ide-io.c revision ad3caddaa1708e506f20b8e25a4a8ae586fc7d5b
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/config.h>
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/string.h>
31#include <linux/kernel.h>
32#include <linux/timer.h>
33#include <linux/mm.h>
34#include <linux/interrupt.h>
35#include <linux/major.h>
36#include <linux/errno.h>
37#include <linux/genhd.h>
38#include <linux/blkpg.h>
39#include <linux/slab.h>
40#include <linux/init.h>
41#include <linux/pci.h>
42#include <linux/delay.h>
43#include <linux/ide.h>
44#include <linux/completion.h>
45#include <linux/reboot.h>
46#include <linux/cdrom.h>
47#include <linux/seq_file.h>
48#include <linux/device.h>
49#include <linux/kmod.h>
50#include <linux/scatterlist.h>
51
52#include <asm/byteorder.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55#include <asm/io.h>
56#include <asm/bitops.h>
57
58static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59			     int uptodate, int nr_sectors)
60{
61	int ret = 1;
62
63	BUG_ON(!(rq->flags & REQ_STARTED));
64
65	/*
66	 * if failfast is set on a request, override number of sectors and
67	 * complete the whole request right now
68	 */
69	if (blk_noretry_request(rq) && end_io_error(uptodate))
70		nr_sectors = rq->hard_nr_sectors;
71
72	if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
73		rq->errors = -EIO;
74
75	/*
76	 * decide whether to reenable DMA -- 3 is a random magic for now,
77	 * if we DMA timeout more than 3 times, just stay in PIO
78	 */
79	if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
80		drive->state = 0;
81		HWGROUP(drive)->hwif->ide_dma_on(drive);
82	}
83
84	if (!end_that_request_first(rq, uptodate, nr_sectors)) {
85		add_disk_randomness(rq->rq_disk);
86		blkdev_dequeue_request(rq);
87		HWGROUP(drive)->rq = NULL;
88		end_that_request_last(rq, uptodate);
89		ret = 0;
90	}
91
92	return ret;
93}
94
95/**
96 *	ide_end_request		-	complete an IDE I/O
97 *	@drive: IDE device for the I/O
98 *	@uptodate:
99 *	@nr_sectors: number of sectors completed
100 *
101 *	This is our end_request wrapper function. We complete the I/O
102 *	update random number input and dequeue the request, which if
103 *	it was tagged may be out of order.
104 */
105
106int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107{
108	struct request *rq;
109	unsigned long flags;
110	int ret = 1;
111
112	/*
113	 * room for locking improvements here, the calls below don't
114	 * need the queue lock held at all
115	 */
116	spin_lock_irqsave(&ide_lock, flags);
117	rq = HWGROUP(drive)->rq;
118
119	if (!nr_sectors)
120		nr_sectors = rq->hard_cur_sectors;
121
122	ret = __ide_end_request(drive, rq, uptodate, nr_sectors);
123
124	spin_unlock_irqrestore(&ide_lock, flags);
125	return ret;
126}
127EXPORT_SYMBOL(ide_end_request);
128
129/*
130 * Power Management state machine. This one is rather trivial for now,
131 * we should probably add more, like switching back to PIO on suspend
132 * to help some BIOSes, re-do the door locking on resume, etc...
133 */
134
135enum {
136	ide_pm_flush_cache	= ide_pm_state_start_suspend,
137	idedisk_pm_standby,
138
139	idedisk_pm_idle		= ide_pm_state_start_resume,
140	ide_pm_restore_dma,
141};
142
143static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
144{
145	struct request_pm_state *pm = rq->end_io_data;
146
147	if (drive->media != ide_disk)
148		return;
149
150	switch (pm->pm_step) {
151	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) complete */
152		if (pm->pm_state == PM_EVENT_FREEZE)
153			pm->pm_step = ide_pm_state_completed;
154		else
155			pm->pm_step = idedisk_pm_standby;
156		break;
157	case idedisk_pm_standby:	/* Suspend step 2 (standby) complete */
158		pm->pm_step = ide_pm_state_completed;
159		break;
160	case idedisk_pm_idle:		/* Resume step 1 (idle) complete */
161		pm->pm_step = ide_pm_restore_dma;
162		break;
163	}
164}
165
166static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
167{
168	struct request_pm_state *pm = rq->end_io_data;
169	ide_task_t *args = rq->special;
170
171	memset(args, 0, sizeof(*args));
172
173	if (drive->media != ide_disk) {
174		/* skip idedisk_pm_idle for ATAPI devices */
175		if (pm->pm_step == idedisk_pm_idle)
176			pm->pm_step = ide_pm_restore_dma;
177	}
178
179	switch (pm->pm_step) {
180	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) */
181		if (drive->media != ide_disk)
182			break;
183		/* Not supported? Switch to next step now. */
184		if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
185			ide_complete_power_step(drive, rq, 0, 0);
186			return ide_stopped;
187		}
188		if (ide_id_has_flush_cache_ext(drive->id))
189			args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT;
190		else
191			args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE;
192		args->command_type = IDE_DRIVE_TASK_NO_DATA;
193		args->handler	   = &task_no_data_intr;
194		return do_rw_taskfile(drive, args);
195
196	case idedisk_pm_standby:	/* Suspend step 2 (standby) */
197		args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1;
198		args->command_type = IDE_DRIVE_TASK_NO_DATA;
199		args->handler	   = &task_no_data_intr;
200		return do_rw_taskfile(drive, args);
201
202	case idedisk_pm_idle:		/* Resume step 1 (idle) */
203		args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE;
204		args->command_type = IDE_DRIVE_TASK_NO_DATA;
205		args->handler = task_no_data_intr;
206		return do_rw_taskfile(drive, args);
207
208	case ide_pm_restore_dma:	/* Resume step 2 (restore DMA) */
209		/*
210		 * Right now, all we do is call hwif->ide_dma_check(drive),
211		 * we could be smarter and check for current xfer_speed
212		 * in struct drive etc...
213		 */
214		if ((drive->id->capability & 1) == 0)
215			break;
216		if (drive->hwif->ide_dma_check == NULL)
217			break;
218		drive->hwif->ide_dma_check(drive);
219		break;
220	}
221	pm->pm_step = ide_pm_state_completed;
222	return ide_stopped;
223}
224
225/**
226 *	ide_complete_pm_request - end the current Power Management request
227 *	@drive: target drive
228 *	@rq: request
229 *
230 *	This function cleans up the current PM request and stops the queue
231 *	if necessary.
