ide-io.c revision e8a96aa71355edef9f40ce01459acf25c50cb78c
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
50#include <linux/bitops.h>
51
52#include <asm/byteorder.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55#include <asm/io.h>
56
57static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58			     int uptodate, unsigned int nr_bytes, int dequeue)
59{
60	int ret = 1;
61	int error = 0;
62
63	if (uptodate <= 0)
64		error = uptodate ? uptodate : -EIO;
65
66	/*
67	 * if failfast is set on a request, override number of sectors and
68	 * complete the whole request right now
69	 */
70	if (blk_noretry_request(rq) && error)
71		nr_bytes = rq->hard_nr_sectors << 9;
72
73	if (!blk_fs_request(rq) && error && !rq->errors)
74		rq->errors = -EIO;
75
76	/*
77	 * decide whether to reenable DMA -- 3 is a random magic for now,
78	 * if we DMA timeout more than 3 times, just stay in PIO
79	 */
80	if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
81		drive->state = 0;
82		ide_dma_on(drive);
83	}
84
85	if (!__blk_end_request(rq, error, nr_bytes)) {
86		if (dequeue)
87			HWGROUP(drive)->rq = NULL;
88		ret = 0;
89	}
90
91	return ret;
92}
93
94/**
95 *	ide_end_request		-	complete an IDE I/O
96 *	@drive: IDE device for the I/O
97 *	@uptodate:
98 *	@nr_sectors: number of sectors completed
99 *
100 *	This is our end_request wrapper function. We complete the I/O
101 *	update random number input and dequeue the request, which if
102 *	it was tagged may be out of order.
103 */
104
105int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
106{
107	unsigned int nr_bytes = nr_sectors << 9;
108	struct request *rq;
109	unsigned long flags;
110	int ret = 1;
111
112	/*
113	 * room for locking improvements here, the calls below don't
114	 * need the queue lock held at all
115	 */
116	spin_lock_irqsave(&ide_lock, flags);
117	rq = HWGROUP(drive)->rq;
118
119	if (!nr_bytes) {
120		if (blk_pc_request(rq))
121			nr_bytes = rq->data_len;
122		else
123			nr_bytes = rq->hard_cur_sectors << 9;
124	}
125
126	ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
127
128	spin_unlock_irqrestore(&ide_lock, flags);
129	return ret;
130}
131EXPORT_SYMBOL(ide_end_request);
132
133/*
134 * Power Management state machine. This one is rather trivial for now,
135 * we should probably add more, like switching back to PIO on suspend
136 * to help some BIOSes, re-do the door locking on resume, etc...
137 */
138
139enum {
140	ide_pm_flush_cache	= ide_pm_state_start_suspend,
141	idedisk_pm_standby,
142
143	idedisk_pm_restore_pio	= ide_pm_state_start_resume,
144	idedisk_pm_idle,
145	ide_pm_restore_dma,
146};
147
148static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
149{
150	struct request_pm_state *pm = rq->data;
151
152	if (drive->media != ide_disk)
153		return;
154
155	switch (pm->pm_step) {
156	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) complete */
157		if (pm->pm_state == PM_EVENT_FREEZE)
158			pm->pm_step = ide_pm_state_completed;
159		else
160			pm->pm_step = idedisk_pm_standby;
161		break;
162	case idedisk_pm_standby:	/* Suspend step 2 (standby) complete */
163		pm->pm_step = ide_pm_state_completed;
164		break;
165	case idedisk_pm_restore_pio:	/* Resume step 1 complete */
166		pm->pm_step = idedisk_pm_idle;
167		break;
168	case idedisk_pm_idle:		/* Resume step 2 (idle) complete */
169		pm->pm_step = ide_pm_restore_dma;
170		break;
171	}
172}
173
174static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
175{
176	struct request_pm_state *pm = rq->data;
177	ide_task_t *args = rq->special;
178
179	memset(args, 0, sizeof(*args));
180
181	switch (pm->pm_step) {
182	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) */
183		if (drive->media != ide_disk)
184			break;
185		/* Not supported? Switch to next step now. */
186		if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
187			ide_complete_power_step(drive, rq, 0, 0);
188			return ide_stopped;
189		}
190		if (ide_id_has_flush_cache_ext(drive->id))
191			args->tf.command = WIN_FLUSH_CACHE_EXT;
192		else
193			args->tf.command = WIN_FLUSH_CACHE;
194		goto out_do_tf;
195
196	case idedisk_pm_standby:	/* Suspend step 2 (standby) */
197		args->tf.command = WIN_STANDBYNOW1;
198		goto out_do_tf;
199
200	case idedisk_pm_restore_pio:	/* Resume step 1 (restore PIO) */
201		ide_set_max_pio(drive);
202		/*
203		 * skip idedisk_pm_idle for ATAPI devices
204		 */
205		if (drive->media != ide_disk)
206			pm->pm_step = ide_pm_restore_dma;
207		else
208			ide_complete_power_step(drive, rq, 0, 0);
209		return ide_stopped;
210
211	case idedisk_pm_idle:		/* Resume step 2 (idle) */
212		args->tf.command = WIN_IDLEIMMEDIATE;
213		goto out_do_tf;
214
215	case ide_pm_restore_dma:	/* Resume step 3 (restore DMA) */
216		/*
217		 * Right now, all we do is call ide_set_dma(drive),
218		 * we could be smarter and check for current xfer_speed
219		 * in struct drive etc...
220		 */
221		if (drive->hwif->dma_ops == NULL)
222			break;
223		/*
224		 * TODO: respect ->using_dma setting
225		 */
226		ide_set_dma(drive);
227		break;
228	}
229	pm->pm_step = ide_pm_state_completed;
230	return ide_stopped;
231
232out_do_tf:
233	args->tf_flags	 = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
234	args->data_phase = TASKFILE_NO_DATA;
235	return do_rw_taskfile(drive, args);
236}
237
238/**
239 *	ide_end_dequeued_request	-	complete an IDE I/O
240 *	@drive: IDE device for the I/O
241 *	@uptodate:
242 *	@nr_sectors: number of sectors completed
243 *
244 *	Complete an I/O that is no longer on the request queue. This
245 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
246 *	We must still finish the old request but we must not tamper with the
247 *	queue in the meantime.
248 *
249 *	NOTE: This path does not handle barrier, but barrier is not supported
250 *	on ide-cd anyway.
