ide-io.c revision 81ca691981da718727281238b435dcf1528d2fda
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
50#include <linux/bitops.h>
51
52#include <asm/byteorder.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55#include <asm/io.h>
56
57static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58			     int uptodate, unsigned int nr_bytes, int dequeue)
59{
60	int ret = 1;
61
62	/*
63	 * if failfast is set on a request, override number of sectors and
64	 * complete the whole request right now
65	 */
66	if (blk_noretry_request(rq) && end_io_error(uptodate))
67		nr_bytes = rq->hard_nr_sectors << 9;
68
69	if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70		rq->errors = -EIO;
71
72	/*
73	 * decide whether to reenable DMA -- 3 is a random magic for now,
74	 * if we DMA timeout more than 3 times, just stay in PIO
75	 */
76	if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77		drive->state = 0;
78		ide_dma_on(drive);
79	}
80
81	if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82		add_disk_randomness(rq->rq_disk);
83		if (dequeue) {
84			if (!list_empty(&rq->queuelist))
85				blkdev_dequeue_request(rq);
86			HWGROUP(drive)->rq = NULL;
87		}
88		end_that_request_last(rq, uptodate);
89		ret = 0;
90	}
91
92	return ret;
93}
94
95/**
96 *	ide_end_request		-	complete an IDE I/O
97 *	@drive: IDE device for the I/O
98 *	@uptodate:
99 *	@nr_sectors: number of sectors completed
100 *
101 *	This is our end_request wrapper function. We complete the I/O
102 *	update random number input and dequeue the request, which if
103 *	it was tagged may be out of order.
104 */
105
106int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107{
108	unsigned int nr_bytes = nr_sectors << 9;
109	struct request *rq;
110	unsigned long flags;
111	int ret = 1;
112
113	/*
114	 * room for locking improvements here, the calls below don't
115	 * need the queue lock held at all
116	 */
117	spin_lock_irqsave(&ide_lock, flags);
118	rq = HWGROUP(drive)->rq;
119
120	if (!nr_bytes) {
121		if (blk_pc_request(rq))
122			nr_bytes = rq->data_len;
123		else
124			nr_bytes = rq->hard_cur_sectors << 9;
125	}
126
127	ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128
129	spin_unlock_irqrestore(&ide_lock, flags);
130	return ret;
131}
132EXPORT_SYMBOL(ide_end_request);
133
134/*
135 * Power Management state machine. This one is rather trivial for now,
136 * we should probably add more, like switching back to PIO on suspend
137 * to help some BIOSes, re-do the door locking on resume, etc...
138 */
139
140enum {
141	ide_pm_flush_cache	= ide_pm_state_start_suspend,
142	idedisk_pm_standby,
143
144	idedisk_pm_restore_pio	= ide_pm_state_start_resume,
145	idedisk_pm_idle,
146	ide_pm_restore_dma,
147};
148
149static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150{
151	struct request_pm_state *pm = rq->data;
152
153	if (drive->media != ide_disk)
154		return;
155
156	switch (pm->pm_step) {
157	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) complete */
158		if (pm->pm_state == PM_EVENT_FREEZE)
159			pm->pm_step = ide_pm_state_completed;
160		else
161			pm->pm_step = idedisk_pm_standby;
162		break;
163	case idedisk_pm_standby:	/* Suspend step 2 (standby) complete */
164		pm->pm_step = ide_pm_state_completed;
165		break;
166	case idedisk_pm_restore_pio:	/* Resume step 1 complete */
167		pm->pm_step = idedisk_pm_idle;
168		break;
169	case idedisk_pm_idle:		/* Resume step 2 (idle) complete */
170		pm->pm_step = ide_pm_restore_dma;
171		break;
172	}
173}
174
175static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176{
177	struct request_pm_state *pm = rq->data;
178	ide_task_t *args = rq->special;
179
180	memset(args, 0, sizeof(*args));
181
182	switch (pm->pm_step) {
183	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) */
184		if (drive->media != ide_disk)
185			break;
186		/* Not supported? Switch to next step now. */
187		if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188			ide_complete_power_step(drive, rq, 0, 0);
189			return ide_stopped;
190		}
191		if (ide_id_has_flush_cache_ext(drive->id))
192			args->tf.command = WIN_FLUSH_CACHE_EXT;
193		else
194			args->tf.command = WIN_FLUSH_CACHE;
195		goto out_do_tf;
196
197	case idedisk_pm_standby:	/* Suspend step 2 (standby) */
198		args->tf.command = WIN_STANDBYNOW1;
199		goto out_do_tf;
200
201	case idedisk_pm_restore_pio:	/* Resume step 1 (restore PIO) */
202		ide_set_max_pio(drive);
203		/*
204		 * skip idedisk_pm_idle for ATAPI devices
205		 */
206		if (drive->media != ide_disk)
207			pm->pm_step = ide_pm_restore_dma;
208		else
209			ide_complete_power_step(drive, rq, 0, 0);
210		return ide_stopped;
211
212	case idedisk_pm_idle:		/* Resume step 2 (idle) */
213		args->tf.command = WIN_IDLEIMMEDIATE;
214		goto out_do_tf;
215
216	case ide_pm_restore_dma:	/* Resume step 3 (restore DMA) */
217		/*
218		 * Right now, all we do is call ide_set_dma(drive),
219		 * we could be smarter and check for current xfer_speed
220		 * in struct drive etc...
221		 */
222		if (drive->hwif->dma_host_set == NULL)
223			break;
224		/*
225		 * TODO: respect ->using_dma setting
226		 */
227		ide_set_dma(drive);
228		break;
229	}
230	pm->pm_step = ide_pm_state_completed;
231	return ide_stopped;
232
233out_do_tf:
234	args->tf_flags	 = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE;
235	args->data_phase = TASKFILE_NO_DATA;
236	return do_rw_taskfile(drive, args);
237}
238
239/**
240 *	ide_end_dequeued_request	-	complete an IDE I/O
241 *	@drive: IDE device for the I/O
242 *	@uptodate:
243 *	@nr_sectors: number of sectors completed
244 *
245 *	Complete an I/O that is no longer on the request queue. This
246 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
247 *	We must still finish the old request but we must not tamper with the
248 *	queue in the meantime.
249 *
250 *	NOTE: This path does not handle barrier, but barrier is not supported
251 *	on ide-cd anyway.
252 */
253
254int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
255			     int uptodate, int nr_sectors)
256{
257	unsigned long flags;
258	int ret;
259
260	spin_lock_irqsave(&ide_lock, flags);
261	BUG_ON(!blk_rq_started(rq));
262	ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
263	spin_unlock_irqrestore(&ide_lock, flags);
264
265	return ret;
266}
267EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
268
269
270/**
271 *	ide_complete_pm_request - end the current Power Management request
272 *	@drive: target drive
273 *	@rq: request
274 *
275 *	This function cleans up the current PM request and stops the queue
276 *	if necessary.
