ide-io.c revision c283f5dbe31920ca70b80a594a97bfaa2a28be13
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
50
51#include <asm/byteorder.h>
52#include <asm/irq.h>
53#include <asm/uaccess.h>
54#include <asm/io.h>
55#include <asm/bitops.h>
56
57static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58			     int uptodate, int nr_sectors)
59{
60	int ret = 1;
61
62	/*
63	 * if failfast is set on a request, override number of sectors and
64	 * complete the whole request right now
65	 */
66	if (blk_noretry_request(rq) && end_io_error(uptodate))
67		nr_sectors = rq->hard_nr_sectors;
68
69	if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70		rq->errors = -EIO;
71
72	/*
73	 * decide whether to reenable DMA -- 3 is a random magic for now,
74	 * if we DMA timeout more than 3 times, just stay in PIO
75	 */
76	if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77		drive->state = 0;
78		HWGROUP(drive)->hwif->ide_dma_on(drive);
79	}
80
81	if (!end_that_request_first(rq, uptodate, nr_sectors)) {
82		add_disk_randomness(rq->rq_disk);
83		if (!list_empty(&rq->queuelist))
84			blkdev_dequeue_request(rq);
85		HWGROUP(drive)->rq = NULL;
86		end_that_request_last(rq, uptodate);
87		ret = 0;
88	}
89
90	return ret;
91}
92
93/**
94 *	ide_end_request		-	complete an IDE I/O
95 *	@drive: IDE device for the I/O
96 *	@uptodate:
97 *	@nr_sectors: number of sectors completed
98 *
99 *	This is our end_request wrapper function. We complete the I/O
100 *	update random number input and dequeue the request, which if
101 *	it was tagged may be out of order.
102 */
103
104int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
105{
106	struct request *rq;
107	unsigned long flags;
108	int ret = 1;
109
110	/*
111	 * room for locking improvements here, the calls below don't
112	 * need the queue lock held at all
113	 */
114	spin_lock_irqsave(&ide_lock, flags);
115	rq = HWGROUP(drive)->rq;
116
117	if (!nr_sectors)
118		nr_sectors = rq->hard_cur_sectors;
119
120	ret = __ide_end_request(drive, rq, uptodate, nr_sectors);
121
122	spin_unlock_irqrestore(&ide_lock, flags);
123	return ret;
124}
125EXPORT_SYMBOL(ide_end_request);
126
127/*
128 * Power Management state machine. This one is rather trivial for now,
129 * we should probably add more, like switching back to PIO on suspend
130 * to help some BIOSes, re-do the door locking on resume, etc...
131 */
132
133enum {
134	ide_pm_flush_cache	= ide_pm_state_start_suspend,
135	idedisk_pm_standby,
136
137	idedisk_pm_restore_pio	= ide_pm_state_start_resume,
138	idedisk_pm_idle,
139	ide_pm_restore_dma,
140};
141
142static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
143{
144	struct request_pm_state *pm = rq->data;
145
146	if (drive->media != ide_disk)
147		return;
148
149	switch (pm->pm_step) {
150	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) complete */
151		if (pm->pm_state == PM_EVENT_FREEZE)
152			pm->pm_step = ide_pm_state_completed;
153		else
154			pm->pm_step = idedisk_pm_standby;
155		break;
156	case idedisk_pm_standby:	/* Suspend step 2 (standby) complete */
157		pm->pm_step = ide_pm_state_completed;
158		break;
159	case idedisk_pm_restore_pio:	/* Resume step 1 complete */
160		pm->pm_step = idedisk_pm_idle;
161		break;
162	case idedisk_pm_idle:		/* Resume step 2 (idle) complete */
163		pm->pm_step = ide_pm_restore_dma;
164		break;
165	}
166}
167
168static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
169{
170	struct request_pm_state *pm = rq->data;
171	ide_task_t *args = rq->special;
172
173	memset(args, 0, sizeof(*args));
174
175	switch (pm->pm_step) {
176	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) */
177		if (drive->media != ide_disk)
178			break;
179		/* Not supported? Switch to next step now. */
180		if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
181			ide_complete_power_step(drive, rq, 0, 0);
182			return ide_stopped;
183		}
184		if (ide_id_has_flush_cache_ext(drive->id))
185			args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT;
186		else
187			args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE;
188		args->command_type = IDE_DRIVE_TASK_NO_DATA;
189		args->handler	   = &task_no_data_intr;
190		return do_rw_taskfile(drive, args);
191
192	case idedisk_pm_standby:	/* Suspend step 2 (standby) */
193		args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1;
194		args->command_type = IDE_DRIVE_TASK_NO_DATA;
195		args->handler	   = &task_no_data_intr;
196		return do_rw_taskfile(drive, args);
197
198	case idedisk_pm_restore_pio:	/* Resume step 1 (restore PIO) */
199		if (drive->hwif->tuneproc != NULL)
200			drive->hwif->tuneproc(drive, 255);
201		/*
202		 * skip idedisk_pm_idle for ATAPI devices
203		 */
204		if (drive->media != ide_disk)
205			pm->pm_step = ide_pm_restore_dma;
206		else
207			ide_complete_power_step(drive, rq, 0, 0);
208		return ide_stopped;
209
210	case idedisk_pm_idle:		/* Resume step 2 (idle) */
211		args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE;
212		args->command_type = IDE_DRIVE_TASK_NO_DATA;
213		args->handler = task_no_data_intr;
214		return do_rw_taskfile(drive, args);
215
216	case ide_pm_restore_dma:	/* Resume step 3 (restore DMA) */
217		/*
218		 * Right now, all we do is call hwif->ide_dma_check(drive),
219		 * we could be smarter and check for current xfer_speed
220		 * in struct drive etc...
221		 */
222		if ((drive->id->capability & 1) == 0)
223			break;
224		if (drive->hwif->ide_dma_check == NULL)
225			break;
226		drive->hwif->dma_off_quietly(drive);
227		ide_set_dma(drive);
228		break;
229	}
230	pm->pm_step = ide_pm_state_completed;
231	return ide_stopped;
232}
233
234/**
235 *	ide_end_dequeued_request	-	complete an IDE I/O
236 *	@drive: IDE device for the I/O
237 *	@uptodate:
238 *	@nr_sectors: number of sectors completed
239 *
240 *	Complete an I/O that is no longer on the request queue. This
241 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
242 *	We must still finish the old request but we must not tamper with the
243 *	queue in the meantime.
244 *
245 *	NOTE: This path does not handle barrier, but barrier is not supported
246 *	on ide-cd anyway.
247 */
248
249int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
250			     int uptodate, int nr_sectors)
251{
252	unsigned long flags;
253	int ret = 1;
254
255	spin_lock_irqsave(&ide_lock, flags);
256
257	BUG_ON(!blk_rq_started(rq));
258
259	/*
260	 * if failfast is set on a request, override number of sectors and
261	 * complete the whole request right now
262	 */
263	if (blk_noretry_request(rq) && end_io_error(uptodate))
264		nr_sectors = rq->hard_nr_sectors;
265
266	if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
267		rq->errors = -EIO;
268
269	/*
270	 * decide whether to reenable DMA -- 3 is a random magic for now,
271	 * if we DMA timeout more than 3 times, just stay in PIO
272	 */
273	if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
274		drive->state = 0;
275		HWGROUP(drive)->hwif->ide_dma_on(drive);
276	}
277
278	if (!end_that_request_first(rq, uptodate, nr_sectors)) {
279		add_disk_randomness(rq->rq_disk);
280		if (blk_rq_tagged(rq))
281			blk_queue_end_tag(drive->queue, rq);
282		end_that_request_last(rq, uptodate);
283		ret = 0;
284	}
285	spin_unlock_irqrestore(&ide_lock, flags);
286	return ret;
287}
288EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
289
290
291/**
292 *	ide_complete_pm_request - end the current Power Management request
293 *	@drive: target drive
294 *	@rq: request
295 *
296 *	This function cleans up the current PM request and stops the queue
297 *	if necessary.