232 */
233static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
234{
235	unsigned long flags;
236
237#ifdef DEBUG_PM
238	printk("%s: completing PM request, %s\n", drive->name,
239	       blk_pm_suspend_request(rq) ? "suspend" : "resume");
240#endif
241	spin_lock_irqsave(&ide_lock, flags);
242	if (blk_pm_suspend_request(rq)) {
243		blk_stop_queue(drive->queue);
244	} else {
245		drive->blocked = 0;
246		blk_start_queue(drive->queue);
247	}
248	blkdev_dequeue_request(rq);
249	HWGROUP(drive)->rq = NULL;
250	end_that_request_last(rq, 1);
251	spin_unlock_irqrestore(&ide_lock, flags);
252}
253
254/*
255 * FIXME: probably move this somewhere else, name is bad too :)
256 */
257u64 ide_get_error_location(ide_drive_t *drive, char *args)
258{
259	u32 high, low;
260	u8 hcyl, lcyl, sect;
261	u64 sector;
262
263	high = 0;
264	hcyl = args[5];
265	lcyl = args[4];
266	sect = args[3];
267
268	if (ide_id_has_flush_cache_ext(drive->id)) {
269		low = (hcyl << 16) | (lcyl << 8) | sect;
270		HWIF(drive)->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
271		high = ide_read_24(drive);
272	} else {
273		u8 cur = HWIF(drive)->INB(IDE_SELECT_REG);
274		if (cur & 0x40) {
275			high = cur & 0xf;
276			low = (hcyl << 16) | (lcyl << 8) | sect;
277		} else {
278			low = hcyl * drive->head * drive->sect;
279			low += lcyl * drive->sect;
280			low += sect - 1;
281		}
282	}
283
284	sector = ((u64) high << 24) | low;
285	return sector;
286}
287EXPORT_SYMBOL(ide_get_error_location);
288
289/**
290 *	ide_end_drive_cmd	-	end an explicit drive command
291 *	@drive: command
292 *	@stat: status bits
293 *	@err: error bits
294 *
295 *	Clean up after success/failure of an explicit drive command.
296 *	These get thrown onto the queue so they are synchronized with
297 *	real I/O operations on the drive.
298 *
299 *	In LBA48 mode we have to read the register set twice to get
300 *	all the extra information out.
301 */
302
303void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
304{
305	ide_hwif_t *hwif = HWIF(drive);
306	unsigned long flags;
307	struct request *rq;
308
309	spin_lock_irqsave(&ide_lock, flags);
310	rq = HWGROUP(drive)->rq;
311	spin_unlock_irqrestore(&ide_lock, flags);
312
313	if (rq->flags & REQ_DRIVE_CMD) {
314		u8 *args = (u8 *) rq->buffer;
315		if (rq->errors == 0)
316			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
317
318		if (args) {
319			args[0] = stat;
320			args[1] = err;
321			args[2] = hwif->INB(IDE_NSECTOR_REG);
322		}
323	} else if (rq->flags & REQ_DRIVE_TASK) {
324		u8 *args = (u8 *) rq->buffer;
325		if (rq->errors == 0)
326			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
327
328		if (args) {
329			args[0] = stat;
330			args[1] = err;
331			args[2] = hwif->INB(IDE_NSECTOR_REG);
332			args[3] = hwif->INB(IDE_SECTOR_REG);
333			args[4] = hwif->INB(IDE_LCYL_REG);
334			args[5] = hwif->INB(IDE_HCYL_REG);
335			args[6] = hwif->INB(IDE_SELECT_REG);
336		}
337	} else if (rq->flags & REQ_DRIVE_TASKFILE) {
338		ide_task_t *args = (ide_task_t *) rq->special;
339		if (rq->errors == 0)
340			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
341
342		if (args) {
343			if (args->tf_in_flags.b.data) {
344				u16 data				= hwif->INW(IDE_DATA_REG);
345				args->tfRegister[IDE_DATA_OFFSET]	= (data) & 0xFF;
346				args->hobRegister[IDE_DATA_OFFSET]	= (data >> 8) & 0xFF;
347			}
348			args->tfRegister[IDE_ERROR_OFFSET]   = err;
349			/* be sure we're looking at the low order bits */
350			hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
351			args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
352			args->tfRegister[IDE_SECTOR_OFFSET]  = hwif->INB(IDE_SECTOR_REG);
353			args->tfRegister[IDE_LCYL_OFFSET]    = hwif->INB(IDE_LCYL_REG);
354			args->tfRegister[IDE_HCYL_OFFSET]    = hwif->INB(IDE_HCYL_REG);
355			args->tfRegister[IDE_SELECT_OFFSET]  = hwif->INB(IDE_SELECT_REG);
356			args->tfRegister[IDE_STATUS_OFFSET]  = stat;
357
358			if (drive->addressing == 1) {
359				hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
360				args->hobRegister[IDE_FEATURE_OFFSET]	= hwif->INB(IDE_FEATURE_REG);
361				args->hobRegister[IDE_NSECTOR_OFFSET]	= hwif->INB(IDE_NSECTOR_REG);
362				args->hobRegister[IDE_SECTOR_OFFSET]	= hwif->INB(IDE_SECTOR_REG);
363				args->hobRegister[IDE_LCYL_OFFSET]	= hwif->INB(IDE_LCYL_REG);
364				args->hobRegister[IDE_HCYL_OFFSET]	= hwif->INB(IDE_HCYL_REG);
365			}
366		}
367	} else if (blk_pm_request(rq)) {
368		struct request_pm_state *pm = rq->end_io_data;
369#ifdef DEBUG_PM
370		printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
371			drive->name, rq->pm->pm_step, stat, err);
372#endif
373		ide_complete_power_step(drive, rq, stat, err);
374		if (pm->pm_step == ide_pm_state_completed)
375			ide_complete_pm_request(drive, rq);
376		return;
377	}
378
379	spin_lock_irqsave(&ide_lock, flags);
380	blkdev_dequeue_request(rq);
381	HWGROUP(drive)->rq = NULL;
382	rq->errors = err;
383	end_that_request_last(rq, !rq->errors);
384	spin_unlock_irqrestore(&ide_lock, flags);
385}
386
387EXPORT_SYMBOL(ide_end_drive_cmd);
388
389/**
390 *	try_to_flush_leftover_data	-	flush junk
391 *	@drive: drive to flush
392 *
393 *	try_to_flush_leftover_data() is invoked in response to a drive
394 *	unexpectedly having its DRQ_STAT bit set.  As an alternative to
395 *	resetting the drive, this routine tries to clear the condition
396 *	by read a sector's worth of data from the drive.  Of course,
397 *	this may not help if the drive is *waiting* for data from *us*.