277 */
278static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
279{
280	unsigned long flags;
281
282#ifdef DEBUG_PM
283	printk("%s: completing PM request, %s\n", drive->name,
284	       blk_pm_suspend_request(rq) ? "suspend" : "resume");
285#endif
286	spin_lock_irqsave(&ide_lock, flags);
287	if (blk_pm_suspend_request(rq)) {
288		blk_stop_queue(drive->queue);
289	} else {
290		drive->blocked = 0;
291		blk_start_queue(drive->queue);
292	}
293	blkdev_dequeue_request(rq);
294	HWGROUP(drive)->rq = NULL;
295	end_that_request_last(rq, 1);
296	spin_unlock_irqrestore(&ide_lock, flags);
297}
298
299void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
300{
301	ide_hwif_t *hwif = drive->hwif;
302	struct ide_taskfile *tf = &task->tf;
303
304	if (task->tf_flags & IDE_TFLAG_IN_DATA) {
305		u16 data = hwif->INW(IDE_DATA_REG);
306
307		tf->data = data & 0xff;
308		tf->hob_data = (data >> 8) & 0xff;
309	}
310
311	/* be sure we're looking at the low order bits */
312	hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
313
314	if (task->tf_flags & IDE_TFLAG_IN_NSECT)
315		tf->nsect  = hwif->INB(IDE_NSECTOR_REG);
316	if (task->tf_flags & IDE_TFLAG_IN_LBAL)
317		tf->lbal   = hwif->INB(IDE_SECTOR_REG);
318	if (task->tf_flags & IDE_TFLAG_IN_LBAM)
319		tf->lbam   = hwif->INB(IDE_LCYL_REG);
320	if (task->tf_flags & IDE_TFLAG_IN_LBAH)
321		tf->lbah   = hwif->INB(IDE_HCYL_REG);
322	if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
323		tf->device = hwif->INB(IDE_SELECT_REG);
324
325	if (task->tf_flags & IDE_TFLAG_LBA48) {
326		hwif->OUTB(drive->ctl | 0x80, IDE_CONTROL_REG);
327
328		if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
329			tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
330		if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
331			tf->hob_nsect   = hwif->INB(IDE_NSECTOR_REG);
332		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
333			tf->hob_lbal    = hwif->INB(IDE_SECTOR_REG);
334		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
335			tf->hob_lbam    = hwif->INB(IDE_LCYL_REG);
336		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
337			tf->hob_lbah    = hwif->INB(IDE_HCYL_REG);
338	}
339}
340
341/**
342 *	ide_end_drive_cmd	-	end an explicit drive command
343 *	@drive: command
344 *	@stat: status bits
345 *	@err: error bits
346 *
347 *	Clean up after success/failure of an explicit drive command.
348 *	These get thrown onto the queue so they are synchronized with
349 *	real I/O operations on the drive.
350 *
351 *	In LBA48 mode we have to read the register set twice to get
352 *	all the extra information out.
353 */
354
355void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
356{
357	ide_hwif_t *hwif = HWIF(drive);
358	unsigned long flags;
359	struct request *rq;
360
361	spin_lock_irqsave(&ide_lock, flags);
362	rq = HWGROUP(drive)->rq;
363	spin_unlock_irqrestore(&ide_lock, flags);
364
365	if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
366		u8 *args = (u8 *) rq->buffer;
367		if (rq->errors == 0)
368			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
369
370		if (args) {
371			args[0] = stat;
372			args[1] = err;
373			args[2] = hwif->INB(IDE_NSECTOR_REG);
374		}
375	} else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
376		ide_task_t *args = (ide_task_t *) rq->special;
377		if (rq->errors == 0)
378			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
379
380		if (args) {
381			struct ide_taskfile *tf = &args->tf;
382
383			tf->error = err;
384			tf->status = stat;
385
386			args->tf_flags |= (IDE_TFLAG_IN_TF|IDE_TFLAG_IN_DEVICE);
387			if (args->tf_flags & IDE_TFLAG_LBA48)
388				args->tf_flags |= IDE_TFLAG_IN_HOB;
389
390			ide_tf_read(drive, args);
391		}
392	} else if (blk_pm_request(rq)) {
393		struct request_pm_state *pm = rq->data;
394#ifdef DEBUG_PM
395		printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
396			drive->name, rq->pm->pm_step, stat, err);
397#endif
398		ide_complete_power_step(drive, rq, stat, err);
399		if (pm->pm_step == ide_pm_state_completed)
400			ide_complete_pm_request(drive, rq);
401		return;
402	}
403
404	spin_lock_irqsave(&ide_lock, flags);
405	blkdev_dequeue_request(rq);
406	HWGROUP(drive)->rq = NULL;
407	rq->errors = err;
408	end_that_request_last(rq, !rq->errors);
409	spin_unlock_irqrestore(&ide_lock, flags);
410}
411
412EXPORT_SYMBOL(ide_end_drive_cmd);
413
414/**
415 *	try_to_flush_leftover_data	-	flush junk
416 *	@drive: drive to flush
417 *
418 *	try_to_flush_leftover_data() is invoked in response to a drive
419 *	unexpectedly having its DRQ_STAT bit set.  As an alternative to
420 *	resetting the drive, this routine tries to clear the condition
421 *	by read a sector's worth of data from the drive.  Of course,
422 *	this may not help if the drive is *waiting* for data from *us*.
423 */
424static void try_to_flush_leftover_data (ide_drive_t *drive)
425{
426	int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
427
428	if (drive->media != ide_disk)
429		return;
430	while (i > 0) {
431		u32 buffer[16];
432		u32 wcount = (i > 16) ? 16 : i;
433
434		i -= wcount;
435		HWIF(drive)->ata_input_data(drive, buffer, wcount);
436	}
437}
438
439static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
440{
441	if (rq->rq_disk) {
442		ide_driver_t *drv;
443
444		drv = *(ide_driver_t **)rq->rq_disk->private_data;
445		drv->end_request(drive, 0, 0);
446	} else
447		ide_end_request(drive, 0, 0);
448}
449
450static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
451{
452	ide_hwif_t *hwif = drive->hwif;
453
454	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
455		/* other bits are useless when BUSY */
456		rq->errors |= ERROR_RESET;
457	} else if (stat & ERR_STAT) {
458		/* err has different meaning on cdrom and tape */
459		if (err == ABRT_ERR) {
460			if (drive->select.b.lba &&
461			    /* some newer drives don't support WIN_SPECIFY */
462			    hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
463				return ide_stopped;
464		} else if ((err & BAD_CRC) == BAD_CRC) {
465			/* UDMA crc error, just retry the operation */
466			drive->crc_count++;
467		} else if (err & (BBD_ERR | ECC_ERR)) {
468			/* retries won't help these */
469			rq->errors = ERROR_MAX;
470		} else if (err & TRK0_ERR) {
471			/* help it find track zero */
472			rq->errors |= ERROR_RECAL;
473		}
474	}
475
476	if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
477	    (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
478		try_to_flush_leftover_data(drive);
479
480	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
481		ide_kill_rq(drive, rq);
482		return ide_stopped;
483	}
484
485	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
486		rq->errors |= ERROR_RESET;
487
488	if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
489		++rq->errors;
490		return ide_do_reset(drive);
491	}
492
493	if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
494		drive->special.b.recalibrate = 1;
495
496	++rq->errors;
497
498	return ide_stopped;
499}
500
501static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
502{
503	ide_hwif_t *hwif = drive->hwif;
504
505	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
506		/* other bits are useless when BUSY */
507		rq->errors |= ERROR_RESET;
508	} else {
509		/* add decoding error stuff */
510	}
511
512	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
513		/* force an abort */
514		hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
515
516	if (rq->errors >= ERROR_MAX) {
517		ide_kill_rq(drive, rq);
518	} else {
519		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
520			++rq->errors;
521			return ide_do_reset(drive);
522		}
523		++rq->errors;
524	}
525
526	return ide_stopped;
527}
528
529ide_startstop_t
530__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
531{
532	if (drive->media == ide_disk)
533		return ide_ata_error(drive, rq, stat, err);
534	return ide_atapi_error(drive, rq, stat, err);
535}
536
537EXPORT_SYMBOL_GPL(__ide_error);
538
539/**
540 *	ide_error	-	handle an error on the IDE
541 *	@drive: drive the error occurred on
542 *	@msg: message to report
543 *	@stat: status bits
544 *
545 *	ide_error() takes action based on the error returned by the drive.