298 */
299static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
300{
301	unsigned long flags;
302
303#ifdef DEBUG_PM
304	printk("%s: completing PM request, %s\n", drive->name,
305	       blk_pm_suspend_request(rq) ? "suspend" : "resume");
306#endif
307	spin_lock_irqsave(&ide_lock, flags);
308	if (blk_pm_suspend_request(rq)) {
309		blk_stop_queue(drive->queue);
310	} else {
311		drive->blocked = 0;
312		blk_start_queue(drive->queue);
313	}
314	blkdev_dequeue_request(rq);
315	HWGROUP(drive)->rq = NULL;
316	end_that_request_last(rq, 1);
317	spin_unlock_irqrestore(&ide_lock, flags);
318}
319
320/*
321 * FIXME: probably move this somewhere else, name is bad too :)
322 */
323u64 ide_get_error_location(ide_drive_t *drive, char *args)
324{
325	u32 high, low;
326	u8 hcyl, lcyl, sect;
327	u64 sector;
328
329	high = 0;
330	hcyl = args[5];
331	lcyl = args[4];
332	sect = args[3];
333
334	if (ide_id_has_flush_cache_ext(drive->id)) {
335		low = (hcyl << 16) | (lcyl << 8) | sect;
336		HWIF(drive)->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
337		high = ide_read_24(drive);
338	} else {
339		u8 cur = HWIF(drive)->INB(IDE_SELECT_REG);
340		if (cur & 0x40) {
341			high = cur & 0xf;
342			low = (hcyl << 16) | (lcyl << 8) | sect;
343		} else {
344			low = hcyl * drive->head * drive->sect;
345			low += lcyl * drive->sect;
346			low += sect - 1;
347		}
348	}
349
350	sector = ((u64) high << 24) | low;
351	return sector;
352}
353EXPORT_SYMBOL(ide_get_error_location);
354
355/**
356 *	ide_end_drive_cmd	-	end an explicit drive command
357 *	@drive: command
358 *	@stat: status bits
359 *	@err: error bits
360 *
361 *	Clean up after success/failure of an explicit drive command.
362 *	These get thrown onto the queue so they are synchronized with
363 *	real I/O operations on the drive.
364 *
365 *	In LBA48 mode we have to read the register set twice to get
366 *	all the extra information out.
367 */
368
369void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
370{
371	ide_hwif_t *hwif = HWIF(drive);
372	unsigned long flags;
373	struct request *rq;
374
375	spin_lock_irqsave(&ide_lock, flags);
376	rq = HWGROUP(drive)->rq;
377	spin_unlock_irqrestore(&ide_lock, flags);
378
379	if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
380		u8 *args = (u8 *) rq->buffer;
381		if (rq->errors == 0)
382			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
383
384		if (args) {
385			args[0] = stat;
386			args[1] = err;
387			args[2] = hwif->INB(IDE_NSECTOR_REG);
388		}
389	} else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
390		u8 *args = (u8 *) rq->buffer;
391		if (rq->errors == 0)
392			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
393
394		if (args) {
395			args[0] = stat;
396			args[1] = err;
397			args[2] = hwif->INB(IDE_NSECTOR_REG);
398			args[3] = hwif->INB(IDE_SECTOR_REG);
399			args[4] = hwif->INB(IDE_LCYL_REG);
400			args[5] = hwif->INB(IDE_HCYL_REG);
401			args[6] = hwif->INB(IDE_SELECT_REG);
402		}
403	} else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
404		ide_task_t *args = (ide_task_t *) rq->special;
405		if (rq->errors == 0)
406			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
407
408		if (args) {
409			if (args->tf_in_flags.b.data) {
410				u16 data				= hwif->INW(IDE_DATA_REG);
411				args->tfRegister[IDE_DATA_OFFSET]	= (data) & 0xFF;
412				args->hobRegister[IDE_DATA_OFFSET]	= (data >> 8) & 0xFF;
413			}
414			args->tfRegister[IDE_ERROR_OFFSET]   = err;
415			/* be sure we're looking at the low order bits */
416			hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
417			args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
418			args->tfRegister[IDE_SECTOR_OFFSET]  = hwif->INB(IDE_SECTOR_REG);
419			args->tfRegister[IDE_LCYL_OFFSET]    = hwif->INB(IDE_LCYL_REG);
420			args->tfRegister[IDE_HCYL_OFFSET]    = hwif->INB(IDE_HCYL_REG);
421			args->tfRegister[IDE_SELECT_OFFSET]  = hwif->INB(IDE_SELECT_REG);
422			args->tfRegister[IDE_STATUS_OFFSET]  = stat;
423
424			if (drive->addressing == 1) {
425				hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
426				args->hobRegister[IDE_FEATURE_OFFSET]	= hwif->INB(IDE_FEATURE_REG);
427				args->hobRegister[IDE_NSECTOR_OFFSET]	= hwif->INB(IDE_NSECTOR_REG);
428				args->hobRegister[IDE_SECTOR_OFFSET]	= hwif->INB(IDE_SECTOR_REG);
429				args->hobRegister[IDE_LCYL_OFFSET]	= hwif->INB(IDE_LCYL_REG);
430				args->hobRegister[IDE_HCYL_OFFSET]	= hwif->INB(IDE_HCYL_REG);
431			}
432		}
433	} else if (blk_pm_request(rq)) {
434		struct request_pm_state *pm = rq->data;
435#ifdef DEBUG_PM
436		printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
437			drive->name, rq->pm->pm_step, stat, err);
438#endif
439		ide_complete_power_step(drive, rq, stat, err);
440		if (pm->pm_step == ide_pm_state_completed)
441			ide_complete_pm_request(drive, rq);
442		return;
443	}
444
445	spin_lock_irqsave(&ide_lock, flags);
446	blkdev_dequeue_request(rq);
447	HWGROUP(drive)->rq = NULL;
448	rq->errors = err;
449	end_that_request_last(rq, !rq->errors);
450	spin_unlock_irqrestore(&ide_lock, flags);
451}
452
453EXPORT_SYMBOL(ide_end_drive_cmd);
454
455/**
456 *	try_to_flush_leftover_data	-	flush junk
457 *	@drive: drive to flush
458 *
459 *	try_to_flush_leftover_data() is invoked in response to a drive
460 *	unexpectedly having its DRQ_STAT bit set.  As an alternative to
461 *	resetting the drive, this routine tries to clear the condition
462 *	by read a sector's worth of data from the drive.  Of course,
463 *	this may not help if the drive is *waiting* for data from *us*.
