ide-io.c revision e9eb8388306364295308132265c00bea685f409f
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/hdreg.h>
44#include <linux/completion.h>
45#include <linux/reboot.h>
46#include <linux/cdrom.h>
47#include <linux/seq_file.h>
48#include <linux/device.h>
49#include <linux/kmod.h>
50#include <linux/scatterlist.h>
51#include <linux/bitops.h>
52
53#include <asm/byteorder.h>
54#include <asm/irq.h>
55#include <asm/uaccess.h>
56#include <asm/io.h>
57
58static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59			     int uptodate, unsigned int nr_bytes, int dequeue)
60{
61	int ret = 1;
62	int error = 0;
63
64	if (uptodate <= 0)
65		error = uptodate ? uptodate : -EIO;
66
67	/*
68	 * if failfast is set on a request, override number of sectors and
69	 * complete the whole request right now
70	 */
71	if (blk_noretry_request(rq) && error)
72		nr_bytes = rq->hard_nr_sectors << 9;
73
74	if (!blk_fs_request(rq) && error && !rq->errors)
75		rq->errors = -EIO;
76
77	/*
78	 * decide whether to reenable DMA -- 3 is a random magic for now,
79	 * if we DMA timeout more than 3 times, just stay in PIO
80	 */
81	if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82	    drive->retry_pio <= 3) {
83		drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84		ide_dma_on(drive);
85	}
86
87	if (!__blk_end_request(rq, error, nr_bytes)) {
88		if (dequeue)
89			HWGROUP(drive)->rq = NULL;
90		ret = 0;
91	}
92
93	return ret;
94}
95
96/**
97 *	ide_end_request		-	complete an IDE I/O
98 *	@drive: IDE device for the I/O
99 *	@uptodate:
100 *	@nr_sectors: number of sectors completed
101 *
102 *	This is our end_request wrapper function. We complete the I/O
103 *	update random number input and dequeue the request, which if
104 *	it was tagged may be out of order.
105 */
106
107int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108{
109	unsigned int nr_bytes = nr_sectors << 9;
110	struct request *rq;
111	unsigned long flags;
112	int ret = 1;
113
114	/*
115	 * room for locking improvements here, the calls below don't
116	 * need the queue lock held at all
117	 */
118	spin_lock_irqsave(&ide_lock, flags);
119	rq = HWGROUP(drive)->rq;
120
121	if (!nr_bytes) {
122		if (blk_pc_request(rq))
123			nr_bytes = rq->data_len;
124		else
125			nr_bytes = rq->hard_cur_sectors << 9;
126	}
127
128	ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
129
130	spin_unlock_irqrestore(&ide_lock, flags);
131	return ret;
132}
133EXPORT_SYMBOL(ide_end_request);
134
135static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
136{
137	struct request_pm_state *pm = rq->data;
138
139	if (drive->media != ide_disk)
140		return;
141
142	switch (pm->pm_step) {
143	case IDE_PM_FLUSH_CACHE:	/* Suspend step 1 (flush cache) */
144		if (pm->pm_state == PM_EVENT_FREEZE)
145			pm->pm_step = IDE_PM_COMPLETED;
146		else
147			pm->pm_step = IDE_PM_STANDBY;
148		break;
149	case IDE_PM_STANDBY:		/* Suspend step 2 (standby) */
150		pm->pm_step = IDE_PM_COMPLETED;
151		break;
152	case IDE_PM_RESTORE_PIO:	/* Resume step 1 (restore PIO) */
153		pm->pm_step = IDE_PM_IDLE;
154		break;
155	case IDE_PM_IDLE:		/* Resume step 2 (idle)*/
156		pm->pm_step = IDE_PM_RESTORE_DMA;
157		break;
158	}
159}
160
161static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
162{
163	struct request_pm_state *pm = rq->data;
164	ide_task_t *args = rq->special;
165
166	memset(args, 0, sizeof(*args));
167
168	switch (pm->pm_step) {
169	case IDE_PM_FLUSH_CACHE:	/* Suspend step 1 (flush cache) */
170		if (drive->media != ide_disk)
171			break;
172		/* Not supported? Switch to next step now. */
173		if (ata_id_flush_enabled(drive->id) == 0 ||
174		    (drive->dev_flags & IDE_DFLAG_WCACHE) == 0) {
175			ide_complete_power_step(drive, rq, 0, 0);
176			return ide_stopped;
177		}
178		if (ata_id_flush_ext_enabled(drive->id))
179			args->tf.command = ATA_CMD_FLUSH_EXT;
180		else
181			args->tf.command = ATA_CMD_FLUSH;
182		goto out_do_tf;
183	case IDE_PM_STANDBY:		/* Suspend step 2 (standby) */
184		args->tf.command = ATA_CMD_STANDBYNOW1;
185		goto out_do_tf;
186	case IDE_PM_RESTORE_PIO:	/* Resume step 1 (restore PIO) */
187		ide_set_max_pio(drive);
188		/*
189		 * skip IDE_PM_IDLE for ATAPI devices
190		 */
191		if (drive->media != ide_disk)
192			pm->pm_step = IDE_PM_RESTORE_DMA;
193		else
194			ide_complete_power_step(drive, rq, 0, 0);
195		return ide_stopped;
196	case IDE_PM_IDLE:		/* Resume step 2 (idle) */
197		args->tf.command = ATA_CMD_IDLEIMMEDIATE;
198		goto out_do_tf;
199	case IDE_PM_RESTORE_DMA:	/* Resume step 3 (restore DMA) */
200		/*
201		 * Right now, all we do is call ide_set_dma(drive),
202		 * we could be smarter and check for current xfer_speed
203		 * in struct drive etc...
204		 */
205		if (drive->hwif->dma_ops == NULL)
206			break;
207		if (drive->dev_flags & IDE_DFLAG_USING_DMA)
208			ide_set_dma(drive);
209		break;
210	}
211
212	pm->pm_step = IDE_PM_COMPLETED;
213	return ide_stopped;
214
215out_do_tf:
216	args->tf_flags	 = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
217	args->data_phase = TASKFILE_NO_DATA;
218	return do_rw_taskfile(drive, args);
219}
220
221/**
222 *	ide_end_dequeued_request	-	complete an IDE I/O
223 *	@drive: IDE device for the I/O
224 *	@uptodate:
225 *	@nr_sectors: number of sectors completed
226 *
227 *	Complete an I/O that is no longer on the request queue. This
228 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
229 *	We must still finish the old request but we must not tamper with the
230 *	queue in the meantime.