546 *	For normal I/O that may well include retries. We deal with
547 *	both new-style (taskfile) and old style command handling here.
548 *	In the case of taskfile command handling there is work left to
549 *	do
550 */
551
552ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
553{
554	struct request *rq;
555	u8 err;
556
557	err = ide_dump_status(drive, msg, stat);
558
559	if ((rq = HWGROUP(drive)->rq) == NULL)
560		return ide_stopped;
561
562	/* retry only "normal" I/O: */
563	if (!blk_fs_request(rq)) {
564		rq->errors = 1;
565		ide_end_drive_cmd(drive, stat, err);
566		return ide_stopped;
567	}
568
569	if (rq->rq_disk) {
570		ide_driver_t *drv;
571
572		drv = *(ide_driver_t **)rq->rq_disk->private_data;
573		return drv->error(drive, rq, stat, err);
574	} else
575		return __ide_error(drive, rq, stat, err);
576}
577
578EXPORT_SYMBOL_GPL(ide_error);
579
580ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
581{
582	if (drive->media != ide_disk)
583		rq->errors |= ERROR_RESET;
584
585	ide_kill_rq(drive, rq);
586
587	return ide_stopped;
588}
589
590EXPORT_SYMBOL_GPL(__ide_abort);
591
592/**
593 *	ide_abort	-	abort pending IDE operations
594 *	@drive: drive the error occurred on
595 *	@msg: message to report
596 *
597 *	ide_abort kills and cleans up when we are about to do a
598 *	host initiated reset on active commands. Longer term we
599 *	want handlers to have sensible abort handling themselves
600 *
601 *	This differs fundamentally from ide_error because in
602 *	this case the command is doing just fine when we
603 *	blow it away.
604 */
605
606ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
607{
608	struct request *rq;
609
610	if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
611		return ide_stopped;
612
613	/* retry only "normal" I/O: */
614	if (!blk_fs_request(rq)) {
615		rq->errors = 1;
616		ide_end_drive_cmd(drive, BUSY_STAT, 0);
617		return ide_stopped;
618	}
619
620	if (rq->rq_disk) {
621		ide_driver_t *drv;
622
623		drv = *(ide_driver_t **)rq->rq_disk->private_data;
624		return drv->abort(drive, rq);
625	} else
626		return __ide_abort(drive, rq);
627}
628
629/**
630 *	drive_cmd_intr		- 	drive command completion interrupt
631 *	@drive: drive the completion interrupt occurred on
632 *
633 *	drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
634 *	We do any necessary data reading and then wait for the drive to
635 *	go non busy. At that point we may read the error data and complete
636 *	the request
637 */
638
639static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
640{
641	struct request *rq = HWGROUP(drive)->rq;
642	ide_hwif_t *hwif = HWIF(drive);
643	u8 *args = (u8 *) rq->buffer;
644	u8 stat = hwif->INB(IDE_STATUS_REG);
645	int retries = 10;
646
647	local_irq_enable_in_hardirq();
648	if (rq->cmd_type == REQ_TYPE_ATA_CMD &&
649	    (stat & DRQ_STAT) && args && args[3]) {
650		u8 io_32bit = drive->io_32bit;
651		drive->io_32bit = 0;
652		hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
653		drive->io_32bit = io_32bit;
654		while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
655			udelay(100);
656	}
657
658	if (!OK_STAT(stat, READY_STAT, BAD_STAT))
659		return ide_error(drive, "drive_cmd", stat);
660		/* calls ide_end_drive_cmd */
661	ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
662	return ide_stopped;
663}
664
665static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
666{
667	tf->nsect   = drive->sect;
668	tf->lbal    = drive->sect;
669	tf->lbam    = drive->cyl;
670	tf->lbah    = drive->cyl >> 8;
671	tf->device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
672	tf->command = WIN_SPECIFY;
673}
674
675static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
676{
677	tf->nsect   = drive->sect;
678	tf->command = WIN_RESTORE;
679}
680
681static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
682{
683	tf->nsect   = drive->mult_req;
684	tf->command = WIN_SETMULT;
685}
686
687static ide_startstop_t ide_disk_special(ide_drive_t *drive)
688{
689	special_t *s = &drive->special;
690	ide_task_t args;
691
692	memset(&args, 0, sizeof(ide_task_t));
693	args.data_phase = TASKFILE_NO_DATA;
694
695	if (s->b.set_geometry) {
696		s->b.set_geometry = 0;
697		ide_tf_set_specify_cmd(drive, &args.tf);
698	} else if (s->b.recalibrate) {
699		s->b.recalibrate = 0;
700		ide_tf_set_restore_cmd(drive, &args.tf);
701	} else if (s->b.set_multmode) {
702		s->b.set_multmode = 0;
703		if (drive->mult_req > drive->id->max_multsect)
704			drive->mult_req = drive->id->max_multsect;
705		ide_tf_set_setmult_cmd(drive, &args.tf);
706	} else if (s->all) {
707		int special = s->all;
708		s->all = 0;
709		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
710		return ide_stopped;
711	}
712
713	args.tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE |
714			IDE_TFLAG_CUSTOM_HANDLER;
715
716	do_rw_taskfile(drive, &args);
717
718	return ide_started;
719}
720
721/*
722 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
723 */
724static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
725{
726	switch (req_pio) {
727	case 202:
728	case 201:
729	case 200:
730	case 102:
731	case 101:
732	case 100:
733		return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
734	case 9:
735	case 8:
736		return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
737	case 7:
738	case 6:
739		return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
740	default:
741		return 0;
742	}
743}
744
745/**
746 *	do_special		-	issue some special commands
747 *	@drive: drive the command is for
748 *
749 *	do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
750 *	commands to a drive.  It used to do much more, but has been scaled
751 *	back.