464 */
465static void try_to_flush_leftover_data (ide_drive_t *drive)
466{
467	int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
468
469	if (drive->media != ide_disk)
470		return;
471	while (i > 0) {
472		u32 buffer[16];
473		u32 wcount = (i > 16) ? 16 : i;
474
475		i -= wcount;
476		HWIF(drive)->ata_input_data(drive, buffer, wcount);
477	}
478}
479
480static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
481{
482	if (rq->rq_disk) {
483		ide_driver_t *drv;
484
485		drv = *(ide_driver_t **)rq->rq_disk->private_data;
486		drv->end_request(drive, 0, 0);
487	} else
488		ide_end_request(drive, 0, 0);
489}
490
491static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
492{
493	ide_hwif_t *hwif = drive->hwif;
494
495	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
496		/* other bits are useless when BUSY */
497		rq->errors |= ERROR_RESET;
498	} else if (stat & ERR_STAT) {
499		/* err has different meaning on cdrom and tape */
500		if (err == ABRT_ERR) {
501			if (drive->select.b.lba &&
502			    /* some newer drives don't support WIN_SPECIFY */
503			    hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
504				return ide_stopped;
505		} else if ((err & BAD_CRC) == BAD_CRC) {
506			/* UDMA crc error, just retry the operation */
507			drive->crc_count++;
508		} else if (err & (BBD_ERR | ECC_ERR)) {
509			/* retries won't help these */
510			rq->errors = ERROR_MAX;
511		} else if (err & TRK0_ERR) {
512			/* help it find track zero */
513			rq->errors |= ERROR_RECAL;
514		}
515	}
516
517	if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ && hwif->err_stops_fifo == 0)
518		try_to_flush_leftover_data(drive);
519
520	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
521		ide_kill_rq(drive, rq);
522		return ide_stopped;
523	}
524
525	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
526		rq->errors |= ERROR_RESET;
527
528	if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
529		++rq->errors;
530		return ide_do_reset(drive);
531	}
532
533	if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
534		drive->special.b.recalibrate = 1;
535
536	++rq->errors;
537
538	return ide_stopped;
539}
540
541static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
542{
543	ide_hwif_t *hwif = drive->hwif;
544
545	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
546		/* other bits are useless when BUSY */
547		rq->errors |= ERROR_RESET;
548	} else {
549		/* add decoding error stuff */
550	}
551
552	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
553		/* force an abort */
554		hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
555
556	if (rq->errors >= ERROR_MAX) {
557		ide_kill_rq(drive, rq);
558	} else {
559		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
560			++rq->errors;
561			return ide_do_reset(drive);
562		}
563		++rq->errors;
564	}
565
566	return ide_stopped;
567}
568
569ide_startstop_t
570__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
571{
572	if (drive->media == ide_disk)
573		return ide_ata_error(drive, rq, stat, err);
574	return ide_atapi_error(drive, rq, stat, err);
575}
576
577EXPORT_SYMBOL_GPL(__ide_error);
578
579/**
580 *	ide_error	-	handle an error on the IDE
581 *	@drive: drive the error occurred on
582 *	@msg: message to report
583 *	@stat: status bits
584 *
585 *	ide_error() takes action based on the error returned by the drive.
586 *	For normal I/O that may well include retries. We deal with
587 *	both new-style (taskfile) and old style command handling here.
588 *	In the case of taskfile command handling there is work left to
589 *	do
590 */
591
592ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
593{
594	struct request *rq;
595	u8 err;
596
597	err = ide_dump_status(drive, msg, stat);
598
599	if ((rq = HWGROUP(drive)->rq) == NULL)
600		return ide_stopped;
601
602	/* retry only "normal" I/O: */
603	if (!blk_fs_request(rq)) {
604		rq->errors = 1;
605		ide_end_drive_cmd(drive, stat, err);
606		return ide_stopped;
607	}
608
609	if (rq->rq_disk) {
610		ide_driver_t *drv;
611
612		drv = *(ide_driver_t **)rq->rq_disk->private_data;
613		return drv->error(drive, rq, stat, err);
614	} else
615		return __ide_error(drive, rq, stat, err);
616}
617
618EXPORT_SYMBOL_GPL(ide_error);
619
620ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
621{
622	if (drive->media != ide_disk)
623		rq->errors |= ERROR_RESET;
624
625	ide_kill_rq(drive, rq);
626
627	return ide_stopped;
628}
629
630EXPORT_SYMBOL_GPL(__ide_abort);
631
632/**
633 *	ide_abort	-	abort pending IDE operations
634 *	@drive: drive the error occurred on
635 *	@msg: message to report
636 *
637 *	ide_abort kills and cleans up when we are about to do a
638 *	host initiated reset on active commands. Longer term we
639 *	want handlers to have sensible abort handling themselves
640 *
641 *	This differs fundamentally from ide_error because in
642 *	this case the command is doing just fine when we
643 *	blow it away.
644 */
645
646ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
647{
648	struct request *rq;
649
650	if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
651		return ide_stopped;
652
653	/* retry only "normal" I/O: */
654	if (!blk_fs_request(rq)) {
655		rq->errors = 1;
656		ide_end_drive_cmd(drive, BUSY_STAT, 0);
657		return ide_stopped;
658	}
659
660	if (rq->rq_disk) {
661		ide_driver_t *drv;
662
663		drv = *(ide_driver_t **)rq->rq_disk->private_data;
664		return drv->abort(drive, rq);
665	} else
666		return __ide_abort(drive, rq);
667}
668
669/**
670 *	ide_cmd		-	issue a simple drive command
671 *	@drive: drive the command is for
672 *	@cmd: command byte
673 *	@nsect: sector byte
674 *	@handler: handler for the command completion
675 *
676 *	Issue a simple drive command with interrupts.
677 *	The drive must be selected beforehand.
678 */
679
680static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect,
681		ide_handler_t *handler)
682{
683	ide_hwif_t *hwif = HWIF(drive);
684	if (IDE_CONTROL_REG)
685		hwif->OUTB(drive->ctl,IDE_CONTROL_REG);	/* clear nIEN */
686	SELECT_MASK(drive,0);
687	hwif->OUTB(nsect,IDE_NSECTOR_REG);
688	ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
689}
690
691/**
692 *	drive_cmd_intr		- 	drive command completion interrupt
693 *	@drive: drive the completion interrupt occurred on
694 *
695 *	drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
696 *	We do any necessary data reading and then wait for the drive to
697 *	go non busy. At that point we may read the error data and complete
698 *	the request
699 */
700
701static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
702{
703	struct request *rq = HWGROUP(drive)->rq;
704	ide_hwif_t *hwif = HWIF(drive);
705	u8 *args = (u8 *) rq->buffer;
706	u8 stat = hwif->INB(IDE_STATUS_REG);
707	int retries = 10;
708
709	local_irq_enable_in_hardirq();
710	if ((stat & DRQ_STAT) && args && args[3]) {
711		u8 io_32bit = drive->io_32bit;
712		drive->io_32bit = 0;
713		hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
714		drive->io_32bit = io_32bit;
715		while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
716			udelay(100);
717	}
718
719	if (!OK_STAT(stat, READY_STAT, BAD_STAT))
720		return ide_error(drive, "drive_cmd", stat);
721		/* calls ide_end_drive_cmd */
722	ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
723	return ide_stopped;
724}
725
726static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
727{
728	task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
729	task->tfRegister[IDE_SECTOR_OFFSET]  = drive->sect;
730	task->tfRegister[IDE_LCYL_OFFSET]    = drive->cyl;
731	task->tfRegister[IDE_HCYL_OFFSET]    = drive->cyl>>8;
732	task->tfRegister[IDE_SELECT_OFFSET]  = ((drive->head-1)|drive->select.all)&0xBF;
733	task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY;
734
735	task->handler = &set_geometry_intr;
736}
737
738static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
739{
740	task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
741	task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE;
742
743	task->handler = &recal_intr;
744}
745
746static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
747{
748	task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req;
749	task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT;
750
751	task->handler = &set_multmode_intr;
752}
753
754static ide_startstop_t ide_disk_special(ide_drive_t *drive)
755{
756	special_t *s = &drive->special;
757	ide_task_t args;
758
759	memset(&args, 0, sizeof(ide_task_t));
760	args.command_type = IDE_DRIVE_TASK_NO_DATA;
761
762	if (s->b.set_geometry) {
763		s->b.set_geometry = 0;
764		ide_init_specify_cmd(drive, &args);
765	} else if (s->b.recalibrate) {
766		s->b.recalibrate = 0;
767		ide_init_restore_cmd(drive, &args);
768	} else if (s->b.set_multmode) {
769		s->b.set_multmode = 0;
770		if (drive->mult_req > drive->id->max_multsect)
771			drive->mult_req = drive->id->max_multsect;
772		ide_init_setmult_cmd(drive, &args);
773	} else if (s->all) {
774		int special = s->all;
775		s->all = 0;
776		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
777		return ide_stopped;
778	}
779
780	do_rw_taskfile(drive, &args);
781
782	return ide_started;
783}
784
785/**
786 *	do_special		-	issue some special commands
787 *	@drive: drive the command is for
788 *
789 *	do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
790 *	commands to a drive.  It used to do much more, but has been scaled
791 *	back.
