ide-io.c revision f9e3326dce0ef117308872cd234b903aa19aa40f
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/hdreg.h>
44#include <linux/completion.h>
45#include <linux/reboot.h>
46#include <linux/cdrom.h>
47#include <linux/seq_file.h>
48#include <linux/device.h>
49#include <linux/kmod.h>
50#include <linux/scatterlist.h>
51#include <linux/bitops.h>
52
53#include <asm/byteorder.h>
54#include <asm/irq.h>
55#include <asm/uaccess.h>
56#include <asm/io.h>
57
58static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59			     int uptodate, unsigned int nr_bytes, int dequeue)
60{
61	int ret = 1;
62	int error = 0;
63
64	if (uptodate <= 0)
65		error = uptodate ? uptodate : -EIO;
66
67	/*
68	 * if failfast is set on a request, override number of sectors and
69	 * complete the whole request right now
70	 */
71	if (blk_noretry_request(rq) && error)
72		nr_bytes = rq->hard_nr_sectors << 9;
73
74	if (!blk_fs_request(rq) && error && !rq->errors)
75		rq->errors = -EIO;
76
77	/*
78	 * decide whether to reenable DMA -- 3 is a random magic for now,
79	 * if we DMA timeout more than 3 times, just stay in PIO
80	 */
81	if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82	    drive->retry_pio <= 3) {
83		drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84		ide_dma_on(drive);
85	}
86
87	if (!__blk_end_request(rq, error, nr_bytes)) {
88		if (dequeue)
89			HWGROUP(drive)->rq = NULL;
90		ret = 0;
91	}
92
93	return ret;
94}
95
96/**
97 *	ide_end_request		-	complete an IDE I/O
98 *	@drive: IDE device for the I/O
99 *	@uptodate:
100 *	@nr_sectors: number of sectors completed
101 *
102 *	This is our end_request wrapper function. We complete the I/O
103 *	update random number input and dequeue the request, which if
104 *	it was tagged may be out of order.
105 */
106
107int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108{
109	unsigned int nr_bytes = nr_sectors << 9;
110	struct request *rq;
111	unsigned long flags;
112	int ret = 1;
113
114	/*
115	 * room for locking improvements here, the calls below don't
116	 * need the queue lock held at all
117	 */
118	spin_lock_irqsave(&ide_lock, flags);
119	rq = HWGROUP(drive)->rq;
120
121	if (!nr_bytes) {
122		if (blk_pc_request(rq))
123			nr_bytes = rq->data_len;
124		else
125			nr_bytes = rq->hard_cur_sectors << 9;
126	}
127
128	ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
129
130	spin_unlock_irqrestore(&ide_lock, flags);
131	return ret;
132}
133EXPORT_SYMBOL(ide_end_request);
134
135static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
136{
137	struct request_pm_state *pm = rq->data;
138
139	if (drive->media != ide_disk)
140		return;
141
142	switch (pm->pm_step) {
143	case IDE_PM_FLUSH_CACHE:	/* Suspend step 1 (flush cache) */
144		if (pm->pm_state == PM_EVENT_FREEZE)
145			pm->pm_step = IDE_PM_COMPLETED;
146		else
147			pm->pm_step = IDE_PM_STANDBY;
148		break;
149	case IDE_PM_STANDBY:		/* Suspend step 2 (standby) */
150		pm->pm_step = IDE_PM_COMPLETED;
151		break;
152	case IDE_PM_RESTORE_PIO:	/* Resume step 1 (restore PIO) */
153		pm->pm_step = IDE_PM_IDLE;
154		break;
155	case IDE_PM_IDLE:		/* Resume step 2 (idle)*/
156		pm->pm_step = IDE_PM_RESTORE_DMA;
157		break;
158	}
159}
160
161static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
162{
163	struct request_pm_state *pm = rq->data;
164	ide_task_t *args = rq->special;
165
166	memset(args, 0, sizeof(*args));
167
168	switch (pm->pm_step) {
169	case IDE_PM_FLUSH_CACHE:	/* Suspend step 1 (flush cache) */
170		if (drive->media != ide_disk)
171			break;
172		/* Not supported? Switch to next step now. */
173		if (ata_id_flush_enabled(drive->id) == 0 ||
174		    (drive->dev_flags & IDE_DFLAG_WCACHE) == 0) {
175			ide_complete_power_step(drive, rq, 0, 0);
176			return ide_stopped;
177		}
178		if (ata_id_flush_ext_enabled(drive->id))
179			args->tf.command = ATA_CMD_FLUSH_EXT;
180		else
181			args->tf.command = ATA_CMD_FLUSH;
182		goto out_do_tf;
183	case IDE_PM_STANDBY:		/* Suspend step 2 (standby) */
184		args->tf.command = ATA_CMD_STANDBYNOW1;
185		goto out_do_tf;
186	case IDE_PM_RESTORE_PIO:	/* Resume step 1 (restore PIO) */
187		ide_set_max_pio(drive);
188		/*
189		 * skip IDE_PM_IDLE for ATAPI devices
190		 */
191		if (drive->media != ide_disk)
192			pm->pm_step = IDE_PM_RESTORE_DMA;
193		else
194			ide_complete_power_step(drive, rq, 0, 0);
195		return ide_stopped;
196	case IDE_PM_IDLE:		/* Resume step 2 (idle) */
197		args->tf.command = ATA_CMD_IDLEIMMEDIATE;
198		goto out_do_tf;
199	case IDE_PM_RESTORE_DMA:	/* Resume step 3 (restore DMA) */
200		/*
201		 * Right now, all we do is call ide_set_dma(drive),
202		 * we could be smarter and check for current xfer_speed
203		 * in struct drive etc...