752 */
753
754static ide_startstop_t do_special (ide_drive_t *drive)
755{
756	special_t *s = &drive->special;
757
758#ifdef DEBUG
759	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
760#endif
761	if (s->b.set_tune) {
762		ide_hwif_t *hwif = drive->hwif;
763		u8 req_pio = drive->tune_req;
764
765		s->b.set_tune = 0;
766
767		if (set_pio_mode_abuse(drive->hwif, req_pio)) {
768
769			if (hwif->set_pio_mode == NULL)
770				return ide_stopped;
771
772			/*
773			 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
774			 */
775			if (req_pio == 8 || req_pio == 9) {
776				unsigned long flags;
777
778				spin_lock_irqsave(&ide_lock, flags);
779				hwif->set_pio_mode(drive, req_pio);
780				spin_unlock_irqrestore(&ide_lock, flags);
781			} else
782				hwif->set_pio_mode(drive, req_pio);
783		} else {
784			int keep_dma = drive->using_dma;
785
786			ide_set_pio(drive, req_pio);
787
788			if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
789				if (keep_dma)
790					ide_dma_on(drive);
791			}
792		}
793
794		return ide_stopped;
795	} else {
796		if (drive->media == ide_disk)
797			return ide_disk_special(drive);
798
799		s->all = 0;
800		drive->mult_req = 0;
801		return ide_stopped;
802	}
803}
804
805void ide_map_sg(ide_drive_t *drive, struct request *rq)
806{
807	ide_hwif_t *hwif = drive->hwif;
808	struct scatterlist *sg = hwif->sg_table;
809
810	if (hwif->sg_mapped)	/* needed by ide-scsi */
811		return;
812
813	if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
814		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
815	} else {
816		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
817		hwif->sg_nents = 1;
818	}
819}
820
821EXPORT_SYMBOL_GPL(ide_map_sg);
822
823void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
824{
825	ide_hwif_t *hwif = drive->hwif;
826
827	hwif->nsect = hwif->nleft = rq->nr_sectors;
828	hwif->cursg_ofs = 0;
829	hwif->cursg = NULL;
830}
831
832EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
833
834/**
835 *	execute_drive_command	-	issue special drive command
836 *	@drive: the drive to issue the command on
837 *	@rq: the request structure holding the command
838 *
839 *	execute_drive_cmd() issues a special drive command,  usually
840 *	initiated by ioctl() from the external hdparm program. The
841 *	command can be a drive command, drive task or taskfile
842 *	operation. Weirdly you can call it with NULL to wait for
843 *	all commands to finish. Don't do this as that is due to change
844 */
845
846static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
847		struct request *rq)
848{
849	ide_hwif_t *hwif = HWIF(drive);
850	u8 *args = rq->buffer;
851	ide_task_t ltask;
852	struct ide_taskfile *tf = &ltask.tf;
853
854	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
855		ide_task_t *task = rq->special;
856
857		if (task == NULL)
858			goto done;
859
860		hwif->data_phase = task->data_phase;
861
862		switch (hwif->data_phase) {
863		case TASKFILE_MULTI_OUT:
864		case TASKFILE_OUT:
865		case TASKFILE_MULTI_IN:
866		case TASKFILE_IN:
867			ide_init_sg_cmd(drive, rq);
868			ide_map_sg(drive, rq);
869		default:
870			break;
871		}
872
873		return do_rw_taskfile(drive, task);
874	}
875
876	if (args == NULL)
877		goto done;
878
879	memset(&ltask, 0, sizeof(ltask));
880	if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
881#ifdef DEBUG
882		printk("%s: DRIVE_CMD\n", drive->name);
883#endif
884		tf->feature = args[2];
885		if (args[0] == WIN_SMART) {
886			tf->nsect = args[3];
887			tf->lbal  = args[1];
888			tf->lbam  = 0x4f;
889			tf->lbah  = 0xc2;
890			ltask.tf_flags = IDE_TFLAG_OUT_TF;
891		} else {
892			tf->nsect = args[1];
893			ltask.tf_flags = IDE_TFLAG_OUT_FEATURE |
894					 IDE_TFLAG_OUT_NSECT;
895		}
896 	}
897	tf->command = args[0];
898	ide_tf_load(drive, &ltask);
899	ide_execute_command(drive, args[0], &drive_cmd_intr, WAIT_WORSTCASE, NULL);
900	return ide_started;
901
902done:
903 	/*
904 	 * NULL is actually a valid way of waiting for
905 	 * all current requests to be flushed from the queue.
906 	 */
907#ifdef DEBUG
908 	printk("%s: DRIVE_CMD (null)\n", drive->name);
909#endif
910 	ide_end_drive_cmd(drive,
911			hwif->INB(IDE_STATUS_REG),
912			hwif->INB(IDE_ERROR_REG));
913 	return ide_stopped;
914}
915
916static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
917{
918	struct request_pm_state *pm = rq->data;
919
920	if (blk_pm_suspend_request(rq) &&
921	    pm->pm_step == ide_pm_state_start_suspend)
922		/* Mark drive blocked when starting the suspend sequence. */
923		drive->blocked = 1;
924	else if (blk_pm_resume_request(rq) &&
925		 pm->pm_step == ide_pm_state_start_resume) {
926		/*
927		 * The first thing we do on wakeup is to wait for BSY bit to
928		 * go away (with a looong timeout) as a drive on this hwif may
929		 * just be POSTing itself.
930		 * We do that before even selecting as the "other" device on
931		 * the bus may be broken enough to walk on our toes at this
932		 * point.
933		 */
934		int rc;
935#ifdef DEBUG_PM
936		printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
937#endif
938		rc = ide_wait_not_busy(HWIF(drive), 35000);
939		if (rc)
940			printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
941		SELECT_DRIVE(drive);
942		ide_set_irq(drive, 1);
943		rc = ide_wait_not_busy(HWIF(drive), 100000);
944		if (rc)
945			printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
946	}
947}
948
949/**
950 *	start_request	-	start of I/O and command issuing for IDE
951 *
952 *	start_request() initiates handling of a new I/O request. It
953 *	accepts commands and I/O (read/write) requests. It also does
954 *	the final remapping for weird stuff like EZDrive. Once
955 *	device mapper can work sector level the EZDrive stuff can go away
956 *
957 *	FIXME: this function needs a rename
958 */
959
960static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
961{
962	ide_startstop_t startstop;
963	sector_t block;
964
965	BUG_ON(!blk_rq_started(rq));
966
967#ifdef DEBUG
968	printk("%s: start_request: current=0x%08lx\n",
969		HWIF(drive)->name, (unsigned long) rq);
970#endif
971
972	/* bail early if we've exceeded max_failures */
973	if (drive->max_failures && (drive->failures > drive->max_failures)) {
974		rq->cmd_flags |= REQ_FAILED;
975		goto kill_rq;
976	}
977
978	block    = rq->sector;
979	if (blk_fs_request(rq) &&
980	    (drive->media == ide_disk || drive->media == ide_floppy)) {
981		block += drive->sect0;
982	}
983	/* Yecch - this will shift the entire interval,
984	   possibly killing some innocent following sector */
985	if (block == 0 && drive->remap_0_to_1 == 1)
986		block = 1;  /* redirect MBR access to EZ-Drive partn table */
987
988	if (blk_pm_request(rq))
989		ide_check_pm_state(drive, rq);
990
991	SELECT_DRIVE(drive);
992	if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
993		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
994		return startstop;
995	}
996	if (!drive->special.all) {
997		ide_driver_t *drv;
998
999		/*
1000		 * We reset the drive so we need to issue a SETFEATURES.