792 */
793
794static ide_startstop_t do_special (ide_drive_t *drive)
795{
796	special_t *s = &drive->special;
797
798#ifdef DEBUG
799	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
800#endif
801	if (s->b.set_tune) {
802		s->b.set_tune = 0;
803		if (HWIF(drive)->tuneproc != NULL)
804			HWIF(drive)->tuneproc(drive, drive->tune_req);
805		return ide_stopped;
806	} else {
807		if (drive->media == ide_disk)
808			return ide_disk_special(drive);
809
810		s->all = 0;
811		drive->mult_req = 0;
812		return ide_stopped;
813	}
814}
815
816void ide_map_sg(ide_drive_t *drive, struct request *rq)
817{
818	ide_hwif_t *hwif = drive->hwif;
819	struct scatterlist *sg = hwif->sg_table;
820
821	if (hwif->sg_mapped)	/* needed by ide-scsi */
822		return;
823
824	if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
825		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
826	} else {
827		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
828		hwif->sg_nents = 1;
829	}
830}
831
832EXPORT_SYMBOL_GPL(ide_map_sg);
833
834void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
835{
836	ide_hwif_t *hwif = drive->hwif;
837
838	hwif->nsect = hwif->nleft = rq->nr_sectors;
839	hwif->cursg = hwif->cursg_ofs = 0;
840}
841
842EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
843
844/**
845 *	execute_drive_command	-	issue special drive command
846 *	@drive: the drive to issue the command on
847 *	@rq: the request structure holding the command
848 *
849 *	execute_drive_cmd() issues a special drive command,  usually
850 *	initiated by ioctl() from the external hdparm program. The
851 *	command can be a drive command, drive task or taskfile
852 *	operation. Weirdly you can call it with NULL to wait for
853 *	all commands to finish. Don't do this as that is due to change
854 */
855
856static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
857		struct request *rq)
858{
859	ide_hwif_t *hwif = HWIF(drive);
860	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
861 		ide_task_t *args = rq->special;
862
863		if (!args)
864			goto done;
865
866		hwif->data_phase = args->data_phase;
867
868		switch (hwif->data_phase) {
869		case TASKFILE_MULTI_OUT:
870		case TASKFILE_OUT:
871		case TASKFILE_MULTI_IN:
872		case TASKFILE_IN:
873			ide_init_sg_cmd(drive, rq);
874			ide_map_sg(drive, rq);
875		default:
876			break;
877		}
878
879		if (args->tf_out_flags.all != 0)
880			return flagged_taskfile(drive, args);
881		return do_rw_taskfile(drive, args);
882	} else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
883		u8 *args = rq->buffer;
884		u8 sel;
885
886		if (!args)
887			goto done;
888#ifdef DEBUG
889 		printk("%s: DRIVE_TASK_CMD ", drive->name);
890 		printk("cmd=0x%02x ", args[0]);
891 		printk("fr=0x%02x ", args[1]);
892 		printk("ns=0x%02x ", args[2]);
893 		printk("sc=0x%02x ", args[3]);
894 		printk("lcyl=0x%02x ", args[4]);
895 		printk("hcyl=0x%02x ", args[5]);
896 		printk("sel=0x%02x\n", args[6]);
897#endif
898 		hwif->OUTB(args[1], IDE_FEATURE_REG);
899 		hwif->OUTB(args[3], IDE_SECTOR_REG);
900 		hwif->OUTB(args[4], IDE_LCYL_REG);
901 		hwif->OUTB(args[5], IDE_HCYL_REG);
902 		sel = (args[6] & ~0x10);
903 		if (drive->select.b.unit)
904 			sel |= 0x10;
905 		hwif->OUTB(sel, IDE_SELECT_REG);
906 		ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
907 		return ide_started;
908 	} else if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
909 		u8 *args = rq->buffer;
910
911		if (!args)
912			goto done;
913#ifdef DEBUG
914 		printk("%s: DRIVE_CMD ", drive->name);
915 		printk("cmd=0x%02x ", args[0]);
916 		printk("sc=0x%02x ", args[1]);
917 		printk("fr=0x%02x ", args[2]);
918 		printk("xx=0x%02x\n", args[3]);
919#endif
920 		if (args[0] == WIN_SMART) {
921 			hwif->OUTB(0x4f, IDE_LCYL_REG);
922 			hwif->OUTB(0xc2, IDE_HCYL_REG);
923 			hwif->OUTB(args[2],IDE_FEATURE_REG);
924 			hwif->OUTB(args[1],IDE_SECTOR_REG);
925 			ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
926 			return ide_started;
927 		}
928 		hwif->OUTB(args[2],IDE_FEATURE_REG);
929 		ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
930 		return ide_started;
931 	}
932
933done:
934 	/*
935 	 * NULL is actually a valid way of waiting for
936 	 * all current requests to be flushed from the queue.
937 	 */
938#ifdef DEBUG
939 	printk("%s: DRIVE_CMD (null)\n", drive->name);
940#endif
941 	ide_end_drive_cmd(drive,
942			hwif->INB(IDE_STATUS_REG),
943			hwif->INB(IDE_ERROR_REG));
944 	return ide_stopped;
945}
946
947static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
948{
949	struct request_pm_state *pm = rq->data;
950
951	if (blk_pm_suspend_request(rq) &&
952	    pm->pm_step == ide_pm_state_start_suspend)
953		/* Mark drive blocked when starting the suspend sequence. */
954		drive->blocked = 1;
955	else if (blk_pm_resume_request(rq) &&
956		 pm->pm_step == ide_pm_state_start_resume) {
957		/*
958		 * The first thing we do on wakeup is to wait for BSY bit to
959		 * go away (with a looong timeout) as a drive on this hwif may
960		 * just be POSTing itself.
961		 * We do that before even selecting as the "other" device on
962		 * the bus may be broken enough to walk on our toes at this
963		 * point.