398 */
399static void try_to_flush_leftover_data (ide_drive_t *drive)
400{
401	int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
402
403	if (drive->media != ide_disk)
404		return;
405	while (i > 0) {
406		u32 buffer[16];
407		u32 wcount = (i > 16) ? 16 : i;
408
409		i -= wcount;
410		HWIF(drive)->ata_input_data(drive, buffer, wcount);
411	}
412}
413
414static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
415{
416	if (rq->rq_disk) {
417		ide_driver_t *drv;
418
419		drv = *(ide_driver_t **)rq->rq_disk->private_data;
420		drv->end_request(drive, 0, 0);
421	} else
422		ide_end_request(drive, 0, 0);
423}
424
425static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
426{
427	ide_hwif_t *hwif = drive->hwif;
428
429	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
430		/* other bits are useless when BUSY */
431		rq->errors |= ERROR_RESET;
432	} else if (stat & ERR_STAT) {
433		/* err has different meaning on cdrom and tape */
434		if (err == ABRT_ERR) {
435			if (drive->select.b.lba &&
436			    /* some newer drives don't support WIN_SPECIFY */
437			    hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
438				return ide_stopped;
439		} else if ((err & BAD_CRC) == BAD_CRC) {
440			/* UDMA crc error, just retry the operation */
441			drive->crc_count++;
442		} else if (err & (BBD_ERR | ECC_ERR)) {
443			/* retries won't help these */
444			rq->errors = ERROR_MAX;
445		} else if (err & TRK0_ERR) {
446			/* help it find track zero */
447			rq->errors |= ERROR_RECAL;
448		}
449	}
450
451	if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ)
452		try_to_flush_leftover_data(drive);
453
454	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
455		/* force an abort */
456		hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
457
458	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq))
459		ide_kill_rq(drive, rq);
460	else {
461		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
462			++rq->errors;
463			return ide_do_reset(drive);
464		}
465		if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
466			drive->special.b.recalibrate = 1;
467		++rq->errors;
468	}
469	return ide_stopped;
470}
471
472static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
473{
474	ide_hwif_t *hwif = drive->hwif;
475
476	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
477		/* other bits are useless when BUSY */
478		rq->errors |= ERROR_RESET;
479	} else {
480		/* add decoding error stuff */
481	}
482
483	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
484		/* force an abort */
485		hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
486
487	if (rq->errors >= ERROR_MAX) {
488		ide_kill_rq(drive, rq);
489	} else {
490		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
491			++rq->errors;
492			return ide_do_reset(drive);
493		}
494		++rq->errors;
495	}
496
497	return ide_stopped;
498}
499
500ide_startstop_t
501__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
502{
503	if (drive->media == ide_disk)
504		return ide_ata_error(drive, rq, stat, err);
505	return ide_atapi_error(drive, rq, stat, err);
506}
507
508EXPORT_SYMBOL_GPL(__ide_error);
509
510/**
511 *	ide_error	-	handle an error on the IDE
512 *	@drive: drive the error occurred on
513 *	@msg: message to report
514 *	@stat: status bits
515 *
516 *	ide_error() takes action based on the error returned by the drive.
517 *	For normal I/O that may well include retries. We deal with
518 *	both new-style (taskfile) and old style command handling here.
519 *	In the case of taskfile command handling there is work left to
520 *	do
521 */
522
523ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
524{
525	struct request *rq;
526	u8 err;
527
528	err = ide_dump_status(drive, msg, stat);
529
530	if ((rq = HWGROUP(drive)->rq) == NULL)
531		return ide_stopped;
532
533	/* retry only "normal" I/O: */
534	if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK | REQ_DRIVE_TASKFILE)) {
535		rq->errors = 1;
536		ide_end_drive_cmd(drive, stat, err);
537		return ide_stopped;
538	}
539
540	if (rq->rq_disk) {
541		ide_driver_t *drv;
542
543		drv = *(ide_driver_t **)rq->rq_disk->private_data;
544		return drv->error(drive, rq, stat, err);
545	} else
546		return __ide_error(drive, rq, stat, err);
547}
548
549EXPORT_SYMBOL_GPL(ide_error);
550
551ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
552{
553	if (drive->media != ide_disk)
554		rq->errors |= ERROR_RESET;
555
556	ide_kill_rq(drive, rq);
557
558	return ide_stopped;
559}
560
561EXPORT_SYMBOL_GPL(__ide_abort);
562
563/**
564 *	ide_abort	-	abort pending IDE operations
565 *	@drive: drive the error occurred on
566 *	@msg: message to report
567 *
568 *	ide_abort kills and cleans up when we are about to do a
569 *	host initiated reset on active commands. Longer term we
570 *	want handlers to have sensible abort handling themselves
571 *
572 *	This differs fundamentally from ide_error because in
573 *	this case the command is doing just fine when we
574 *	blow it away.
575 */
576
577ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
578{
579	struct request *rq;
580
581	if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
582		return ide_stopped;
583
584	/* retry only "normal" I/O: */
585	if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK | REQ_DRIVE_TASKFILE)) {
586		rq->errors = 1;
587		ide_end_drive_cmd(drive, BUSY_STAT, 0);
588		return ide_stopped;
589	}
590
591	if (rq->rq_disk) {
592		ide_driver_t *drv;
593
594		drv = *(ide_driver_t **)rq->rq_disk->private_data;
595		return drv->abort(drive, rq);
596	} else
597		return __ide_abort(drive, rq);
598}
599
600/**
601 *	ide_cmd		-	issue a simple drive command
602 *	@drive: drive the command is for
603 *	@cmd: command byte
604 *	@nsect: sector byte
605 *	@handler: handler for the command completion
606 *
607 *	Issue a simple drive command with interrupts.
608 *	The drive must be selected beforehand.
609 */
610
611static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect,
612		ide_handler_t *handler)
613{
614	ide_hwif_t *hwif = HWIF(drive);
615	if (IDE_CONTROL_REG)
616		hwif->OUTB(drive->ctl,IDE_CONTROL_REG);	/* clear nIEN */
617	SELECT_MASK(drive,0);
618	hwif->OUTB(nsect,IDE_NSECTOR_REG);
619	ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
620}
621
622/**
623 *	drive_cmd_intr		- 	drive command completion interrupt
624 *	@drive: drive the completion interrupt occurred on
625 *
626 *	drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
627 *	We do any necessary data reading and then wait for the drive to
628 *	go non busy. At that point we may read the error data and complete
629 *	the request
630 */
631
632static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
633{
634	struct request *rq = HWGROUP(drive)->rq;
635	ide_hwif_t *hwif = HWIF(drive);
636	u8 *args = (u8 *) rq->buffer;
637	u8 stat = hwif->INB(IDE_STATUS_REG);
638	int retries = 10;
639
640	local_irq_enable();
641	if ((stat & DRQ_STAT) && args && args[3]) {
642		u8 io_32bit = drive->io_32bit;
643		drive->io_32bit = 0;
644		hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
645		drive->io_32bit = io_32bit;
646		while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
647			udelay(100);
648	}
649
650	if (!OK_STAT(stat, READY_STAT, BAD_STAT))
651		return ide_error(drive, "drive_cmd", stat);
652		/* calls ide_end_drive_cmd */
653	ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
654	return ide_stopped;
655}
656
657static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
658{
659	task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
660	task->tfRegister[IDE_SECTOR_OFFSET]  = drive->sect;
661	task->tfRegister[IDE_LCYL_OFFSET]    = drive->cyl;
662	task->tfRegister[IDE_HCYL_OFFSET]    = drive->cyl>>8;
663	task->tfRegister[IDE_SELECT_OFFSET]  = ((drive->head-1)|drive->select.all)&0xBF;
664	task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY;
665
666	task->handler = &set_geometry_intr;
667}
668
669static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
670{
671	task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
672	task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE;
673
674	task->handler = &recal_intr;
675}
676
677static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
678{
679	task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req;
680	task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT;
681
682	task->handler = &set_multmode_intr;
683}
684
685static ide_startstop_t ide_disk_special(ide_drive_t *drive)
686{
687	special_t *s = &drive->special;
688	ide_task_t args;
689
690	memset(&args, 0, sizeof(ide_task_t));
691	args.command_type = IDE_DRIVE_TASK_NO_DATA;
692
693	if (s->b.set_geometry) {
694		s->b.set_geometry = 0;
695		ide_init_specify_cmd(drive, &args);
696	} else if (s->b.recalibrate) {
697		s->b.recalibrate = 0;
698		ide_init_restore_cmd(drive, &args);
699	} else if (s->b.set_multmode) {
700		s->b.set_multmode = 0;
701		if (drive->mult_req > drive->id->max_multsect)
702			drive->mult_req = drive->id->max_multsect;
703		ide_init_setmult_cmd(drive, &args);
704	} else if (s->all) {
705		int special = s->all;
706		s->all = 0;
707		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
708		return ide_stopped;
709	}
710
711	do_rw_taskfile(drive, &args);
712
713	return ide_started;
714}
715
716/**
717 *	do_special		-	issue some special commands
718 *	@drive: drive the command is for
719 *
720 *	do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
721 *	commands to a drive.  It used to do much more, but has been scaled
722 *	back.
