ide-io.c revision ed67b92385a5afddc98d5ff0894b2854c4a54dac
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
50
51#include <asm/byteorder.h>
52#include <asm/irq.h>
53#include <asm/uaccess.h>
54#include <asm/io.h>
55#include <asm/bitops.h>
56
57static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58			     int uptodate, unsigned int nr_bytes)
59{
60	int ret = 1;
61
62	/*
63	 * if failfast is set on a request, override number of sectors and
64	 * complete the whole request right now
65	 */
66	if (blk_noretry_request(rq) && end_io_error(uptodate))
67		nr_bytes = rq->hard_nr_sectors << 9;
68
69	if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70		rq->errors = -EIO;
71
72	/*
73	 * decide whether to reenable DMA -- 3 is a random magic for now,
74	 * if we DMA timeout more than 3 times, just stay in PIO
75	 */
76	if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77		drive->state = 0;
78		HWGROUP(drive)->hwif->ide_dma_on(drive);
79	}
80
81	if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82		add_disk_randomness(rq->rq_disk);
83		if (!list_empty(&rq->queuelist))
84			blkdev_dequeue_request(rq);
85		HWGROUP(drive)->rq = NULL;
86		end_that_request_last(rq, uptodate);
87		ret = 0;
88	}
89
90	return ret;
91}
92
93/**
94 *	ide_end_request		-	complete an IDE I/O
95 *	@drive: IDE device for the I/O
96 *	@uptodate:
97 *	@nr_sectors: number of sectors completed
98 *
99 *	This is our end_request wrapper function. We complete the I/O
100 *	update random number input and dequeue the request, which if
101 *	it was tagged may be out of order.
102 */
103
104int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
105{
106	unsigned int nr_bytes = nr_sectors << 9;
107	struct request *rq;
108	unsigned long flags;
109	int ret = 1;
110
111	/*
112	 * room for locking improvements here, the calls below don't
113	 * need the queue lock held at all
114	 */
115	spin_lock_irqsave(&ide_lock, flags);
116	rq = HWGROUP(drive)->rq;
117
118	if (!nr_bytes) {
119		if (blk_pc_request(rq))
120			nr_bytes = rq->data_len;
121		else
122			nr_bytes = rq->hard_cur_sectors << 9;
123	}
124
125	ret = __ide_end_request(drive, rq, uptodate, nr_bytes);
126
127	spin_unlock_irqrestore(&ide_lock, flags);
128	return ret;
129}
130EXPORT_SYMBOL(ide_end_request);
131
132/*
133 * Power Management state machine. This one is rather trivial for now,
134 * we should probably add more, like switching back to PIO on suspend
135 * to help some BIOSes, re-do the door locking on resume, etc...
136 */
137
138enum {
139	ide_pm_flush_cache	= ide_pm_state_start_suspend,
140	idedisk_pm_standby,
141
142	idedisk_pm_restore_pio	= ide_pm_state_start_resume,
143	idedisk_pm_idle,
144	ide_pm_restore_dma,
145};
146
147static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
148{
149	struct request_pm_state *pm = rq->data;
150
151	if (drive->media != ide_disk)
152		return;
153
154	switch (pm->pm_step) {
155	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) complete */
156		if (pm->pm_state == PM_EVENT_FREEZE)
157			pm->pm_step = ide_pm_state_completed;
158		else
159			pm->pm_step = idedisk_pm_standby;
160		break;
161	case idedisk_pm_standby:	/* Suspend step 2 (standby) complete */
162		pm->pm_step = ide_pm_state_completed;
163		break;
164	case idedisk_pm_restore_pio:	/* Resume step 1 complete */
165		pm->pm_step = idedisk_pm_idle;
166		break;
167	case idedisk_pm_idle:		/* Resume step 2 (idle) complete */
168		pm->pm_step = ide_pm_restore_dma;
169		break;
170	}
171}
172
173static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
174{
175	struct request_pm_state *pm = rq->data;
176	ide_task_t *args = rq->special;
177
178	memset(args, 0, sizeof(*args));
179
180	switch (pm->pm_step) {
181	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) */
182		if (drive->media != ide_disk)
183			break;
184		/* Not supported? Switch to next step now. */
185		if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
186			ide_complete_power_step(drive, rq, 0, 0);
187			return ide_stopped;
188		}
189		if (ide_id_has_flush_cache_ext(drive->id))
190			args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT;
191		else
192			args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE;
193		args->command_type = IDE_DRIVE_TASK_NO_DATA;
194		args->handler	   = &task_no_data_intr;
195		return do_rw_taskfile(drive, args);
196
197	case idedisk_pm_standby:	/* Suspend step 2 (standby) */
198		args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1;
199		args->command_type = IDE_DRIVE_TASK_NO_DATA;
200		args->handler	   = &task_no_data_intr;
201		return do_rw_taskfile(drive, args);
202
203	case idedisk_pm_restore_pio:	/* Resume step 1 (restore PIO) */
204		ide_set_max_pio(drive);
205		/*
206		 * skip idedisk_pm_idle for ATAPI devices
207		 */
208		if (drive->media != ide_disk)
209			pm->pm_step = ide_pm_restore_dma;
210		else
211			ide_complete_power_step(drive, rq, 0, 0);
212		return ide_stopped;
213
214	case idedisk_pm_idle:		/* Resume step 2 (idle) */
215		args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE;
216		args->command_type = IDE_DRIVE_TASK_NO_DATA;
217		args->handler = task_no_data_intr;
218		return do_rw_taskfile(drive, args);
219
220	case ide_pm_restore_dma:	/* Resume step 3 (restore DMA) */
221		/*
222		 * Right now, all we do is call ide_set_dma(drive),
223		 * we could be smarter and check for current xfer_speed
224		 * in struct drive etc...
225		 */
226		if (drive->hwif->ide_dma_on == NULL)
227			break;
228		drive->hwif->dma_off_quietly(drive);
229		/*
230		 * TODO: respect ->using_dma setting
231		 */
232		ide_set_dma(drive);
233		break;
234	}
235	pm->pm_step = ide_pm_state_completed;
236	return ide_stopped;
237}
238
239/**
240 *	ide_end_dequeued_request	-	complete an IDE I/O
241 *	@drive: IDE device for the I/O
242 *	@uptodate:
243 *	@nr_sectors: number of sectors completed
244 *
245 *	Complete an I/O that is no longer on the request queue. This
246 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
247 *	We must still finish the old request but we must not tamper with the
248 *	queue in the meantime.
249 *
250 *	NOTE: This path does not handle barrier, but barrier is not supported
251 *	on ide-cd anyway.
252 */
253
254int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
255			     int uptodate, int nr_sectors)
256{
257	unsigned long flags;
258	int ret = 1;
259
260	spin_lock_irqsave(&ide_lock, flags);
261
262	BUG_ON(!blk_rq_started(rq));
263
264	/*
265	 * if failfast is set on a request, override number of sectors and
266	 * complete the whole request right now
267	 */
268	if (blk_noretry_request(rq) && end_io_error(uptodate))
269		nr_sectors = rq->hard_nr_sectors;
270
271	if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
272		rq->errors = -EIO;
273
274	/*
275	 * decide whether to reenable DMA -- 3 is a random magic for now,
276	 * if we DMA timeout more than 3 times, just stay in PIO
277	 */
278	if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
279		drive->state = 0;
280		HWGROUP(drive)->hwif->ide_dma_on(drive);
281	}
282
283	if (!end_that_request_first(rq, uptodate, nr_sectors)) {
284		add_disk_randomness(rq->rq_disk);
285		if (blk_rq_tagged(rq))
286			blk_queue_end_tag(drive->queue, rq);
287		end_that_request_last(rq, uptodate);
288		ret = 0;
289	}
290	spin_unlock_irqrestore(&ide_lock, flags);
291	return ret;
292}
293EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
294
295
296/**
297 *	ide_complete_pm_request - end the current Power Management request
298 *	@drive: target drive
299 *	@rq: request
300 *
301 *	This function cleans up the current PM request and stops the queue
302 *	if necessary.