251 */
252
253int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
254			     int uptodate, int nr_sectors)
255{
256	unsigned long flags;
257	int ret;
258
259	spin_lock_irqsave(&ide_lock, flags);
260	BUG_ON(!blk_rq_started(rq));
261	ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
262	spin_unlock_irqrestore(&ide_lock, flags);
263
264	return ret;
265}
266EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
267
268
269/**
270 *	ide_complete_pm_request - end the current Power Management request
271 *	@drive: target drive
272 *	@rq: request
273 *
274 *	This function cleans up the current PM request and stops the queue
275 *	if necessary.
276 */
277static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
278{
279	unsigned long flags;
280
281#ifdef DEBUG_PM
282	printk("%s: completing PM request, %s\n", drive->name,
283	       blk_pm_suspend_request(rq) ? "suspend" : "resume");
284#endif
285	spin_lock_irqsave(&ide_lock, flags);
286	if (blk_pm_suspend_request(rq)) {
287		blk_stop_queue(drive->queue);
288	} else {
289		drive->blocked = 0;
290		blk_start_queue(drive->queue);
291	}
292	HWGROUP(drive)->rq = NULL;
293	if (__blk_end_request(rq, 0, 0))
294		BUG();
295	spin_unlock_irqrestore(&ide_lock, flags);
296}
297
298/**
299 *	ide_end_drive_cmd	-	end an explicit drive command
300 *	@drive: command
301 *	@stat: status bits
302 *	@err: error bits
303 *
304 *	Clean up after success/failure of an explicit drive command.
305 *	These get thrown onto the queue so they are synchronized with
306 *	real I/O operations on the drive.
307 *
308 *	In LBA48 mode we have to read the register set twice to get
309 *	all the extra information out.
310 */
311
312void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
313{
314	unsigned long flags;
315	struct request *rq;
316
317	spin_lock_irqsave(&ide_lock, flags);
318	rq = HWGROUP(drive)->rq;
319	spin_unlock_irqrestore(&ide_lock, flags);
320
321	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
322		ide_task_t *task = (ide_task_t *)rq->special;
323
324		if (rq->errors == 0)
325			rq->errors = !OK_STAT(stat, READY_STAT, BAD_STAT);
326
327		if (task) {
328			struct ide_taskfile *tf = &task->tf;
329
330			tf->error = err;
331			tf->status = stat;
332
333			drive->hwif->tf_read(drive, task);
334
335			if (task->tf_flags & IDE_TFLAG_DYN)
336				kfree(task);
337		}
338	} else if (blk_pm_request(rq)) {
339		struct request_pm_state *pm = rq->data;
340#ifdef DEBUG_PM
341		printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
342			drive->name, rq->pm->pm_step, stat, err);
343#endif
344		ide_complete_power_step(drive, rq, stat, err);
345		if (pm->pm_step == ide_pm_state_completed)
346			ide_complete_pm_request(drive, rq);
347		return;
348	}
349
350	spin_lock_irqsave(&ide_lock, flags);
351	HWGROUP(drive)->rq = NULL;
352	rq->errors = err;
353	if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
354				       blk_rq_bytes(rq))))
355		BUG();
356	spin_unlock_irqrestore(&ide_lock, flags);
357}
358
359EXPORT_SYMBOL(ide_end_drive_cmd);
360
361/**
362 *	try_to_flush_leftover_data	-	flush junk
363 *	@drive: drive to flush
364 *
365 *	try_to_flush_leftover_data() is invoked in response to a drive
366 *	unexpectedly having its DRQ_STAT bit set.  As an alternative to
367 *	resetting the drive, this routine tries to clear the condition
368 *	by read a sector's worth of data from the drive.  Of course,
369 *	this may not help if the drive is *waiting* for data from *us*.
370 */
371static void try_to_flush_leftover_data (ide_drive_t *drive)
372{
373	int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
374
375	if (drive->media != ide_disk)
376		return;
377	while (i > 0) {
378		u32 buffer[16];
379		u32 wcount = (i > 16) ? 16 : i;
380
381		i -= wcount;
382		drive->hwif->input_data(drive, NULL, buffer, wcount * 4);
383	}
384}
385
386static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
387{
388	if (rq->rq_disk) {
389		ide_driver_t *drv;
390
391		drv = *(ide_driver_t **)rq->rq_disk->private_data;
392		drv->end_request(drive, 0, 0);
393	} else
394		ide_end_request(drive, 0, 0);
395}
396
397static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
398{
399	ide_hwif_t *hwif = drive->hwif;
400
401	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
402		/* other bits are useless when BUSY */
403		rq->errors |= ERROR_RESET;
404	} else if (stat & ERR_STAT) {
405		/* err has different meaning on cdrom and tape */
406		if (err == ABRT_ERR) {
407			if (drive->select.b.lba &&
408			    /* some newer drives don't support WIN_SPECIFY */
409			    hwif->INB(hwif->io_ports.command_addr) ==
410				WIN_SPECIFY)
411				return ide_stopped;
412		} else if ((err & BAD_CRC) == BAD_CRC) {
413			/* UDMA crc error, just retry the operation */
414			drive->crc_count++;
415		} else if (err & (BBD_ERR | ECC_ERR)) {
416			/* retries won't help these */
417			rq->errors = ERROR_MAX;
418		} else if (err & TRK0_ERR) {
419			/* help it find track zero */
420			rq->errors |= ERROR_RECAL;
421		}
422	}
423
424	if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
425	    (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
426		try_to_flush_leftover_data(drive);
427
428	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
429		ide_kill_rq(drive, rq);
430		return ide_stopped;
431	}
432
433	if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT))
434		rq->errors |= ERROR_RESET;
435
436	if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
437		++rq->errors;
438		return ide_do_reset(drive);
439	}
440
441	if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
442		drive->special.b.recalibrate = 1;
443
444	++rq->errors;
445
446	return ide_stopped;
447}
448
449static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
450{
451	ide_hwif_t *hwif = drive->hwif;
452
453	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
454		/* other bits are useless when BUSY */
455		rq->errors |= ERROR_RESET;
456	} else {
457		/* add decoding error stuff */
458	}
459
460	if (ide_read_status(drive) & (BUSY_STAT | DRQ_STAT))
461		/* force an abort */
462		hwif->OUTBSYNC(drive, WIN_IDLEIMMEDIATE,
463			       hwif->io_ports.command_addr);
464
465	if (rq->errors >= ERROR_MAX) {
466		ide_kill_rq(drive, rq);
467	} else {
468		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
469			++rq->errors;
470			return ide_do_reset(drive);
471		}
472		++rq->errors;
473	}
474
475	return ide_stopped;
476}
477
478ide_startstop_t
479__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
480{
481	if (drive->media == ide_disk)
482		return ide_ata_error(drive, rq, stat, err);
483	return ide_atapi_error(drive, rq, stat, err);
484}
485
486EXPORT_SYMBOL_GPL(__ide_error);
487
488/**
489 *	ide_error	-	handle an error on the IDE
490 *	@drive: drive the error occurred on
491 *	@msg: message to report
492 *	@stat: status bits
493 *
494 *	ide_error() takes action based on the error returned by the drive.