723 */
724
725static ide_startstop_t do_special (ide_drive_t *drive)
726{
727	special_t *s = &drive->special;
728
729#ifdef DEBUG
730	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
731#endif
732	if (s->b.set_tune) {
733		s->b.set_tune = 0;
734		if (HWIF(drive)->tuneproc != NULL)
735			HWIF(drive)->tuneproc(drive, drive->tune_req);
736		return ide_stopped;
737	} else {
738		if (drive->media == ide_disk)
739			return ide_disk_special(drive);
740
741		s->all = 0;
742		drive->mult_req = 0;
743		return ide_stopped;
744	}
745}
746
747void ide_map_sg(ide_drive_t *drive, struct request *rq)
748{
749	ide_hwif_t *hwif = drive->hwif;
750	struct scatterlist *sg = hwif->sg_table;
751
752	if (hwif->sg_mapped)	/* needed by ide-scsi */
753		return;
754
755	if ((rq->flags & REQ_DRIVE_TASKFILE) == 0) {
756		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
757	} else {
758		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
759		hwif->sg_nents = 1;
760	}
761}
762
763EXPORT_SYMBOL_GPL(ide_map_sg);
764
765void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
766{
767	ide_hwif_t *hwif = drive->hwif;
768
769	hwif->nsect = hwif->nleft = rq->nr_sectors;
770	hwif->cursg = hwif->cursg_ofs = 0;
771}
772
773EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
774
775/**
776 *	execute_drive_command	-	issue special drive command
777 *	@drive: the drive to issue the command on
778 *	@rq: the request structure holding the command
779 *
780 *	execute_drive_cmd() issues a special drive command,  usually
781 *	initiated by ioctl() from the external hdparm program. The
782 *	command can be a drive command, drive task or taskfile
783 *	operation. Weirdly you can call it with NULL to wait for
784 *	all commands to finish. Don't do this as that is due to change
785 */
786
787static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
788		struct request *rq)
789{
790	ide_hwif_t *hwif = HWIF(drive);
791	if (rq->flags & REQ_DRIVE_TASKFILE) {
792 		ide_task_t *args = rq->special;
793
794		if (!args)
795			goto done;
796
797		hwif->data_phase = args->data_phase;
798
799		switch (hwif->data_phase) {
800		case TASKFILE_MULTI_OUT:
801		case TASKFILE_OUT:
802		case TASKFILE_MULTI_IN:
803		case TASKFILE_IN:
804			ide_init_sg_cmd(drive, rq);
805			ide_map_sg(drive, rq);
806		default:
807			break;
808		}
809
810		if (args->tf_out_flags.all != 0)
811			return flagged_taskfile(drive, args);
812		return do_rw_taskfile(drive, args);
813	} else if (rq->flags & REQ_DRIVE_TASK) {
814		u8 *args = rq->buffer;
815		u8 sel;
816
817		if (!args)
818			goto done;
819#ifdef DEBUG
820 		printk("%s: DRIVE_TASK_CMD ", drive->name);
821 		printk("cmd=0x%02x ", args[0]);
822 		printk("fr=0x%02x ", args[1]);
823 		printk("ns=0x%02x ", args[2]);
824 		printk("sc=0x%02x ", args[3]);
825 		printk("lcyl=0x%02x ", args[4]);
826 		printk("hcyl=0x%02x ", args[5]);
827 		printk("sel=0x%02x\n", args[6]);
828#endif
829 		hwif->OUTB(args[1], IDE_FEATURE_REG);
830 		hwif->OUTB(args[3], IDE_SECTOR_REG);
831 		hwif->OUTB(args[4], IDE_LCYL_REG);
832 		hwif->OUTB(args[5], IDE_HCYL_REG);
833 		sel = (args[6] & ~0x10);
834 		if (drive->select.b.unit)
835 			sel |= 0x10;
836 		hwif->OUTB(sel, IDE_SELECT_REG);
837 		ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
838 		return ide_started;
839 	} else if (rq->flags & REQ_DRIVE_CMD) {
840 		u8 *args = rq->buffer;
841
842		if (!args)
843			goto done;
844#ifdef DEBUG
845 		printk("%s: DRIVE_CMD ", drive->name);
846 		printk("cmd=0x%02x ", args[0]);
847 		printk("sc=0x%02x ", args[1]);
848 		printk("fr=0x%02x ", args[2]);
849 		printk("xx=0x%02x\n", args[3]);
850#endif
851 		if (args[0] == WIN_SMART) {
852 			hwif->OUTB(0x4f, IDE_LCYL_REG);
853 			hwif->OUTB(0xc2, IDE_HCYL_REG);
854 			hwif->OUTB(args[2],IDE_FEATURE_REG);
855 			hwif->OUTB(args[1],IDE_SECTOR_REG);
856 			ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
857 			return ide_started;
858 		}
859 		hwif->OUTB(args[2],IDE_FEATURE_REG);
860 		ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
861 		return ide_started;
862 	}
863
864done:
865 	/*
866 	 * NULL is actually a valid way of waiting for
867 	 * all current requests to be flushed from the queue.
868 	 */
869#ifdef DEBUG
870 	printk("%s: DRIVE_CMD (null)\n", drive->name);
871#endif
872 	ide_end_drive_cmd(drive,
873			hwif->INB(IDE_STATUS_REG),
874			hwif->INB(IDE_ERROR_REG));
875 	return ide_stopped;
876}
877
878static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
879{
880	struct request_pm_state *pm = rq->end_io_data;
881
882	if (blk_pm_suspend_request(rq) &&
883	    pm->pm_step == ide_pm_state_start_suspend)
884		/* Mark drive blocked when starting the suspend sequence. */
885		drive->blocked = 1;
886	else if (blk_pm_resume_request(rq) &&
887		 pm->pm_step == ide_pm_state_start_resume) {
888		/*
889		 * The first thing we do on wakeup is to wait for BSY bit to
890		 * go away (with a looong timeout) as a drive on this hwif may
891		 * just be POSTing itself.
892		 * We do that before even selecting as the "other" device on
893		 * the bus may be broken enough to walk on our toes at this
894		 * point.