303 */
304static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
305{
306	unsigned long flags;
307
308#ifdef DEBUG_PM
309	printk("%s: completing PM request, %s\n", drive->name,
310	       blk_pm_suspend_request(rq) ? "suspend" : "resume");
311#endif
312	spin_lock_irqsave(&ide_lock, flags);
313	if (blk_pm_suspend_request(rq)) {
314		blk_stop_queue(drive->queue);
315	} else {
316		drive->blocked = 0;
317		blk_start_queue(drive->queue);
318	}
319	blkdev_dequeue_request(rq);
320	HWGROUP(drive)->rq = NULL;
321	end_that_request_last(rq, 1);
322	spin_unlock_irqrestore(&ide_lock, flags);
323}
324
325/**
326 *	ide_end_drive_cmd	-	end an explicit drive command
327 *	@drive: command
328 *	@stat: status bits
329 *	@err: error bits
330 *
331 *	Clean up after success/failure of an explicit drive command.
332 *	These get thrown onto the queue so they are synchronized with
333 *	real I/O operations on the drive.
334 *
335 *	In LBA48 mode we have to read the register set twice to get
336 *	all the extra information out.
337 */
338
339void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
340{
341	ide_hwif_t *hwif = HWIF(drive);
342	unsigned long flags;
343	struct request *rq;
344
345	spin_lock_irqsave(&ide_lock, flags);
346	rq = HWGROUP(drive)->rq;
347	spin_unlock_irqrestore(&ide_lock, flags);
348
349	if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
350		u8 *args = (u8 *) rq->buffer;
351		if (rq->errors == 0)
352			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
353
354		if (args) {
355			args[0] = stat;
356			args[1] = err;
357			args[2] = hwif->INB(IDE_NSECTOR_REG);
358		}
359	} else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
360		u8 *args = (u8 *) rq->buffer;
361		if (rq->errors == 0)
362			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
363
364		if (args) {
365			args[0] = stat;
366			args[1] = err;
367			args[2] = hwif->INB(IDE_NSECTOR_REG);
368			args[3] = hwif->INB(IDE_SECTOR_REG);
369			args[4] = hwif->INB(IDE_LCYL_REG);
370			args[5] = hwif->INB(IDE_HCYL_REG);
371			args[6] = hwif->INB(IDE_SELECT_REG);
372		}
373	} else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
374		ide_task_t *args = (ide_task_t *) rq->special;
375		if (rq->errors == 0)
376			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
377
378		if (args) {
379			if (args->tf_in_flags.b.data) {
380				u16 data				= hwif->INW(IDE_DATA_REG);
381				args->tfRegister[IDE_DATA_OFFSET]	= (data) & 0xFF;
382				args->hobRegister[IDE_DATA_OFFSET]	= (data >> 8) & 0xFF;
383			}
384			args->tfRegister[IDE_ERROR_OFFSET]   = err;
385			/* be sure we're looking at the low order bits */
386			hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
387			args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
388			args->tfRegister[IDE_SECTOR_OFFSET]  = hwif->INB(IDE_SECTOR_REG);
389			args->tfRegister[IDE_LCYL_OFFSET]    = hwif->INB(IDE_LCYL_REG);
390			args->tfRegister[IDE_HCYL_OFFSET]    = hwif->INB(IDE_HCYL_REG);
391			args->tfRegister[IDE_SELECT_OFFSET]  = hwif->INB(IDE_SELECT_REG);
392			args->tfRegister[IDE_STATUS_OFFSET]  = stat;
393
394			if (drive->addressing == 1) {
395				hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG);
396				args->hobRegister[IDE_FEATURE_OFFSET]	= hwif->INB(IDE_FEATURE_REG);
397				args->hobRegister[IDE_NSECTOR_OFFSET]	= hwif->INB(IDE_NSECTOR_REG);
398				args->hobRegister[IDE_SECTOR_OFFSET]	= hwif->INB(IDE_SECTOR_REG);
399				args->hobRegister[IDE_LCYL_OFFSET]	= hwif->INB(IDE_LCYL_REG);
400				args->hobRegister[IDE_HCYL_OFFSET]	= hwif->INB(IDE_HCYL_REG);
401			}
402		}
403	} else if (blk_pm_request(rq)) {
404		struct request_pm_state *pm = rq->data;
405#ifdef DEBUG_PM
406		printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
407			drive->name, rq->pm->pm_step, stat, err);
408#endif
409		ide_complete_power_step(drive, rq, stat, err);
410		if (pm->pm_step == ide_pm_state_completed)
411			ide_complete_pm_request(drive, rq);
412		return;
413	}
414
415	spin_lock_irqsave(&ide_lock, flags);
416	blkdev_dequeue_request(rq);
417	HWGROUP(drive)->rq = NULL;
418	rq->errors = err;
419	end_that_request_last(rq, !rq->errors);
420	spin_unlock_irqrestore(&ide_lock, flags);
421}
422
423EXPORT_SYMBOL(ide_end_drive_cmd);
424
425/**
426 *	try_to_flush_leftover_data	-	flush junk
427 *	@drive: drive to flush
428 *
429 *	try_to_flush_leftover_data() is invoked in response to a drive
430 *	unexpectedly having its DRQ_STAT bit set.  As an alternative to
431 *	resetting the drive, this routine tries to clear the condition
432 *	by read a sector's worth of data from the drive.  Of course,
433 *	this may not help if the drive is *waiting* for data from *us*.