495 *	For normal I/O that may well include retries. We deal with
496 *	both new-style (taskfile) and old style command handling here.
497 *	In the case of taskfile command handling there is work left to
498 *	do
499 */
500
501ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
502{
503	struct request *rq;
504	u8 err;
505
506	err = ide_dump_status(drive, msg, stat);
507
508	if ((rq = HWGROUP(drive)->rq) == NULL)
509		return ide_stopped;
510
511	/* retry only "normal" I/O: */
512	if (!blk_fs_request(rq)) {
513		rq->errors = 1;
514		ide_end_drive_cmd(drive, stat, err);
515		return ide_stopped;
516	}
517
518	if (rq->rq_disk) {
519		ide_driver_t *drv;
520
521		drv = *(ide_driver_t **)rq->rq_disk->private_data;
522		return drv->error(drive, rq, stat, err);
523	} else
524		return __ide_error(drive, rq, stat, err);
525}
526
527EXPORT_SYMBOL_GPL(ide_error);
528
529ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
530{
531	if (drive->media != ide_disk)
532		rq->errors |= ERROR_RESET;
533
534	ide_kill_rq(drive, rq);
535
536	return ide_stopped;
537}
538
539EXPORT_SYMBOL_GPL(__ide_abort);
540
541/**
542 *	ide_abort	-	abort pending IDE operations
543 *	@drive: drive the error occurred on
544 *	@msg: message to report
545 *
546 *	ide_abort kills and cleans up when we are about to do a
547 *	host initiated reset on active commands. Longer term we
548 *	want handlers to have sensible abort handling themselves
549 *
550 *	This differs fundamentally from ide_error because in
551 *	this case the command is doing just fine when we
552 *	blow it away.
553 */
554
555ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
556{
557	struct request *rq;
558
559	if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
560		return ide_stopped;
561
562	/* retry only "normal" I/O: */
563	if (!blk_fs_request(rq)) {
564		rq->errors = 1;
565		ide_end_drive_cmd(drive, BUSY_STAT, 0);
566		return ide_stopped;
567	}
568
569	if (rq->rq_disk) {
570		ide_driver_t *drv;
571
572		drv = *(ide_driver_t **)rq->rq_disk->private_data;
573		return drv->abort(drive, rq);
574	} else
575		return __ide_abort(drive, rq);
576}
577
578static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
579{
580	tf->nsect   = drive->sect;
581	tf->lbal    = drive->sect;
582	tf->lbam    = drive->cyl;
583	tf->lbah    = drive->cyl >> 8;
584	tf->device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
585	tf->command = WIN_SPECIFY;
586}
587
588static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
589{
590	tf->nsect   = drive->sect;
591	tf->command = WIN_RESTORE;
592}
593
594static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
595{
596	tf->nsect   = drive->mult_req;
597	tf->command = WIN_SETMULT;
598}
599
600static ide_startstop_t ide_disk_special(ide_drive_t *drive)
601{
602	special_t *s = &drive->special;
603	ide_task_t args;
604
605	memset(&args, 0, sizeof(ide_task_t));
606	args.data_phase = TASKFILE_NO_DATA;
607
608	if (s->b.set_geometry) {
609		s->b.set_geometry = 0;
610		ide_tf_set_specify_cmd(drive, &args.tf);
611	} else if (s->b.recalibrate) {
612		s->b.recalibrate = 0;
613		ide_tf_set_restore_cmd(drive, &args.tf);
614	} else if (s->b.set_multmode) {
615		s->b.set_multmode = 0;
616		if (drive->mult_req > drive->id->max_multsect)
617			drive->mult_req = drive->id->max_multsect;
618		ide_tf_set_setmult_cmd(drive, &args.tf);
619	} else if (s->all) {
620		int special = s->all;
621		s->all = 0;
622		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
623		return ide_stopped;
624	}
625
626	args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
627			IDE_TFLAG_CUSTOM_HANDLER;
628
629	do_rw_taskfile(drive, &args);
630
631	return ide_started;
632}
633
634/*
635 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
636 */
637static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
638{
639	switch (req_pio) {
640	case 202:
641	case 201:
642	case 200:
643	case 102:
644	case 101:
645	case 100:
646		return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
647	case 9:
648	case 8:
649		return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
650	case 7:
651	case 6:
652		return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
653	default:
654		return 0;
655	}
656}
657
658/**
659 *	do_special		-	issue some special commands
660 *	@drive: drive the command is for
661 *
662 *	do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
663 *	commands to a drive.  It used to do much more, but has been scaled
664 *	back.
665 */
666
667static ide_startstop_t do_special (ide_drive_t *drive)
668{
669	special_t *s = &drive->special;
670
671#ifdef DEBUG
672	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
673#endif
674	if (s->b.set_tune) {
675		ide_hwif_t *hwif = drive->hwif;
676		const struct ide_port_ops *port_ops = hwif->port_ops;
677		u8 req_pio = drive->tune_req;
678
679		s->b.set_tune = 0;
680
681		if (set_pio_mode_abuse(drive->hwif, req_pio)) {
682			/*
683			 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
684			 */
685			if (req_pio == 8 || req_pio == 9) {
686				unsigned long flags;
687
688				spin_lock_irqsave(&ide_lock, flags);
689				port_ops->set_pio_mode(drive, req_pio);
690				spin_unlock_irqrestore(&ide_lock, flags);
691			} else
692				port_ops->set_pio_mode(drive, req_pio);
693		} else {
694			int keep_dma = drive->using_dma;
695
696			ide_set_pio(drive, req_pio);
697
698			if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
699				if (keep_dma)
700					ide_dma_on(drive);
701			}
702		}
703
704		return ide_stopped;
705	} else {
706		if (drive->media == ide_disk)
707			return ide_disk_special(drive);
708
709		s->all = 0;
710		drive->mult_req = 0;
711		return ide_stopped;
712	}
713}
714
715void ide_map_sg(ide_drive_t *drive, struct request *rq)
716{
717	ide_hwif_t *hwif = drive->hwif;
718	struct scatterlist *sg = hwif->sg_table;
719
720	if (hwif->sg_mapped)	/* needed by ide-scsi */
721		return;
722
723	if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
724		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
725	} else {
726		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
727		hwif->sg_nents = 1;
728	}
729}
730
731EXPORT_SYMBOL_GPL(ide_map_sg);
732
733void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
734{
735	ide_hwif_t *hwif = drive->hwif;
736
737	hwif->nsect = hwif->nleft = rq->nr_sectors;
738	hwif->cursg_ofs = 0;
739	hwif->cursg = NULL;
740}
741
742EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
743
744/**
745 *	execute_drive_command	-	issue special drive command
746 *	@drive: the drive to issue the command on
747 *	@rq: the request structure holding the command
748 *
749 *	execute_drive_cmd() issues a special drive command,  usually
750 *	initiated by ioctl() from the external hdparm program. The
751 *	command can be a drive command, drive task or taskfile
752 *	operation. Weirdly you can call it with NULL to wait for
753 *	all commands to finish. Don't do this as that is due to change
754 */
755
756static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
757		struct request *rq)
758{
759	ide_hwif_t *hwif = HWIF(drive);
760	ide_task_t *task = rq->special;
761
762	if (task) {
763		hwif->data_phase = task->data_phase;
764
765		switch (hwif->data_phase) {
766		case TASKFILE_MULTI_OUT:
767		case TASKFILE_OUT:
768		case TASKFILE_MULTI_IN:
769		case TASKFILE_IN:
770			ide_init_sg_cmd(drive, rq);
771			ide_map_sg(drive, rq);
772		default:
773			break;
774		}
775
776		return do_rw_taskfile(drive, task);
777	}
778
779 	/*
780 	 * NULL is actually a valid way of waiting for
781 	 * all current requests to be flushed from the queue.
