ide-io.c revision b46f205da647608a4064ce0a0acb07a8c74c6f23
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/hdreg.h>
44#include <linux/completion.h>
45#include <linux/reboot.h>
46#include <linux/cdrom.h>
47#include <linux/seq_file.h>
48#include <linux/device.h>
49#include <linux/kmod.h>
50#include <linux/scatterlist.h>
51#include <linux/bitops.h>
52
53#include <asm/byteorder.h>
54#include <asm/irq.h>
55#include <asm/uaccess.h>
56#include <asm/io.h>
57
58static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59			     int uptodate, unsigned int nr_bytes, int dequeue)
60{
61	int ret = 1;
62	int error = 0;
63
64	if (uptodate <= 0)
65		error = uptodate ? uptodate : -EIO;
66
67	/*
68	 * if failfast is set on a request, override number of sectors and
69	 * complete the whole request right now
70	 */
71	if (blk_noretry_request(rq) && error)
72		nr_bytes = rq->hard_nr_sectors << 9;
73
74	if (!blk_fs_request(rq) && error && !rq->errors)
75		rq->errors = -EIO;
76
77	/*
78	 * decide whether to reenable DMA -- 3 is a random magic for now,
79	 * if we DMA timeout more than 3 times, just stay in PIO
80	 */
81	if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82	    drive->retry_pio <= 3) {
83		drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84		ide_dma_on(drive);
85	}
86
87	if (!blk_end_request(rq, error, nr_bytes))
88		ret = 0;
89
90	if (ret == 0 && dequeue)
91		drive->hwif->hwgroup->rq = NULL;
92
93	return ret;
94}
95
96/**
97 *	ide_end_request		-	complete an IDE I/O
98 *	@drive: IDE device for the I/O
99 *	@uptodate:
100 *	@nr_sectors: number of sectors completed
101 *
102 *	This is our end_request wrapper function. We complete the I/O
103 *	update random number input and dequeue the request, which if
104 *	it was tagged may be out of order.
105 */
106
107int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108{
109	unsigned int nr_bytes = nr_sectors << 9;
110	struct request *rq = drive->hwif->hwgroup->rq;
111
112	if (!nr_bytes) {
113		if (blk_pc_request(rq))
114			nr_bytes = rq->data_len;
115		else
116			nr_bytes = rq->hard_cur_sectors << 9;
117	}
118
119	return __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
120}
121EXPORT_SYMBOL(ide_end_request);
122
123/**
124 *	ide_end_dequeued_request	-	complete an IDE I/O
125 *	@drive: IDE device for the I/O
126 *	@uptodate:
127 *	@nr_sectors: number of sectors completed
128 *
129 *	Complete an I/O that is no longer on the request queue. This
130 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
131 *	We must still finish the old request but we must not tamper with the
132 *	queue in the meantime.
133 *
134 *	NOTE: This path does not handle barrier, but barrier is not supported
135 *	on ide-cd anyway.
136 */
137
138int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
139			     int uptodate, int nr_sectors)
140{
141	BUG_ON(!blk_rq_started(rq));
142
143	return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
144}
145EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
146
147/**
148 *	ide_end_drive_cmd	-	end an explicit drive command
149 *	@drive: command
150 *	@stat: status bits
151 *	@err: error bits
152 *
153 *	Clean up after success/failure of an explicit drive command.
154 *	These get thrown onto the queue so they are synchronized with
155 *	real I/O operations on the drive.
156 *
157 *	In LBA48 mode we have to read the register set twice to get
158 *	all the extra information out.