434 */
435static void try_to_flush_leftover_data (ide_drive_t *drive)
436{
437	int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
438
439	if (drive->media != ide_disk)
440		return;
441	while (i > 0) {
442		u32 buffer[16];
443		u32 wcount = (i > 16) ? 16 : i;
444
445		i -= wcount;
446		HWIF(drive)->ata_input_data(drive, buffer, wcount);
447	}
448}
449
450static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
451{
452	if (rq->rq_disk) {
453		ide_driver_t *drv;
454
455		drv = *(ide_driver_t **)rq->rq_disk->private_data;
456		drv->end_request(drive, 0, 0);
457	} else
458		ide_end_request(drive, 0, 0);
459}
460
461static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
462{
463	ide_hwif_t *hwif = drive->hwif;
464
465	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
466		/* other bits are useless when BUSY */
467		rq->errors |= ERROR_RESET;
468	} else if (stat & ERR_STAT) {
469		/* err has different meaning on cdrom and tape */
470		if (err == ABRT_ERR) {
471			if (drive->select.b.lba &&
472			    /* some newer drives don't support WIN_SPECIFY */
473			    hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
474				return ide_stopped;
475		} else if ((err & BAD_CRC) == BAD_CRC) {
476			/* UDMA crc error, just retry the operation */
477			drive->crc_count++;
478		} else if (err & (BBD_ERR | ECC_ERR)) {
479			/* retries won't help these */
480			rq->errors = ERROR_MAX;
481		} else if (err & TRK0_ERR) {
482			/* help it find track zero */
483			rq->errors |= ERROR_RECAL;
484		}
485	}
486
487	if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
488	    (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
489		try_to_flush_leftover_data(drive);
490
491	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
492		ide_kill_rq(drive, rq);
493		return ide_stopped;
494	}
495
496	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
497		rq->errors |= ERROR_RESET;
498
499	if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
500		++rq->errors;
501		return ide_do_reset(drive);
502	}
503
504	if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
505		drive->special.b.recalibrate = 1;
506
507	++rq->errors;
508
509	return ide_stopped;
510}
511
512static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
513{
514	ide_hwif_t *hwif = drive->hwif;
515
516	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
517		/* other bits are useless when BUSY */
518		rq->errors |= ERROR_RESET;
519	} else {
520		/* add decoding error stuff */
521	}
522
523	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
524		/* force an abort */
525		hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
526
527	if (rq->errors >= ERROR_MAX) {
528		ide_kill_rq(drive, rq);
529	} else {
530		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
531			++rq->errors;
532			return ide_do_reset(drive);
533		}
534		++rq->errors;
535	}
536
537	return ide_stopped;
538}
539
540ide_startstop_t
541__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
542{
543	if (drive->media == ide_disk)
544		return ide_ata_error(drive, rq, stat, err);
545	return ide_atapi_error(drive, rq, stat, err);
546}
547
548EXPORT_SYMBOL_GPL(__ide_error);
549
550/**
551 *	ide_error	-	handle an error on the IDE
552 *	@drive: drive the error occurred on
553 *	@msg: message to report
554 *	@stat: status bits
555 *
556 *	ide_error() takes action based on the error returned by the drive.
557 *	For normal I/O that may well include retries. We deal with
558 *	both new-style (taskfile) and old style command handling here.
559 *	In the case of taskfile command handling there is work left to
560 *	do
561 */
562
563ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
564{
565	struct request *rq;
566	u8 err;
567
568	err = ide_dump_status(drive, msg, stat);
569
570	if ((rq = HWGROUP(drive)->rq) == NULL)
571		return ide_stopped;
572
573	/* retry only "normal" I/O: */
574	if (!blk_fs_request(rq)) {
575		rq->errors = 1;
576		ide_end_drive_cmd(drive, stat, err);
577		return ide_stopped;
578	}
579
580	if (rq->rq_disk) {
581		ide_driver_t *drv;
582
583		drv = *(ide_driver_t **)rq->rq_disk->private_data;
584		return drv->error(drive, rq, stat, err);
585	} else
586		return __ide_error(drive, rq, stat, err);
587}
588
589EXPORT_SYMBOL_GPL(ide_error);
590
591ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
592{
593	if (drive->media != ide_disk)
594		rq->errors |= ERROR_RESET;
595
596	ide_kill_rq(drive, rq);
597
598	return ide_stopped;
599}
600
601EXPORT_SYMBOL_GPL(__ide_abort);
602
603/**
604 *	ide_abort	-	abort pending IDE operations
605 *	@drive: drive the error occurred on
606 *	@msg: message to report
607 *
608 *	ide_abort kills and cleans up when we are about to do a
609 *	host initiated reset on active commands. Longer term we
610 *	want handlers to have sensible abort handling themselves
611 *
612 *	This differs fundamentally from ide_error because in
613 *	this case the command is doing just fine when we
614 *	blow it away.
615 */
616
617ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
618{
619	struct request *rq;
620
621	if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
622		return ide_stopped;
623
624	/* retry only "normal" I/O: */
625	if (!blk_fs_request(rq)) {
626		rq->errors = 1;
627		ide_end_drive_cmd(drive, BUSY_STAT, 0);
628		return ide_stopped;
629	}
630
631	if (rq->rq_disk) {
632		ide_driver_t *drv;
633
634		drv = *(ide_driver_t **)rq->rq_disk->private_data;
635		return drv->abort(drive, rq);
636	} else
637		return __ide_abort(drive, rq);
638}
639
640/**
641 *	ide_cmd		-	issue a simple drive command
642 *	@drive: drive the command is for
643 *	@cmd: command byte
644 *	@nsect: sector byte
645 *	@handler: handler for the command completion
646 *
647 *	Issue a simple drive command with interrupts.
648 *	The drive must be selected beforehand.
649 */
650
651static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect,
652		ide_handler_t *handler)
653{
654	ide_hwif_t *hwif = HWIF(drive);
655	if (IDE_CONTROL_REG)
656		hwif->OUTB(drive->ctl,IDE_CONTROL_REG);	/* clear nIEN */
657	SELECT_MASK(drive,0);
658	hwif->OUTB(nsect,IDE_NSECTOR_REG);
659	ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
660}
661
662/**
663 *	drive_cmd_intr		- 	drive command completion interrupt
664 *	@drive: drive the completion interrupt occurred on
665 *
666 *	drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
667 *	We do any necessary data reading and then wait for the drive to
668 *	go non busy. At that point we may read the error data and complete
669 *	the request
670 */
671
672static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
673{
674	struct request *rq = HWGROUP(drive)->rq;
675	ide_hwif_t *hwif = HWIF(drive);
676	u8 *args = (u8 *) rq->buffer;
677	u8 stat = hwif->INB(IDE_STATUS_REG);
678	int retries = 10;
679
680	local_irq_enable_in_hardirq();
681	if ((stat & DRQ_STAT) && args && args[3]) {
682		u8 io_32bit = drive->io_32bit;
683		drive->io_32bit = 0;
684		hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
685		drive->io_32bit = io_32bit;
686		while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
687			udelay(100);
688	}
689
690	if (!OK_STAT(stat, READY_STAT, BAD_STAT))
691		return ide_error(drive, "drive_cmd", stat);
692		/* calls ide_end_drive_cmd */
693	ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
694	return ide_stopped;
695}
696
697static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task)
698{
699	task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
700	task->tfRegister[IDE_SECTOR_OFFSET]  = drive->sect;
701	task->tfRegister[IDE_LCYL_OFFSET]    = drive->cyl;
702	task->tfRegister[IDE_HCYL_OFFSET]    = drive->cyl>>8;
703	task->tfRegister[IDE_SELECT_OFFSET]  = ((drive->head-1)|drive->select.all)&0xBF;
704	task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY;
705
706	task->handler = &set_geometry_intr;
707}
708
709static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task)
710{
711	task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect;
712	task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE;
713
714	task->handler = &recal_intr;
715}
716
717static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task)
718{
719	task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req;
720	task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT;
721
722	task->handler = &set_multmode_intr;
723}
724
725static ide_startstop_t ide_disk_special(ide_drive_t *drive)
726{
727	special_t *s = &drive->special;
728	ide_task_t args;
729
730	memset(&args, 0, sizeof(ide_task_t));
731	args.command_type = IDE_DRIVE_TASK_NO_DATA;
732
733	if (s->b.set_geometry) {
734		s->b.set_geometry = 0;
735		ide_init_specify_cmd(drive, &args);
736	} else if (s->b.recalibrate) {
737		s->b.recalibrate = 0;
738		ide_init_restore_cmd(drive, &args);
739	} else if (s->b.set_multmode) {
740		s->b.set_multmode = 0;
741		if (drive->mult_req > drive->id->max_multsect)
742			drive->mult_req = drive->id->max_multsect;
743		ide_init_setmult_cmd(drive, &args);
744	} else if (s->all) {
745		int special = s->all;
746		s->all = 0;
747		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
748		return ide_stopped;
749	}
750
751	do_rw_taskfile(drive, &args);
752
753	return ide_started;
754}
755
756/*
757 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
758 */
759static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
760{
761	switch (req_pio) {
762	case 202:
763	case 201:
764	case 200:
765	case 102:
766	case 101:
767	case 100:
768		return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
769	case 9:
770	case 8:
771		return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
772	case 7:
773	case 6:
774		return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
775	default:
776		return 0;
777	}
778}
779
780/**
781 *	do_special		-	issue some special commands
782 *	@drive: drive the command is for
783 *
784 *	do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
785 *	commands to a drive.  It used to do much more, but has been scaled
786 *	back.