1001		 * Do it _after_ do_special() restored device parameters.
1002		 */
1003		if (drive->current_speed == 0xff)
1004			ide_config_drive_speed(drive, drive->desired_speed);
1005
1006		if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1007		    rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1008			return execute_drive_cmd(drive, rq);
1009		else if (blk_pm_request(rq)) {
1010			struct request_pm_state *pm = rq->data;
1011#ifdef DEBUG_PM
1012			printk("%s: start_power_step(step: %d)\n",
1013				drive->name, rq->pm->pm_step);
1014#endif
1015			startstop = ide_start_power_step(drive, rq);
1016			if (startstop == ide_stopped &&
1017			    pm->pm_step == ide_pm_state_completed)
1018				ide_complete_pm_request(drive, rq);
1019			return startstop;
1020		}
1021
1022		drv = *(ide_driver_t **)rq->rq_disk->private_data;
1023		return drv->do_request(drive, rq, block);
1024	}
1025	return do_special(drive);
1026kill_rq:
1027	ide_kill_rq(drive, rq);
1028	return ide_stopped;
1029}
1030
1031/**
1032 *	ide_stall_queue		-	pause an IDE device
1033 *	@drive: drive to stall
1034 *	@timeout: time to stall for (jiffies)
1035 *
1036 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
1037 *	to the hwgroup by sleeping for timeout jiffies.
1038 */
1039
1040void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1041{
1042	if (timeout > WAIT_WORSTCASE)
1043		timeout = WAIT_WORSTCASE;
1044	drive->sleep = timeout + jiffies;
1045	drive->sleeping = 1;
1046}
1047
1048EXPORT_SYMBOL(ide_stall_queue);
1049
1050#define WAKEUP(drive)	((drive)->service_start + 2 * (drive)->service_time)
1051
1052/**
1053 *	choose_drive		-	select a drive to service
1054 *	@hwgroup: hardware group to select on
1055 *
1056 *	choose_drive() selects the next drive which will be serviced.
1057 *	This is necessary because the IDE layer can't issue commands
1058 *	to both drives on the same cable, unlike SCSI.
1059 */
1060
1061static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1062{
1063	ide_drive_t *drive, *best;
1064
1065repeat:
1066	best = NULL;
1067	drive = hwgroup->drive;
1068
1069	/*
1070	 * drive is doing pre-flush, ordered write, post-flush sequence. even
1071	 * though that is 3 requests, it must be seen as a single transaction.
1072	 * we must not preempt this drive until that is complete
1073	 */
1074	if (blk_queue_flushing(drive->queue)) {
1075		/*
1076		 * small race where queue could get replugged during
1077		 * the 3-request flush cycle, just yank the plug since
1078		 * we want it to finish asap
1079		 */
1080		blk_remove_plug(drive->queue);
1081		return drive;
1082	}
1083
1084	do {
1085		if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1086		    && !elv_queue_empty(drive->queue)) {
1087			if (!best
1088			 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1089			 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1090			{
1091				if (!blk_queue_plugged(drive->queue))
1092					best = drive;
1093			}
1094		}
1095	} while ((drive = drive->next) != hwgroup->drive);
1096	if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1097		long t = (signed long)(WAKEUP(best) - jiffies);
1098		if (t >= WAIT_MIN_SLEEP) {
1099		/*
1100		 * We *may* have some time to spare, but first let's see if
1101		 * someone can potentially benefit from our nice mood today..
1102		 */
1103			drive = best->next;
1104			do {
1105				if (!drive->sleeping
1106				 && time_before(jiffies - best->service_time, WAKEUP(drive))
1107				 && time_before(WAKEUP(drive), jiffies + t))
1108				{
1109					ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1110					goto repeat;
1111				}
1112			} while ((drive = drive->next) != best);
1113		}
1114	}
1115	return best;
1116}
1117
1118/*
1119 * Issue a new request to a drive from hwgroup
1120 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1121 *
1122 * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1123 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1124 * may have both interfaces in a single hwgroup to "serialize" access.
1125 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1126 * together into one hwgroup for serialized access.
1127 *
1128 * Note also that several hwgroups can end up sharing a single IRQ,
1129 * possibly along with many other devices.  This is especially common in
1130 * PCI-based systems with off-board IDE controller cards.
1131 *
1132 * The IDE driver uses the single global ide_lock spinlock to protect
1133 * access to the request queues, and to protect the hwgroup->busy flag.
1134 *
1135 * The first thread into the driver for a particular hwgroup sets the
1136 * hwgroup->busy flag to indicate that this hwgroup is now active,
1137 * and then initiates processing of the top request from the request queue.
1138 *
1139 * Other threads attempting entry notice the busy setting, and will simply
1140 * queue their new requests and exit immediately.  Note that hwgroup->busy
1141 * remains set even when the driver is merely awaiting the next interrupt.
1142 * Thus, the meaning is "this hwgroup is busy processing a request".
1143 *
1144 * When processing of a request completes, the completing thread or IRQ-handler
1145 * will start the next request from the queue.  If no more work remains,
1146 * the driver will clear the hwgroup->busy flag and exit.
1147 *
1148 * The ide_lock (spinlock) is used to protect all access to the
1149 * hwgroup->busy flag, but is otherwise not needed for most processing in
1150 * the driver.  This makes the driver much more friendlier to shared IRQs
1151 * than previous designs, while remaining 100% (?) SMP safe and capable.
1152 */
1153static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1154{
1155	ide_drive_t	*drive;
1156	ide_hwif_t	*hwif;
1157	struct request	*rq;
1158	ide_startstop_t	startstop;
1159	int             loops = 0;
1160
1161	/* for atari only: POSSIBLY BROKEN HERE(?) */
1162	ide_get_lock(ide_intr, hwgroup);
1163
1164	/* caller must own ide_lock */
1165	BUG_ON(!irqs_disabled());
1166
1167	while (!hwgroup->busy) {
1168		hwgroup->busy = 1;
1169		drive = choose_drive(hwgroup);
1170		if (drive == NULL) {
1171			int sleeping = 0;
1172			unsigned long sleep = 0; /* shut up, gcc */
1173			hwgroup->rq = NULL;
1174			drive = hwgroup->drive;
1175			do {
1176				if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1177					sleeping = 1;
1178					sleep = drive->sleep;
1179				}
1180			} while ((drive = drive->next) != hwgroup->drive);
1181			if (sleeping) {
1182		/*
1183		 * Take a short snooze, and then wake up this hwgroup again.
1184		 * This gives other hwgroups on the same a chance to
1185		 * play fairly with us, just in case there are big differences
1186		 * in relative throughputs.. don't want to hog the cpu too much.