782 	 */
783#ifdef DEBUG
784 	printk("%s: DRIVE_CMD (null)\n", drive->name);
785#endif
786	ide_end_drive_cmd(drive, ide_read_status(drive), ide_read_error(drive));
787
788 	return ide_stopped;
789}
790
791static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
792{
793	struct request_pm_state *pm = rq->data;
794
795	if (blk_pm_suspend_request(rq) &&
796	    pm->pm_step == ide_pm_state_start_suspend)
797		/* Mark drive blocked when starting the suspend sequence. */
798		drive->blocked = 1;
799	else if (blk_pm_resume_request(rq) &&
800		 pm->pm_step == ide_pm_state_start_resume) {
801		/*
802		 * The first thing we do on wakeup is to wait for BSY bit to
803		 * go away (with a looong timeout) as a drive on this hwif may
804		 * just be POSTing itself.
805		 * We do that before even selecting as the "other" device on
806		 * the bus may be broken enough to walk on our toes at this
807		 * point.
808		 */
809		int rc;
810#ifdef DEBUG_PM
811		printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
812#endif
813		rc = ide_wait_not_busy(HWIF(drive), 35000);
814		if (rc)
815			printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
816		SELECT_DRIVE(drive);
817		ide_set_irq(drive, 1);
818		rc = ide_wait_not_busy(HWIF(drive), 100000);
819		if (rc)
820			printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
821	}
822}
823
824/**
825 *	start_request	-	start of I/O and command issuing for IDE
826 *
827 *	start_request() initiates handling of a new I/O request. It
828 *	accepts commands and I/O (read/write) requests. It also does
829 *	the final remapping for weird stuff like EZDrive. Once
830 *	device mapper can work sector level the EZDrive stuff can go away
831 *
832 *	FIXME: this function needs a rename
833 */
834
835static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
836{
837	ide_startstop_t startstop;
838	sector_t block;
839
840	BUG_ON(!blk_rq_started(rq));
841
842#ifdef DEBUG
843	printk("%s: start_request: current=0x%08lx\n",
844		HWIF(drive)->name, (unsigned long) rq);
845#endif
846
847	/* bail early if we've exceeded max_failures */
848	if (drive->max_failures && (drive->failures > drive->max_failures)) {
849		rq->cmd_flags |= REQ_FAILED;
850		goto kill_rq;
851	}
852
853	block    = rq->sector;
854	if (blk_fs_request(rq) &&
855	    (drive->media == ide_disk || drive->media == ide_floppy)) {
856		block += drive->sect0;
857	}
858	/* Yecch - this will shift the entire interval,
859	   possibly killing some innocent following sector */
860	if (block == 0 && drive->remap_0_to_1 == 1)
861		block = 1;  /* redirect MBR access to EZ-Drive partn table */
862
863	if (blk_pm_request(rq))
864		ide_check_pm_state(drive, rq);
865
866	SELECT_DRIVE(drive);
867	if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
868		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
869		return startstop;
870	}
871	if (!drive->special.all) {
872		ide_driver_t *drv;
873
874		/*
875		 * We reset the drive so we need to issue a SETFEATURES.
876		 * Do it _after_ do_special() restored device parameters.
877		 */
878		if (drive->current_speed == 0xff)
879			ide_config_drive_speed(drive, drive->desired_speed);
880
881		if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
882			return execute_drive_cmd(drive, rq);
883		else if (blk_pm_request(rq)) {
884			struct request_pm_state *pm = rq->data;
885#ifdef DEBUG_PM
886			printk("%s: start_power_step(step: %d)\n",
887				drive->name, rq->pm->pm_step);
888#endif
889			startstop = ide_start_power_step(drive, rq);
890			if (startstop == ide_stopped &&
891			    pm->pm_step == ide_pm_state_completed)
892				ide_complete_pm_request(drive, rq);
893			return startstop;
894		}
895
896		drv = *(ide_driver_t **)rq->rq_disk->private_data;
897		return drv->do_request(drive, rq, block);
898	}
899	return do_special(drive);
900kill_rq:
901	ide_kill_rq(drive, rq);
902	return ide_stopped;
903}
904
905/**
906 *	ide_stall_queue		-	pause an IDE device
907 *	@drive: drive to stall
908 *	@timeout: time to stall for (jiffies)
909 *
910 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
911 *	to the hwgroup by sleeping for timeout jiffies.
912 */
913
914void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
915{
916	if (timeout > WAIT_WORSTCASE)
917		timeout = WAIT_WORSTCASE;
918	drive->sleep = timeout + jiffies;
919	drive->sleeping = 1;
920}
921
922EXPORT_SYMBOL(ide_stall_queue);
923
924#define WAKEUP(drive)	((drive)->service_start + 2 * (drive)->service_time)
925
926/**
927 *	choose_drive		-	select a drive to service
928 *	@hwgroup: hardware group to select on
929 *
930 *	choose_drive() selects the next drive which will be serviced.
931 *	This is necessary because the IDE layer can't issue commands
932 *	to both drives on the same cable, unlike SCSI.