787 */
788
789static ide_startstop_t do_special (ide_drive_t *drive)
790{
791	special_t *s = &drive->special;
792
793#ifdef DEBUG
794	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
795#endif
796	if (s->b.set_tune) {
797		ide_hwif_t *hwif = drive->hwif;
798		u8 req_pio = drive->tune_req;
799
800		s->b.set_tune = 0;
801
802		if (set_pio_mode_abuse(drive->hwif, req_pio)) {
803			if (hwif->set_pio_mode)
804				hwif->set_pio_mode(drive, req_pio);
805		} else {
806			int keep_dma = drive->using_dma;
807
808			ide_set_pio(drive, req_pio);
809
810			if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
811				if (keep_dma)
812					hwif->ide_dma_on(drive);
813			}
814		}
815
816		return ide_stopped;
817	} else {
818		if (drive->media == ide_disk)
819			return ide_disk_special(drive);
820
821		s->all = 0;
822		drive->mult_req = 0;
823		return ide_stopped;
824	}
825}
826
827void ide_map_sg(ide_drive_t *drive, struct request *rq)
828{
829	ide_hwif_t *hwif = drive->hwif;
830	struct scatterlist *sg = hwif->sg_table;
831
832	if (hwif->sg_mapped)	/* needed by ide-scsi */
833		return;
834
835	if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
836		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
837	} else {
838		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
839		hwif->sg_nents = 1;
840	}
841}
842
843EXPORT_SYMBOL_GPL(ide_map_sg);
844
845void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
846{
847	ide_hwif_t *hwif = drive->hwif;
848
849	hwif->nsect = hwif->nleft = rq->nr_sectors;
850	hwif->cursg_ofs = 0;
851	hwif->cursg = NULL;
852}
853
854EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
855
856/**
857 *	execute_drive_command	-	issue special drive command
858 *	@drive: the drive to issue the command on
859 *	@rq: the request structure holding the command
860 *
861 *	execute_drive_cmd() issues a special drive command,  usually
862 *	initiated by ioctl() from the external hdparm program. The
863 *	command can be a drive command, drive task or taskfile
864 *	operation. Weirdly you can call it with NULL to wait for
865 *	all commands to finish. Don't do this as that is due to change
866 */
867
868static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
869		struct request *rq)
870{
871	ide_hwif_t *hwif = HWIF(drive);
872	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
873 		ide_task_t *args = rq->special;
874
875		if (!args)
876			goto done;
877
878		hwif->data_phase = args->data_phase;
879
880		switch (hwif->data_phase) {
881		case TASKFILE_MULTI_OUT:
882		case TASKFILE_OUT:
883		case TASKFILE_MULTI_IN:
884		case TASKFILE_IN:
885			ide_init_sg_cmd(drive, rq);
886			ide_map_sg(drive, rq);
887		default:
888			break;
889		}
890
891		if (args->tf_out_flags.all != 0)
892			return flagged_taskfile(drive, args);
893		return do_rw_taskfile(drive, args);
894	} else if (rq->cmd_type == REQ_TYPE_ATA_TASK) {
895		u8 *args = rq->buffer;
896		u8 sel;
897
898		if (!args)
899			goto done;
900#ifdef DEBUG
901 		printk("%s: DRIVE_TASK_CMD ", drive->name);
902 		printk("cmd=0x%02x ", args[0]);
903 		printk("fr=0x%02x ", args[1]);
904 		printk("ns=0x%02x ", args[2]);
905 		printk("sc=0x%02x ", args[3]);
906 		printk("lcyl=0x%02x ", args[4]);
907 		printk("hcyl=0x%02x ", args[5]);
908 		printk("sel=0x%02x\n", args[6]);
909#endif
910 		hwif->OUTB(args[1], IDE_FEATURE_REG);
911 		hwif->OUTB(args[3], IDE_SECTOR_REG);
912 		hwif->OUTB(args[4], IDE_LCYL_REG);
913 		hwif->OUTB(args[5], IDE_HCYL_REG);
914 		sel = (args[6] & ~0x10);
915 		if (drive->select.b.unit)
916 			sel |= 0x10;
917 		hwif->OUTB(sel, IDE_SELECT_REG);
918 		ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
919 		return ide_started;
920 	} else if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
921 		u8 *args = rq->buffer;
922
923		if (!args)
924			goto done;
925#ifdef DEBUG
926 		printk("%s: DRIVE_CMD ", drive->name);
927 		printk("cmd=0x%02x ", args[0]);
928 		printk("sc=0x%02x ", args[1]);
929 		printk("fr=0x%02x ", args[2]);
930 		printk("xx=0x%02x\n", args[3]);
931#endif
932 		if (args[0] == WIN_SMART) {
933 			hwif->OUTB(0x4f, IDE_LCYL_REG);
934 			hwif->OUTB(0xc2, IDE_HCYL_REG);
935 			hwif->OUTB(args[2],IDE_FEATURE_REG);
936 			hwif->OUTB(args[1],IDE_SECTOR_REG);
937 			ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
938 			return ide_started;
939 		}
940 		hwif->OUTB(args[2],IDE_FEATURE_REG);
941 		ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
942 		return ide_started;
943 	}
944
945done:
946 	/*
947 	 * NULL is actually a valid way of waiting for
948 	 * all current requests to be flushed from the queue.
949 	 */
950#ifdef DEBUG
951 	printk("%s: DRIVE_CMD (null)\n", drive->name);
952#endif
953 	ide_end_drive_cmd(drive,
954			hwif->INB(IDE_STATUS_REG),
955			hwif->INB(IDE_ERROR_REG));
956 	return ide_stopped;
957}
958
959static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
960{
961	struct request_pm_state *pm = rq->data;
962
963	if (blk_pm_suspend_request(rq) &&
964	    pm->pm_step == ide_pm_state_start_suspend)
965		/* Mark drive blocked when starting the suspend sequence. */
966		drive->blocked = 1;
967	else if (blk_pm_resume_request(rq) &&
968		 pm->pm_step == ide_pm_state_start_resume) {
969		/*
970		 * The first thing we do on wakeup is to wait for BSY bit to
971		 * go away (with a looong timeout) as a drive on this hwif may
972		 * just be POSTing itself.
973		 * We do that before even selecting as the "other" device on
974		 * the bus may be broken enough to walk on our toes at this
975		 * point.