895		 */
896		int rc;
897#ifdef DEBUG_PM
898		printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
899#endif
900		rc = ide_wait_not_busy(HWIF(drive), 35000);
901		if (rc)
902			printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
903		SELECT_DRIVE(drive);
904		HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]);
905		rc = ide_wait_not_busy(HWIF(drive), 10000);
906		if (rc)
907			printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
908	}
909}
910
911/**
912 *	start_request	-	start of I/O and command issuing for IDE
913 *
914 *	start_request() initiates handling of a new I/O request. It
915 *	accepts commands and I/O (read/write) requests. It also does
916 *	the final remapping for weird stuff like EZDrive. Once
917 *	device mapper can work sector level the EZDrive stuff can go away
918 *
919 *	FIXME: this function needs a rename
920 */
921
922static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
923{
924	ide_startstop_t startstop;
925	sector_t block;
926
927	BUG_ON(!(rq->flags & REQ_STARTED));
928
929#ifdef DEBUG
930	printk("%s: start_request: current=0x%08lx\n",
931		HWIF(drive)->name, (unsigned long) rq);
932#endif
933
934	/* bail early if we've exceeded max_failures */
935	if (drive->max_failures && (drive->failures > drive->max_failures)) {
936		goto kill_rq;
937	}
938
939	block    = rq->sector;
940	if (blk_fs_request(rq) &&
941	    (drive->media == ide_disk || drive->media == ide_floppy)) {
942		block += drive->sect0;
943	}
944	/* Yecch - this will shift the entire interval,
945	   possibly killing some innocent following sector */
946	if (block == 0 && drive->remap_0_to_1 == 1)
947		block = 1;  /* redirect MBR access to EZ-Drive partn table */
948
949	if (blk_pm_request(rq))
950		ide_check_pm_state(drive, rq);
951
952	SELECT_DRIVE(drive);
953	if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
954		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
955		return startstop;
956	}
957	if (!drive->special.all) {
958		ide_driver_t *drv;
959
960		if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK))
961			return execute_drive_cmd(drive, rq);
962		else if (rq->flags & REQ_DRIVE_TASKFILE)
963			return execute_drive_cmd(drive, rq);
964		else if (blk_pm_request(rq)) {
965			struct request_pm_state *pm = rq->end_io_data;
966#ifdef DEBUG_PM
967			printk("%s: start_power_step(step: %d)\n",
968				drive->name, rq->pm->pm_step);
969#endif
970			startstop = ide_start_power_step(drive, rq);
971			if (startstop == ide_stopped &&
972			    pm->pm_step == ide_pm_state_completed)
973				ide_complete_pm_request(drive, rq);
974			return startstop;
975		}
976
977		drv = *(ide_driver_t **)rq->rq_disk->private_data;
978		return drv->do_request(drive, rq, block);
979	}
980	return do_special(drive);
981kill_rq:
982	ide_kill_rq(drive, rq);
983	return ide_stopped;
984}
985
986/**
987 *	ide_stall_queue		-	pause an IDE device
988 *	@drive: drive to stall
989 *	@timeout: time to stall for (jiffies)
990 *
991 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
992 *	to the hwgroup by sleeping for timeout jiffies.
993 */
994
995void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
996{
997	if (timeout > WAIT_WORSTCASE)
998		timeout = WAIT_WORSTCASE;
999	drive->sleep = timeout + jiffies;
1000	drive->sleeping = 1;
1001}
1002
1003EXPORT_SYMBOL(ide_stall_queue);
1004
1005#define WAKEUP(drive)	((drive)->service_start + 2 * (drive)->service_time)
1006
1007/**
1008 *	choose_drive		-	select a drive to service
1009 *	@hwgroup: hardware group to select on
1010 *
1011 *	choose_drive() selects the next drive which will be serviced.
1012 *	This is necessary because the IDE layer can't issue commands
1013 *	to both drives on the same cable, unlike SCSI.
1014 */
1015
1016static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1017{
1018	ide_drive_t *drive, *best;
1019
1020repeat:
1021	best = NULL;
1022	drive = hwgroup->drive;
1023
1024	/*
1025	 * drive is doing pre-flush, ordered write, post-flush sequence. even
1026	 * though that is 3 requests, it must be seen as a single transaction.
1027	 * we must not preempt this drive until that is complete
1028	 */
1029	if (blk_queue_flushing(drive->queue)) {
1030		/*
1031		 * small race where queue could get replugged during
1032		 * the 3-request flush cycle, just yank the plug since
1033		 * we want it to finish asap
1034		 */
1035		blk_remove_plug(drive->queue);
1036		return drive;
1037	}
1038
1039	do {
1040		if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1041		    && !elv_queue_empty(drive->queue)) {
1042			if (!best
1043			 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1044			 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1045			{
1046				if (!blk_queue_plugged(drive->queue))
1047					best = drive;
1048			}
1049		}
1050	} while ((drive = drive->next) != hwgroup->drive);
1051	if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1052		long t = (signed long)(WAKEUP(best) - jiffies);
1053		if (t >= WAIT_MIN_SLEEP) {
1054		/*
1055		 * We *may* have some time to spare, but first let's see if
1056		 * someone can potentially benefit from our nice mood today..
1057		 */
1058			drive = best->next;
1059			do {
1060				if (!drive->sleeping
1061				 && time_before(jiffies - best->service_time, WAKEUP(drive))
1062				 && time_before(WAKEUP(drive), jiffies + t))
1063				{
1064					ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1065					goto repeat;
1066				}
1067			} while ((drive = drive->next) != best);
1068		}
1069	}
1070	return best;
1071}
1072
1073/*
1074 * Issue a new request to a drive from hwgroup
1075 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1076 *
1077 * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1078 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1079 * may have both interfaces in a single hwgroup to "serialize" access.
1080 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1081 * together into one hwgroup for serialized access.
1082 *
1083 * Note also that several hwgroups can end up sharing a single IRQ,
1084 * possibly along with many other devices.  This is especially common in
1085 * PCI-based systems with off-board IDE controller cards.
1086 *
1087 * The IDE driver uses the single global ide_lock spinlock to protect
1088 * access to the request queues, and to protect the hwgroup->busy flag.
1089 *
1090 * The first thread into the driver for a particular hwgroup sets the
1091 * hwgroup->busy flag to indicate that this hwgroup is now active,
1092 * and then initiates processing of the top request from the request queue.
1093 *
1094 * Other threads attempting entry notice the busy setting, and will simply
1095 * queue their new requests and exit immediately.  Note that hwgroup->busy
1096 * remains set even when the driver is merely awaiting the next interrupt.
1097 * Thus, the meaning is "this hwgroup is busy processing a request".
1098 *
1099 * When processing of a request completes, the completing thread or IRQ-handler
1100 * will start the next request from the queue.  If no more work remains,
1101 * the driver will clear the hwgroup->busy flag and exit.
1102 *
1103 * The ide_lock (spinlock) is used to protect all access to the
1104 * hwgroup->busy flag, but is otherwise not needed for most processing in
1105 * the driver.  This makes the driver much more friendlier to shared IRQs
1106 * than previous designs, while remaining 100% (?) SMP safe and capable.