933 */
934
935static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
936{
937	ide_drive_t *drive, *best;
938
939repeat:
940	best = NULL;
941	drive = hwgroup->drive;
942
943	/*
944	 * drive is doing pre-flush, ordered write, post-flush sequence. even
945	 * though that is 3 requests, it must be seen as a single transaction.
946	 * we must not preempt this drive until that is complete
947	 */
948	if (blk_queue_flushing(drive->queue)) {
949		/*
950		 * small race where queue could get replugged during
951		 * the 3-request flush cycle, just yank the plug since
952		 * we want it to finish asap
953		 */
954		blk_remove_plug(drive->queue);
955		return drive;
956	}
957
958	do {
959		if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
960		    && !elv_queue_empty(drive->queue)) {
961			if (!best
962			 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
963			 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
964			{
965				if (!blk_queue_plugged(drive->queue))
966					best = drive;
967			}
968		}
969	} while ((drive = drive->next) != hwgroup->drive);
970	if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
971		long t = (signed long)(WAKEUP(best) - jiffies);
972		if (t >= WAIT_MIN_SLEEP) {
973		/*
974		 * We *may* have some time to spare, but first let's see if
975		 * someone can potentially benefit from our nice mood today..
976		 */
977			drive = best->next;
978			do {
979				if (!drive->sleeping
980				 && time_before(jiffies - best->service_time, WAKEUP(drive))
981				 && time_before(WAKEUP(drive), jiffies + t))
982				{
983					ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
984					goto repeat;
985				}
986			} while ((drive = drive->next) != best);
987		}
988	}
989	return best;
990}
991
992/*
993 * Issue a new request to a drive from hwgroup
994 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
995 *
996 * A hwgroup is a serialized group of IDE interfaces.  Usually there is
997 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
998 * may have both interfaces in a single hwgroup to "serialize" access.
999 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1000 * together into one hwgroup for serialized access.
1001 *
1002 * Note also that several hwgroups can end up sharing a single IRQ,
1003 * possibly along with many other devices.  This is especially common in
1004 * PCI-based systems with off-board IDE controller cards.
1005 *
1006 * The IDE driver uses the single global ide_lock spinlock to protect
1007 * access to the request queues, and to protect the hwgroup->busy flag.
1008 *
1009 * The first thread into the driver for a particular hwgroup sets the
1010 * hwgroup->busy flag to indicate that this hwgroup is now active,
1011 * and then initiates processing of the top request from the request queue.
1012 *
1013 * Other threads attempting entry notice the busy setting, and will simply
1014 * queue their new requests and exit immediately.  Note that hwgroup->busy
1015 * remains set even when the driver is merely awaiting the next interrupt.
1016 * Thus, the meaning is "this hwgroup is busy processing a request".
1017 *
1018 * When processing of a request completes, the completing thread or IRQ-handler
1019 * will start the next request from the queue.  If no more work remains,
1020 * the driver will clear the hwgroup->busy flag and exit.
1021 *
1022 * The ide_lock (spinlock) is used to protect all access to the
1023 * hwgroup->busy flag, but is otherwise not needed for most processing in
1024 * the driver.  This makes the driver much more friendlier to shared IRQs
1025 * than previous designs, while remaining 100% (?) SMP safe and capable.
1026 */
1027static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1028{
1029	ide_drive_t	*drive;
1030	ide_hwif_t	*hwif;
1031	struct request	*rq;
1032	ide_startstop_t	startstop;
1033	int             loops = 0;
1034
1035	/* for atari only: POSSIBLY BROKEN HERE(?) */
1036	ide_get_lock(ide_intr, hwgroup);
1037
1038	/* caller must own ide_lock */
1039	BUG_ON(!irqs_disabled());
1040
1041	while (!hwgroup->busy) {
1042		hwgroup->busy = 1;
1043		drive = choose_drive(hwgroup);
1044		if (drive == NULL) {
1045			int sleeping = 0;
1046			unsigned long sleep = 0; /* shut up, gcc */
1047			hwgroup->rq = NULL;
1048			drive = hwgroup->drive;
1049			do {
1050				if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1051					sleeping = 1;
1052					sleep = drive->sleep;
1053				}
1054			} while ((drive = drive->next) != hwgroup->drive);
1055			if (sleeping) {
1056		/*
1057		 * Take a short snooze, and then wake up this hwgroup again.
1058		 * This gives other hwgroups on the same a chance to
1059		 * play fairly with us, just in case there are big differences
1060		 * in relative throughputs.. don't want to hog the cpu too much.
1061		 */
1062				if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1063					sleep = jiffies + WAIT_MIN_SLEEP;
1064#if 1
1065				if (timer_pending(&hwgroup->timer))
1066					printk(KERN_CRIT "ide_set_handler: timer already active\n");
1067#endif
1068				/* so that ide_timer_expiry knows what to do */
1069				hwgroup->sleeping = 1;
1070				hwgroup->req_gen_timer = hwgroup->req_gen;
1071				mod_timer(&hwgroup->timer, sleep);
1072				/* we purposely leave hwgroup->busy==1
1073				 * while sleeping */
1074			} else {
1075				/* Ugly, but how can we sleep for the lock
1076				 * otherwise? perhaps from tq_disk?
1077				 */
1078
1079				/* for atari only */
1080				ide_release_lock();
1081				hwgroup->busy = 0;
1082			}
1083
1084			/* no more work for this hwgroup (for now) */
1085			return;
1086		}
1087	again:
1088		hwif = HWIF(drive);
1089		if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1090			/*
1091			 * set nIEN for previous hwif, drives in the
1092			 * quirk_list may not like intr setups/cleanups
1093			 */
1094			if (drive->quirk_list != 1)
1095				ide_set_irq(drive, 0);
1096		}
1097		hwgroup->hwif = hwif;
1098		hwgroup->drive = drive;
1099		drive->sleeping = 0;
1100		drive->service_start = jiffies;
1101
1102		if (blk_queue_plugged(drive->queue)) {
1103			printk(KERN_ERR "ide: huh? queue was plugged!\n");
1104			break;
1105		}
1106
1107		/*
1108		 * we know that the queue isn't empty, but this can happen
1109		 * if the q->prep_rq_fn() decides to kill a request
1110		 */
1111		rq = elv_next_request(drive->queue);
1112		if (!rq) {
1113			hwgroup->busy = 0;
1114			break;
1115		}
1116
1117		/*
1118		 * Sanity: don't accept a request that isn't a PM request
1119		 * if we are currently power managed. This is very important as
1120		 * blk_stop_queue() doesn't prevent the elv_next_request()
1121		 * above to return us whatever is in the queue. Since we call
1122		 * ide_do_request() ourselves, we end up taking requests while
1123		 * the queue is blocked...