976		 */
977		int rc;
978#ifdef DEBUG_PM
979		printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
980#endif
981		rc = ide_wait_not_busy(HWIF(drive), 35000);
982		if (rc)
983			printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
984		SELECT_DRIVE(drive);
985		HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]);
986		rc = ide_wait_not_busy(HWIF(drive), 100000);
987		if (rc)
988			printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
989	}
990}
991
992/**
993 *	start_request	-	start of I/O and command issuing for IDE
994 *
995 *	start_request() initiates handling of a new I/O request. It
996 *	accepts commands and I/O (read/write) requests. It also does
997 *	the final remapping for weird stuff like EZDrive. Once
998 *	device mapper can work sector level the EZDrive stuff can go away
999 *
1000 *	FIXME: this function needs a rename
1001 */
1002
1003static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
1004{
1005	ide_startstop_t startstop;
1006	sector_t block;
1007
1008	BUG_ON(!blk_rq_started(rq));
1009
1010#ifdef DEBUG
1011	printk("%s: start_request: current=0x%08lx\n",
1012		HWIF(drive)->name, (unsigned long) rq);
1013#endif
1014
1015	/* bail early if we've exceeded max_failures */
1016	if (drive->max_failures && (drive->failures > drive->max_failures)) {
1017		goto kill_rq;
1018	}
1019
1020	block    = rq->sector;
1021	if (blk_fs_request(rq) &&
1022	    (drive->media == ide_disk || drive->media == ide_floppy)) {
1023		block += drive->sect0;
1024	}
1025	/* Yecch - this will shift the entire interval,
1026	   possibly killing some innocent following sector */
1027	if (block == 0 && drive->remap_0_to_1 == 1)
1028		block = 1;  /* redirect MBR access to EZ-Drive partn table */
1029
1030	if (blk_pm_request(rq))
1031		ide_check_pm_state(drive, rq);
1032
1033	SELECT_DRIVE(drive);
1034	if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
1035		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
1036		return startstop;
1037	}
1038	if (!drive->special.all) {
1039		ide_driver_t *drv;
1040
1041		/*
1042		 * We reset the drive so we need to issue a SETFEATURES.
1043		 * Do it _after_ do_special() restored device parameters.
1044		 */
1045		if (drive->current_speed == 0xff)
1046			ide_config_drive_speed(drive, drive->desired_speed);
1047
1048		if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1049		    rq->cmd_type == REQ_TYPE_ATA_TASK ||
1050		    rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1051			return execute_drive_cmd(drive, rq);
1052		else if (blk_pm_request(rq)) {
1053			struct request_pm_state *pm = rq->data;
1054#ifdef DEBUG_PM
1055			printk("%s: start_power_step(step: %d)\n",
1056				drive->name, rq->pm->pm_step);
1057#endif
1058			startstop = ide_start_power_step(drive, rq);
1059			if (startstop == ide_stopped &&
1060			    pm->pm_step == ide_pm_state_completed)
1061				ide_complete_pm_request(drive, rq);
1062			return startstop;
1063		}
1064
1065		drv = *(ide_driver_t **)rq->rq_disk->private_data;
1066		return drv->do_request(drive, rq, block);
1067	}
1068	return do_special(drive);
1069kill_rq:
1070	ide_kill_rq(drive, rq);
1071	return ide_stopped;
1072}
1073
1074/**
1075 *	ide_stall_queue		-	pause an IDE device
1076 *	@drive: drive to stall
1077 *	@timeout: time to stall for (jiffies)
1078 *
1079 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
1080 *	to the hwgroup by sleeping for timeout jiffies.
1081 */
1082
1083void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1084{
1085	if (timeout > WAIT_WORSTCASE)
1086		timeout = WAIT_WORSTCASE;
1087	drive->sleep = timeout + jiffies;
1088	drive->sleeping = 1;
1089}
1090
1091EXPORT_SYMBOL(ide_stall_queue);
1092
1093#define WAKEUP(drive)	((drive)->service_start + 2 * (drive)->service_time)
1094
1095/**
1096 *	choose_drive		-	select a drive to service
1097 *	@hwgroup: hardware group to select on
1098 *
1099 *	choose_drive() selects the next drive which will be serviced.
1100 *	This is necessary because the IDE layer can't issue commands
1101 *	to both drives on the same cable, unlike SCSI.
1102 */
1103
1104static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1105{
1106	ide_drive_t *drive, *best;
1107
1108repeat:
1109	best = NULL;
1110	drive = hwgroup->drive;
1111
1112	/*
1113	 * drive is doing pre-flush, ordered write, post-flush sequence. even
1114	 * though that is 3 requests, it must be seen as a single transaction.
1115	 * we must not preempt this drive until that is complete
1116	 */
1117	if (blk_queue_flushing(drive->queue)) {
1118		/*
1119		 * small race where queue could get replugged during
1120		 * the 3-request flush cycle, just yank the plug since
1121		 * we want it to finish asap
1122		 */
1123		blk_remove_plug(drive->queue);
1124		return drive;
1125	}
1126
1127	do {
1128		if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1129		    && !elv_queue_empty(drive->queue)) {
1130			if (!best
1131			 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1132			 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1133			{
1134				if (!blk_queue_plugged(drive->queue))
1135					best = drive;
1136			}
1137		}
1138	} while ((drive = drive->next) != hwgroup->drive);
1139	if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1140		long t = (signed long)(WAKEUP(best) - jiffies);
1141		if (t >= WAIT_MIN_SLEEP) {
1142		/*
1143		 * We *may* have some time to spare, but first let's see if
1144		 * someone can potentially benefit from our nice mood today..
1145		 */
1146			drive = best->next;
1147			do {
1148				if (!drive->sleeping
1149				 && time_before(jiffies - best->service_time, WAKEUP(drive))
1150				 && time_before(WAKEUP(drive), jiffies + t))
1151				{
1152					ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1153					goto repeat;
1154				}
1155			} while ((drive = drive->next) != best);
1156		}
1157	}
1158	return best;
1159}
1160
1161/*
1162 * Issue a new request to a drive from hwgroup
1163 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1164 *
1165 * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1166 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1167 * may have both interfaces in a single hwgroup to "serialize" access.
1168 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1169 * together into one hwgroup for serialized access.
1170 *
1171 * Note also that several hwgroups can end up sharing a single IRQ,
1172 * possibly along with many other devices.  This is especially common in
1173 * PCI-based systems with off-board IDE controller cards.
1174 *
1175 * The IDE driver uses the single global ide_lock spinlock to protect
1176 * access to the request queues, and to protect the hwgroup->busy flag.
1177 *
1178 * The first thread into the driver for a particular hwgroup sets the
1179 * hwgroup->busy flag to indicate that this hwgroup is now active,
1180 * and then initiates processing of the top request from the request queue.
1181 *
1182 * Other threads attempting entry notice the busy setting, and will simply
1183 * queue their new requests and exit immediately.  Note that hwgroup->busy
1184 * remains set even when the driver is merely awaiting the next interrupt.
1185 * Thus, the meaning is "this hwgroup is busy processing a request".
1186 *
1187 * When processing of a request completes, the completing thread or IRQ-handler
1188 * will start the next request from the queue.  If no more work remains,
1189 * the driver will clear the hwgroup->busy flag and exit.
1190 *
1191 * The ide_lock (spinlock) is used to protect all access to the
1192 * hwgroup->busy flag, but is otherwise not needed for most processing in
1193 * the driver.  This makes the driver much more friendlier to shared IRQs
1194 * than previous designs, while remaining 100% (?) SMP safe and capable.