159 */
160
161void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
162{
163	ide_hwgroup_t *hwgroup = drive->hwif->hwgroup;
164	struct request *rq = hwgroup->rq;
165
166	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
167		ide_task_t *task = (ide_task_t *)rq->special;
168
169		if (task) {
170			struct ide_taskfile *tf = &task->tf;
171
172			tf->error = err;
173			tf->status = stat;
174
175			drive->hwif->tp_ops->tf_read(drive, task);
176
177			if (task->tf_flags & IDE_TFLAG_DYN)
178				kfree(task);
179		}
180	} else if (blk_pm_request(rq)) {
181		struct request_pm_state *pm = rq->data;
182
183		ide_complete_power_step(drive, rq);
184		if (pm->pm_step == IDE_PM_COMPLETED)
185			ide_complete_pm_request(drive, rq);
186		return;
187	}
188
189	hwgroup->rq = NULL;
190
191	rq->errors = err;
192
193	if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0),
194				     blk_rq_bytes(rq))))
195		BUG();
196}
197EXPORT_SYMBOL(ide_end_drive_cmd);
198
199static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
200{
201	if (rq->rq_disk) {
202		ide_driver_t *drv;
203
204		drv = *(ide_driver_t **)rq->rq_disk->private_data;
205		drv->end_request(drive, 0, 0);
206	} else
207		ide_end_request(drive, 0, 0);
208}
209
210static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
211{
212	ide_hwif_t *hwif = drive->hwif;
213
214	if ((stat & ATA_BUSY) ||
215	    ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
216		/* other bits are useless when BUSY */
217		rq->errors |= ERROR_RESET;
218	} else if (stat & ATA_ERR) {
219		/* err has different meaning on cdrom and tape */
220		if (err == ATA_ABORTED) {
221			if ((drive->dev_flags & IDE_DFLAG_LBA) &&
222			    /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
223			    hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
224				return ide_stopped;
225		} else if ((err & BAD_CRC) == BAD_CRC) {
226			/* UDMA crc error, just retry the operation */
227			drive->crc_count++;
228		} else if (err & (ATA_BBK | ATA_UNC)) {
229			/* retries won't help these */
230			rq->errors = ERROR_MAX;
231		} else if (err & ATA_TRK0NF) {
232			/* help it find track zero */
233			rq->errors |= ERROR_RECAL;
234		}
235	}
236
237	if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
238	    (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
239		int nsect = drive->mult_count ? drive->mult_count : 1;
240
241		ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
242	}
243
244	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
245		ide_kill_rq(drive, rq);
246		return ide_stopped;
247	}
248
249	if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
250		rq->errors |= ERROR_RESET;
251
252	if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
253		++rq->errors;
254		return ide_do_reset(drive);
255	}
256
257	if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
258		drive->special.b.recalibrate = 1;
259
260	++rq->errors;
261
262	return ide_stopped;
263}
264
265static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
266{
267	ide_hwif_t *hwif = drive->hwif;
268
269	if ((stat & ATA_BUSY) ||
270	    ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
271		/* other bits are useless when BUSY */
272		rq->errors |= ERROR_RESET;
273	} else {
274		/* add decoding error stuff */
275	}
276
277	if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
278		/* force an abort */
279		hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
280
281	if (rq->errors >= ERROR_MAX) {
282		ide_kill_rq(drive, rq);
283	} else {
284		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
285			++rq->errors;
286			return ide_do_reset(drive);
287		}
288		++rq->errors;
289	}
290
291	return ide_stopped;
292}
293
294ide_startstop_t
295__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
296{
297	if (drive->media == ide_disk)
298		return ide_ata_error(drive, rq, stat, err);
299	return ide_atapi_error(drive, rq, stat, err);
300}
301
302EXPORT_SYMBOL_GPL(__ide_error);
303
304/**
305 *	ide_error	-	handle an error on the IDE
306 *	@drive: drive the error occurred on
307 *	@msg: message to report
308 *	@stat: status bits
309 *
310 *	ide_error() takes action based on the error returned by the drive.
311 *	For normal I/O that may well include retries. We deal with
312 *	both new-style (taskfile) and old style command handling here.
313 *	In the case of taskfile command handling there is work left to
314 *	do
315 */
316
317ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
318{
319	struct request *rq;
320	u8 err;
321
322	err = ide_dump_status(drive, msg, stat);
323
324	if ((rq = HWGROUP(drive)->rq) == NULL)
325		return ide_stopped;
326
327	/* retry only "normal" I/O: */
328	if (!blk_fs_request(rq)) {
329		rq->errors = 1;
330		ide_end_drive_cmd(drive, stat, err);
331		return ide_stopped;
332	}
333
334	if (rq->rq_disk) {
335		ide_driver_t *drv;
336
337		drv = *(ide_driver_t **)rq->rq_disk->private_data;
338		return drv->error(drive, rq, stat, err);
339	} else
340		return __ide_error(drive, rq, stat, err);
341}
342
343EXPORT_SYMBOL_GPL(ide_error);
344
345static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
346{
347	tf->nsect   = drive->sect;
348	tf->lbal    = drive->sect;
349	tf->lbam    = drive->cyl;
350	tf->lbah    = drive->cyl >> 8;
351	tf->device  = (drive->head - 1) | drive->select;
352	tf->command = ATA_CMD_INIT_DEV_PARAMS;
353}
354
355static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
356{
357	tf->nsect   = drive->sect;
358	tf->command = ATA_CMD_RESTORE;
359}
360
361static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
362{
363	tf->nsect   = drive->mult_req;
364	tf->command = ATA_CMD_SET_MULTI;
365}
366
367static ide_startstop_t ide_disk_special(ide_drive_t *drive)
368{
369	special_t *s = &drive->special;
370	ide_task_t args;
371
372	memset(&args, 0, sizeof(ide_task_t));
373	args.data_phase = TASKFILE_NO_DATA;
374
375	if (s->b.set_geometry) {
376		s->b.set_geometry = 0;
377		ide_tf_set_specify_cmd(drive, &args.tf);
378	} else if (s->b.recalibrate) {
379		s->b.recalibrate = 0;
380		ide_tf_set_restore_cmd(drive, &args.tf);
381	} else if (s->b.set_multmode) {
382		s->b.set_multmode = 0;
383		ide_tf_set_setmult_cmd(drive, &args.tf);
384	} else if (s->all) {
385		int special = s->all;
386		s->all = 0;
387		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
388		return ide_stopped;
389	}
390
391	args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
392			IDE_TFLAG_CUSTOM_HANDLER;
393
394	do_rw_taskfile(drive, &args);
395
396	return ide_started;
397}
398
399/**
400 *	do_special		-	issue some special commands
401 *	@drive: drive the command is for
402 *
403 *	do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
404 *	ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
405 *
406 *	It used to do much more, but has been scaled back.