1107 */
1108static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1109{
1110	ide_drive_t	*drive;
1111	ide_hwif_t	*hwif;
1112	struct request	*rq;
1113	ide_startstop_t	startstop;
1114	int             loops = 0;
1115
1116	/* for atari only: POSSIBLY BROKEN HERE(?) */
1117	ide_get_lock(ide_intr, hwgroup);
1118
1119	/* caller must own ide_lock */
1120	BUG_ON(!irqs_disabled());
1121
1122	while (!hwgroup->busy) {
1123		hwgroup->busy = 1;
1124		drive = choose_drive(hwgroup);
1125		if (drive == NULL) {
1126			int sleeping = 0;
1127			unsigned long sleep = 0; /* shut up, gcc */
1128			hwgroup->rq = NULL;
1129			drive = hwgroup->drive;
1130			do {
1131				if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1132					sleeping = 1;
1133					sleep = drive->sleep;
1134				}
1135			} while ((drive = drive->next) != hwgroup->drive);
1136			if (sleeping) {
1137		/*
1138		 * Take a short snooze, and then wake up this hwgroup again.
1139		 * This gives other hwgroups on the same a chance to
1140		 * play fairly with us, just in case there are big differences
1141		 * in relative throughputs.. don't want to hog the cpu too much.
1142		 */
1143				if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1144					sleep = jiffies + WAIT_MIN_SLEEP;
1145#if 1
1146				if (timer_pending(&hwgroup->timer))
1147					printk(KERN_CRIT "ide_set_handler: timer already active\n");
1148#endif
1149				/* so that ide_timer_expiry knows what to do */
1150				hwgroup->sleeping = 1;
1151				mod_timer(&hwgroup->timer, sleep);
1152				/* we purposely leave hwgroup->busy==1
1153				 * while sleeping */
1154			} else {
1155				/* Ugly, but how can we sleep for the lock
1156				 * otherwise? perhaps from tq_disk?
1157				 */
1158
1159				/* for atari only */
1160				ide_release_lock();
1161				hwgroup->busy = 0;
1162			}
1163
1164			/* no more work for this hwgroup (for now) */
1165			return;
1166		}
1167	again:
1168		hwif = HWIF(drive);
1169		if (hwgroup->hwif->sharing_irq &&
1170		    hwif != hwgroup->hwif &&
1171		    hwif->io_ports[IDE_CONTROL_OFFSET]) {
1172			/* set nIEN for previous hwif */
1173			SELECT_INTERRUPT(drive);
1174		}
1175		hwgroup->hwif = hwif;
1176		hwgroup->drive = drive;
1177		drive->sleeping = 0;
1178		drive->service_start = jiffies;
1179
1180		if (blk_queue_plugged(drive->queue)) {
1181			printk(KERN_ERR "ide: huh? queue was plugged!\n");
1182			break;
1183		}
1184
1185		/*
1186		 * we know that the queue isn't empty, but this can happen
1187		 * if the q->prep_rq_fn() decides to kill a request
1188		 */
1189		rq = elv_next_request(drive->queue);
1190		if (!rq) {
1191			hwgroup->busy = 0;
1192			break;
1193		}
1194
1195		/*
1196		 * Sanity: don't accept a request that isn't a PM request
1197		 * if we are currently power managed. This is very important as
1198		 * blk_stop_queue() doesn't prevent the elv_next_request()
1199		 * above to return us whatever is in the queue. Since we call
1200		 * ide_do_request() ourselves, we end up taking requests while
1201		 * the queue is blocked...
1202		 *
1203		 * We let requests forced at head of queue with ide-preempt
1204		 * though. I hope that doesn't happen too much, hopefully not
1205		 * unless the subdriver triggers such a thing in its own PM
1206		 * state machine.
1207		 *
1208		 * We count how many times we loop here to make sure we service
1209		 * all drives in the hwgroup without looping for ever
1210		 */
1211		if (drive->blocked && !blk_pm_request(rq) && !(rq->flags & REQ_PREEMPT)) {
1212			drive = drive->next ? drive->next : hwgroup->drive;
1213			if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1214				goto again;
1215			/* We clear busy, there should be no pending ATA command at this point. */
1216			hwgroup->busy = 0;
1217			break;
1218		}
1219
1220		hwgroup->rq = rq;
1221
1222		/*
1223		 * Some systems have trouble with IDE IRQs arriving while
1224		 * the driver is still setting things up.  So, here we disable
1225		 * the IRQ used by this interface while the request is being started.
1226		 * This may look bad at first, but pretty much the same thing
1227		 * happens anyway when any interrupt comes in, IDE or otherwise
1228		 *  -- the kernel masks the IRQ while it is being handled.
1229		 */
1230		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1231			disable_irq_nosync(hwif->irq);
1232		spin_unlock(&ide_lock);
1233		local_irq_enable();
1234			/* allow other IRQs while we start this request */
1235		startstop = start_request(drive, rq);
1236		spin_lock_irq(&ide_lock);
1237		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1238			enable_irq(hwif->irq);
1239		if (startstop == ide_stopped)
1240			hwgroup->busy = 0;
1241	}
1242}
1243
1244/*
1245 * Passes the stuff to ide_do_request
1246 */
1247void do_ide_request(request_queue_t *q)
1248{
1249	ide_drive_t *drive = q->queuedata;
1250
1251	ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1252}
1253
1254/*
1255 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1256 * retry the current request in pio mode instead of risking tossing it
1257 * all away
1258 */
1259static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1260{
1261	ide_hwif_t *hwif = HWIF(drive);
1262	struct request *rq;
1263	ide_startstop_t ret = ide_stopped;
1264
1265	/*
1266	 * end current dma transaction
1267	 */
1268
1269	if (error < 0) {
1270		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1271		(void)HWIF(drive)->ide_dma_end(drive);
1272		ret = ide_error(drive, "dma timeout error",
1273						hwif->INB(IDE_STATUS_REG));
1274	} else {
1275		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1276		(void) hwif->ide_dma_timeout(drive);
1277	}
1278
1279	/*
1280	 * disable dma for now, but remember that we did so because of
1281	 * a timeout -- we'll reenable after we finish this next request
1282	 * (or rather the first chunk of it) in pio.
1283	 */
1284	drive->retry_pio++;
1285	drive->state = DMA_PIO_RETRY;
1286	(void) hwif->ide_dma_off_quietly(drive);
1287
1288	/*
1289	 * un-busy drive etc (hwgroup->busy is cleared on return) and
1290	 * make sure request is sane
1291	 */
1292	rq = HWGROUP(drive)->rq;
1293	HWGROUP(drive)->rq = NULL;
1294
1295	rq->errors = 0;
1296
1297	if (!rq->bio)
1298		goto out;
1299
1300	rq->sector = rq->bio->bi_sector;
1301	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1302	rq->hard_cur_sectors = rq->current_nr_sectors;
1303	rq->buffer = bio_data(rq->bio);
1304out:
1305	return ret;
1306}
1307
1308/**
1309 *	ide_timer_expiry	-	handle lack of an IDE interrupt
1310 *	@data: timer callback magic (hwgroup)
1311 *
1312 *	An IDE command has timed out before the expected drive return
1313 *	occurred. At this point we attempt to clean up the current
1314 *	mess. If the current handler includes an expiry handler then
1315 *	we invoke the expiry handler, and providing it is happy the
1316 *	work is done. If that fails we apply generic recovery rules
1317 *	invoking the handler and checking the drive DMA status. We
1318 *	have an excessively incestuous relationship with the DMA
1319 *	logic that wants cleaning up.