1124		 *
1125		 * We let requests forced at head of queue with ide-preempt
1126		 * though. I hope that doesn't happen too much, hopefully not
1127		 * unless the subdriver triggers such a thing in its own PM
1128		 * state machine.
1129		 *
1130		 * We count how many times we loop here to make sure we service
1131		 * all drives in the hwgroup without looping for ever
1132		 */
1133		if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1134			drive = drive->next ? drive->next : hwgroup->drive;
1135			if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1136				goto again;
1137			/* We clear busy, there should be no pending ATA command at this point. */
1138			hwgroup->busy = 0;
1139			break;
1140		}
1141
1142		hwgroup->rq = rq;
1143
1144		/*
1145		 * Some systems have trouble with IDE IRQs arriving while
1146		 * the driver is still setting things up.  So, here we disable
1147		 * the IRQ used by this interface while the request is being started.
1148		 * This may look bad at first, but pretty much the same thing
1149		 * happens anyway when any interrupt comes in, IDE or otherwise
1150		 *  -- the kernel masks the IRQ while it is being handled.
1151		 */
1152		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1153			disable_irq_nosync(hwif->irq);
1154		spin_unlock(&ide_lock);
1155		local_irq_enable_in_hardirq();
1156			/* allow other IRQs while we start this request */
1157		startstop = start_request(drive, rq);
1158		spin_lock_irq(&ide_lock);
1159		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1160			enable_irq(hwif->irq);
1161		if (startstop == ide_stopped)
1162			hwgroup->busy = 0;
1163	}
1164}
1165
1166/*
1167 * Passes the stuff to ide_do_request
1168 */
1169void do_ide_request(struct request_queue *q)
1170{
1171	ide_drive_t *drive = q->queuedata;
1172
1173	ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1174}
1175
1176/*
1177 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1178 * retry the current request in pio mode instead of risking tossing it
1179 * all away
1180 */
1181static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1182{
1183	ide_hwif_t *hwif = HWIF(drive);
1184	struct request *rq;
1185	ide_startstop_t ret = ide_stopped;
1186
1187	/*
1188	 * end current dma transaction
1189	 */
1190
1191	if (error < 0) {
1192		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1193		(void)hwif->dma_ops->dma_end(drive);
1194		ret = ide_error(drive, "dma timeout error",
1195				ide_read_status(drive));
1196	} else {
1197		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1198		hwif->dma_ops->dma_timeout(drive);
1199	}
1200
1201	/*
1202	 * disable dma for now, but remember that we did so because of
1203	 * a timeout -- we'll reenable after we finish this next request
1204	 * (or rather the first chunk of it) in pio.
1205	 */
1206	drive->retry_pio++;
1207	drive->state = DMA_PIO_RETRY;
1208	ide_dma_off_quietly(drive);
1209
1210	/*
1211	 * un-busy drive etc (hwgroup->busy is cleared on return) and
1212	 * make sure request is sane
1213	 */
1214	rq = HWGROUP(drive)->rq;
1215
1216	if (!rq)
1217		goto out;
1218
1219	HWGROUP(drive)->rq = NULL;
1220
1221	rq->errors = 0;
1222
1223	if (!rq->bio)
1224		goto out;
1225
1226	rq->sector = rq->bio->bi_sector;
1227	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1228	rq->hard_cur_sectors = rq->current_nr_sectors;
1229	rq->buffer = bio_data(rq->bio);
1230out:
1231	return ret;
1232}
1233
1234/**
1235 *	ide_timer_expiry	-	handle lack of an IDE interrupt
1236 *	@data: timer callback magic (hwgroup)
1237 *
1238 *	An IDE command has timed out before the expected drive return
1239 *	occurred. At this point we attempt to clean up the current
1240 *	mess. If the current handler includes an expiry handler then
1241 *	we invoke the expiry handler, and providing it is happy the
1242 *	work is done. If that fails we apply generic recovery rules
1243 *	invoking the handler and checking the drive DMA status. We
1244 *	have an excessively incestuous relationship with the DMA
1245 *	logic that wants cleaning up.
1246 */
1247
1248void ide_timer_expiry (unsigned long data)
1249{
1250	ide_hwgroup_t	*hwgroup = (ide_hwgroup_t *) data;
1251	ide_handler_t	*handler;
1252	ide_expiry_t	*expiry;
1253	unsigned long	flags;
1254	unsigned long	wait = -1;
1255
1256	spin_lock_irqsave(&ide_lock, flags);
1257
1258	if (((handler = hwgroup->handler) == NULL) ||
1259	    (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1260		/*
1261		 * Either a marginal timeout occurred
1262		 * (got the interrupt just as timer expired),
1263		 * or we were "sleeping" to give other devices a chance.
1264		 * Either way, we don't really want to complain about anything.
1265		 */
1266		if (hwgroup->sleeping) {
1267			hwgroup->sleeping = 0;
1268			hwgroup->busy = 0;
1269		}
1270	} else {
1271		ide_drive_t *drive = hwgroup->drive;
1272		if (!drive) {
1273			printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1274			hwgroup->handler = NULL;
1275		} else {
1276			ide_hwif_t *hwif;
1277			ide_startstop_t startstop = ide_stopped;
1278			if (!hwgroup->busy) {
1279				hwgroup->busy = 1;	/* paranoia */
1280				printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1281			}
1282			if ((expiry = hwgroup->expiry) != NULL) {
1283				/* continue */
1284				if ((wait = expiry(drive)) > 0) {
1285					/* reset timer */
1286					hwgroup->timer.expires  = jiffies + wait;
1287					hwgroup->req_gen_timer = hwgroup->req_gen;
1288					add_timer(&hwgroup->timer);
1289					spin_unlock_irqrestore(&ide_lock, flags);
1290					return;
1291				}
1292			}
1293			hwgroup->handler = NULL;
1294			/*
1295			 * We need to simulate a real interrupt when invoking
1296			 * the handler() function, which means we need to
1297			 * globally mask the specific IRQ:
1298			 */
1299			spin_unlock(&ide_lock);
1300			hwif  = HWIF(drive);
1301			/* disable_irq_nosync ?? */
1302			disable_irq(hwif->irq);
1303			/* local CPU only,
1304			 * as if we were handling an interrupt */
1305			local_irq_disable();
1306			if (hwgroup->polling) {
1307				startstop = handler(drive);
1308			} else if (drive_is_ready(drive)) {
1309				if (drive->waiting_for_dma)
1310					hwif->dma_ops->dma_lost_irq(drive);
1311				(void)ide_ack_intr(hwif);
1312				printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1313				startstop = handler(drive);
1314			} else {
1315				if (drive->waiting_for_dma) {
1316					startstop = ide_dma_timeout_retry(drive, wait);
1317				} else
1318					startstop =
1319					ide_error(drive, "irq timeout",
1320						  ide_read_status(drive));
1321			}
1322			drive->service_time = jiffies - drive->service_start;
1323			spin_lock_irq(&ide_lock);
1324			enable_irq(hwif->irq);
1325			if (startstop == ide_stopped)
1326				hwgroup->busy = 0;
1327		}
1328	}
1329	ide_do_request(hwgroup, IDE_NO_IRQ);
1330	spin_unlock_irqrestore(&ide_lock, flags);
1331}
1332
1333/**
1334 *	unexpected_intr		-	handle an unexpected IDE interrupt
1335 *	@irq: interrupt line
1336 *	@hwgroup: hwgroup being processed
1337 *
1338 *	There's nothing really useful we can do with an unexpected interrupt,
1339 *	other than reading the status register (to clear it), and logging it.