407 */
408
409static ide_startstop_t do_special (ide_drive_t *drive)
410{
411	special_t *s = &drive->special;
412
413#ifdef DEBUG
414	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
415#endif
416	if (drive->media == ide_disk)
417		return ide_disk_special(drive);
418
419	s->all = 0;
420	drive->mult_req = 0;
421	return ide_stopped;
422}
423
424void ide_map_sg(ide_drive_t *drive, struct request *rq)
425{
426	ide_hwif_t *hwif = drive->hwif;
427	struct scatterlist *sg = hwif->sg_table;
428
429	if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
430		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
431	} else {
432		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
433		hwif->sg_nents = 1;
434	}
435}
436
437EXPORT_SYMBOL_GPL(ide_map_sg);
438
439void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
440{
441	ide_hwif_t *hwif = drive->hwif;
442
443	hwif->nsect = hwif->nleft = rq->nr_sectors;
444	hwif->cursg_ofs = 0;
445	hwif->cursg = NULL;
446}
447
448EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
449
450/**
451 *	execute_drive_command	-	issue special drive command
452 *	@drive: the drive to issue the command on
453 *	@rq: the request structure holding the command
454 *
455 *	execute_drive_cmd() issues a special drive command,  usually
456 *	initiated by ioctl() from the external hdparm program. The
457 *	command can be a drive command, drive task or taskfile
458 *	operation. Weirdly you can call it with NULL to wait for
459 *	all commands to finish. Don't do this as that is due to change
460 */
461
462static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
463		struct request *rq)
464{
465	ide_hwif_t *hwif = HWIF(drive);
466	ide_task_t *task = rq->special;
467
468	if (task) {
469		hwif->data_phase = task->data_phase;
470
471		switch (hwif->data_phase) {
472		case TASKFILE_MULTI_OUT:
473		case TASKFILE_OUT:
474		case TASKFILE_MULTI_IN:
475		case TASKFILE_IN:
476			ide_init_sg_cmd(drive, rq);
477			ide_map_sg(drive, rq);
478		default:
479			break;
480		}
481
482		return do_rw_taskfile(drive, task);
483	}
484
485 	/*
486 	 * NULL is actually a valid way of waiting for
487 	 * all current requests to be flushed from the queue.
488 	 */
489#ifdef DEBUG
490 	printk("%s: DRIVE_CMD (null)\n", drive->name);
491#endif
492	ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
493			  ide_read_error(drive));
494
495 	return ide_stopped;
496}
497
498int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
499		       int arg)
500{
501	struct request_queue *q = drive->queue;
502	struct request *rq;
503	int ret = 0;
504
505	if (!(setting->flags & DS_SYNC))
506		return setting->set(drive, arg);
507
508	rq = blk_get_request(q, READ, __GFP_WAIT);
509	rq->cmd_type = REQ_TYPE_SPECIAL;
510	rq->cmd_len = 5;
511	rq->cmd[0] = REQ_DEVSET_EXEC;
512	*(int *)&rq->cmd[1] = arg;
513	rq->special = setting->set;
514
515	if (blk_execute_rq(q, NULL, rq, 0))
516		ret = rq->errors;
517	blk_put_request(rq);
518
519	return ret;
520}
521EXPORT_SYMBOL_GPL(ide_devset_execute);
522
523static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
524{
525	u8 cmd = rq->cmd[0];
526
527	if (cmd == REQ_PARK_HEADS || cmd == REQ_UNPARK_HEADS) {
528		ide_task_t task;
529		struct ide_taskfile *tf = &task.tf;
530
531		memset(&task, 0, sizeof(task));
532		if (cmd == REQ_PARK_HEADS) {
533			drive->sleep = *(unsigned long *)rq->special;
534			drive->dev_flags |= IDE_DFLAG_SLEEPING;
535			tf->command = ATA_CMD_IDLEIMMEDIATE;
536			tf->feature = 0x44;
537			tf->lbal = 0x4c;
538			tf->lbam = 0x4e;
539			tf->lbah = 0x55;
540			task.tf_flags |= IDE_TFLAG_CUSTOM_HANDLER;
541		} else		/* cmd == REQ_UNPARK_HEADS */
542			tf->command = ATA_CMD_CHK_POWER;
543
544		task.tf_flags |= IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
545		task.rq = rq;
546		drive->hwif->data_phase = task.data_phase = TASKFILE_NO_DATA;
547		return do_rw_taskfile(drive, &task);
548	}
549
550	switch (cmd) {
551	case REQ_DEVSET_EXEC:
552	{
553		int err, (*setfunc)(ide_drive_t *, int) = rq->special;
554
555		err = setfunc(drive, *(int *)&rq->cmd[1]);
556		if (err)
557			rq->errors = err;
558		else
559			err = 1;
560		ide_end_request(drive, err, 0);
561		return ide_stopped;
562	}
563	case REQ_DRIVE_RESET:
564		return ide_do_reset(drive);
565	default:
566		blk_dump_rq_flags(rq, "ide_special_rq - bad request");
567		ide_end_request(drive, 0, 0);
568		return ide_stopped;
569	}
570}
571
572/**
573 *	start_request	-	start of I/O and command issuing for IDE
574 *
575 *	start_request() initiates handling of a new I/O request. It
576 *	accepts commands and I/O (read/write) requests.