1195 */
1196static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1197{
1198	ide_drive_t	*drive;
1199	ide_hwif_t	*hwif;
1200	struct request	*rq;
1201	ide_startstop_t	startstop;
1202	int             loops = 0;
1203
1204	/* for atari only: POSSIBLY BROKEN HERE(?) */
1205	ide_get_lock(ide_intr, hwgroup);
1206
1207	/* caller must own ide_lock */
1208	BUG_ON(!irqs_disabled());
1209
1210	while (!hwgroup->busy) {
1211		hwgroup->busy = 1;
1212		drive = choose_drive(hwgroup);
1213		if (drive == NULL) {
1214			int sleeping = 0;
1215			unsigned long sleep = 0; /* shut up, gcc */
1216			hwgroup->rq = NULL;
1217			drive = hwgroup->drive;
1218			do {
1219				if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1220					sleeping = 1;
1221					sleep = drive->sleep;
1222				}
1223			} while ((drive = drive->next) != hwgroup->drive);
1224			if (sleeping) {
1225		/*
1226		 * Take a short snooze, and then wake up this hwgroup again.
1227		 * This gives other hwgroups on the same a chance to
1228		 * play fairly with us, just in case there are big differences
1229		 * in relative throughputs.. don't want to hog the cpu too much.
1230		 */
1231				if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1232					sleep = jiffies + WAIT_MIN_SLEEP;
1233#if 1
1234				if (timer_pending(&hwgroup->timer))
1235					printk(KERN_CRIT "ide_set_handler: timer already active\n");
1236#endif
1237				/* so that ide_timer_expiry knows what to do */
1238				hwgroup->sleeping = 1;
1239				hwgroup->req_gen_timer = hwgroup->req_gen;
1240				mod_timer(&hwgroup->timer, sleep);
1241				/* we purposely leave hwgroup->busy==1
1242				 * while sleeping */
1243			} else {
1244				/* Ugly, but how can we sleep for the lock
1245				 * otherwise? perhaps from tq_disk?
1246				 */
1247
1248				/* for atari only */
1249				ide_release_lock();
1250				hwgroup->busy = 0;
1251			}
1252
1253			/* no more work for this hwgroup (for now) */
1254			return;
1255		}
1256	again:
1257		hwif = HWIF(drive);
1258		if (hwgroup->hwif->sharing_irq &&
1259		    hwif != hwgroup->hwif &&
1260		    hwif->io_ports[IDE_CONTROL_OFFSET]) {
1261			/* set nIEN for previous hwif */
1262			SELECT_INTERRUPT(drive);
1263		}
1264		hwgroup->hwif = hwif;
1265		hwgroup->drive = drive;
1266		drive->sleeping = 0;
1267		drive->service_start = jiffies;
1268
1269		if (blk_queue_plugged(drive->queue)) {
1270			printk(KERN_ERR "ide: huh? queue was plugged!\n");
1271			break;
1272		}
1273
1274		/*
1275		 * we know that the queue isn't empty, but this can happen
1276		 * if the q->prep_rq_fn() decides to kill a request
1277		 */
1278		rq = elv_next_request(drive->queue);
1279		if (!rq) {
1280			hwgroup->busy = 0;
1281			break;
1282		}
1283
1284		/*
1285		 * Sanity: don't accept a request that isn't a PM request
1286		 * if we are currently power managed. This is very important as
1287		 * blk_stop_queue() doesn't prevent the elv_next_request()
1288		 * above to return us whatever is in the queue. Since we call
1289		 * ide_do_request() ourselves, we end up taking requests while
1290		 * the queue is blocked...
1291		 *
1292		 * We let requests forced at head of queue with ide-preempt
1293		 * though. I hope that doesn't happen too much, hopefully not
1294		 * unless the subdriver triggers such a thing in its own PM
1295		 * state machine.
1296		 *
1297		 * We count how many times we loop here to make sure we service
1298		 * all drives in the hwgroup without looping for ever
1299		 */
1300		if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1301			drive = drive->next ? drive->next : hwgroup->drive;
1302			if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1303				goto again;
1304			/* We clear busy, there should be no pending ATA command at this point. */
1305			hwgroup->busy = 0;
1306			break;
1307		}
1308
1309		hwgroup->rq = rq;
1310
1311		/*
1312		 * Some systems have trouble with IDE IRQs arriving while
1313		 * the driver is still setting things up.  So, here we disable
1314		 * the IRQ used by this interface while the request is being started.
1315		 * This may look bad at first, but pretty much the same thing
1316		 * happens anyway when any interrupt comes in, IDE or otherwise
1317		 *  -- the kernel masks the IRQ while it is being handled.
1318		 */
1319		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1320			disable_irq_nosync(hwif->irq);
1321		spin_unlock(&ide_lock);
1322		local_irq_enable_in_hardirq();
1323			/* allow other IRQs while we start this request */
1324		startstop = start_request(drive, rq);
1325		spin_lock_irq(&ide_lock);
1326		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1327			enable_irq(hwif->irq);
1328		if (startstop == ide_stopped)
1329			hwgroup->busy = 0;
1330	}
1331}
1332
1333/*
1334 * Passes the stuff to ide_do_request
1335 */
1336void do_ide_request(struct request_queue *q)
1337{
1338	ide_drive_t *drive = q->queuedata;
1339
1340	ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1341}
1342
1343/*
1344 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1345 * retry the current request in pio mode instead of risking tossing it
1346 * all away
1347 */
1348static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1349{
1350	ide_hwif_t *hwif = HWIF(drive);
1351	struct request *rq;
1352	ide_startstop_t ret = ide_stopped;
1353
1354	/*
1355	 * end current dma transaction
1356	 */
1357
1358	if (error < 0) {
1359		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1360		(void)HWIF(drive)->ide_dma_end(drive);
1361		ret = ide_error(drive, "dma timeout error",
1362						hwif->INB(IDE_STATUS_REG));
1363	} else {
1364		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1365		hwif->dma_timeout(drive);
1366	}
1367
1368	/*
1369	 * disable dma for now, but remember that we did so because of
1370	 * a timeout -- we'll reenable after we finish this next request
1371	 * (or rather the first chunk of it) in pio.
1372	 */
1373	drive->retry_pio++;
1374	drive->state = DMA_PIO_RETRY;
1375	hwif->dma_off_quietly(drive);
1376
1377	/*
1378	 * un-busy drive etc (hwgroup->busy is cleared on return) and
1379	 * make sure request is sane
1380	 */
1381	rq = HWGROUP(drive)->rq;
1382
1383	if (!rq)
1384		goto out;
1385
1386	HWGROUP(drive)->rq = NULL;
1387
1388	rq->errors = 0;
1389
1390	if (!rq->bio)
1391		goto out;
1392
1393	rq->sector = rq->bio->bi_sector;
1394	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1395	rq->hard_cur_sectors = rq->current_nr_sectors;
1396	rq->buffer = bio_data(rq->bio);
1397out:
1398	return ret;
1399}
1400
1401/**
1402 *	ide_timer_expiry	-	handle lack of an IDE interrupt
1403 *	@data: timer callback magic (hwgroup)
1404 *
1405 *	An IDE command has timed out before the expected drive return
1406 *	occurred. At this point we attempt to clean up the current
1407 *	mess. If the current handler includes an expiry handler then
1408 *	we invoke the expiry handler, and providing it is happy the
1409 *	work is done. If that fails we apply generic recovery rules
1410 *	invoking the handler and checking the drive DMA status. We
1411 *	have an excessively incestuous relationship with the DMA
1412 *	logic that wants cleaning up.