231 *
232 *	NOTE: This path does not handle barrier, but barrier is not supported
233 *	on ide-cd anyway.
234 */
235
236int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
237			     int uptodate, int nr_sectors)
238{
239	unsigned long flags;
240	int ret;
241
242	spin_lock_irqsave(&ide_lock, flags);
243	BUG_ON(!blk_rq_started(rq));
244	ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
245	spin_unlock_irqrestore(&ide_lock, flags);
246
247	return ret;
248}
249EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
250
251
252/**
253 *	ide_complete_pm_request - end the current Power Management request
254 *	@drive: target drive
255 *	@rq: request
256 *
257 *	This function cleans up the current PM request and stops the queue
258 *	if necessary.
259 */
260static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
261{
262	unsigned long flags;
263
264#ifdef DEBUG_PM
265	printk("%s: completing PM request, %s\n", drive->name,
266	       blk_pm_suspend_request(rq) ? "suspend" : "resume");
267#endif
268	spin_lock_irqsave(&ide_lock, flags);
269	if (blk_pm_suspend_request(rq)) {
270		blk_stop_queue(drive->queue);
271	} else {
272		drive->dev_flags &= ~IDE_DFLAG_BLOCKED;
273		blk_start_queue(drive->queue);
274	}
275	HWGROUP(drive)->rq = NULL;
276	if (__blk_end_request(rq, 0, 0))
277		BUG();
278	spin_unlock_irqrestore(&ide_lock, flags);
279}
280
281/**
282 *	ide_end_drive_cmd	-	end an explicit drive command
283 *	@drive: command
284 *	@stat: status bits
285 *	@err: error bits
286 *
287 *	Clean up after success/failure of an explicit drive command.
288 *	These get thrown onto the queue so they are synchronized with
289 *	real I/O operations on the drive.
290 *
291 *	In LBA48 mode we have to read the register set twice to get
292 *	all the extra information out.
293 */
294
295void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
296{
297	unsigned long flags;
298	struct request *rq;
299
300	spin_lock_irqsave(&ide_lock, flags);
301	rq = HWGROUP(drive)->rq;
302	spin_unlock_irqrestore(&ide_lock, flags);
303
304	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
305		ide_task_t *task = (ide_task_t *)rq->special;
306
307		if (rq->errors == 0)
308			rq->errors = !OK_STAT(stat, ATA_DRDY, BAD_STAT);
309
310		if (task) {
311			struct ide_taskfile *tf = &task->tf;
312
313			tf->error = err;
314			tf->status = stat;
315
316			drive->hwif->tp_ops->tf_read(drive, task);
317
318			if (task->tf_flags & IDE_TFLAG_DYN)
319				kfree(task);
320		}
321	} else if (blk_pm_request(rq)) {
322		struct request_pm_state *pm = rq->data;
323#ifdef DEBUG_PM
324		printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
325			drive->name, rq->pm->pm_step, stat, err);
326#endif
327		ide_complete_power_step(drive, rq, stat, err);
328		if (pm->pm_step == IDE_PM_COMPLETED)
329			ide_complete_pm_request(drive, rq);
330		return;
331	}
332
333	spin_lock_irqsave(&ide_lock, flags);
334	HWGROUP(drive)->rq = NULL;
335	rq->errors = err;
336	if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
337				       blk_rq_bytes(rq))))
338		BUG();
339	spin_unlock_irqrestore(&ide_lock, flags);
340}
341
342EXPORT_SYMBOL(ide_end_drive_cmd);
343
344static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
345{
346	if (rq->rq_disk) {
347		ide_driver_t *drv;
348
349		drv = *(ide_driver_t **)rq->rq_disk->private_data;
350		drv->end_request(drive, 0, 0);
351	} else
352		ide_end_request(drive, 0, 0);
353}
354
355static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
356{
357	ide_hwif_t *hwif = drive->hwif;
358
359	if ((stat & ATA_BUSY) ||
360	    ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
361		/* other bits are useless when BUSY */
362		rq->errors |= ERROR_RESET;
363	} else if (stat & ATA_ERR) {
364		/* err has different meaning on cdrom and tape */
365		if (err == ATA_ABORTED) {
366			if ((drive->dev_flags & IDE_DFLAG_LBA) &&
367			    /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
368			    hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
369				return ide_stopped;
370		} else if ((err & BAD_CRC) == BAD_CRC) {
371			/* UDMA crc error, just retry the operation */
372			drive->crc_count++;
373		} else if (err & (ATA_BBK | ATA_UNC)) {
374			/* retries won't help these */
375			rq->errors = ERROR_MAX;
376		} else if (err & ATA_TRK0NF) {
377			/* help it find track zero */
378			rq->errors |= ERROR_RECAL;
379		}
380	}
381
382	if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
383	    (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
384		int nsect = drive->mult_count ? drive->mult_count : 1;
385
386		ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
387	}
388
389	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
390		ide_kill_rq(drive, rq);
391		return ide_stopped;
392	}
393
394	if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
395		rq->errors |= ERROR_RESET;
396
397	if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
398		++rq->errors;
399		return ide_do_reset(drive);
400	}
401
402	if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
403		drive->special.b.recalibrate = 1;
404
405	++rq->errors;
406
407	return ide_stopped;
408}
409
410static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
411{
412	ide_hwif_t *hwif = drive->hwif;
413
414	if ((stat & ATA_BUSY) ||
415	    ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
416		/* other bits are useless when BUSY */
417		rq->errors |= ERROR_RESET;
418	} else {
419		/* add decoding error stuff */
420	}
421
422	if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
423		/* force an abort */
424		hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
425
426	if (rq->errors >= ERROR_MAX) {
427		ide_kill_rq(drive, rq);
428	} else {
429		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
430			++rq->errors;
431			return ide_do_reset(drive);
432		}
433		++rq->errors;
434	}
435
436	return ide_stopped;
437}
438
439ide_startstop_t
440__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
441{
442	if (drive->media == ide_disk)
443		return ide_ata_error(drive, rq, stat, err);
444	return ide_atapi_error(drive, rq, stat, err);
445}
446
447EXPORT_SYMBOL_GPL(__ide_error);
448
449/**
450 *	ide_error	-	handle an error on the IDE
451 *	@drive: drive the error occurred on
452 *	@msg: message to report
453 *	@stat: status bits
454 *
455 *	ide_error() takes action based on the error returned by the drive.