1187		 */
1188				if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1189					sleep = jiffies + WAIT_MIN_SLEEP;
1190#if 1
1191				if (timer_pending(&hwgroup->timer))
1192					printk(KERN_CRIT "ide_set_handler: timer already active\n");
1193#endif
1194				/* so that ide_timer_expiry knows what to do */
1195				hwgroup->sleeping = 1;
1196				hwgroup->req_gen_timer = hwgroup->req_gen;
1197				mod_timer(&hwgroup->timer, sleep);
1198				/* we purposely leave hwgroup->busy==1
1199				 * while sleeping */
1200			} else {
1201				/* Ugly, but how can we sleep for the lock
1202				 * otherwise? perhaps from tq_disk?
1203				 */
1204
1205				/* for atari only */
1206				ide_release_lock();
1207				hwgroup->busy = 0;
1208			}
1209
1210			/* no more work for this hwgroup (for now) */
1211			return;
1212		}
1213	again:
1214		hwif = HWIF(drive);
1215		if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1216			/*
1217			 * set nIEN for previous hwif, drives in the
1218			 * quirk_list may not like intr setups/cleanups
1219			 */
1220			if (drive->quirk_list != 1)
1221				ide_set_irq(drive, 0);
1222		}
1223		hwgroup->hwif = hwif;
1224		hwgroup->drive = drive;
1225		drive->sleeping = 0;
1226		drive->service_start = jiffies;
1227
1228		if (blk_queue_plugged(drive->queue)) {
1229			printk(KERN_ERR "ide: huh? queue was plugged!\n");
1230			break;
1231		}
1232
1233		/*
1234		 * we know that the queue isn't empty, but this can happen
1235		 * if the q->prep_rq_fn() decides to kill a request
1236		 */
1237		rq = elv_next_request(drive->queue);
1238		if (!rq) {
1239			hwgroup->busy = 0;
1240			break;
1241		}
1242
1243		/*
1244		 * Sanity: don't accept a request that isn't a PM request
1245		 * if we are currently power managed. This is very important as
1246		 * blk_stop_queue() doesn't prevent the elv_next_request()
1247		 * above to return us whatever is in the queue. Since we call
1248		 * ide_do_request() ourselves, we end up taking requests while
1249		 * the queue is blocked...
1250		 *
1251		 * We let requests forced at head of queue with ide-preempt
1252		 * though. I hope that doesn't happen too much, hopefully not
1253		 * unless the subdriver triggers such a thing in its own PM
1254		 * state machine.
1255		 *
1256		 * We count how many times we loop here to make sure we service
1257		 * all drives in the hwgroup without looping for ever
1258		 */
1259		if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1260			drive = drive->next ? drive->next : hwgroup->drive;
1261			if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1262				goto again;
1263			/* We clear busy, there should be no pending ATA command at this point. */
1264			hwgroup->busy = 0;
1265			break;
1266		}
1267
1268		hwgroup->rq = rq;
1269
1270		/*
1271		 * Some systems have trouble with IDE IRQs arriving while
1272		 * the driver is still setting things up.  So, here we disable
1273		 * the IRQ used by this interface while the request is being started.
1274		 * This may look bad at first, but pretty much the same thing
1275		 * happens anyway when any interrupt comes in, IDE or otherwise
1276		 *  -- the kernel masks the IRQ while it is being handled.
1277		 */
1278		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1279			disable_irq_nosync(hwif->irq);
1280		spin_unlock(&ide_lock);
1281		local_irq_enable_in_hardirq();
1282			/* allow other IRQs while we start this request */
1283		startstop = start_request(drive, rq);
1284		spin_lock_irq(&ide_lock);
1285		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1286			enable_irq(hwif->irq);
1287		if (startstop == ide_stopped)
1288			hwgroup->busy = 0;
1289	}
1290}
1291
1292/*
1293 * Passes the stuff to ide_do_request
1294 */
1295void do_ide_request(struct request_queue *q)
1296{
1297	ide_drive_t *drive = q->queuedata;
1298
1299	ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1300}
1301
1302/*
1303 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1304 * retry the current request in pio mode instead of risking tossing it
1305 * all away
1306 */
1307static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1308{
1309	ide_hwif_t *hwif = HWIF(drive);
1310	struct request *rq;
1311	ide_startstop_t ret = ide_stopped;
1312
1313	/*
1314	 * end current dma transaction
1315	 */
1316
1317	if (error < 0) {
1318		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1319		(void)HWIF(drive)->ide_dma_end(drive);
1320		ret = ide_error(drive, "dma timeout error",
1321						hwif->INB(IDE_STATUS_REG));
1322	} else {
1323		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1324		hwif->dma_timeout(drive);
1325	}
1326
1327	/*
1328	 * disable dma for now, but remember that we did so because of
1329	 * a timeout -- we'll reenable after we finish this next request
1330	 * (or rather the first chunk of it) in pio.
1331	 */
1332	drive->retry_pio++;
1333	drive->state = DMA_PIO_RETRY;
1334	ide_dma_off_quietly(drive);
1335
1336	/*
1337	 * un-busy drive etc (hwgroup->busy is cleared on return) and
1338	 * make sure request is sane
1339	 */
1340	rq = HWGROUP(drive)->rq;
1341
1342	if (!rq)
1343		goto out;
1344
1345	HWGROUP(drive)->rq = NULL;
1346
1347	rq->errors = 0;
1348
1349	if (!rq->bio)
1350		goto out;
1351
1352	rq->sector = rq->bio->bi_sector;
1353	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1354	rq->hard_cur_sectors = rq->current_nr_sectors;
1355	rq->buffer = bio_data(rq->bio);
1356out:
1357	return ret;
1358}
1359
1360/**
1361 *	ide_timer_expiry	-	handle lack of an IDE interrupt
1362 *	@data: timer callback magic (hwgroup)
1363 *
1364 *	An IDE command has timed out before the expected drive return
1365 *	occurred. At this point we attempt to clean up the current
1366 *	mess. If the current handler includes an expiry handler then
1367 *	we invoke the expiry handler, and providing it is happy the
1368 *	work is done. If that fails we apply generic recovery rules
1369 *	invoking the handler and checking the drive DMA status. We
1370 *	have an excessively incestuous relationship with the DMA
1371 *	logic that wants cleaning up.
1372 */
1373
1374void ide_timer_expiry (unsigned long data)
1375{
1376	ide_hwgroup_t	*hwgroup = (ide_hwgroup_t *) data;
1377	ide_handler_t	*handler;
1378	ide_expiry_t	*expiry;
1379	unsigned long	flags;
1380	unsigned long	wait = -1;
1381
1382	spin_lock_irqsave(&ide_lock, flags);
1383
1384	if (((handler = hwgroup->handler) == NULL) ||
1385	    (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1386		/*
1387		 * Either a marginal timeout occurred
1388		 * (got the interrupt just as timer expired),
1389		 * or we were "sleeping" to give other devices a chance.
1390		 * Either way, we don't really want to complain about anything.