1413 */
1414
1415void ide_timer_expiry (unsigned long data)
1416{
1417	ide_hwgroup_t	*hwgroup = (ide_hwgroup_t *) data;
1418	ide_handler_t	*handler;
1419	ide_expiry_t	*expiry;
1420	unsigned long	flags;
1421	unsigned long	wait = -1;
1422
1423	spin_lock_irqsave(&ide_lock, flags);
1424
1425	if (((handler = hwgroup->handler) == NULL) ||
1426	    (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1427		/*
1428		 * Either a marginal timeout occurred
1429		 * (got the interrupt just as timer expired),
1430		 * or we were "sleeping" to give other devices a chance.
1431		 * Either way, we don't really want to complain about anything.
1432		 */
1433		if (hwgroup->sleeping) {
1434			hwgroup->sleeping = 0;
1435			hwgroup->busy = 0;
1436		}
1437	} else {
1438		ide_drive_t *drive = hwgroup->drive;
1439		if (!drive) {
1440			printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1441			hwgroup->handler = NULL;
1442		} else {
1443			ide_hwif_t *hwif;
1444			ide_startstop_t startstop = ide_stopped;
1445			if (!hwgroup->busy) {
1446				hwgroup->busy = 1;	/* paranoia */
1447				printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1448			}
1449			if ((expiry = hwgroup->expiry) != NULL) {
1450				/* continue */
1451				if ((wait = expiry(drive)) > 0) {
1452					/* reset timer */
1453					hwgroup->timer.expires  = jiffies + wait;
1454					hwgroup->req_gen_timer = hwgroup->req_gen;
1455					add_timer(&hwgroup->timer);
1456					spin_unlock_irqrestore(&ide_lock, flags);
1457					return;
1458				}
1459			}
1460			hwgroup->handler = NULL;
1461			/*
1462			 * We need to simulate a real interrupt when invoking
1463			 * the handler() function, which means we need to
1464			 * globally mask the specific IRQ:
1465			 */
1466			spin_unlock(&ide_lock);
1467			hwif  = HWIF(drive);
1468#if DISABLE_IRQ_NOSYNC
1469			disable_irq_nosync(hwif->irq);
1470#else
1471			/* disable_irq_nosync ?? */
1472			disable_irq(hwif->irq);
1473#endif /* DISABLE_IRQ_NOSYNC */
1474			/* local CPU only,
1475			 * as if we were handling an interrupt */
1476			local_irq_disable();
1477			if (hwgroup->polling) {
1478				startstop = handler(drive);
1479			} else if (drive_is_ready(drive)) {
1480				if (drive->waiting_for_dma)
1481					hwgroup->hwif->dma_lost_irq(drive);
1482				(void)ide_ack_intr(hwif);
1483				printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1484				startstop = handler(drive);
1485			} else {
1486				if (drive->waiting_for_dma) {
1487					startstop = ide_dma_timeout_retry(drive, wait);
1488				} else
1489					startstop =
1490					ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1491			}
1492			drive->service_time = jiffies - drive->service_start;
1493			spin_lock_irq(&ide_lock);
1494			enable_irq(hwif->irq);
1495			if (startstop == ide_stopped)
1496				hwgroup->busy = 0;
1497		}
1498	}
1499	ide_do_request(hwgroup, IDE_NO_IRQ);
1500	spin_unlock_irqrestore(&ide_lock, flags);
1501}
1502
1503/**
1504 *	unexpected_intr		-	handle an unexpected IDE interrupt
1505 *	@irq: interrupt line
1506 *	@hwgroup: hwgroup being processed
1507 *
1508 *	There's nothing really useful we can do with an unexpected interrupt,
1509 *	other than reading the status register (to clear it), and logging it.
1510 *	There should be no way that an irq can happen before we're ready for it,
1511 *	so we needn't worry much about losing an "important" interrupt here.
1512 *
1513 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1514 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
1515 *	looks "good", we just ignore the interrupt completely.
1516 *
1517 *	This routine assumes __cli() is in effect when called.
1518 *
1519 *	If an unexpected interrupt happens on irq15 while we are handling irq14
1520 *	and if the two interfaces are "serialized" (CMD640), then it looks like
1521 *	we could screw up by interfering with a new request being set up for
1522 *	irq15.
1523 *
1524 *	In reality, this is a non-issue.  The new command is not sent unless
1525 *	the drive is ready to accept one, in which case we know the drive is
1526 *	not trying to interrupt us.  And ide_set_handler() is always invoked
1527 *	before completing the issuance of any new drive command, so we will not
1528 *	be accidentally invoked as a result of any valid command completion
1529 *	interrupt.
1530 *
1531 *	Note that we must walk the entire hwgroup here. We know which hwif
1532 *	is doing the current command, but we don't know which hwif burped
1533 *	mysteriously.
1534 */
1535
1536static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1537{
1538	u8 stat;
1539	ide_hwif_t *hwif = hwgroup->hwif;
1540
1541	/*
1542	 * handle the unexpected interrupt
1543	 */
1544	do {
1545		if (hwif->irq == irq) {
1546			stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1547			if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1548				/* Try to not flood the console with msgs */
1549				static unsigned long last_msgtime, count;
1550				++count;
1551				if (time_after(jiffies, last_msgtime + HZ)) {
1552					last_msgtime = jiffies;
1553					printk(KERN_ERR "%s%s: unexpected interrupt, "
1554						"status=0x%02x, count=%ld\n",
1555						hwif->name,
1556						(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1557				}
1558			}
1559		}
1560	} while ((hwif = hwif->next) != hwgroup->hwif);
1561}
1562
1563/**
1564 *	ide_intr	-	default IDE interrupt handler
1565 *	@irq: interrupt number
1566 *	@dev_id: hwif group
1567 *	@regs: unused weirdness from the kernel irq layer
1568 *
1569 *	This is the default IRQ handler for the IDE layer. You should
1570 *	not need to override it. If you do be aware it is subtle in
1571 *	places
1572 *
1573 *	hwgroup->hwif is the interface in the group currently performing
1574 *	a command. hwgroup->drive is the drive and hwgroup->handler is
1575 *	the IRQ handler to call. As we issue a command the handlers
1576 *	step through multiple states, reassigning the handler to the
1577 *	next step in the process. Unlike a smart SCSI controller IDE
1578 *	expects the main processor to sequence the various transfer
1579 *	stages. We also manage a poll timer to catch up with most
1580 *	timeout situations. There are still a few where the handlers
1581 *	don't ever decide to give up.
1582 *
1583 *	The handler eventually returns ide_stopped to indicate the
1584 *	request completed. At this point we issue the next request
1585 *	on the hwgroup and the process begins again.
1586 */
1587
1588irqreturn_t ide_intr (int irq, void *dev_id)
1589{
1590	unsigned long flags;
1591	ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1592	ide_hwif_t *hwif;
1593	ide_drive_t *drive;
1594	ide_handler_t *handler;
1595	ide_startstop_t startstop;
1596
1597	spin_lock_irqsave(&ide_lock, flags);
1598	hwif = hwgroup->hwif;
1599
1600	if (!ide_ack_intr(hwif)) {
1601		spin_unlock_irqrestore(&ide_lock, flags);
1602		return IRQ_NONE;
1603	}
1604
1605	if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1606		/*
1607		 * Not expecting an interrupt from this drive.