577 *
578 *	FIXME: this function needs a rename
579 */
580
581static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
582{
583	ide_startstop_t startstop;
584
585	BUG_ON(!blk_rq_started(rq));
586
587#ifdef DEBUG
588	printk("%s: start_request: current=0x%08lx\n",
589		HWIF(drive)->name, (unsigned long) rq);
590#endif
591
592	/* bail early if we've exceeded max_failures */
593	if (drive->max_failures && (drive->failures > drive->max_failures)) {
594		rq->cmd_flags |= REQ_FAILED;
595		goto kill_rq;
596	}
597
598	if (blk_pm_request(rq))
599		ide_check_pm_state(drive, rq);
600
601	SELECT_DRIVE(drive);
602	if (ide_wait_stat(&startstop, drive, drive->ready_stat,
603			  ATA_BUSY | ATA_DRQ, WAIT_READY)) {
604		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
605		return startstop;
606	}
607	if (!drive->special.all) {
608		ide_driver_t *drv;
609
610		/*
611		 * We reset the drive so we need to issue a SETFEATURES.
612		 * Do it _after_ do_special() restored device parameters.
613		 */
614		if (drive->current_speed == 0xff)
615			ide_config_drive_speed(drive, drive->desired_speed);
616
617		if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
618			return execute_drive_cmd(drive, rq);
619		else if (blk_pm_request(rq)) {
620			struct request_pm_state *pm = rq->data;
621#ifdef DEBUG_PM
622			printk("%s: start_power_step(step: %d)\n",
623				drive->name, pm->pm_step);
624#endif
625			startstop = ide_start_power_step(drive, rq);
626			if (startstop == ide_stopped &&
627			    pm->pm_step == IDE_PM_COMPLETED)
628				ide_complete_pm_request(drive, rq);
629			return startstop;
630		} else if (!rq->rq_disk && blk_special_request(rq))
631			/*
632			 * TODO: Once all ULDs have been modified to
633			 * check for specific op codes rather than
634			 * blindly accepting any special request, the
635			 * check for ->rq_disk above may be replaced
636			 * by a more suitable mechanism or even
637			 * dropped entirely.
638			 */
639			return ide_special_rq(drive, rq);
640
641		drv = *(ide_driver_t **)rq->rq_disk->private_data;
642
643		return drv->do_request(drive, rq, rq->sector);
644	}
645	return do_special(drive);
646kill_rq:
647	ide_kill_rq(drive, rq);
648	return ide_stopped;
649}
650
651/**
652 *	ide_stall_queue		-	pause an IDE device
653 *	@drive: drive to stall
654 *	@timeout: time to stall for (jiffies)
655 *
656 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
657 *	to the hwgroup by sleeping for timeout jiffies.
658 */
659
660void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
661{
662	if (timeout > WAIT_WORSTCASE)
663		timeout = WAIT_WORSTCASE;
664	drive->sleep = timeout + jiffies;
665	drive->dev_flags |= IDE_DFLAG_SLEEPING;
666}
667EXPORT_SYMBOL(ide_stall_queue);
668
669/*
670 * Issue a new request to a drive from hwgroup
671 *
672 * A hwgroup is a serialized group of IDE interfaces.  Usually there is
673 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
674 * may have both interfaces in a single hwgroup to "serialize" access.
675 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
676 * together into one hwgroup for serialized access.
677 *
678 * Note also that several hwgroups can end up sharing a single IRQ,
679 * possibly along with many other devices.  This is especially common in
680 * PCI-based systems with off-board IDE controller cards.
681 *
682 * The IDE driver uses a per-hwgroup lock to protect the hwgroup->busy flag.
683 *
684 * The first thread into the driver for a particular hwgroup sets the
685 * hwgroup->busy flag to indicate that this hwgroup is now active,
686 * and then initiates processing of the top request from the request queue.
687 *
688 * Other threads attempting entry notice the busy setting, and will simply
689 * queue their new requests and exit immediately.  Note that hwgroup->busy
690 * remains set even when the driver is merely awaiting the next interrupt.