1340 *	There should be no way that an irq can happen before we're ready for it,
1341 *	so we needn't worry much about losing an "important" interrupt here.
1342 *
1343 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1344 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
1345 *	looks "good", we just ignore the interrupt completely.
1346 *
1347 *	This routine assumes __cli() is in effect when called.
1348 *
1349 *	If an unexpected interrupt happens on irq15 while we are handling irq14
1350 *	and if the two interfaces are "serialized" (CMD640), then it looks like
1351 *	we could screw up by interfering with a new request being set up for
1352 *	irq15.
1353 *
1354 *	In reality, this is a non-issue.  The new command is not sent unless
1355 *	the drive is ready to accept one, in which case we know the drive is
1356 *	not trying to interrupt us.  And ide_set_handler() is always invoked
1357 *	before completing the issuance of any new drive command, so we will not
1358 *	be accidentally invoked as a result of any valid command completion
1359 *	interrupt.
1360 *
1361 *	Note that we must walk the entire hwgroup here. We know which hwif
1362 *	is doing the current command, but we don't know which hwif burped
1363 *	mysteriously.
1364 */
1365
1366static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1367{
1368	u8 stat;
1369	ide_hwif_t *hwif = hwgroup->hwif;
1370
1371	/*
1372	 * handle the unexpected interrupt
1373	 */
1374	do {
1375		if (hwif->irq == irq) {
1376			stat = hwif->INB(hwif->io_ports.status_addr);
1377			if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1378				/* Try to not flood the console with msgs */
1379				static unsigned long last_msgtime, count;
1380				++count;
1381				if (time_after(jiffies, last_msgtime + HZ)) {
1382					last_msgtime = jiffies;
1383					printk(KERN_ERR "%s%s: unexpected interrupt, "
1384						"status=0x%02x, count=%ld\n",
1385						hwif->name,
1386						(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1387				}
1388			}
1389		}
1390	} while ((hwif = hwif->next) != hwgroup->hwif);
1391}
1392
1393/**
1394 *	ide_intr	-	default IDE interrupt handler
1395 *	@irq: interrupt number
1396 *	@dev_id: hwif group
1397 *	@regs: unused weirdness from the kernel irq layer
1398 *
1399 *	This is the default IRQ handler for the IDE layer. You should
1400 *	not need to override it. If you do be aware it is subtle in
1401 *	places
1402 *
1403 *	hwgroup->hwif is the interface in the group currently performing
1404 *	a command. hwgroup->drive is the drive and hwgroup->handler is
1405 *	the IRQ handler to call. As we issue a command the handlers
1406 *	step through multiple states, reassigning the handler to the
1407 *	next step in the process. Unlike a smart SCSI controller IDE
1408 *	expects the main processor to sequence the various transfer
1409 *	stages. We also manage a poll timer to catch up with most
1410 *	timeout situations. There are still a few where the handlers
1411 *	don't ever decide to give up.
1412 *
1413 *	The handler eventually returns ide_stopped to indicate the
1414 *	request completed. At this point we issue the next request
1415 *	on the hwgroup and the process begins again.
1416 */
1417
1418irqreturn_t ide_intr (int irq, void *dev_id)
1419{
1420	unsigned long flags;
1421	ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1422	ide_hwif_t *hwif;
1423	ide_drive_t *drive;
1424	ide_handler_t *handler;
1425	ide_startstop_t startstop;
1426
1427	spin_lock_irqsave(&ide_lock, flags);
1428	hwif = hwgroup->hwif;
1429
1430	if (!ide_ack_intr(hwif)) {
1431		spin_unlock_irqrestore(&ide_lock, flags);
1432		return IRQ_NONE;
1433	}
1434
1435	if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1436		/*
1437		 * Not expecting an interrupt from this drive.
1438		 * That means this could be:
1439		 *	(1) an interrupt from another PCI device
1440		 *	sharing the same PCI INT# as us.
1441		 * or	(2) a drive just entered sleep or standby mode,
1442		 *	and is interrupting to let us know.
1443		 * or	(3) a spurious interrupt of unknown origin.
1444		 *
1445		 * For PCI, we cannot tell the difference,
1446		 * so in that case we just ignore it and hope it goes away.
1447		 *
1448		 * FIXME: unexpected_intr should be hwif-> then we can
1449		 * remove all the ifdef PCI crap
1450		 */
1451#ifdef CONFIG_BLK_DEV_IDEPCI
1452		if (hwif->chipset != ide_pci)
1453#endif	/* CONFIG_BLK_DEV_IDEPCI */
1454		{
1455			/*
1456			 * Probably not a shared PCI interrupt,
1457			 * so we can safely try to do something about it:
1458			 */
1459			unexpected_intr(irq, hwgroup);
1460#ifdef CONFIG_BLK_DEV_IDEPCI
1461		} else {
1462			/*
1463			 * Whack the status register, just in case
1464			 * we have a leftover pending IRQ.
1465			 */
1466			(void) hwif->INB(hwif->io_ports.status_addr);
1467#endif /* CONFIG_BLK_DEV_IDEPCI */
1468		}
1469		spin_unlock_irqrestore(&ide_lock, flags);
1470		return IRQ_NONE;
1471	}
1472	drive = hwgroup->drive;
1473	if (!drive) {
1474		/*
1475		 * This should NEVER happen, and there isn't much
1476		 * we could do about it here.
