523	ide_hwif_t *hwif = drive->hwif;
1524	u8 buf[4] = { 0 };
1525
1526	while (len > 0) {
1527		if (write)
1528			hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1529		else
1530			hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1531		len -= 4;
1532	}
1533}
1534EXPORT_SYMBOL_GPL(ide_pad_transfer);
1535