691 * Thus, the meaning is "this hwgroup is busy processing a request".
692 *
693 * When processing of a request completes, the completing thread or IRQ-handler
694 * will start the next request from the queue.  If no more work remains,
695 * the driver will clear the hwgroup->busy flag and exit.
696 *
697 * The per-hwgroup spinlock is used to protect all access to the
698 * hwgroup->busy flag, but is otherwise not needed for most processing in
699 * the driver.  This makes the driver much more friendlier to shared IRQs
700 * than previous designs, while remaining 100% (?) SMP safe and capable.
701 */
702void do_ide_request(struct request_queue *q)
703{
704	ide_drive_t	*drive = q->queuedata;
705	ide_hwif_t	*hwif = drive->hwif;
706	ide_hwgroup_t	*hwgroup = hwif->hwgroup;
707	struct request	*rq;
708	ide_startstop_t	startstop;
709
710	/*
711	 * drive is doing pre-flush, ordered write, post-flush sequence. even
712	 * though that is 3 requests, it must be seen as a single transaction.
713	 * we must not preempt this drive until that is complete
714	 */
715	if (blk_queue_flushing(q))
716		/*
717		 * small race where queue could get replugged during
718		 * the 3-request flush cycle, just yank the plug since
719		 * we want it to finish asap
720		 */
721		blk_remove_plug(q);
722
723	spin_unlock_irq(q->queue_lock);
724	spin_lock_irq(&hwgroup->lock);
725
726	if (!ide_lock_hwgroup(hwgroup)) {
727repeat:
728		hwgroup->rq = NULL;
729
730		if (drive->dev_flags & IDE_DFLAG_SLEEPING) {
731			if (time_before(drive->sleep, jiffies)) {
732				ide_unlock_hwgroup(hwgroup);
733				goto plug_device;
734			}
735		}
736
737		if (hwif != hwgroup->hwif) {
738			/*
739			 * set nIEN for previous hwif, drives in the
740			 * quirk_list may not like intr setups/cleanups
741			 */
742			if (drive->quirk_list == 0)
743				hwif->tp_ops->set_irq(hwif, 0);
744		}
745		hwgroup->hwif = hwif;
746		hwgroup->drive = drive;
747		drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
748
749		spin_unlock_irq(&hwgroup->lock);
750		spin_lock_irq(q->queue_lock);
751		/*
752		 * we know that the queue isn't empty, but this can happen
753		 * if the q->prep_rq_fn() decides to kill a request
754		 */
755		rq = elv_next_request(drive->queue);
756		spin_unlock_irq(q->queue_lock);
757		spin_lock_irq(&hwgroup->lock);
758
759		if (!rq) {
760			ide_unlock_hwgroup(hwgroup);
761			goto out;
762		}
763
764		/*
765		 * Sanity: don't accept a request that isn't a PM request
766		 * if we are currently power managed. This is very important as
767		 * blk_stop_queue() doesn't prevent the elv_next_request()
768		 * above to return us whatever is in the queue. Since we call
769		 * ide_do_request() ourselves, we end up taking requests while
770		 * the queue is blocked...
771		 *
772		 * We let requests forced at head of queue with ide-preempt
773		 * though. I hope that doesn't happen too much, hopefully not
774		 * unless the subdriver triggers such a thing in its own PM
775		 * state machine.
776		 */
777		if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
778		    blk_pm_request(rq) == 0 &&
779		    (rq->cmd_flags & REQ_PREEMPT) == 0) {
780			/* there should be no pending command at this point */
781			ide_unlock_hwgroup(hwgroup);
782			goto plug_device;
783		}
784
785		hwgroup->rq = rq;
786
787		spin_unlock_irq(&hwgroup->lock);
788		startstop = start_request(drive, rq);
789		spin_lock_irq(&hwgroup->lock);
790
791		if (startstop == ide_stopped)
792			goto repeat;
793	} else
794		goto plug_device;
795out:
796	spin_unlock_irq(&hwgroup->lock);
797	spin_lock_irq(q->queue_lock);
798	return;
799
800plug_device:
801	spin_unlock_irq(&hwgroup->lock);
802	spin_lock_irq(q->queue_lock);
803
804	if (!elv_queue_empty(q))
805		blk_plug_device(q);
806}
807
808/*
809 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
810 * retry the current request in pio mode instead of risking tossing it
811 * all away
812 */
813static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
814{
815	ide_hwif_t *hwif = HWIF(drive);
816	struct request *rq;
817	ide_startstop_t ret = ide_stopped;
818
819	/*
820	 * end current dma transaction
821	 */
822
823	if (error < 0) {
824		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
825		(void)hwif->dma_ops->dma_end(drive);
826		ret = ide_error(drive, "dma timeout error",
827				hwif->tp_ops->read_status(hwif));
828	} else {
829		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
830		hwif->dma_ops->dma_timeout(drive);
831	}
832
833	/*
834	 * disable dma for now, but remember that we did so because of
835	 * a timeout -- we'll reenable after we finish this next request
836	 * (or rather the first chunk of it) in pio.