204		 */
205		if (drive->hwif->dma_ops == NULL)
206			break;
207		/*
208		 * TODO: respect IDE_DFLAG_USING_DMA
209		 */
210		ide_set_dma(drive);
211		break;
212	}
213
214	pm->pm_step = IDE_PM_COMPLETED;
215	return ide_stopped;
216
217out_do_tf:
218	args->tf_flags	 = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
219	args->data_phase = TASKFILE_NO_DATA;
220	return do_rw_taskfile(drive, args);
221}
222
223/**
224 *	ide_end_dequeued_request	-	complete an IDE I/O
225 *	@drive: IDE device for the I/O
226 *	@uptodate:
227 *	@nr_sectors: number of sectors completed
228 *
229 *	Complete an I/O that is no longer on the request queue. This
230 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
231 *	We must still finish the old request but we must not tamper with the
232 *	queue in the meantime.
233 *
234 *	NOTE: This path does not handle barrier, but barrier is not supported
235 *	on ide-cd anyway.
236 */
237
238int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
239			     int uptodate, int nr_sectors)
240{
241	unsigned long flags;
242	int ret;
243
244	spin_lock_irqsave(&ide_lock, flags);
245	BUG_ON(!blk_rq_started(rq));
246	ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
247	spin_unlock_irqrestore(&ide_lock, flags);
248
249	return ret;
250}
251EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
252
253
254/**
255 *	ide_complete_pm_request - end the current Power Management request
256 *	@drive: target drive
257 *	@rq: request
258 *
259 *	This function cleans up the current PM request and stops the queue
260 *	if necessary.
261 */
262static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
263{
264	unsigned long flags;
265
266#ifdef DEBUG_PM
267	printk("%s: completing PM request, %s\n", drive->name,
268	       blk_pm_suspend_request(rq) ? "suspend" : "resume");
269#endif
270	spin_lock_irqsave(&ide_lock, flags);
271	if (blk_pm_suspend_request(rq)) {
272		blk_stop_queue(drive->queue);
273	} else {
274		drive->dev_flags &= ~IDE_DFLAG_BLOCKED;
275		blk_start_queue(drive->queue);
276	}
277	HWGROUP(drive)->rq = NULL;
278	if (__blk_end_request(rq, 0, 0))
279		BUG();
280	spin_unlock_irqrestore(&ide_lock, flags);
281}
282
283/**
284 *	ide_end_drive_cmd	-	end an explicit drive command
285 *	@drive: command
286 *	@stat: status bits
287 *	@err: error bits
288 *
289 *	Clean up after success/failure of an explicit drive command.
290 *	These get thrown onto the queue so they are synchronized with
291 *	real I/O operations on the drive.
292 *
293 *	In LBA48 mode we have to read the register set twice to get
294 *	all the extra information out.