456 *	For normal I/O that may well include retries. We deal with
457 *	both new-style (taskfile) and old style command handling here.
458 *	In the case of taskfile command handling there is work left to
459 *	do
460 */
461
462ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
463{
464	struct request *rq;
465	u8 err;
466
467	err = ide_dump_status(drive, msg, stat);
468
469	if ((rq = HWGROUP(drive)->rq) == NULL)
470		return ide_stopped;
471
472	/* retry only "normal" I/O: */
473	if (!blk_fs_request(rq)) {
474		rq->errors = 1;
475		ide_end_drive_cmd(drive, stat, err);
476		return ide_stopped;
477	}
478
479	if (rq->rq_disk) {
480		ide_driver_t *drv;
481
482		drv = *(ide_driver_t **)rq->rq_disk->private_data;
483		return drv->error(drive, rq, stat, err);
484	} else
485		return __ide_error(drive, rq, stat, err);
486}
487
488EXPORT_SYMBOL_GPL(ide_error);
489
490static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
491{
492	tf->nsect   = drive->sect;
493	tf->lbal    = drive->sect;
494	tf->lbam    = drive->cyl;
495	tf->lbah    = drive->cyl >> 8;
496	tf->device  = (drive->head - 1) | drive->select;
497	tf->command = ATA_CMD_INIT_DEV_PARAMS;
498}
499
500static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
501{
502	tf->nsect   = drive->sect;
503	tf->command = ATA_CMD_RESTORE;
504}
505
506static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
507{
508	tf->nsect   = drive->mult_req;
509	tf->command = ATA_CMD_SET_MULTI;
510}
511
512static ide_startstop_t ide_disk_special(ide_drive_t *drive)
513{
514	special_t *s = &drive->special;
515	ide_task_t args;
516
517	memset(&args, 0, sizeof(ide_task_t));
518	args.data_phase = TASKFILE_NO_DATA;
519
520	if (s->b.set_geometry) {
521		s->b.set_geometry = 0;
522		ide_tf_set_specify_cmd(drive, &args.tf);
523	} else if (s->b.recalibrate) {
524		s->b.recalibrate = 0;
525		ide_tf_set_restore_cmd(drive, &args.tf);
526	} else if (s->b.set_multmode) {
527		s->b.set_multmode = 0;
528		ide_tf_set_setmult_cmd(drive, &args.tf);
529	} else if (s->all) {
530		int special = s->all;
531		s->all = 0;
532		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
533		return ide_stopped;
534	}
535
536	args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
537			IDE_TFLAG_CUSTOM_HANDLER;
538
539	do_rw_taskfile(drive, &args);
540
541	return ide_started;
542}
543
544/**
545 *	do_special		-	issue some special commands
546 *	@drive: drive the command is for
547 *
548 *	do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
549 *	ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
550 *
551 *	It used to do much more, but has been scaled back.
552 */
553
554static ide_startstop_t do_special (ide_drive_t *drive)
555{
556	special_t *s = &drive->special;
557
558#ifdef DEBUG
559	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
560#endif
561	if (drive->media == ide_disk)
562		return ide_disk_special(drive);
563
564	s->all = 0;
565	drive->mult_req = 0;
566	return ide_stopped;
567}
568
569void ide_map_sg(ide_drive_t *drive, struct request *rq)
570{
571	ide_hwif_t *hwif = drive->hwif;
572	struct scatterlist *sg = hwif->sg_table;
573
574	if (hwif->sg_mapped)	/* needed by ide-scsi */
575		return;
576
577	if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
578		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
579	} else {
580		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
581		hwif->sg_nents = 1;
582	}
583}
584
585EXPORT_SYMBOL_GPL(ide_map_sg);
586
587void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
588{
589	ide_hwif_t *hwif = drive->hwif;
590
591	hwif->nsect = hwif->nleft = rq->nr_sectors;
592	hwif->cursg_ofs = 0;
593	hwif->cursg = NULL;
594}
595
596EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
597
598/**
599 *	execute_drive_command	-	issue special drive command
600 *	@drive: the drive to issue the command on
601 *	@rq: the request structure holding the command
602 *
603 *	execute_drive_cmd() issues a special drive command,  usually
604 *	initiated by ioctl() from the external hdparm program. The
605 *	command can be a drive command, drive task or taskfile
606 *	operation. Weirdly you can call it with NULL to wait for
607 *	all commands to finish. Don't do this as that is due to change
608 */
609
610static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
611		struct request *rq)
612{
613	ide_hwif_t *hwif = HWIF(drive);
614	ide_task_t *task = rq->special;
615
616	if (task) {
617		hwif->data_phase = task->data_phase;
618
619		switch (hwif->data_phase) {
620		case TASKFILE_MULTI_OUT:
621		case TASKFILE_OUT:
622		case TASKFILE_MULTI_IN:
623		case TASKFILE_IN:
624			ide_init_sg_cmd(drive, rq);
625			ide_map_sg(drive, rq);
626		default:
627			break;
628		}
629
630		return do_rw_taskfile(drive, task);
631	}
632
633 	/*
634 	 * NULL is actually a valid way of waiting for
635 	 * all current requests to be flushed from the queue.