837	 */
838	drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY;
839	drive->retry_pio++;
840	ide_dma_off_quietly(drive);
841
842	/*
843	 * un-busy drive etc (hwgroup->busy is cleared on return) and
844	 * make sure request is sane
845	 */
846	rq = HWGROUP(drive)->rq;
847
848	if (!rq)
849		goto out;
850
851	HWGROUP(drive)->rq = NULL;
852
853	rq->errors = 0;
854
855	if (!rq->bio)
856		goto out;
857
858	rq->sector = rq->bio->bi_sector;
859	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
860	rq->hard_cur_sectors = rq->current_nr_sectors;
861	rq->buffer = bio_data(rq->bio);
862out:
863	return ret;
864}
865
866static void ide_plug_device(ide_drive_t *drive)
867{
868	struct request_queue *q = drive->queue;
869	unsigned long flags;
870
871	spin_lock_irqsave(q->queue_lock, flags);
872	if (!elv_queue_empty(q))
873		blk_plug_device(q);
874	spin_unlock_irqrestore(q->queue_lock, flags);
875}
876
877/**
878 *	ide_timer_expiry	-	handle lack of an IDE interrupt
879 *	@data: timer callback magic (hwgroup)
880 *
881 *	An IDE command has timed out before the expected drive return
882 *	occurred. At this point we attempt to clean up the current
883 *	mess. If the current handler includes an expiry handler then
884 *	we invoke the expiry handler, and providing it is happy the
885 *	work is done. If that fails we apply generic recovery rules
886 *	invoking the handler and checking the drive DMA status. We
887 *	have an excessively incestuous relationship with the DMA
888 *	logic that wants cleaning up.
889 */
890
891void ide_timer_expiry (unsigned long data)
892{
893	ide_hwgroup_t	*hwgroup = (ide_hwgroup_t *) data;
894	ide_drive_t	*uninitialized_var(drive);
895	ide_handler_t	*handler;
896	ide_expiry_t	*expiry;
897	unsigned long	flags;
898	unsigned long	wait = -1;
899	int		plug_device = 0;
900
901	spin_lock_irqsave(&hwgroup->lock, flags);
902
903	if (((handler = hwgroup->handler) == NULL) ||
904	    (hwgroup->req_gen != hwgroup->req_gen_timer)) {
905		/*
906		 * Either a marginal timeout occurred
907		 * (got the interrupt just as timer expired),
908		 * or we were "sleeping" to give other devices a chance.
909		 * Either way, we don't really want to complain about anything.
910		 */
911	} else {
912		drive = hwgroup->drive;
913		if (!drive) {
914			printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
915			hwgroup->handler = NULL;
916		} else {
917			ide_hwif_t *hwif;
918			ide_startstop_t startstop = ide_stopped;
919
920			if ((expiry = hwgroup->expiry) != NULL) {
921				/* continue */
922				if ((wait = expiry(drive)) > 0) {
923					/* reset timer */
924					hwgroup->timer.expires  = jiffies + wait;
925					hwgroup->req_gen_timer = hwgroup->req_gen;
926					add_timer(&hwgroup->timer);
927					spin_unlock_irqrestore(&hwgroup->lock, flags);
928					return;
929				}
930			}
931			hwgroup->handler = NULL;
932			/*
933			 * We need to simulate a real interrupt when invoking
934			 * the handler() function, which means we need to
935			 * globally mask the specific IRQ:
936			 */
937			spin_unlock(&hwgroup->lock);
938			hwif  = HWIF(drive);
939			/* disable_irq_nosync ?? */
940			disable_irq(hwif->irq);
941			/* local CPU only,
942			 * as if we were handling an interrupt */
943			local_irq_disable();
944			if (hwgroup->polling) {
945				startstop = handler(drive);
946			} else if (drive_is_ready(drive)) {
947				if (drive->waiting_for_dma)
948					hwif->dma_ops->dma_lost_irq(drive);
949				(void)ide_ack_intr(hwif);
950				printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
951				startstop = handler(drive);
952			} else {
953				if (drive->waiting_for_dma) {
954					startstop = ide_dma_timeout_retry(drive, wait);
955				} else
956					startstop =
957					ide_error(drive, "irq timeout",
958						  hwif->tp_ops->read_status(hwif));
959			}
960			spin_lock_irq(&hwgroup->lock);
961			enable_irq(hwif->irq);
962			if (startstop == ide_stopped) {
963				ide_unlock_hwgroup(hwgroup);
964				plug_device = 1;
965			}
966		}
967	}
968	spin_unlock_irqrestore(&hwgroup->lock, flags);
969
970	if (plug_device)
971		ide_plug_device(drive);
972}
973
974/**
975 *	unexpected_intr		-	handle an unexpected IDE interrupt
976 *	@irq: interrupt line
977 *	@hwgroup: hwgroup being processed
978 *
979 *	There's nothing really useful we can do with an unexpected interrupt,
980 *	other than reading the status register (to clear it), and logging it.