1320 */
1321
1322void ide_timer_expiry (unsigned long data)
1323{
1324	ide_hwgroup_t	*hwgroup = (ide_hwgroup_t *) data;
1325	ide_handler_t	*handler;
1326	ide_expiry_t	*expiry;
1327	unsigned long	flags;
1328	unsigned long	wait = -1;
1329
1330	spin_lock_irqsave(&ide_lock, flags);
1331
1332	if ((handler = hwgroup->handler) == NULL) {
1333		/*
1334		 * Either a marginal timeout occurred
1335		 * (got the interrupt just as timer expired),
1336		 * or we were "sleeping" to give other devices a chance.
1337		 * Either way, we don't really want to complain about anything.
1338		 */
1339		if (hwgroup->sleeping) {
1340			hwgroup->sleeping = 0;
1341			hwgroup->busy = 0;
1342		}
1343	} else {
1344		ide_drive_t *drive = hwgroup->drive;
1345		if (!drive) {
1346			printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1347			hwgroup->handler = NULL;
1348		} else {
1349			ide_hwif_t *hwif;
1350			ide_startstop_t startstop = ide_stopped;
1351			if (!hwgroup->busy) {
1352				hwgroup->busy = 1;	/* paranoia */
1353				printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1354			}
1355			if ((expiry = hwgroup->expiry) != NULL) {
1356				/* continue */
1357				if ((wait = expiry(drive)) > 0) {
1358					/* reset timer */
1359					hwgroup->timer.expires  = jiffies + wait;
1360					add_timer(&hwgroup->timer);
1361					spin_unlock_irqrestore(&ide_lock, flags);
1362					return;
1363				}
1364			}
1365			hwgroup->handler = NULL;
1366			/*
1367			 * We need to simulate a real interrupt when invoking
1368			 * the handler() function, which means we need to
1369			 * globally mask the specific IRQ:
1370			 */
1371			spin_unlock(&ide_lock);
1372			hwif  = HWIF(drive);
1373#if DISABLE_IRQ_NOSYNC
1374			disable_irq_nosync(hwif->irq);
1375#else
1376			/* disable_irq_nosync ?? */
1377			disable_irq(hwif->irq);
1378#endif /* DISABLE_IRQ_NOSYNC */
1379			/* local CPU only,
1380			 * as if we were handling an interrupt */
1381			local_irq_disable();
1382			if (hwgroup->polling) {
1383				startstop = handler(drive);
1384			} else if (drive_is_ready(drive)) {
1385				if (drive->waiting_for_dma)
1386					(void) hwgroup->hwif->ide_dma_lostirq(drive);
1387				(void)ide_ack_intr(hwif);
1388				printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1389				startstop = handler(drive);
1390			} else {
1391				if (drive->waiting_for_dma) {
1392					startstop = ide_dma_timeout_retry(drive, wait);
1393				} else
1394					startstop =
1395					ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1396			}
1397			drive->service_time = jiffies - drive->service_start;
1398			spin_lock_irq(&ide_lock);
1399			enable_irq(hwif->irq);
1400			if (startstop == ide_stopped)
1401				hwgroup->busy = 0;
1402		}
1403	}
1404	ide_do_request(hwgroup, IDE_NO_IRQ);
1405	spin_unlock_irqrestore(&ide_lock, flags);
1406}
1407
1408/**
1409 *	unexpected_intr		-	handle an unexpected IDE interrupt
1410 *	@irq: interrupt line
1411 *	@hwgroup: hwgroup being processed
1412 *
1413 *	There's nothing really useful we can do with an unexpected interrupt,
1414 *	other than reading the status register (to clear it), and logging it.
1415 *	There should be no way that an irq can happen before we're ready for it,
1416 *	so we needn't worry much about losing an "important" interrupt here.
1417 *
1418 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1419 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
1420 *	looks "good", we just ignore the interrupt completely.
1421 *
1422 *	This routine assumes __cli() is in effect when called.
1423 *
1424 *	If an unexpected interrupt happens on irq15 while we are handling irq14
1425 *	and if the two interfaces are "serialized" (CMD640), then it looks like
1426 *	we could screw up by interfering with a new request being set up for
1427 *	irq15.
1428 *
1429 *	In reality, this is a non-issue.  The new command is not sent unless
1430 *	the drive is ready to accept one, in which case we know the drive is
1431 *	not trying to interrupt us.  And ide_set_handler() is always invoked
1432 *	before completing the issuance of any new drive command, so we will not
1433 *	be accidentally invoked as a result of any valid command completion
1434 *	interrupt.
1435 *
1436 *	Note that we must walk the entire hwgroup here. We know which hwif
1437 *	is doing the current command, but we don't know which hwif burped
1438 *	mysteriously.
1439 */
1440
1441static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1442{
1443	u8 stat;
1444	ide_hwif_t *hwif = hwgroup->hwif;
1445
1446	/*
1447	 * handle the unexpected interrupt
1448	 */
1449	do {
1450		if (hwif->irq == irq) {
1451			stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1452			if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1453				/* Try to not flood the console with msgs */
1454				static unsigned long last_msgtime, count;
1455				++count;
1456				if (time_after(jiffies, last_msgtime + HZ)) {
1457					last_msgtime = jiffies;
1458					printk(KERN_ERR "%s%s: unexpected interrupt, "
1459						"status=0x%02x, count=%ld\n",
1460						hwif->name,
1461						(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1462				}
1463			}
1464		}
1465	} while ((hwif = hwif->next) != hwgroup->hwif);
1466}
1467
1468/**
1469 *	ide_intr	-	default IDE interrupt handler
1470 *	@irq: interrupt number
1471 *	@dev_id: hwif group
1472 *	@regs: unused weirdness from the kernel irq layer
1473 *
1474 *	This is the default IRQ handler for the IDE layer. You should
1475 *	not need to override it. If you do be aware it is subtle in
1476 *	places
1477 *
1478 *	hwgroup->hwif is the interface in the group currently performing
1479 *	a command. hwgroup->drive is the drive and hwgroup->handler is
1480 *	the IRQ handler to call. As we issue a command the handlers
1481 *	step through multiple states, reassigning the handler to the
1482 *	next step in the process. Unlike a smart SCSI controller IDE
1483 *	expects the main processor to sequence the various transfer
1484 *	stages. We also manage a poll timer to catch up with most
1485 *	timeout situations. There are still a few where the handlers
1486 *	don't ever decide to give up.
1487 *
1488 *	The handler eventually returns ide_stopped to indicate the
1489 *	request completed. At this point we issue the next request
1490 *	on the hwgroup and the process begins again.
1491 */
1492
1493irqreturn_t ide_intr (int irq, void *dev_id, struct pt_regs *regs)
1494{
1495	unsigned long flags;
1496	ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1497	ide_hwif_t *hwif;
1498	ide_drive_t *drive;
1499	ide_handler_t *handler;
1500	ide_startstop_t startstop;
1501
1502	spin_lock_irqsave(&ide_lock, flags);
1503	hwif = hwgroup->hwif;
1504
1505	if (!ide_ack_intr(hwif)) {
1506		spin_unlock_irqrestore(&ide_lock, flags);
1507		return IRQ_NONE;
1508	}
1509
1510	if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1511		/*
1512		 * Not expecting an interrupt from this drive.