636 	 */
637#ifdef DEBUG
638 	printk("%s: DRIVE_CMD (null)\n", drive->name);
639#endif
640	ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
641			  ide_read_error(drive));
642
643 	return ide_stopped;
644}
645
646int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
647		       int arg)
648{
649	struct request_queue *q = drive->queue;
650	struct request *rq;
651	int ret = 0;
652
653	if (!(setting->flags & DS_SYNC))
654		return setting->set(drive, arg);
655
656	rq = blk_get_request(q, READ, __GFP_WAIT);
657	rq->cmd_type = REQ_TYPE_SPECIAL;
658	rq->cmd_len = 5;
659	rq->cmd[0] = REQ_DEVSET_EXEC;
660	*(int *)&rq->cmd[1] = arg;
661	rq->special = setting->set;
662
663	if (blk_execute_rq(q, NULL, rq, 0))
664		ret = rq->errors;
665	blk_put_request(rq);
666
667	return ret;
668}
669EXPORT_SYMBOL_GPL(ide_devset_execute);
670
671static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
672{
673	u8 cmd = rq->cmd[0];
674
675	if (cmd == REQ_PARK_HEADS || cmd == REQ_UNPARK_HEADS) {
676		ide_task_t task;
677		struct ide_taskfile *tf = &task.tf;
678
679		memset(&task, 0, sizeof(task));
680		if (cmd == REQ_PARK_HEADS) {
681			drive->sleep = *(unsigned long *)rq->special;
682			drive->dev_flags |= IDE_DFLAG_SLEEPING;
683			tf->command = ATA_CMD_IDLEIMMEDIATE;
684			tf->feature = 0x44;
685			tf->lbal = 0x4c;
686			tf->lbam = 0x4e;
687			tf->lbah = 0x55;
688			task.tf_flags |= IDE_TFLAG_CUSTOM_HANDLER;
689		} else		/* cmd == REQ_UNPARK_HEADS */
690			tf->command = ATA_CMD_CHK_POWER;
691
692		task.tf_flags |= IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
693		task.rq = rq;
694		drive->hwif->data_phase = task.data_phase = TASKFILE_NO_DATA;
695		return do_rw_taskfile(drive, &task);
696	}
697
698	switch (cmd) {
699	case REQ_DEVSET_EXEC:
700	{
701		int err, (*setfunc)(ide_drive_t *, int) = rq->special;
702
703		err = setfunc(drive, *(int *)&rq->cmd[1]);
704		if (err)
705			rq->errors = err;
706		else
707			err = 1;
708		ide_end_request(drive, err, 0);
709		return ide_stopped;
710	}
711	case REQ_DRIVE_RESET:
712		return ide_do_reset(drive);
713	default:
714		blk_dump_rq_flags(rq, "ide_special_rq - bad request");
715		ide_end_request(drive, 0, 0);
716		return ide_stopped;
717	}
718}
719
720static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
721{
722	struct request_pm_state *pm = rq->data;
723
724	if (blk_pm_suspend_request(rq) &&
725	    pm->pm_step == IDE_PM_START_SUSPEND)
726		/* Mark drive blocked when starting the suspend sequence. */
727		drive->dev_flags |= IDE_DFLAG_BLOCKED;
728	else if (blk_pm_resume_request(rq) &&
729		 pm->pm_step == IDE_PM_START_RESUME) {
730		/*
731		 * The first thing we do on wakeup is to wait for BSY bit to
732		 * go away (with a looong timeout) as a drive on this hwif may
733		 * just be POSTing itself.
734		 * We do that before even selecting as the "other" device on
735		 * the bus may be broken enough to walk on our toes at this
736		 * point.
737		 */
738		ide_hwif_t *hwif = drive->hwif;
739		int rc;
740#ifdef DEBUG_PM
741		printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
742#endif
743		rc = ide_wait_not_busy(hwif, 35000);
744		if (rc)
745			printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
746		SELECT_DRIVE(drive);
747		hwif->tp_ops->set_irq(hwif, 1);
748		rc = ide_wait_not_busy(hwif, 100000);
749		if (rc)
750			printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
751	}
752}
753
754/**
755 *	start_request	-	start of I/O and command issuing for IDE
756 *
757 *	start_request() initiates handling of a new I/O request. It
758 *	accepts commands and I/O (read/write) requests.
759 *
760 *	FIXME: this function needs a rename
761 */
762
763static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
764{
765	ide_startstop_t startstop;
766
767	BUG_ON(!blk_rq_started(rq));
768
769#ifdef DEBUG
770	printk("%s: start_request: current=0x%08lx\n",
771		HWIF(drive)->name, (unsigned long) rq);
772#endif
773
774	/* bail early if we've exceeded max_failures */
775	if (drive->max_failures && (drive->failures > drive->max_failures)) {
776		rq->cmd_flags |= REQ_FAILED;
777		goto kill_rq;
778	}
779
780	if (blk_pm_request(rq))
781		ide_check_pm_state(drive, rq);
782
783	SELECT_DRIVE(drive);
784	if (ide_wait_stat(&startstop, drive, drive->ready_stat,
785			  ATA_BUSY | ATA_DRQ, WAIT_READY)) {
786		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
787		return startstop;
788	}
789	if (!drive->special.all) {
790		ide_driver_t *drv;
791
792		/*
793		 * We reset the drive so we need to issue a SETFEATURES.
794		 * Do it _after_ do_special() restored device parameters.
795		 */
796		if (drive->current_speed == 0xff)
797			ide_config_drive_speed(drive, drive->desired_speed);
798
799		if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
800			return execute_drive_cmd(drive, rq);
801		else if (blk_pm_request(rq)) {
802			struct request_pm_state *pm = rq->data;
803#ifdef DEBUG_PM
804			printk("%s: start_power_step(step: %d)\n",
805				drive->name, rq->pm->pm_step);
806#endif
807			startstop = ide_start_power_step(drive, rq);
808			if (startstop == ide_stopped &&
809			    pm->pm_step == IDE_PM_COMPLETED)
810				ide_complete_pm_request(drive, rq);
811			return startstop;
812		} else if (!rq->rq_disk && blk_special_request(rq))
813			/*
814			 * TODO: Once all ULDs have been modified to
815			 * check for specific op codes rather than
816			 * blindly accepting any special request, the
817			 * check for ->rq_disk above may be replaced
818			 * by a more suitable mechanism or even
819			 * dropped entirely.
820			 */
821			return ide_special_rq(drive, rq);
822
823		drv = *(ide_driver_t **)rq->rq_disk->private_data;
824
825		return drv->do_request(drive, rq, rq->sector);
826	}
827	return do_special(drive);
828kill_rq:
829	ide_kill_rq(drive, rq);
830	return ide_stopped;
831}
832
833/**
834 *	ide_stall_queue		-	pause an IDE device
835 *	@drive: drive to stall
836 *	@timeout: time to stall for (jiffies)
837 *
838 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
839 *	to the hwgroup by sleeping for timeout jiffies.