964		 */
965		int rc;
966#ifdef DEBUG_PM
967		printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
968#endif
969		rc = ide_wait_not_busy(HWIF(drive), 35000);
970		if (rc)
971			printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
972		SELECT_DRIVE(drive);
973		HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]);
974		rc = ide_wait_not_busy(HWIF(drive), 100000);
975		if (rc)
976			printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
977	}
978}
979
980/**
981 *	start_request	-	start of I/O and command issuing for IDE
982 *
983 *	start_request() initiates handling of a new I/O request. It
984 *	accepts commands and I/O (read/write) requests. It also does
985 *	the final remapping for weird stuff like EZDrive. Once
986 *	device mapper can work sector level the EZDrive stuff can go away
987 *
988 *	FIXME: this function needs a rename
989 */
990
991static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
992{
993	ide_startstop_t startstop;
994	sector_t block;
995
996	BUG_ON(!blk_rq_started(rq));
997
998#ifdef DEBUG
999	printk("%s: start_request: current=0x%08lx\n",
1000		HWIF(drive)->name, (unsigned long) rq);
1001#endif
1002
1003	/* bail early if we've exceeded max_failures */
1004	if (drive->max_failures && (drive->failures > drive->max_failures)) {
1005		goto kill_rq;
1006	}
1007
1008	block    = rq->sector;
1009	if (blk_fs_request(rq) &&
1010	    (drive->media == ide_disk || drive->media == ide_floppy)) {
1011		block += drive->sect0;
1012	}
1013	/* Yecch - this will shift the entire interval,
1014	   possibly killing some innocent following sector */
1015	if (block == 0 && drive->remap_0_to_1 == 1)
1016		block = 1;  /* redirect MBR access to EZ-Drive partn table */
1017
1018	if (blk_pm_request(rq))
1019		ide_check_pm_state(drive, rq);
1020
1021	SELECT_DRIVE(drive);
1022	if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
1023		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
1024		return startstop;
1025	}
1026	if (!drive->special.all) {
1027		ide_driver_t *drv;
1028
1029		/*
1030		 * We reset the drive so we need to issue a SETFEATURES.
1031		 * Do it _after_ do_special() restored device parameters.
1032		 */
1033		if (drive->current_speed == 0xff)
1034			ide_config_drive_speed(drive, drive->desired_speed);
1035
1036		if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1037		    rq->cmd_type == REQ_TYPE_ATA_TASK ||
1038		    rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1039			return execute_drive_cmd(drive, rq);
1040		else if (blk_pm_request(rq)) {
1041			struct request_pm_state *pm = rq->data;
1042#ifdef DEBUG_PM
1043			printk("%s: start_power_step(step: %d)\n",
1044				drive->name, rq->pm->pm_step);
1045#endif
1046			startstop = ide_start_power_step(drive, rq);
1047			if (startstop == ide_stopped &&
1048			    pm->pm_step == ide_pm_state_completed)
1049				ide_complete_pm_request(drive, rq);
1050			return startstop;
1051		}
1052
1053		drv = *(ide_driver_t **)rq->rq_disk->private_data;
1054		return drv->do_request(drive, rq, block);
1055	}
1056	return do_special(drive);
1057kill_rq:
1058	ide_kill_rq(drive, rq);
1059	return ide_stopped;
1060}
1061
1062/**
1063 *	ide_stall_queue		-	pause an IDE device
1064 *	@drive: drive to stall
1065 *	@timeout: time to stall for (jiffies)
1066 *
1067 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
1068 *	to the hwgroup by sleeping for timeout jiffies.
1069 */
1070
1071void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1072{
1073	if (timeout > WAIT_WORSTCASE)
1074		timeout = WAIT_WORSTCASE;
1075	drive->sleep = timeout + jiffies;
1076	drive->sleeping = 1;
1077}
1078
1079EXPORT_SYMBOL(ide_stall_queue);
1080
1081#define WAKEUP(drive)	((drive)->service_start + 2 * (drive)->service_time)
1082
1083/**
1084 *	choose_drive		-	select a drive to service
1085 *	@hwgroup: hardware group to select on
1086 *
1087 *	choose_drive() selects the next drive which will be serviced.
1088 *	This is necessary because the IDE layer can't issue commands
1089 *	to both drives on the same cable, unlike SCSI.
1090 */
1091
1092static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1093{
1094	ide_drive_t *drive, *best;
1095
1096repeat:
1097	best = NULL;
1098	drive = hwgroup->drive;
1099
1100	/*
1101	 * drive is doing pre-flush, ordered write, post-flush sequence. even
1102	 * though that is 3 requests, it must be seen as a single transaction.
1103	 * we must not preempt this drive until that is complete
1104	 */
1105	if (blk_queue_flushing(drive->queue)) {
1106		/*
1107		 * small race where queue could get replugged during
1108		 * the 3-request flush cycle, just yank the plug since
1109		 * we want it to finish asap
1110		 */
1111		blk_remove_plug(drive->queue);
1112		return drive;
1113	}
1114
1115	do {
1116		if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1117		    && !elv_queue_empty(drive->queue)) {
1118			if (!best
1119			 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1120			 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1121			{
1122				if (!blk_queue_plugged(drive->queue))
1123					best = drive;
1124			}
1125		}
1126	} while ((drive = drive->next) != hwgroup->drive);
1127	if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1128		long t = (signed long)(WAKEUP(best) - jiffies);
1129		if (t >= WAIT_MIN_SLEEP) {
1130		/*
1131		 * We *may* have some time to spare, but first let's see if
1132		 * someone can potentially benefit from our nice mood today..
1133		 */
1134			drive = best->next;
1135			do {
1136				if (!drive->sleeping
1137				 && time_before(jiffies - best->service_time, WAKEUP(drive))
1138				 && time_before(WAKEUP(drive), jiffies + t))
1139				{
1140					ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1141					goto repeat;
1142				}
1143			} while ((drive = drive->next) != best);
1144		}
1145	}
1146	return best;
1147}
1148
1149/*
1150 * Issue a new request to a drive from hwgroup
1151 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1152 *
1153 * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1154 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1155 * may have both interfaces in a single hwgroup to "serialize" access.
1156 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1157 * together into one hwgroup for serialized access.
1158 *
1159 * Note also that several hwgroups can end up sharing a single IRQ,
1160 * possibly along with many other devices.  This is especially common in
1161 * PCI-based systems with off-board IDE controller cards.
1162 *
1163 * The IDE driver uses the single global ide_lock spinlock to protect
1164 * access to the request queues, and to protect the hwgroup->busy flag.
1165 *
1166 * The first thread into the driver for a particular hwgroup sets the
1167 * hwgroup->busy flag to indicate that this hwgroup is now active,
1168 * and then initiates processing of the top request from the request queue.
1169 *
1170 * Other threads attempting entry notice the busy setting, and will simply
1171 * queue their new requests and exit immediately.  Note that hwgroup->busy
1172 * remains set even when the driver is merely awaiting the next interrupt.
1173 * Thus, the meaning is "this hwgroup is busy processing a request".
1174 *
1175 * When processing of a request completes, the completing thread or IRQ-handler
1176 * will start the next request from the queue.  If no more work remains,
1177 * the driver will clear the hwgroup->busy flag and exit.
1178 *
1179 * The ide_lock (spinlock) is used to protect all access to the
1180 * hwgroup->busy flag, but is otherwise not needed for most processing in
1181 * the driver.  This makes the driver much more friendlier to shared IRQs
1182 * than previous designs, while remaining 100% (?) SMP safe and capable.