981 *	There should be no way that an irq can happen before we're ready for it,
982 *	so we needn't worry much about losing an "important" interrupt here.
983 *
984 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
985 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
986 *	looks "good", we just ignore the interrupt completely.
987 *
988 *	This routine assumes __cli() is in effect when called.
989 *
990 *	If an unexpected interrupt happens on irq15 while we are handling irq14
991 *	and if the two interfaces are "serialized" (CMD640), then it looks like
992 *	we could screw up by interfering with a new request being set up for
993 *	irq15.
994 *
995 *	In reality, this is a non-issue.  The new command is not sent unless
996 *	the drive is ready to accept one, in which case we know the drive is
997 *	not trying to interrupt us.  And ide_set_handler() is always invoked
998 *	before completing the issuance of any new drive command, so we will not
999 *	be accidentally invoked as a result of any valid command completion
1000 *	interrupt.
1001 *
1002 *	Note that we must walk the entire hwgroup here. We know which hwif
1003 *	is doing the current command, but we don't know which hwif burped
1004 *	mysteriously.
1005 */
1006
1007static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1008{
1009	u8 stat;
1010	ide_hwif_t *hwif = hwgroup->hwif;
1011
1012	/*
1013	 * handle the unexpected interrupt
1014	 */
1015	do {
1016		if (hwif->irq == irq) {
1017			stat = hwif->tp_ops->read_status(hwif);
1018
1019			if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1020				/* Try to not flood the console with msgs */
1021				static unsigned long last_msgtime, count;
1022				++count;
1023				if (time_after(jiffies, last_msgtime + HZ)) {
1024					last_msgtime = jiffies;
1025					printk(KERN_ERR "%s%s: unexpected interrupt, "
1026						"status=0x%02x, count=%ld\n",
1027						hwif->name,
1028						(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1029				}
1030			}
1031		}
1032	} while ((hwif = hwif->next) != hwgroup->hwif);
1033}
1034
1035/**
1036 *	ide_intr	-	default IDE interrupt handler
1037 *	@irq: interrupt number
1038 *	@dev_id: hwif group
1039 *	@regs: unused weirdness from the kernel irq layer
1040 *
1041 *	This is the default IRQ handler for the IDE layer. You should
1042 *	not need to override it. If you do be aware it is subtle in
1043 *	places
1044 *
1045 *	hwgroup->hwif is the interface in the group currently performing
1046 *	a command. hwgroup->drive is the drive and hwgroup->handler is
1047 *	the IRQ handler to call. As we issue a command the handlers
1048 *	step through multiple states, reassigning the handler to the
1049 *	next step in the process. Unlike a smart SCSI controller IDE
1050 *	expects the main processor to sequence the various transfer
1051 *	stages. We also manage a poll timer to catch up with most
1052 *	timeout situations. There are still a few where the handlers
1053 *	don't ever decide to give up.
1054 *
1055 *	The handler eventually returns ide_stopped to indicate the
1056 *	request completed. At this point we issue the next request
1057 *	on the hwgroup and the process begins again.
1058 */
1059
1060irqreturn_t ide_intr (int irq, void *dev_id)
1061{
1062	unsigned long flags;
1063	ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1064	ide_hwif_t *hwif = hwgroup->hwif;
1065	ide_drive_t *uninitialized_var(drive);
1066	ide_handler_t *handler;
1067	ide_startstop_t startstop;
1068	irqreturn_t irq_ret = IRQ_NONE;
1069	int plug_device = 0;
1070
1071	spin_lock_irqsave(&hwgroup->lock, flags);
1072
1073	if (!ide_ack_intr(hwif))
1074		goto out;
1075
1076	if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1077		/*
1078		 * Not expecting an interrupt from this drive.
1079		 * That means this could be:
1080		 *	(1) an interrupt from another PCI device
1081		 *	sharing the same PCI INT# as us.
1082		 * or	(2) a drive just entered sleep or standby mode,
1083		 *	and is interrupting to let us know.
1084		 * or	(3) a spurious interrupt of unknown origin.
1085		 *
1086		 * For PCI, we cannot tell the difference,
1087		 * so in that case we just ignore it and hope it goes away.
1088		 *
1089		 * FIXME: unexpected_intr should be hwif-> then we can
1090		 * remove all the ifdef PCI crap
1091		 */
1092#ifdef CONFIG_BLK_DEV_IDEPCI
1093		if (hwif->chipset != ide_pci)
1094#endif	/* CONFIG_BLK_DEV_IDEPCI */
1095		{
1096			/*
1097			 * Probably not a shared PCI interrupt,
1098			 * so we can safely try to do something about it:
1099			 */
1100			unexpected_intr(irq, hwgroup);
1101#ifdef CONFIG_BLK_DEV_IDEPCI
1102		} else {
1103			/*
1104			 * Whack the status register, just in case
1105			 * we have a leftover pending IRQ.