840 */
841
842void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
843{
844	if (timeout > WAIT_WORSTCASE)
845		timeout = WAIT_WORSTCASE;
846	drive->sleep = timeout + jiffies;
847	drive->dev_flags |= IDE_DFLAG_SLEEPING;
848}
849
850EXPORT_SYMBOL(ide_stall_queue);
851
852#define WAKEUP(drive)	((drive)->service_start + 2 * (drive)->service_time)
853
854/**
855 *	choose_drive		-	select a drive to service
856 *	@hwgroup: hardware group to select on
857 *
858 *	choose_drive() selects the next drive which will be serviced.
859 *	This is necessary because the IDE layer can't issue commands
860 *	to both drives on the same cable, unlike SCSI.
861 */
862
863static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
864{
865	ide_drive_t *drive, *best;
866
867repeat:
868	best = NULL;
869	drive = hwgroup->drive;
870
871	/*
872	 * drive is doing pre-flush, ordered write, post-flush sequence. even
873	 * though that is 3 requests, it must be seen as a single transaction.
874	 * we must not preempt this drive until that is complete
875	 */
876	if (blk_queue_flushing(drive->queue)) {
877		/*
878		 * small race where queue could get replugged during
879		 * the 3-request flush cycle, just yank the plug since
880		 * we want it to finish asap
881		 */
882		blk_remove_plug(drive->queue);
883		return drive;
884	}
885
886	do {
887		u8 dev_s = !!(drive->dev_flags & IDE_DFLAG_SLEEPING);
888		u8 best_s = (best && !!(best->dev_flags & IDE_DFLAG_SLEEPING));
889
890		if ((dev_s == 0 || time_after_eq(jiffies, drive->sleep)) &&
891		    !elv_queue_empty(drive->queue)) {
892			if (best == NULL ||
893			    (dev_s && (best_s == 0 || time_before(drive->sleep, best->sleep))) ||
894			    (best_s == 0 && time_before(WAKEUP(drive), WAKEUP(best)))) {
895				if (!blk_queue_plugged(drive->queue))
896					best = drive;
897			}
898		}
899	} while ((drive = drive->next) != hwgroup->drive);
900
901	if (best && (best->dev_flags & IDE_DFLAG_NICE1) &&
902	    (best->dev_flags & IDE_DFLAG_SLEEPING) == 0 &&
903	    best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
904		long t = (signed long)(WAKEUP(best) - jiffies);
905		if (t >= WAIT_MIN_SLEEP) {
906		/*
907		 * We *may* have some time to spare, but first let's see if
908		 * someone can potentially benefit from our nice mood today..
909		 */
910			drive = best->next;
911			do {
912				if ((drive->dev_flags & IDE_DFLAG_SLEEPING) == 0
913				 && time_before(jiffies - best->service_time, WAKEUP(drive))
914				 && time_before(WAKEUP(drive), jiffies + t))
915				{
916					ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
917					goto repeat;
918				}
919			} while ((drive = drive->next) != best);
920		}
921	}
922	return best;
923}
924
925/*
926 * Issue a new request to a drive from hwgroup
927 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
928 *
929 * A hwgroup is a serialized group of IDE interfaces.  Usually there is
930 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
931 * may have both interfaces in a single hwgroup to "serialize" access.
932 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
933 * together into one hwgroup for serialized access.
934 *
935 * Note also that several hwgroups can end up sharing a single IRQ,
936 * possibly along with many other devices.  This is especially common in
937 * PCI-based systems with off-board IDE controller cards.
938 *
939 * The IDE driver uses the single global ide_lock spinlock to protect
940 * access to the request queues, and to protect the hwgroup->busy flag.
941 *
942 * The first thread into the driver for a particular hwgroup sets the
943 * hwgroup->busy flag to indicate that this hwgroup is now active,
944 * and then initiates processing of the top request from the request queue.
945 *
946 * Other threads attempting entry notice the busy setting, and will simply
947 * queue their new requests and exit immediately.  Note that hwgroup->busy
948 * remains set even when the driver is merely awaiting the next interrupt.
949 * Thus, the meaning is "this hwgroup is busy processing a request".
950 *
951 * When processing of a request completes, the completing thread or IRQ-handler
952 * will start the next request from the queue.  If no more work remains,
953 * the driver will clear the hwgroup->busy flag and exit.
954 *
955 * The ide_lock (spinlock) is used to protect all access to the
956 * hwgroup->busy flag, but is otherwise not needed for most processing in
957 * the driver.  This makes the driver much more friendlier to shared IRQs
958 * than previous designs, while remaining 100% (?) SMP safe and capable.
959 */
960static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
961{
962	ide_drive_t	*drive;
963	ide_hwif_t	*hwif;
964	struct request	*rq;
965	ide_startstop_t	startstop;
966	int             loops = 0;
967
968	/* caller must own ide_lock */
969	BUG_ON(!irqs_disabled());
970
971	while (!hwgroup->busy) {
972		hwgroup->busy = 1;
973		/* for atari only */
974		ide_get_lock(ide_intr, hwgroup);
975		drive = choose_drive(hwgroup);
976		if (drive == NULL) {
977			int sleeping = 0;
978			unsigned long sleep = 0; /* shut up, gcc */
979			hwgroup->rq = NULL;
980			drive = hwgroup->drive;
981			do {
982				if ((drive->dev_flags & IDE_DFLAG_SLEEPING) &&
983				    (sleeping == 0 ||
984				     time_before(drive->sleep, sleep))) {
985					sleeping = 1;
986					sleep = drive->sleep;
987				}
988			} while ((drive = drive->next) != hwgroup->drive);
989			if (sleeping) {
990		/*
991		 * Take a short snooze, and then wake up this hwgroup again.
992		 * This gives other hwgroups on the same a chance to
993		 * play fairly with us, just in case there are big differences
994		 * in relative throughputs.. don't want to hog the cpu too much.
995		 */
996				if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
997					sleep = jiffies + WAIT_MIN_SLEEP;
998#if 1
999				if (timer_pending(&hwgroup->timer))
1000					printk(KERN_CRIT "ide_set_handler: timer already active\n");
1001#endif
1002				/* so that ide_timer_expiry knows what to do */
1003				hwgroup->sleeping = 1;
1004				hwgroup->req_gen_timer = hwgroup->req_gen;
1005				mod_timer(&hwgroup->timer, sleep);
1006				/* we purposely leave hwgroup->busy==1
1007				 * while sleeping */
1008			} else {
1009				/* Ugly, but how can we sleep for the lock
1010				 * otherwise? perhaps from tq_disk?