1183 */
1184static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1185{
1186	ide_drive_t	*drive;
1187	ide_hwif_t	*hwif;
1188	struct request	*rq;
1189	ide_startstop_t	startstop;
1190	int             loops = 0;
1191
1192	/* for atari only: POSSIBLY BROKEN HERE(?) */
1193	ide_get_lock(ide_intr, hwgroup);
1194
1195	/* caller must own ide_lock */
1196	BUG_ON(!irqs_disabled());
1197
1198	while (!hwgroup->busy) {
1199		hwgroup->busy = 1;
1200		drive = choose_drive(hwgroup);
1201		if (drive == NULL) {
1202			int sleeping = 0;
1203			unsigned long sleep = 0; /* shut up, gcc */
1204			hwgroup->rq = NULL;
1205			drive = hwgroup->drive;
1206			do {
1207				if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1208					sleeping = 1;
1209					sleep = drive->sleep;
1210				}
1211			} while ((drive = drive->next) != hwgroup->drive);
1212			if (sleeping) {
1213		/*
1214		 * Take a short snooze, and then wake up this hwgroup again.
1215		 * This gives other hwgroups on the same a chance to
1216		 * play fairly with us, just in case there are big differences
1217		 * in relative throughputs.. don't want to hog the cpu too much.
1218		 */
1219				if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1220					sleep = jiffies + WAIT_MIN_SLEEP;
1221#if 1
1222				if (timer_pending(&hwgroup->timer))
1223					printk(KERN_CRIT "ide_set_handler: timer already active\n");
1224#endif
1225				/* so that ide_timer_expiry knows what to do */
1226				hwgroup->sleeping = 1;
1227				hwgroup->req_gen_timer = hwgroup->req_gen;
1228				mod_timer(&hwgroup->timer, sleep);
1229				/* we purposely leave hwgroup->busy==1
1230				 * while sleeping */
1231			} else {
1232				/* Ugly, but how can we sleep for the lock
1233				 * otherwise? perhaps from tq_disk?
1234				 */
1235
1236				/* for atari only */
1237				ide_release_lock();
1238				hwgroup->busy = 0;
1239			}
1240
1241			/* no more work for this hwgroup (for now) */
1242			return;
1243		}
1244	again:
1245		hwif = HWIF(drive);
1246		if (hwgroup->hwif->sharing_irq &&
1247		    hwif != hwgroup->hwif &&
1248		    hwif->io_ports[IDE_CONTROL_OFFSET]) {
1249			/* set nIEN for previous hwif */
1250			SELECT_INTERRUPT(drive);
1251		}
1252		hwgroup->hwif = hwif;
1253		hwgroup->drive = drive;
1254		drive->sleeping = 0;
1255		drive->service_start = jiffies;
1256
1257		if (blk_queue_plugged(drive->queue)) {
1258			printk(KERN_ERR "ide: huh? queue was plugged!\n");
1259			break;
1260		}
1261
1262		/*
1263		 * we know that the queue isn't empty, but this can happen
1264		 * if the q->prep_rq_fn() decides to kill a request
1265		 */
1266		rq = elv_next_request(drive->queue);
1267		if (!rq) {
1268			hwgroup->busy = 0;
1269			break;
1270		}
1271
1272		/*
1273		 * Sanity: don't accept a request that isn't a PM request
1274		 * if we are currently power managed. This is very important as
1275		 * blk_stop_queue() doesn't prevent the elv_next_request()
1276		 * above to return us whatever is in the queue. Since we call
1277		 * ide_do_request() ourselves, we end up taking requests while
1278		 * the queue is blocked...
1279		 *
1280		 * We let requests forced at head of queue with ide-preempt
1281		 * though. I hope that doesn't happen too much, hopefully not
1282		 * unless the subdriver triggers such a thing in its own PM
1283		 * state machine.
1284		 *
1285		 * We count how many times we loop here to make sure we service
1286		 * all drives in the hwgroup without looping for ever
1287		 */
1288		if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1289			drive = drive->next ? drive->next : hwgroup->drive;
1290			if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1291				goto again;
1292			/* We clear busy, there should be no pending ATA command at this point. */
1293			hwgroup->busy = 0;
1294			break;
1295		}
1296
1297		hwgroup->rq = rq;
1298
1299		/*
1300		 * Some systems have trouble with IDE IRQs arriving while
1301		 * the driver is still setting things up.  So, here we disable
1302		 * the IRQ used by this interface while the request is being started.
1303		 * This may look bad at first, but pretty much the same thing
1304		 * happens anyway when any interrupt comes in, IDE or otherwise
1305		 *  -- the kernel masks the IRQ while it is being handled.
1306		 */
1307		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1308			disable_irq_nosync(hwif->irq);
1309		spin_unlock(&ide_lock);
1310		local_irq_enable_in_hardirq();
1311			/* allow other IRQs while we start this request */
1312		startstop = start_request(drive, rq);
1313		spin_lock_irq(&ide_lock);
1314		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1315			enable_irq(hwif->irq);
1316		if (startstop == ide_stopped)
1317			hwgroup->busy = 0;
1318	}
1319}
1320
1321/*
1322 * Passes the stuff to ide_do_request
1323 */
1324void do_ide_request(request_queue_t *q)
1325{
1326	ide_drive_t *drive = q->queuedata;
1327
1328	ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1329}
1330
1331/*
1332 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1333 * retry the current request in pio mode instead of risking tossing it
1334 * all away
1335 */
1336static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1337{
1338	ide_hwif_t *hwif = HWIF(drive);
1339	struct request *rq;
1340	ide_startstop_t ret = ide_stopped;
1341
1342	/*
1343	 * end current dma transaction
1344	 */
1345
1346	if (error < 0) {
1347		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1348		(void)HWIF(drive)->ide_dma_end(drive);
1349		ret = ide_error(drive, "dma timeout error",
1350						hwif->INB(IDE_STATUS_REG));
1351	} else {
1352		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1353		hwif->dma_timeout(drive);
1354	}
1355
1356	/*
1357	 * disable dma for now, but remember that we did so because of
1358	 * a timeout -- we'll reenable after we finish this next request
1359	 * (or rather the first chunk of it) in pio.
1360	 */
1361	drive->retry_pio++;
1362	drive->state = DMA_PIO_RETRY;
1363	hwif->dma_off_quietly(drive);
1364
1365	/*
1366	 * un-busy drive etc (hwgroup->busy is cleared on return) and
1367	 * make sure request is sane
1368	 */
1369	rq = HWGROUP(drive)->rq;
1370
1371	if (!rq)
1372		goto out;
1373
1374	HWGROUP(drive)->rq = NULL;
1375
1376	rq->errors = 0;
1377
1378	if (!rq->bio)
1379		goto out;
1380
1381	rq->sector = rq->bio->bi_sector;
1382	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1383	rq->hard_cur_sectors = rq->current_nr_sectors;
1384	rq->buffer = bio_data(rq->bio);
1385out:
1386	return ret;
1387}
1388
1389/**
1390 *	ide_timer_expiry	-	handle lack of an IDE interrupt
1391 *	@data: timer callback magic (hwgroup)
1392 *
1393 *	An IDE command has timed out before the expected drive return
1394 *	occurred. At this point we attempt to clean up the current
1395 *	mess. If the current handler includes an expiry handler then
1396 *	we invoke the expiry handler, and providing it is happy the
1397 *	work is done. If that fails we apply generic recovery rules
1398 *	invoking the handler and checking the drive DMA status. We
1399 *	have an excessively incestuous relationship with the DMA
1400 *	logic that wants cleaning up.