1513		 * That means this could be:
1514		 *	(1) an interrupt from another PCI device
1515		 *	sharing the same PCI INT# as us.
1516		 * or	(2) a drive just entered sleep or standby mode,
1517		 *	and is interrupting to let us know.
1518		 * or	(3) a spurious interrupt of unknown origin.
1519		 *
1520		 * For PCI, we cannot tell the difference,
1521		 * so in that case we just ignore it and hope it goes away.
1522		 *
1523		 * FIXME: unexpected_intr should be hwif-> then we can
1524		 * remove all the ifdef PCI crap
1525		 */
1526#ifdef CONFIG_BLK_DEV_IDEPCI
1527		if (hwif->pci_dev && !hwif->pci_dev->vendor)
1528#endif	/* CONFIG_BLK_DEV_IDEPCI */
1529		{
1530			/*
1531			 * Probably not a shared PCI interrupt,
1532			 * so we can safely try to do something about it:
1533			 */
1534			unexpected_intr(irq, hwgroup);
1535#ifdef CONFIG_BLK_DEV_IDEPCI
1536		} else {
1537			/*
1538			 * Whack the status register, just in case
1539			 * we have a leftover pending IRQ.
1540			 */
1541			(void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1542#endif /* CONFIG_BLK_DEV_IDEPCI */
1543		}
1544		spin_unlock_irqrestore(&ide_lock, flags);
1545		return IRQ_NONE;
1546	}
1547	drive = hwgroup->drive;
1548	if (!drive) {
1549		/*
1550		 * This should NEVER happen, and there isn't much
1551		 * we could do about it here.
1552		 *
1553		 * [Note - this can occur if the drive is hot unplugged]
1554		 */
1555		spin_unlock_irqrestore(&ide_lock, flags);
1556		return IRQ_HANDLED;
1557	}
1558	if (!drive_is_ready(drive)) {
1559		/*
1560		 * This happens regularly when we share a PCI IRQ with
1561		 * another device.  Unfortunately, it can also happen
1562		 * with some buggy drives that trigger the IRQ before
1563		 * their status register is up to date.  Hopefully we have
1564		 * enough advance overhead that the latter isn't a problem.
1565		 */
1566		spin_unlock_irqrestore(&ide_lock, flags);
1567		return IRQ_NONE;
1568	}
1569	if (!hwgroup->busy) {
1570		hwgroup->busy = 1;	/* paranoia */
1571		printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1572	}
1573	hwgroup->handler = NULL;
1574	del_timer(&hwgroup->timer);
1575	spin_unlock(&ide_lock);
1576
1577	if (drive->unmask)
1578		local_irq_enable();
1579	/* service this interrupt, may set handler for next interrupt */
1580	startstop = handler(drive);
1581	spin_lock_irq(&ide_lock);
1582
1583	/*
1584	 * Note that handler() may have set things up for another
1585	 * interrupt to occur soon, but it cannot happen until
1586	 * we exit from this routine, because it will be the
1587	 * same irq as is currently being serviced here, and Linux
1588	 * won't allow another of the same (on any CPU) until we return.
1589	 */
1590	drive->service_time = jiffies - drive->service_start;
1591	if (startstop == ide_stopped) {
1592		if (hwgroup->handler == NULL) {	/* paranoia */
1593			hwgroup->busy = 0;
1594			ide_do_request(hwgroup, hwif->irq);
1595		} else {
1596			printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1597				"on exit\n", drive->name);
1598		}
1599	}
1600	spin_unlock_irqrestore(&ide_lock, flags);
1601	return IRQ_HANDLED;
1602}
1603
1604/**
1605 *	ide_init_drive_cmd	-	initialize a drive command request
1606 *	@rq: request object
1607 *
1608 *	Initialize a request before we fill it in and send it down to
1609 *	ide_do_drive_cmd. Commands must be set up by this function. Right
1610 *	now it doesn't do a lot, but if that changes abusers will have a
1611 *	nasty suprise.
1612 */
1613
1614void ide_init_drive_cmd (struct request *rq)
1615{
1616	memset(rq, 0, sizeof(*rq));
1617	rq->flags = REQ_DRIVE_CMD;
1618	rq->ref_count = 1;
1619}
1620
1621EXPORT_SYMBOL(ide_init_drive_cmd);
1622
1623/**
1624 *	ide_do_drive_cmd	-	issue IDE special command
1625 *	@drive: device to issue command
1626 *	@rq: request to issue
1627 *	@action: action for processing
1628 *
1629 *	This function issues a special IDE device request
1630 *	onto the request queue.
1631 *
1632 *	If action is ide_wait, then the rq is queued at the end of the
1633 *	request queue, and the function sleeps until it has been processed.
1634 *	This is for use when invoked from an ioctl handler.
1635 *
1636 *	If action is ide_preempt, then the rq is queued at the head of
1637 *	the request queue, displacing the currently-being-processed
1638 *	request and this function returns immediately without waiting
1639 *	for the new rq to be completed.  This is VERY DANGEROUS, and is
1640 *	intended for careful use by the ATAPI tape/cdrom driver code.
1641 *
1642 *	If action is ide_end, then the rq is queued at the end of the
1643 *	request queue, and the function returns immediately without waiting
1644 *	for the new rq to be completed. This is again intended for careful
1645 *	use by the ATAPI tape/cdrom driver code.
1646 */
1647
1648int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1649{
1650	unsigned long flags;
1651	ide_hwgroup_t *hwgroup = HWGROUP(drive);
1652	DECLARE_COMPLETION(wait);
1653	int where = ELEVATOR_INSERT_BACK, err;
1654	int must_wait = (action == ide_wait || action == ide_head_wait);
1655
1656	rq->errors = 0;
1657	rq->rq_status = RQ_ACTIVE;
1658
1659	/*
1660	 * we need to hold an extra reference to request for safe inspection
1661	 * after completion
1662	 */
1663	if (must_wait) {
1664		rq->ref_count++;
1665		rq->waiting = &wait;
1666		rq->end_io = blk_end_sync_rq;
1667	}
1668
1669	spin_lock_irqsave(&ide_lock, flags);
1670	if (action == ide_preempt)
1671		hwgroup->rq = NULL;
1672	if (action == ide_preempt || action == ide_head_wait) {
1673		where = ELEVATOR_INSERT_FRONT;
1674		rq->flags |= REQ_PREEMPT;
1675	}
1676	__elv_add_request(drive->queue, rq, where, 0);
1677	ide_do_request(hwgroup, IDE_NO_IRQ);
1678	spin_unlock_irqrestore(&ide_lock, flags);
1679
1680	err = 0;
1681	if (must_wait) {
1682		wait_for_completion(&wait);
1683		rq->waiting = NULL;
1684		if (rq->errors)
1685			err = -EIO;
1686
1687		blk_put_request(rq);
1688	}
1689
1690	return err;
1691}
1692
1693EXPORT_SYMBOL(ide_do_drive_cmd);
1694