1011				 */
1012
1013				/* for atari only */
1014				ide_release_lock();
1015				hwgroup->busy = 0;
1016			}
1017
1018			/* no more work for this hwgroup (for now) */
1019			return;
1020		}
1021	again:
1022		hwif = HWIF(drive);
1023		if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1024			/*
1025			 * set nIEN for previous hwif, drives in the
1026			 * quirk_list may not like intr setups/cleanups
1027			 */
1028			if (drive->quirk_list != 1)
1029				hwif->tp_ops->set_irq(hwif, 0);
1030		}
1031		hwgroup->hwif = hwif;
1032		hwgroup->drive = drive;
1033		drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
1034		drive->service_start = jiffies;
1035
1036		if (blk_queue_plugged(drive->queue)) {
1037			printk(KERN_ERR "ide: huh? queue was plugged!\n");
1038			break;
1039		}
1040
1041		/*
1042		 * we know that the queue isn't empty, but this can happen
1043		 * if the q->prep_rq_fn() decides to kill a request
1044		 */
1045		rq = elv_next_request(drive->queue);
1046		if (!rq) {
1047			hwgroup->busy = 0;
1048			break;
1049		}
1050
1051		/*
1052		 * Sanity: don't accept a request that isn't a PM request
1053		 * if we are currently power managed. This is very important as
1054		 * blk_stop_queue() doesn't prevent the elv_next_request()
1055		 * above to return us whatever is in the queue. Since we call
1056		 * ide_do_request() ourselves, we end up taking requests while
1057		 * the queue is blocked...
1058		 *
1059		 * We let requests forced at head of queue with ide-preempt
1060		 * though. I hope that doesn't happen too much, hopefully not
1061		 * unless the subdriver triggers such a thing in its own PM
1062		 * state machine.
1063		 *
1064		 * We count how many times we loop here to make sure we service
1065		 * all drives in the hwgroup without looping for ever
1066		 */
1067		if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
1068		    blk_pm_request(rq) == 0 &&
1069		    (rq->cmd_flags & REQ_PREEMPT) == 0) {
1070			drive = drive->next ? drive->next : hwgroup->drive;
1071			if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1072				goto again;
1073			/* We clear busy, there should be no pending ATA command at this point. */
1074			hwgroup->busy = 0;
1075			break;
1076		}
1077
1078		hwgroup->rq = rq;
1079
1080		/*
1081		 * Some systems have trouble with IDE IRQs arriving while
1082		 * the driver is still setting things up.  So, here we disable
1083		 * the IRQ used by this interface while the request is being started.
1084		 * This may look bad at first, but pretty much the same thing
1085		 * happens anyway when any interrupt comes in, IDE or otherwise
1086		 *  -- the kernel masks the IRQ while it is being handled.
1087		 */
1088		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1089			disable_irq_nosync(hwif->irq);
1090		spin_unlock(&ide_lock);
1091		local_irq_enable_in_hardirq();
1092			/* allow other IRQs while we start this request */
1093		startstop = start_request(drive, rq);
1094		spin_lock_irq(&ide_lock);
1095		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1096			enable_irq(hwif->irq);
1097		if (startstop == ide_stopped)
1098			hwgroup->busy = 0;
1099	}
1100}
1101
1102/*
1103 * Passes the stuff to ide_do_request
1104 */
1105void do_ide_request(struct request_queue *q)
1106{
1107	ide_drive_t *drive = q->queuedata;
1108
1109	ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1110}
1111
1112/*
1113 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1114 * retry the current request in pio mode instead of risking tossing it
1115 * all away
1116 */
1117static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1118{
1119	ide_hwif_t *hwif = HWIF(drive);
1120	struct request *rq;
1121	ide_startstop_t ret = ide_stopped;
1122
1123	/*
1124	 * end current dma transaction
1125	 */
1126
1127	if (error < 0) {
1128		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1129		(void)hwif->dma_ops->dma_end(drive);
1130		ret = ide_error(drive, "dma timeout error",
1131				hwif->tp_ops->read_status(hwif));
1132	} else {
1133		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1134		hwif->dma_ops->dma_timeout(drive);
1135	}
1136
1137	/*
1138	 * disable dma for now, but remember that we did so because of
1139	 * a timeout -- we'll reenable after we finish this next request
1140	 * (or rather the first chunk of it) in pio.
1141	 */
1142	drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY;
1143	drive->retry_pio++;
1144	ide_dma_off_quietly(drive);
1145
1146	/*
1147	 * un-busy drive etc (hwgroup->busy is cleared on return) and
1148	 * make sure request is sane
1149	 */
1150	rq = HWGROUP(drive)->rq;
1151
1152	if (!rq)
1153		goto out;
1154
1155	HWGROUP(drive)->rq = NULL;
1156
1157	rq->errors = 0;
1158
1159	if (!rq->bio)
1160		goto out;
1161
1162	rq->sector = rq->bio->bi_sector;
1163	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1164	rq->hard_cur_sectors = rq->current_nr_sectors;
1165	rq->buffer = bio_data(rq->bio);
1166out:
1167	return ret;
1168}
1169
1170/**
1171 *	ide_timer_expiry	-	handle lack of an IDE interrupt
1172 *	@data: timer callback magic (hwgroup)
1173 *
1174 *	An IDE command has timed out before the expected drive return
1175 *	occurred. At this point we attempt to clean up the current
1176 *	mess. If the current handler includes an expiry handler then
1177 *	we invoke the expiry handler, and providing it is happy the
1178 *	work is done. If that fails we apply generic recovery rules
1179 *	invoking the handler and checking the drive DMA status. We
1180 *	have an excessively incestuous relationship with the DMA
1181 *	logic that wants cleaning up.
1182 */
1183
1184void ide_timer_expiry (unsigned long data)
1185{
1186	ide_hwgroup_t	*hwgroup = (ide_hwgroup_t *) data;
1187	ide_handler_t	*handler;
1188	ide_expiry_t	*expiry;
1189	unsigned long	flags;
1190	unsigned long	wait = -1;
1191
1192	spin_lock_irqsave(&ide_lock, flags);
1193
1194	if (((handler = hwgroup->handler) == NULL) ||
1195	    (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1196		/*
1197		 * Either a marginal timeout occurred
1198		 * (got the interrupt just as timer expired),
1199		 * or we were "sleeping" to give other devices a chance.
1200		 * Either way, we don't really want to complain about anything.