1401 */
1402
1403void ide_timer_expiry (unsigned long data)
1404{
1405	ide_hwgroup_t	*hwgroup = (ide_hwgroup_t *) data;
1406	ide_handler_t	*handler;
1407	ide_expiry_t	*expiry;
1408	unsigned long	flags;
1409	unsigned long	wait = -1;
1410
1411	spin_lock_irqsave(&ide_lock, flags);
1412
1413	if (((handler = hwgroup->handler) == NULL) ||
1414	    (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1415		/*
1416		 * Either a marginal timeout occurred
1417		 * (got the interrupt just as timer expired),
1418		 * or we were "sleeping" to give other devices a chance.
1419		 * Either way, we don't really want to complain about anything.
1420		 */
1421		if (hwgroup->sleeping) {
1422			hwgroup->sleeping = 0;
1423			hwgroup->busy = 0;
1424		}
1425	} else {
1426		ide_drive_t *drive = hwgroup->drive;
1427		if (!drive) {
1428			printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1429			hwgroup->handler = NULL;
1430		} else {
1431			ide_hwif_t *hwif;
1432			ide_startstop_t startstop = ide_stopped;
1433			if (!hwgroup->busy) {
1434				hwgroup->busy = 1;	/* paranoia */
1435				printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1436			}
1437			if ((expiry = hwgroup->expiry) != NULL) {
1438				/* continue */
1439				if ((wait = expiry(drive)) > 0) {
1440					/* reset timer */
1441					hwgroup->timer.expires  = jiffies + wait;
1442					hwgroup->req_gen_timer = hwgroup->req_gen;
1443					add_timer(&hwgroup->timer);
1444					spin_unlock_irqrestore(&ide_lock, flags);
1445					return;
1446				}
1447			}
1448			hwgroup->handler = NULL;
1449			/*
1450			 * We need to simulate a real interrupt when invoking
1451			 * the handler() function, which means we need to
1452			 * globally mask the specific IRQ:
1453			 */
1454			spin_unlock(&ide_lock);
1455			hwif  = HWIF(drive);
1456#if DISABLE_IRQ_NOSYNC
1457			disable_irq_nosync(hwif->irq);
1458#else
1459			/* disable_irq_nosync ?? */
1460			disable_irq(hwif->irq);
1461#endif /* DISABLE_IRQ_NOSYNC */
1462			/* local CPU only,
1463			 * as if we were handling an interrupt */
1464			local_irq_disable();
1465			if (hwgroup->polling) {
1466				startstop = handler(drive);
1467			} else if (drive_is_ready(drive)) {
1468				if (drive->waiting_for_dma)
1469					hwgroup->hwif->dma_lost_irq(drive);
1470				(void)ide_ack_intr(hwif);
1471				printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1472				startstop = handler(drive);
1473			} else {
1474				if (drive->waiting_for_dma) {
1475					startstop = ide_dma_timeout_retry(drive, wait);
1476				} else
1477					startstop =
1478					ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1479			}
1480			drive->service_time = jiffies - drive->service_start;
1481			spin_lock_irq(&ide_lock);
1482			enable_irq(hwif->irq);
1483			if (startstop == ide_stopped)
1484				hwgroup->busy = 0;
1485		}
1486	}
1487	ide_do_request(hwgroup, IDE_NO_IRQ);
1488	spin_unlock_irqrestore(&ide_lock, flags);
1489}
1490
1491/**
1492 *	unexpected_intr		-	handle an unexpected IDE interrupt
1493 *	@irq: interrupt line
1494 *	@hwgroup: hwgroup being processed
1495 *
1496 *	There's nothing really useful we can do with an unexpected interrupt,
1497 *	other than reading the status register (to clear it), and logging it.
1498 *	There should be no way that an irq can happen before we're ready for it,
1499 *	so we needn't worry much about losing an "important" interrupt here.
1500 *
1501 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1502 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
1503 *	looks "good", we just ignore the interrupt completely.
1504 *
1505 *	This routine assumes __cli() is in effect when called.
1506 *
1507 *	If an unexpected interrupt happens on irq15 while we are handling irq14
1508 *	and if the two interfaces are "serialized" (CMD640), then it looks like
1509 *	we could screw up by interfering with a new request being set up for
1510 *	irq15.
1511 *
1512 *	In reality, this is a non-issue.  The new command is not sent unless
1513 *	the drive is ready to accept one, in which case we know the drive is
1514 *	not trying to interrupt us.  And ide_set_handler() is always invoked
1515 *	before completing the issuance of any new drive command, so we will not
1516 *	be accidentally invoked as a result of any valid command completion
1517 *	interrupt.
1518 *
1519 *	Note that we must walk the entire hwgroup here. We know which hwif
1520 *	is doing the current command, but we don't know which hwif burped
1521 *	mysteriously.
1522 */
1523
1524static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1525{
1526	u8 stat;
1527	ide_hwif_t *hwif = hwgroup->hwif;
1528
1529	/*
1530	 * handle the unexpected interrupt
1531	 */
1532	do {
1533		if (hwif->irq == irq) {
1534			stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1535			if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1536				/* Try to not flood the console with msgs */
1537				static unsigned long last_msgtime, count;
1538				++count;
1539				if (time_after(jiffies, last_msgtime + HZ)) {
1540					last_msgtime = jiffies;
1541					printk(KERN_ERR "%s%s: unexpected interrupt, "
1542						"status=0x%02x, count=%ld\n",
1543						hwif->name,
1544						(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1545				}
1546			}
1547		}
1548	} while ((hwif = hwif->next) != hwgroup->hwif);
1549}
1550
1551/**
1552 *	ide_intr	-	default IDE interrupt handler
1553 *	@irq: interrupt number
1554 *	@dev_id: hwif group
1555 *	@regs: unused weirdness from the kernel irq layer
1556 *
1557 *	This is the default IRQ handler for the IDE layer. You should
1558 *	not need to override it. If you do be aware it is subtle in
1559 *	places
1560 *
1561 *	hwgroup->hwif is the interface in the group currently performing
1562 *	a command. hwgroup->drive is the drive and hwgroup->handler is
1563 *	the IRQ handler to call. As we issue a command the handlers
1564 *	step through multiple states, reassigning the handler to the
1565 *	next step in the process. Unlike a smart SCSI controller IDE
1566 *	expects the main processor to sequence the various transfer
1567 *	stages. We also manage a poll timer to catch up with most
1568 *	timeout situations. There are still a few where the handlers
1569 *	don't ever decide to give up.
1570 *
1571 *	The handler eventually returns ide_stopped to indicate the
1572 *	request completed. At this point we issue the next request
1573 *	on the hwgroup and the process begins again.
1574 */
1575
1576irqreturn_t ide_intr (int irq, void *dev_id)
1577{
1578	unsigned long flags;
1579	ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1580	ide_hwif_t *hwif;
1581	ide_drive_t *drive;
1582	ide_handler_t *handler;
1583	ide_startstop_t startstop;
1584
1585	spin_lock_irqsave(&ide_lock, flags);
1586	hwif = hwgroup->hwif;
1587
1588	if (!ide_ack_intr(hwif)) {
1589		spin_unlock_irqrestore(&ide_lock, flags);
1590		return IRQ_NONE;
1591	}
1592
1593	if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1594		/*
1595		 * Not expecting an interrupt from this drive.