1608		 * That means this could be:
1609		 *	(1) an interrupt from another PCI device
1610		 *	sharing the same PCI INT# as us.
1611		 * or	(2) a drive just entered sleep or standby mode,
1612		 *	and is interrupting to let us know.
1613		 * or	(3) a spurious interrupt of unknown origin.
1614		 *
1615		 * For PCI, we cannot tell the difference,
1616		 * so in that case we just ignore it and hope it goes away.
1617		 *
1618		 * FIXME: unexpected_intr should be hwif-> then we can
1619		 * remove all the ifdef PCI crap
1620		 */
1621#ifdef CONFIG_BLK_DEV_IDEPCI
1622		if (hwif->pci_dev && !hwif->pci_dev->vendor)
1623#endif	/* CONFIG_BLK_DEV_IDEPCI */
1624		{
1625			/*
1626			 * Probably not a shared PCI interrupt,
1627			 * so we can safely try to do something about it:
1628			 */
1629			unexpected_intr(irq, hwgroup);
1630#ifdef CONFIG_BLK_DEV_IDEPCI
1631		} else {
1632			/*
1633			 * Whack the status register, just in case
1634			 * we have a leftover pending IRQ.
1635			 */
1636			(void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1637#endif /* CONFIG_BLK_DEV_IDEPCI */
1638		}
1639		spin_unlock_irqrestore(&ide_lock, flags);
1640		return IRQ_NONE;
1641	}
1642	drive = hwgroup->drive;
1643	if (!drive) {
1644		/*
1645		 * This should NEVER happen, and there isn't much
1646		 * we could do about it here.
1647		 *
1648		 * [Note - this can occur if the drive is hot unplugged]
1649		 */
1650		spin_unlock_irqrestore(&ide_lock, flags);
1651		return IRQ_HANDLED;
1652	}
1653	if (!drive_is_ready(drive)) {
1654		/*
1655		 * This happens regularly when we share a PCI IRQ with
1656		 * another device.  Unfortunately, it can also happen
1657		 * with some buggy drives that trigger the IRQ before
1658		 * their status register is up to date.  Hopefully we have
1659		 * enough advance overhead that the latter isn't a problem.
1660		 */
1661		spin_unlock_irqrestore(&ide_lock, flags);
1662		return IRQ_NONE;
1663	}
1664	if (!hwgroup->busy) {
1665		hwgroup->busy = 1;	/* paranoia */
1666		printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1667	}
1668	hwgroup->handler = NULL;
1669	hwgroup->req_gen++;
1670	del_timer(&hwgroup->timer);
1671	spin_unlock(&ide_lock);
1672
1673	/* Some controllers might set DMA INTR no matter DMA or PIO;
1674	 * bmdma status might need to be cleared even for
1675	 * PIO interrupts to prevent spurious/lost irq.
1676	 */
1677	if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1678		/* ide_dma_end() needs bmdma status for error checking.
1679		 * So, skip clearing bmdma status here and leave it
1680		 * to ide_dma_end() if this is dma interrupt.
1681		 */
1682		hwif->ide_dma_clear_irq(drive);
1683
1684	if (drive->unmask)
1685		local_irq_enable_in_hardirq();
1686	/* service this interrupt, may set handler for next interrupt */
1687	startstop = handler(drive);
1688	spin_lock_irq(&ide_lock);
1689
1690	/*
1691	 * Note that handler() may have set things up for another
1692	 * interrupt to occur soon, but it cannot happen until
1693	 * we exit from this routine, because it will be the
1694	 * same irq as is currently being serviced here, and Linux
1695	 * won't allow another of the same (on any CPU) until we return.
1696	 */
1697	drive->service_time = jiffies - drive->service_start;
1698	if (startstop == ide_stopped) {
1699		if (hwgroup->handler == NULL) {	/* paranoia */
1700			hwgroup->busy = 0;
1701			ide_do_request(hwgroup, hwif->irq);
1702		} else {
1703			printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1704				"on exit\n", drive->name);
1705		}
1706	}
1707	spin_unlock_irqrestore(&ide_lock, flags);
1708	return IRQ_HANDLED;
1709}
1710
1711/**
1712 *	ide_init_drive_cmd	-	initialize a drive command request
1713 *	@rq: request object
1714 *
1715 *	Initialize a request before we fill it in and send it down to
1716 *	ide_do_drive_cmd. Commands must be set up by this function. Right
1717 *	now it doesn't do a lot, but if that changes abusers will have a
1718 *	nasty surprise.
1719 */
1720
1721void ide_init_drive_cmd (struct request *rq)
1722{
1723	memset(rq, 0, sizeof(*rq));
1724	rq->cmd_type = REQ_TYPE_ATA_CMD;
1725	rq->ref_count = 1;
1726}
1727
1728EXPORT_SYMBOL(ide_init_drive_cmd);
1729
1730/**
1731 *	ide_do_drive_cmd	-	issue IDE special command
1732 *	@drive: device to issue command
1733 *	@rq: request to issue
1734 *	@action: action for processing
1735 *
1736 *	This function issues a special IDE device request
1737 *	onto the request queue.
1738 *
1739 *	If action is ide_wait, then the rq is queued at the end of the
1740 *	request queue, and the function sleeps until it has been processed.
1741 *	This is for use when invoked from an ioctl handler.
1742 *
1743 *	If action is ide_preempt, then the rq is queued at the head of
1744 *	the request queue, displacing the currently-being-processed
1745 *	request and this function returns immediately without waiting
1746 *	for the new rq to be completed.  This is VERY DANGEROUS, and is
1747 *	intended for careful use by the ATAPI tape/cdrom driver code.
1748 *
1749 *	If action is ide_end, then the rq is queued at the end of the
1750 *	request queue, and the function returns immediately without waiting
1751 *	for the new rq to be completed. This is again intended for careful
1752 *	use by the ATAPI tape/cdrom driver code.
1753 */
1754
1755int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1756{
1757	unsigned long flags;
1758	ide_hwgroup_t *hwgroup = HWGROUP(drive);
1759	DECLARE_COMPLETION_ONSTACK(wait);
1760	int where = ELEVATOR_INSERT_BACK, err;
1761	int must_wait = (action == ide_wait || action == ide_head_wait);
1762
1763	rq->errors = 0;
1764
1765	/*
1766	 * we need to hold an extra reference to request for safe inspection
1767	 * after completion
1768	 */
1769	if (must_wait) {
1770		rq->ref_count++;
1771		rq->end_io_data = &wait;
1772		rq->end_io = blk_end_sync_rq;
1773	}
1774
1775	spin_lock_irqsave(&ide_lock, flags);
1776	if (action == ide_preempt)
1777		hwgroup->rq = NULL;
1778	if (action == ide_preempt || action == ide_head_wait) {
1779		where = ELEVATOR_INSERT_FRONT;
1780		rq->cmd_flags |= REQ_PREEMPT;
1781	}
1782	__elv_add_request(drive->queue, rq, where, 0);
1783	ide_do_request(hwgroup, IDE_NO_IRQ);
1784	spin_unlock_irqrestore(&ide_lock, flags);
1785
1786	err = 0;
1787	if (must_wait) {
1788		wait_for_completion(&wait);
1789		if (rq->errors)
1790			err = -EIO;
1791
1792		blk_put_request(rq);
1793	}
1794
1795	return err;
1796}
1797
1798EXPORT_SYMBOL(ide_do_drive_cmd);
1799