1201		 */
1202		if (hwgroup->sleeping) {
1203			hwgroup->sleeping = 0;
1204			hwgroup->busy = 0;
1205		}
1206	} else {
1207		ide_drive_t *drive = hwgroup->drive;
1208		if (!drive) {
1209			printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1210			hwgroup->handler = NULL;
1211		} else {
1212			ide_hwif_t *hwif;
1213			ide_startstop_t startstop = ide_stopped;
1214			if (!hwgroup->busy) {
1215				hwgroup->busy = 1;	/* paranoia */
1216				printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1217			}
1218			if ((expiry = hwgroup->expiry) != NULL) {
1219				/* continue */
1220				if ((wait = expiry(drive)) > 0) {
1221					/* reset timer */
1222					hwgroup->timer.expires  = jiffies + wait;
1223					hwgroup->req_gen_timer = hwgroup->req_gen;
1224					add_timer(&hwgroup->timer);
1225					spin_unlock_irqrestore(&ide_lock, flags);
1226					return;
1227				}
1228			}
1229			hwgroup->handler = NULL;
1230			/*
1231			 * We need to simulate a real interrupt when invoking
1232			 * the handler() function, which means we need to
1233			 * globally mask the specific IRQ:
1234			 */
1235			spin_unlock(&ide_lock);
1236			hwif  = HWIF(drive);
1237			/* disable_irq_nosync ?? */
1238			disable_irq(hwif->irq);
1239			/* local CPU only,
1240			 * as if we were handling an interrupt */
1241			local_irq_disable();
1242			if (hwgroup->polling) {
1243				startstop = handler(drive);
1244			} else if (drive_is_ready(drive)) {
1245				if (drive->waiting_for_dma)
1246					hwif->dma_ops->dma_lost_irq(drive);
1247				(void)ide_ack_intr(hwif);
1248				printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1249				startstop = handler(drive);
1250			} else {
1251				if (drive->waiting_for_dma) {
1252					startstop = ide_dma_timeout_retry(drive, wait);
1253				} else
1254					startstop =
1255					ide_error(drive, "irq timeout",
1256						  hwif->tp_ops->read_status(hwif));
1257			}
1258			drive->service_time = jiffies - drive->service_start;
1259			spin_lock_irq(&ide_lock);
1260			enable_irq(hwif->irq);
1261			if (startstop == ide_stopped)
1262				hwgroup->busy = 0;
1263		}
1264	}
1265	ide_do_request(hwgroup, IDE_NO_IRQ);
1266	spin_unlock_irqrestore(&ide_lock, flags);
1267}
1268
1269/**
1270 *	unexpected_intr		-	handle an unexpected IDE interrupt
1271 *	@irq: interrupt line
1272 *	@hwgroup: hwgroup being processed
1273 *
1274 *	There's nothing really useful we can do with an unexpected interrupt,
1275 *	other than reading the status register (to clear it), and logging it.
1276 *	There should be no way that an irq can happen before we're ready for it,
1277 *	so we needn't worry much about losing an "important" interrupt here.
1278 *
1279 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1280 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
1281 *	looks "good", we just ignore the interrupt completely.
1282 *
1283 *	This routine assumes __cli() is in effect when called.
1284 *
1285 *	If an unexpected interrupt happens on irq15 while we are handling irq14
1286 *	and if the two interfaces are "serialized" (CMD640), then it looks like
1287 *	we could screw up by interfering with a new request being set up for
1288 *	irq15.
1289 *
1290 *	In reality, this is a non-issue.  The new command is not sent unless
1291 *	the drive is ready to accept one, in which case we know the drive is
1292 *	not trying to interrupt us.  And ide_set_handler() is always invoked
1293 *	before completing the issuance of any new drive command, so we will not
1294 *	be accidentally invoked as a result of any valid command completion
1295 *	interrupt.
1296 *
1297 *	Note that we must walk the entire hwgroup here. We know which hwif
1298 *	is doing the current command, but we don't know which hwif burped
1299 *	mysteriously.
1300 */
1301
1302static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1303{
1304	u8 stat;
1305	ide_hwif_t *hwif = hwgroup->hwif;
1306
1307	/*
1308	 * handle the unexpected interrupt
1309	 */
1310	do {
1311		if (hwif->irq == irq) {
1312			stat = hwif->tp_ops->read_status(hwif);
1313
1314			if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1315				/* Try to not flood the console with msgs */
1316				static unsigned long last_msgtime, count;
1317				++count;
1318				if (time_after(jiffies, last_msgtime + HZ)) {
1319					last_msgtime = jiffies;
1320					printk(KERN_ERR "%s%s: unexpected interrupt, "
1321						"status=0x%02x, count=%ld\n",
1322						hwif->name,
1323						(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1324				}
1325			}
1326		}
1327	} while ((hwif = hwif->next) != hwgroup->hwif);
1328}
1329
1330/**
1331 *	ide_intr	-	default IDE interrupt handler
1332 *	@irq: interrupt number
1333 *	@dev_id: hwif group
1334 *	@regs: unused weirdness from the kernel irq layer
1335 *
1336 *	This is the default IRQ handler for the IDE layer. You should
1337 *	not need to override it. If you do be aware it is subtle in
1338 *	places
1339 *
1340 *	hwgroup->hwif is the interface in the group currently performing
1341 *	a command. hwgroup->drive is the drive and hwgroup->handler is
1342 *	the IRQ handler to call. As we issue a command the handlers
1343 *	step through multiple states, reassigning the handler to the
1344 *	next step in the process. Unlike a smart SCSI controller IDE
1345 *	expects the main processor to sequence the various transfer
1346 *	stages. We also manage a poll timer to catch up with most
1347 *	timeout situations. There are still a few where the handlers
1348 *	don't ever decide to give up.
1349 *
1350 *	The handler eventually returns ide_stopped to indicate the
1351 *	request completed. At this point we issue the next request
1352 *	on the hwgroup and the process begins again.
1353 */
1354
1355irqreturn_t ide_intr (int irq, void *dev_id)
1356{
1357	unsigned long flags;
1358	ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1359	ide_hwif_t *hwif;
1360	ide_drive_t *drive;
1361	ide_handler_t *handler;
1362	ide_startstop_t startstop;
1363
1364	spin_lock_irqsave(&ide_lock, flags);
1365	hwif = hwgroup->hwif;
1366
1367	if (!ide_ack_intr(hwif)) {
1368		spin_unlock_irqrestore(&ide_lock, flags);
1369		return IRQ_NONE;
1370	}
1371
1372	if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1373		/*
1374		 * Not expecting an interrupt from this drive.