1596		 * That means this could be:
1597		 *	(1) an interrupt from another PCI device
1598		 *	sharing the same PCI INT# as us.
1599		 * or	(2) a drive just entered sleep or standby mode,
1600		 *	and is interrupting to let us know.
1601		 * or	(3) a spurious interrupt of unknown origin.
1602		 *
1603		 * For PCI, we cannot tell the difference,
1604		 * so in that case we just ignore it and hope it goes away.
1605		 *
1606		 * FIXME: unexpected_intr should be hwif-> then we can
1607		 * remove all the ifdef PCI crap
1608		 */
1609#ifdef CONFIG_BLK_DEV_IDEPCI
1610		if (hwif->pci_dev && !hwif->pci_dev->vendor)
1611#endif	/* CONFIG_BLK_DEV_IDEPCI */
1612		{
1613			/*
1614			 * Probably not a shared PCI interrupt,
1615			 * so we can safely try to do something about it:
1616			 */
1617			unexpected_intr(irq, hwgroup);
1618#ifdef CONFIG_BLK_DEV_IDEPCI
1619		} else {
1620			/*
1621			 * Whack the status register, just in case
1622			 * we have a leftover pending IRQ.
1623			 */
1624			(void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1625#endif /* CONFIG_BLK_DEV_IDEPCI */
1626		}
1627		spin_unlock_irqrestore(&ide_lock, flags);
1628		return IRQ_NONE;
1629	}
1630	drive = hwgroup->drive;
1631	if (!drive) {
1632		/*
1633		 * This should NEVER happen, and there isn't much
1634		 * we could do about it here.
1635		 *
1636		 * [Note - this can occur if the drive is hot unplugged]
1637		 */
1638		spin_unlock_irqrestore(&ide_lock, flags);
1639		return IRQ_HANDLED;
1640	}
1641	if (!drive_is_ready(drive)) {
1642		/*
1643		 * This happens regularly when we share a PCI IRQ with
1644		 * another device.  Unfortunately, it can also happen
1645		 * with some buggy drives that trigger the IRQ before
1646		 * their status register is up to date.  Hopefully we have
1647		 * enough advance overhead that the latter isn't a problem.
1648		 */
1649		spin_unlock_irqrestore(&ide_lock, flags);
1650		return IRQ_NONE;
1651	}
1652	if (!hwgroup->busy) {
1653		hwgroup->busy = 1;	/* paranoia */
1654		printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1655	}
1656	hwgroup->handler = NULL;
1657	hwgroup->req_gen++;
1658	del_timer(&hwgroup->timer);
1659	spin_unlock(&ide_lock);
1660
1661	/* Some controllers might set DMA INTR no matter DMA or PIO;
1662	 * bmdma status might need to be cleared even for
1663	 * PIO interrupts to prevent spurious/lost irq.
1664	 */
1665	if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1666		/* ide_dma_end() needs bmdma status for error checking.
1667		 * So, skip clearing bmdma status here and leave it
1668		 * to ide_dma_end() if this is dma interrupt.
1669		 */
1670		hwif->ide_dma_clear_irq(drive);
1671
1672	if (drive->unmask)
1673		local_irq_enable_in_hardirq();
1674	/* service this interrupt, may set handler for next interrupt */
1675	startstop = handler(drive);
1676	spin_lock_irq(&ide_lock);
1677
1678	/*
1679	 * Note that handler() may have set things up for another
1680	 * interrupt to occur soon, but it cannot happen until
1681	 * we exit from this routine, because it will be the
1682	 * same irq as is currently being serviced here, and Linux
1683	 * won't allow another of the same (on any CPU) until we return.
1684	 */
1685	drive->service_time = jiffies - drive->service_start;
1686	if (startstop == ide_stopped) {
1687		if (hwgroup->handler == NULL) {	/* paranoia */
1688			hwgroup->busy = 0;
1689			ide_do_request(hwgroup, hwif->irq);
1690		} else {
1691			printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1692				"on exit\n", drive->name);
1693		}
1694	}
1695	spin_unlock_irqrestore(&ide_lock, flags);
1696	return IRQ_HANDLED;
1697}
1698
1699/**
1700 *	ide_init_drive_cmd	-	initialize a drive command request
1701 *	@rq: request object
1702 *
1703 *	Initialize a request before we fill it in and send it down to
1704 *	ide_do_drive_cmd. Commands must be set up by this function. Right
1705 *	now it doesn't do a lot, but if that changes abusers will have a
1706 *	nasty surprise.
1707 */
1708
1709void ide_init_drive_cmd (struct request *rq)
1710{
1711	memset(rq, 0, sizeof(*rq));
1712	rq->cmd_type = REQ_TYPE_ATA_CMD;
1713	rq->ref_count = 1;
1714}
1715
1716EXPORT_SYMBOL(ide_init_drive_cmd);
1717
1718/**
1719 *	ide_do_drive_cmd	-	issue IDE special command
1720 *	@drive: device to issue command
1721 *	@rq: request to issue
1722 *	@action: action for processing
1723 *
1724 *	This function issues a special IDE device request
1725 *	onto the request queue.
1726 *
1727 *	If action is ide_wait, then the rq is queued at the end of the
1728 *	request queue, and the function sleeps until it has been processed.
1729 *	This is for use when invoked from an ioctl handler.
1730 *
1731 *	If action is ide_preempt, then the rq is queued at the head of
1732 *	the request queue, displacing the currently-being-processed
1733 *	request and this function returns immediately without waiting
1734 *	for the new rq to be completed.  This is VERY DANGEROUS, and is
1735 *	intended for careful use by the ATAPI tape/cdrom driver code.
1736 *
1737 *	If action is ide_end, then the rq is queued at the end of the
1738 *	request queue, and the function returns immediately without waiting
1739 *	for the new rq to be completed. This is again intended for careful
1740 *	use by the ATAPI tape/cdrom driver code.
1741 */
1742
1743int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1744{
1745	unsigned long flags;
1746	ide_hwgroup_t *hwgroup = HWGROUP(drive);
1747	DECLARE_COMPLETION_ONSTACK(wait);
1748	int where = ELEVATOR_INSERT_BACK, err;
1749	int must_wait = (action == ide_wait || action == ide_head_wait);
1750
1751	rq->errors = 0;
1752
1753	/*
1754	 * we need to hold an extra reference to request for safe inspection
1755	 * after completion
1756	 */
1757	if (must_wait) {
1758		rq->ref_count++;
1759		rq->end_io_data = &wait;
1760		rq->end_io = blk_end_sync_rq;
1761	}
1762
1763	spin_lock_irqsave(&ide_lock, flags);
1764	if (action == ide_preempt)
1765		hwgroup->rq = NULL;
1766	if (action == ide_preempt || action == ide_head_wait) {
1767		where = ELEVATOR_INSERT_FRONT;
1768		rq->cmd_flags |= REQ_PREEMPT;
1769	}
1770	__elv_add_request(drive->queue, rq, where, 0);
1771	ide_do_request(hwgroup, IDE_NO_IRQ);
1772	spin_unlock_irqrestore(&ide_lock, flags);
1773
1774	err = 0;
1775	if (must_wait) {
1776		wait_for_completion(&wait);
1777		if (rq->errors)
1778			err = -EIO;
1779
1780		blk_put_request(rq);
1781	}
1782
1783	return err;
1784}
1785
1786EXPORT_SYMBOL(ide_do_drive_cmd);
1787