1106			 */
1107			(void)hwif->tp_ops->read_status(hwif);
1108#endif /* CONFIG_BLK_DEV_IDEPCI */
1109		}
1110		goto out;
1111	}
1112
1113	drive = hwgroup->drive;
1114	if (!drive) {
1115		/*
1116		 * This should NEVER happen, and there isn't much
1117		 * we could do about it here.
1118		 *
1119		 * [Note - this can occur if the drive is hot unplugged]
1120		 */
1121		goto out_handled;
1122	}
1123
1124	if (!drive_is_ready(drive))
1125		/*
1126		 * This happens regularly when we share a PCI IRQ with
1127		 * another device.  Unfortunately, it can also happen
1128		 * with some buggy drives that trigger the IRQ before
1129		 * their status register is up to date.  Hopefully we have
1130		 * enough advance overhead that the latter isn't a problem.
1131		 */
1132		goto out;
1133
1134	hwgroup->handler = NULL;
1135	hwgroup->req_gen++;
1136	del_timer(&hwgroup->timer);
1137	spin_unlock(&hwgroup->lock);
1138
1139	if (hwif->port_ops && hwif->port_ops->clear_irq)
1140		hwif->port_ops->clear_irq(drive);
1141
1142	if (drive->dev_flags & IDE_DFLAG_UNMASK)
1143		local_irq_enable_in_hardirq();
1144
1145	/* service this interrupt, may set handler for next interrupt */
1146	startstop = handler(drive);
1147
1148	spin_lock_irq(&hwgroup->lock);
1149	/*
1150	 * Note that handler() may have set things up for another
1151	 * interrupt to occur soon, but it cannot happen until
1152	 * we exit from this routine, because it will be the
1153	 * same irq as is currently being serviced here, and Linux
1154	 * won't allow another of the same (on any CPU) until we return.
1155	 */
1156	if (startstop == ide_stopped) {
1157		if (hwgroup->handler == NULL) {	/* paranoia */
1158			ide_unlock_hwgroup(hwgroup);
1159			plug_device = 1;
1160		} else
1161			printk(KERN_ERR "%s: %s: huh? expected NULL handler "
1162					"on exit\n", __func__, drive->name);
1163	}
1164out_handled:
1165	irq_ret = IRQ_HANDLED;
1166out:
1167	spin_unlock_irqrestore(&hwgroup->lock, flags);
1168
1169	if (plug_device)
1170		ide_plug_device(drive);
1171
1172	return irq_ret;
1173}
1174
1175/**
1176 *	ide_do_drive_cmd	-	issue IDE special command
1177 *	@drive: device to issue command
1178 *	@rq: request to issue
1179 *
1180 *	This function issues a special IDE device request
1181 *	onto the request queue.
1182 *
1183 *	the rq is queued at the head of the request queue, displacing
1184 *	the currently-being-processed request and this function
1185 *	returns immediately without waiting for the new rq to be
1186 *	completed.  This is VERY DANGEROUS, and is intended for
1187 *	careful use by the ATAPI tape/cdrom driver code.
1188 */
1189
1190void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1191{
1192	ide_hwgroup_t *hwgroup = drive->hwif->hwgroup;
1193	struct request_queue *q = drive->queue;
1194	unsigned long flags;
1195
1196	hwgroup->rq = NULL;
1197
1198	spin_lock_irqsave(q->queue_lock, flags);
1199	__elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0);
1200	spin_unlock_irqrestore(q->queue_lock, flags);
1201}
1202EXPORT_SYMBOL(ide_do_drive_cmd);
1203
1204void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1205{
1206	ide_hwif_t *hwif = drive->hwif;
1207	ide_task_t task;
1208
1209	memset(&task, 0, sizeof(task));
1210	task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1211			IDE_TFLAG_OUT_FEATURE | tf_flags;
1212	task.tf.feature = dma;		/* Use PIO/DMA */
1213	task.tf.lbam    = bcount & 0xff;
1214	task.tf.lbah    = (bcount >> 8) & 0xff;
1215
1216	ide_tf_dump(drive->name, &task.tf);
1217	hwif->tp_ops->set_irq(hwif, 1);
1218	SELECT_MASK(drive, 0);
1219	hwif->tp_ops->tf_load(drive, &task);
1220}
1221
1222EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1223
1224void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1225{
1226	ide_hwif_t *hwif = drive->hwif;
1227	u8 buf[4] = { 0 };
1228
1229	while (len > 0) {
1230		if (write)
1231			hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1232		else
1233			hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1234		len -= 4;
1235	}
1236}
1237EXPORT_SYMBOL_GPL(ide_pad_transfer);
1238