1375		 * That means this could be:
1376		 *	(1) an interrupt from another PCI device
1377		 *	sharing the same PCI INT# as us.
1378		 * or	(2) a drive just entered sleep or standby mode,
1379		 *	and is interrupting to let us know.
1380		 * or	(3) a spurious interrupt of unknown origin.
1381		 *
1382		 * For PCI, we cannot tell the difference,
1383		 * so in that case we just ignore it and hope it goes away.
1384		 *
1385		 * FIXME: unexpected_intr should be hwif-> then we can
1386		 * remove all the ifdef PCI crap
1387		 */
1388#ifdef CONFIG_BLK_DEV_IDEPCI
1389		if (hwif->chipset != ide_pci)
1390#endif	/* CONFIG_BLK_DEV_IDEPCI */
1391		{
1392			/*
1393			 * Probably not a shared PCI interrupt,
1394			 * so we can safely try to do something about it:
1395			 */
1396			unexpected_intr(irq, hwgroup);
1397#ifdef CONFIG_BLK_DEV_IDEPCI
1398		} else {
1399			/*
1400			 * Whack the status register, just in case
1401			 * we have a leftover pending IRQ.
1402			 */
1403			(void)hwif->tp_ops->read_status(hwif);
1404#endif /* CONFIG_BLK_DEV_IDEPCI */
1405		}
1406		spin_unlock_irqrestore(&ide_lock, flags);
1407		return IRQ_NONE;
1408	}
1409	drive = hwgroup->drive;
1410	if (!drive) {
1411		/*
1412		 * This should NEVER happen, and there isn't much
1413		 * we could do about it here.
1414		 *
1415		 * [Note - this can occur if the drive is hot unplugged]
1416		 */
1417		spin_unlock_irqrestore(&ide_lock, flags);
1418		return IRQ_HANDLED;
1419	}
1420	if (!drive_is_ready(drive)) {
1421		/*
1422		 * This happens regularly when we share a PCI IRQ with
1423		 * another device.  Unfortunately, it can also happen
1424		 * with some buggy drives that trigger the IRQ before
1425		 * their status register is up to date.  Hopefully we have
1426		 * enough advance overhead that the latter isn't a problem.
1427		 */
1428		spin_unlock_irqrestore(&ide_lock, flags);
1429		return IRQ_NONE;
1430	}
1431	if (!hwgroup->busy) {
1432		hwgroup->busy = 1;	/* paranoia */
1433		printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1434	}
1435	hwgroup->handler = NULL;
1436	hwgroup->req_gen++;
1437	del_timer(&hwgroup->timer);
1438	spin_unlock(&ide_lock);
1439
1440	if (hwif->port_ops && hwif->port_ops->clear_irq)
1441		hwif->port_ops->clear_irq(drive);
1442
1443	if (drive->dev_flags & IDE_DFLAG_UNMASK)
1444		local_irq_enable_in_hardirq();
1445
1446	/* service this interrupt, may set handler for next interrupt */
1447	startstop = handler(drive);
1448
1449	spin_lock_irq(&ide_lock);
1450	/*
1451	 * Note that handler() may have set things up for another
1452	 * interrupt to occur soon, but it cannot happen until
1453	 * we exit from this routine, because it will be the
1454	 * same irq as is currently being serviced here, and Linux
1455	 * won't allow another of the same (on any CPU) until we return.
1456	 */
1457	drive->service_time = jiffies - drive->service_start;
1458	if (startstop == ide_stopped) {
1459		if (hwgroup->handler == NULL) {	/* paranoia */
1460			hwgroup->busy = 0;
1461			ide_do_request(hwgroup, hwif->irq);
1462		} else {
1463			printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1464				"on exit\n", drive->name);
1465		}
1466	}
1467	spin_unlock_irqrestore(&ide_lock, flags);
1468	return IRQ_HANDLED;
1469}
1470
1471/**
1472 *	ide_do_drive_cmd	-	issue IDE special command
1473 *	@drive: device to issue command
1474 *	@rq: request to issue
1475 *
1476 *	This function issues a special IDE device request
1477 *	onto the request queue.
1478 *
1479 *	the rq is queued at the head of the request queue, displacing
1480 *	the currently-being-processed request and this function
1481 *	returns immediately without waiting for the new rq to be
1482 *	completed.  This is VERY DANGEROUS, and is intended for
1483 *	careful use by the ATAPI tape/cdrom driver code.
1484 */
1485
1486void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1487{
1488	unsigned long flags;
1489	ide_hwgroup_t *hwgroup = HWGROUP(drive);
1490
1491	spin_lock_irqsave(&ide_lock, flags);
1492	hwgroup->rq = NULL;
1493	__elv_add_request(drive->queue, rq, ELEVATOR_INSERT_FRONT, 0);
1494	blk_start_queueing(drive->queue);
1495	spin_unlock_irqrestore(&ide_lock, flags);
1496}
1497
1498EXPORT_SYMBOL(ide_do_drive_cmd);
1499
1500void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1501{
1502	ide_hwif_t *hwif = drive->hwif;
1503	ide_task_t task;
1504
1505	memset(&task, 0, sizeof(task));
1506	task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1507			IDE_TFLAG_OUT_FEATURE | tf_flags;
1508	task.tf.feature = dma;		/* Use PIO/DMA */
1509	task.tf.lbam    = bcount & 0xff;
1510	task.tf.lbah    = (bcount >> 8) & 0xff;
1511
1512	ide_tf_dump(drive->name, &task.tf);
1513	hwif->tp_ops->set_irq(hwif, 1);
1514	SELECT_MASK(drive, 0);
1515	hwif->tp_ops->tf_load(drive, &task);
1516}
1517
1518EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1519
1520void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1521{
1522	ide_hwif_t *hwif = drive->hwif;
1523	u8 buf[4] = { 0 };
1524
1525	while (len > 0) {
1526		if (write)
1527			hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1528		else
1529			hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1530		len -= 4;
1531	}
1532}
1533EXPORT_SYMBOL_GPL(ide_pad_transfer);
1534