1391		 */
1392		if (hwgroup->sleeping) {
1393			hwgroup->sleeping = 0;
1394			hwgroup->busy = 0;
1395		}
1396	} else {
1397		ide_drive_t *drive = hwgroup->drive;
1398		if (!drive) {
1399			printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1400			hwgroup->handler = NULL;
1401		} else {
1402			ide_hwif_t *hwif;
1403			ide_startstop_t startstop = ide_stopped;
1404			if (!hwgroup->busy) {
1405				hwgroup->busy = 1;	/* paranoia */
1406				printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1407			}
1408			if ((expiry = hwgroup->expiry) != NULL) {
1409				/* continue */
1410				if ((wait = expiry(drive)) > 0) {
1411					/* reset timer */
1412					hwgroup->timer.expires  = jiffies + wait;
1413					hwgroup->req_gen_timer = hwgroup->req_gen;
1414					add_timer(&hwgroup->timer);
1415					spin_unlock_irqrestore(&ide_lock, flags);
1416					return;
1417				}
1418			}
1419			hwgroup->handler = NULL;
1420			/*
1421			 * We need to simulate a real interrupt when invoking
1422			 * the handler() function, which means we need to
1423			 * globally mask the specific IRQ:
1424			 */
1425			spin_unlock(&ide_lock);
1426			hwif  = HWIF(drive);
1427			/* disable_irq_nosync ?? */
1428			disable_irq(hwif->irq);
1429			/* local CPU only,
1430			 * as if we were handling an interrupt */
1431			local_irq_disable();
1432			if (hwgroup->polling) {
1433				startstop = handler(drive);
1434			} else if (drive_is_ready(drive)) {
1435				if (drive->waiting_for_dma)
1436					hwgroup->hwif->dma_lost_irq(drive);
1437				(void)ide_ack_intr(hwif);
1438				printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1439				startstop = handler(drive);
1440			} else {
1441				if (drive->waiting_for_dma) {
1442					startstop = ide_dma_timeout_retry(drive, wait);
1443				} else
1444					startstop =
1445					ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1446			}
1447			drive->service_time = jiffies - drive->service_start;
1448			spin_lock_irq(&ide_lock);
1449			enable_irq(hwif->irq);
1450			if (startstop == ide_stopped)
1451				hwgroup->busy = 0;
1452		}
1453	}
1454	ide_do_request(hwgroup, IDE_NO_IRQ);
1455	spin_unlock_irqrestore(&ide_lock, flags);
1456}
1457
1458/**
1459 *	unexpected_intr		-	handle an unexpected IDE interrupt
1460 *	@irq: interrupt line
1461 *	@hwgroup: hwgroup being processed
1462 *
1463 *	There's nothing really useful we can do with an unexpected interrupt,
1464 *	other than reading the status register (to clear it), and logging it.
1465 *	There should be no way that an irq can happen before we're ready for it,
1466 *	so we needn't worry much about losing an "important" interrupt here.
1467 *
1468 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1469 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
1470 *	looks "good", we just ignore the interrupt completely.
1471 *
1472 *	This routine assumes __cli() is in effect when called.
1473 *
1474 *	If an unexpected interrupt happens on irq15 while we are handling irq14
1475 *	and if the two interfaces are "serialized" (CMD640), then it looks like
1476 *	we could screw up by interfering with a new request being set up for
1477 *	irq15.
1478 *
1479 *	In reality, this is a non-issue.  The new command is not sent unless
1480 *	the drive is ready to accept one, in which case we know the drive is
1481 *	not trying to interrupt us.  And ide_set_handler() is always invoked
1482 *	before completing the issuance of any new drive command, so we will not
1483 *	be accidentally invoked as a result of any valid command completion
1484 *	interrupt.
1485 *
1486 *	Note that we must walk the entire hwgroup here. We know which hwif
1487 *	is doing the current command, but we don't know which hwif burped
1488 *	mysteriously.
1489 */
1490
1491static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1492{
1493	u8 stat;
1494	ide_hwif_t *hwif = hwgroup->hwif;
1495
1496	/*
1497	 * handle the unexpected interrupt
1498	 */
1499	do {
1500		if (hwif->irq == irq) {
1501			stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1502			if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1503				/* Try to not flood the console with msgs */
1504				static unsigned long last_msgtime, count;
1505				++count;
1506				if (time_after(jiffies, last_msgtime + HZ)) {
1507					last_msgtime = jiffies;
1508					printk(KERN_ERR "%s%s: unexpected interrupt, "
1509						"status=0x%02x, count=%ld\n",
1510						hwif->name,
1511						(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1512				}
1513			}
1514		}
1515	} while ((hwif = hwif->next) != hwgroup->hwif);
1516}
1517
1518/**
1519 *	ide_intr	-	default IDE interrupt handler
1520 *	@irq: interrupt number
1521 *	@dev_id: hwif group
1522 *	@regs: unused weirdness from the kernel irq layer
1523 *
1524 *	This is the default IRQ handler for the IDE layer. You should
1525 *	not need to override it. If you do be aware it is subtle in
1526 *	places
1527 *
1528 *	hwgroup->hwif is the interface in the group currently performing
1529 *	a command. hwgroup->drive is the drive and hwgroup->handler is
1530 *	the IRQ handler to call. As we issue a command the handlers
1531 *	step through multiple states, reassigning the handler to the
1532 *	next step in the process. Unlike a smart SCSI controller IDE
1533 *	expects the main processor to sequence the various transfer
1534 *	stages. We also manage a poll timer to catch up with most
1535 *	timeout situations. There are still a few where the handlers
1536 *	don't ever decide to give up.
1537 *
1538 *	The handler eventually returns ide_stopped to indicate the
1539 *	request completed. At this point we issue the next request
1540 *	on the hwgroup and the process begins again.
1541 */
1542
1543irqreturn_t ide_intr (int irq, void *dev_id)
1544{
1545	unsigned long flags;
1546	ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1547	ide_hwif_t *hwif;
1548	ide_drive_t *drive;
1549	ide_handler_t *handler;
1550	ide_startstop_t startstop;
1551
1552	spin_lock_irqsave(&ide_lock, flags);
1553	hwif = hwgroup->hwif;
1554
1555	if (!ide_ack_intr(hwif)) {
1556		spin_unlock_irqrestore(&ide_lock, flags);
1557		return IRQ_NONE;
1558	}
1559
1560	if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1561		/*
1562		 * Not expecting an interrupt from this drive.
1563		 * That means this could be:
1564		 *	(1) an interrupt from another PCI device
1565		 *	sharing the same PCI INT# as us.
1566		 * or	(2) a drive just entered sleep or standby mode,
1567		 *	and is interrupting to let us know.
1568		 * or	(3) a spurious interrupt of unknown origin.
1569		 *
1570		 * For PCI, we cannot tell the difference,
1571		 * so in that case we just ignore it and hope it goes away.
1572		 *
1573		 * FIXME: unexpected_intr should be hwif-> then we can
1574		 * remove all the ifdef PCI crap
1575		 */
1576#ifdef CONFIG_BLK_DEV_IDEPCI
1577		if (hwif->pci_dev && !hwif->pci_dev->vendor)
1578#endif	/* CONFIG_BLK_DEV_IDEPCI */
1579		{
1580			/*
1581			 * Probably not a shared PCI interrupt,
1582			 * so we can safely try to do something about it:
1583			 */
1584			unexpected_intr(irq, hwgroup);
1585#ifdef CONFIG_BLK_DEV_IDEPCI
1586		} else {
1587			/*
1588			 * Whack the status register, just in case
1589			 * we have a leftover pending IRQ.