1477		 *
1478		 * [Note - this can occur if the drive is hot unplugged]
1479		 */
1480		spin_unlock_irqrestore(&ide_lock, flags);
1481		return IRQ_HANDLED;
1482	}
1483	if (!drive_is_ready(drive)) {
1484		/*
1485		 * This happens regularly when we share a PCI IRQ with
1486		 * another device.  Unfortunately, it can also happen
1487		 * with some buggy drives that trigger the IRQ before
1488		 * their status register is up to date.  Hopefully we have
1489		 * enough advance overhead that the latter isn't a problem.
1490		 */
1491		spin_unlock_irqrestore(&ide_lock, flags);
1492		return IRQ_NONE;
1493	}
1494	if (!hwgroup->busy) {
1495		hwgroup->busy = 1;	/* paranoia */
1496		printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1497	}
1498	hwgroup->handler = NULL;
1499	hwgroup->req_gen++;
1500	del_timer(&hwgroup->timer);
1501	spin_unlock(&ide_lock);
1502
1503	/* Some controllers might set DMA INTR no matter DMA or PIO;
1504	 * bmdma status might need to be cleared even for
1505	 * PIO interrupts to prevent spurious/lost irq.
1506	 */
1507	if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1508		/* ide_dma_end() needs bmdma status for error checking.
1509		 * So, skip clearing bmdma status here and leave it
1510		 * to ide_dma_end() if this is dma interrupt.
1511		 */
1512		hwif->ide_dma_clear_irq(drive);
1513
1514	if (drive->unmask)
1515		local_irq_enable_in_hardirq();
1516	/* service this interrupt, may set handler for next interrupt */
1517	startstop = handler(drive);
1518	spin_lock_irq(&ide_lock);
1519
1520	/*
1521	 * Note that handler() may have set things up for another
1522	 * interrupt to occur soon, but it cannot happen until
1523	 * we exit from this routine, because it will be the
1524	 * same irq as is currently being serviced here, and Linux
1525	 * won't allow another of the same (on any CPU) until we return.
1526	 */
1527	drive->service_time = jiffies - drive->service_start;
1528	if (startstop == ide_stopped) {
1529		if (hwgroup->handler == NULL) {	/* paranoia */
1530			hwgroup->busy = 0;
1531			ide_do_request(hwgroup, hwif->irq);
1532		} else {
1533			printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1534				"on exit\n", drive->name);
1535		}
1536	}
1537	spin_unlock_irqrestore(&ide_lock, flags);
1538	return IRQ_HANDLED;
1539}
1540
1541/**
1542 *	ide_init_drive_cmd	-	initialize a drive command request
1543 *	@rq: request object
1544 *
1545 *	Initialize a request before we fill it in and send it down to
1546 *	ide_do_drive_cmd. Commands must be set up by this function. Right
1547 *	now it doesn't do a lot, but if that changes abusers will have a
1548 *	nasty surprise.
1549 */
1550
1551void ide_init_drive_cmd (struct request *rq)
1552{
1553	blk_rq_init(NULL, rq);
1554}
1555
1556EXPORT_SYMBOL(ide_init_drive_cmd);
1557
1558/**
1559 *	ide_do_drive_cmd	-	issue IDE special command
1560 *	@drive: device to issue command
1561 *	@rq: request to issue
1562 *	@action: action for processing
1563 *
1564 *	This function issues a special IDE device request
1565 *	onto the request queue.
1566 *
1567 *	If action is ide_wait, then the rq is queued at the end of the
1568 *	request queue, and the function sleeps until it has been processed.
1569 *	This is for use when invoked from an ioctl handler.
1570 *
1571 *	If action is ide_preempt, then the rq is queued at the head of
1572 *	the request queue, displacing the currently-being-processed
1573 *	request and this function returns immediately without waiting
1574 *	for the new rq to be completed.  This is VERY DANGEROUS, and is
1575 *	intended for careful use by the ATAPI tape/cdrom driver code.
1576 *
1577 *	If action is ide_end, then the rq is queued at the end of the
1578 *	request queue, and the function returns immediately without waiting
1579 *	for the new rq to be completed. This is again intended for careful
1580 *	use by the ATAPI tape/cdrom driver code.
1581 */
1582
1583int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1584{
1585	unsigned long flags;
1586	ide_hwgroup_t *hwgroup = HWGROUP(drive);
1587	DECLARE_COMPLETION_ONSTACK(wait);
1588	int where = ELEVATOR_INSERT_BACK, err;
1589	int must_wait = (action == ide_wait || action == ide_head_wait);
1590
1591	rq->errors = 0;
1592
1593	/*
1594	 * we need to hold an extra reference to request for safe inspection
1595	 * after completion
1596	 */
1597	if (must_wait) {
1598		rq->ref_count++;
1599		rq->end_io_data = &wait;
1600		rq->end_io = blk_end_sync_rq;
1601	}
1602
1603	if (action == ide_preempt || action == ide_head_wait)
1604		where = ELEVATOR_INSERT_FRONT;
1605
1606	spin_lock_irqsave(&ide_lock, flags);
1607	if (action == ide_preempt)
1608		hwgroup->rq = NULL;
1609	__elv_add_request(drive->queue, rq, where, 0);
1610	ide_do_request(hwgroup, IDE_NO_IRQ);
1611	spin_unlock_irqrestore(&ide_lock, flags);
1612
1613	err = 0;
1614	if (must_wait) {
1615		wait_for_completion(&wait);
1616		if (rq->errors)
1617			err = -EIO;
1618
1619		blk_put_request(rq);
1620	}
1621
1622	return err;
1623}
1624
1625EXPORT_SYMBOL(ide_do_drive_cmd);
1626
1627void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1628{
1629	ide_task_t task;
1630
1631	memset(&task, 0, sizeof(task));
1632	task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1633			IDE_TFLAG_OUT_FEATURE | tf_flags;
1634	task.tf.feature = dma;		/* Use PIO/DMA */
1635	task.tf.lbam    = bcount & 0xff;
1636	task.tf.lbah    = (bcount >> 8) & 0xff;
1637
1638	ide_tf_dump(drive->name, &task.tf);
1639	drive->hwif->tf_load(drive, &task);
1640}
1641
1642EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1643
1644void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1645{
1646	ide_hwif_t *hwif = drive->hwif;
1647	u8 buf[4] = { 0 };
1648
1649	while (len > 0) {
1650		if (write)
1651			hwif->output_data(drive, NULL, buf, min(4, len));
1652		else
1653			hwif->input_data(drive, NULL, buf, min(4, len));
1654		len -= 4;
1655	}
1656}
1657EXPORT_SYMBOL_GPL(ide_pad_transfer);
1658