1590			 */
1591			(void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1592#endif /* CONFIG_BLK_DEV_IDEPCI */
1593		}
1594		spin_unlock_irqrestore(&ide_lock, flags);
1595		return IRQ_NONE;
1596	}
1597	drive = hwgroup->drive;
1598	if (!drive) {
1599		/*
1600		 * This should NEVER happen, and there isn't much
1601		 * we could do about it here.
1602		 *
1603		 * [Note - this can occur if the drive is hot unplugged]
1604		 */
1605		spin_unlock_irqrestore(&ide_lock, flags);
1606		return IRQ_HANDLED;
1607	}
1608	if (!drive_is_ready(drive)) {
1609		/*
1610		 * This happens regularly when we share a PCI IRQ with
1611		 * another device.  Unfortunately, it can also happen
1612		 * with some buggy drives that trigger the IRQ before
1613		 * their status register is up to date.  Hopefully we have
1614		 * enough advance overhead that the latter isn't a problem.
1615		 */
1616		spin_unlock_irqrestore(&ide_lock, flags);
1617		return IRQ_NONE;
1618	}
1619	if (!hwgroup->busy) {
1620		hwgroup->busy = 1;	/* paranoia */
1621		printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1622	}
1623	hwgroup->handler = NULL;
1624	hwgroup->req_gen++;
1625	del_timer(&hwgroup->timer);
1626	spin_unlock(&ide_lock);
1627
1628	/* Some controllers might set DMA INTR no matter DMA or PIO;
1629	 * bmdma status might need to be cleared even for
1630	 * PIO interrupts to prevent spurious/lost irq.
1631	 */
1632	if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1633		/* ide_dma_end() needs bmdma status for error checking.
1634		 * So, skip clearing bmdma status here and leave it
1635		 * to ide_dma_end() if this is dma interrupt.
1636		 */
1637		hwif->ide_dma_clear_irq(drive);
1638
1639	if (drive->unmask)
1640		local_irq_enable_in_hardirq();
1641	/* service this interrupt, may set handler for next interrupt */
1642	startstop = handler(drive);
1643	spin_lock_irq(&ide_lock);
1644
1645	/*
1646	 * Note that handler() may have set things up for another
1647	 * interrupt to occur soon, but it cannot happen until
1648	 * we exit from this routine, because it will be the
1649	 * same irq as is currently being serviced here, and Linux
1650	 * won't allow another of the same (on any CPU) until we return.
1651	 */
1652	drive->service_time = jiffies - drive->service_start;
1653	if (startstop == ide_stopped) {
1654		if (hwgroup->handler == NULL) {	/* paranoia */
1655			hwgroup->busy = 0;
1656			ide_do_request(hwgroup, hwif->irq);
1657		} else {
1658			printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1659				"on exit\n", drive->name);
1660		}
1661	}
1662	spin_unlock_irqrestore(&ide_lock, flags);
1663	return IRQ_HANDLED;
1664}
1665
1666/**
1667 *	ide_init_drive_cmd	-	initialize a drive command request
1668 *	@rq: request object
1669 *
1670 *	Initialize a request before we fill it in and send it down to
1671 *	ide_do_drive_cmd. Commands must be set up by this function. Right
1672 *	now it doesn't do a lot, but if that changes abusers will have a
1673 *	nasty surprise.
1674 */
1675
1676void ide_init_drive_cmd (struct request *rq)
1677{
1678	memset(rq, 0, sizeof(*rq));
1679	rq->cmd_type = REQ_TYPE_ATA_CMD;
1680	rq->ref_count = 1;
1681}
1682
1683EXPORT_SYMBOL(ide_init_drive_cmd);
1684
1685/**
1686 *	ide_do_drive_cmd	-	issue IDE special command
1687 *	@drive: device to issue command
1688 *	@rq: request to issue
1689 *	@action: action for processing
1690 *
1691 *	This function issues a special IDE device request
1692 *	onto the request queue.
1693 *
1694 *	If action is ide_wait, then the rq is queued at the end of the
1695 *	request queue, and the function sleeps until it has been processed.
1696 *	This is for use when invoked from an ioctl handler.
1697 *
1698 *	If action is ide_preempt, then the rq is queued at the head of
1699 *	the request queue, displacing the currently-being-processed
1700 *	request and this function returns immediately without waiting
1701 *	for the new rq to be completed.  This is VERY DANGEROUS, and is
1702 *	intended for careful use by the ATAPI tape/cdrom driver code.
1703 *
1704 *	If action is ide_end, then the rq is queued at the end of the
1705 *	request queue, and the function returns immediately without waiting
1706 *	for the new rq to be completed. This is again intended for careful
1707 *	use by the ATAPI tape/cdrom driver code.
1708 */
1709
1710int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1711{
1712	unsigned long flags;
1713	ide_hwgroup_t *hwgroup = HWGROUP(drive);
1714	DECLARE_COMPLETION_ONSTACK(wait);
1715	int where = ELEVATOR_INSERT_BACK, err;
1716	int must_wait = (action == ide_wait || action == ide_head_wait);
1717
1718	rq->errors = 0;
1719
1720	/*
1721	 * we need to hold an extra reference to request for safe inspection
1722	 * after completion
1723	 */
1724	if (must_wait) {
1725		rq->ref_count++;
1726		rq->end_io_data = &wait;
1727		rq->end_io = blk_end_sync_rq;
1728	}
1729
1730	spin_lock_irqsave(&ide_lock, flags);
1731	if (action == ide_preempt)
1732		hwgroup->rq = NULL;
1733	if (action == ide_preempt || action == ide_head_wait) {
1734		where = ELEVATOR_INSERT_FRONT;
1735		rq->cmd_flags |= REQ_PREEMPT;
1736	}
1737	__elv_add_request(drive->queue, rq, where, 0);
1738	ide_do_request(hwgroup, IDE_NO_IRQ);
1739	spin_unlock_irqrestore(&ide_lock, flags);
1740
1741	err = 0;
1742	if (must_wait) {
1743		wait_for_completion(&wait);
1744		if (rq->errors)
1745			err = -EIO;
1746
1747		blk_put_request(rq);
1748	}
1749
1750	return err;
1751}
1752
1753EXPORT_SYMBOL(ide_do_drive_cmd);
1754
1755void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1756{
1757	ide_task_t task;
1758
1759	memset(&task, 0, sizeof(task));
1760	task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1761			IDE_TFLAG_OUT_FEATURE | tf_flags;
1762	task.tf.feature = dma;		/* Use PIO/DMA */
1763	task.tf.lbam    = bcount & 0xff;
1764	task.tf.lbah    = (bcount >> 8) & 0xff;
1765
1766	ide_tf_load(drive, &task);
1767}
1768
1769EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1770