295 */
296
297void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
298{
299	unsigned long flags;
300	struct request *rq;
301
302	spin_lock_irqsave(&ide_lock, flags);
303	rq = HWGROUP(drive)->rq;
304	spin_unlock_irqrestore(&ide_lock, flags);
305
306	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
307		ide_task_t *task = (ide_task_t *)rq->special;
308
309		if (rq->errors == 0)
310			rq->errors = !OK_STAT(stat, ATA_DRDY, BAD_STAT);
311
312		if (task) {
313			struct ide_taskfile *tf = &task->tf;
314
315			tf->error = err;
316			tf->status = stat;
317
318			drive->hwif->tp_ops->tf_read(drive, task);
319
320			if (task->tf_flags & IDE_TFLAG_DYN)
321				kfree(task);
322		}
323	} else if (blk_pm_request(rq)) {
324		struct request_pm_state *pm = rq->data;
325#ifdef DEBUG_PM
326		printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
327			drive->name, rq->pm->pm_step, stat, err);
328#endif
329		ide_complete_power_step(drive, rq, stat, err);
330		if (pm->pm_step == IDE_PM_COMPLETED)
331			ide_complete_pm_request(drive, rq);
332		return;
333	}
334
335	spin_lock_irqsave(&ide_lock, flags);
336	HWGROUP(drive)->rq = NULL;
337	rq->errors = err;
338	if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
339				       blk_rq_bytes(rq))))
340		BUG();
341	spin_unlock_irqrestore(&ide_lock, flags);
342}
343
344EXPORT_SYMBOL(ide_end_drive_cmd);
345
346static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
347{
348	if (rq->rq_disk) {
349		ide_driver_t *drv;
350
351		drv = *(ide_driver_t **)rq->rq_disk->private_data;
352		drv->end_request(drive, 0, 0);
353	} else
354		ide_end_request(drive, 0, 0);
355}
356
357static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
358{
359	ide_hwif_t *hwif = drive->hwif;
360
361	if ((stat & ATA_BUSY) ||
362	    ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
363		/* other bits are useless when BUSY */
364		rq->errors |= ERROR_RESET;
365	} else if (stat & ATA_ERR) {
366		/* err has different meaning on cdrom and tape */
367		if (err == ATA_ABORTED) {
368			if ((drive->dev_flags & IDE_DFLAG_LBA) &&
369			    /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
370			    hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
371				return ide_stopped;
372		} else if ((err & BAD_CRC) == BAD_CRC) {
373			/* UDMA crc error, just retry the operation */
374			drive->crc_count++;
375		} else if (err & (ATA_BBK | ATA_UNC)) {
376			/* retries won't help these */
377			rq->errors = ERROR_MAX;
378		} else if (err & ATA_TRK0NF) {
379			/* help it find track zero */
380			rq->errors |= ERROR_RECAL;
381		}
382	}
383
384	if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
385	    (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
386		int nsect = drive->mult_count ? drive->mult_count : 1;
387
388		ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
389	}
390
391	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
392		ide_kill_rq(drive, rq);
393		return ide_stopped;
394	}
395
396	if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
397		rq->errors |= ERROR_RESET;
398
399	if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
400		++rq->errors;
401		return ide_do_reset(drive);
402	}
403
404	if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
405		drive->special.b.recalibrate = 1;
406
407	++rq->errors;
408
409	return ide_stopped;
410}
411
412static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
413{
414	ide_hwif_t *hwif = drive->hwif;
415
416	if ((stat & ATA_BUSY) ||
417	    ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
418		/* other bits are useless when BUSY */
419		rq->errors |= ERROR_RESET;
420	} else {
421		/* add decoding error stuff */
422	}
423
424	if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
425		/* force an abort */
426		hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
427
428	if (rq->errors >= ERROR_MAX) {
429		ide_kill_rq(drive, rq);
430	} else {
431		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
432			++rq->errors;
433			return ide_do_reset(drive);
434		}
435		++rq->errors;
436	}
437
438	return ide_stopped;
439}
440
441ide_startstop_t
442__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
443{
444	if (drive->media == ide_disk)
445		return ide_ata_error(drive, rq, stat, err);
446	return ide_atapi_error(drive, rq, stat, err);
447}
448
449EXPORT_SYMBOL_GPL(__ide_error);
450
451/**
452 *	ide_error	-	handle an error on the IDE
453 *	@drive: drive the error occurred on
454 *	@msg: message to report
455 *	@stat: status bits
456 *
457 *	ide_error() takes action based on the error returned by the drive.
458 *	For normal I/O that may well include retries. We deal with
459 *	both new-style (taskfile) and old style command handling here.
460 *	In the case of taskfile command handling there is work left to
461 *	do
462 */
463
464ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
465{
466	struct request *rq;
467	u8 err;
468
469	err = ide_dump_status(drive, msg, stat);
470
471	if ((rq = HWGROUP(drive)->rq) == NULL)
472		return ide_stopped;
473
474	/* retry only "normal" I/O: */
475	if (!blk_fs_request(rq)) {
476		rq->errors = 1;
477		ide_end_drive_cmd(drive, stat, err);
478		return ide_stopped;
479	}
480
481	if (rq->rq_disk) {
482		ide_driver_t *drv;
483
484		drv = *(ide_driver_t **)rq->rq_disk->private_data;
485		return drv->error(drive, rq, stat, err);
486	} else
487		return __ide_error(drive, rq, stat, err);
488}
489
490EXPORT_SYMBOL_GPL(ide_error);
491
492static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
493{
494	tf->nsect   = drive->sect;
495	tf->lbal    = drive->sect;
496	tf->lbam    = drive->cyl;
497	tf->lbah    = drive->cyl >> 8;
498	tf->device  = (drive->head - 1) | drive->select;
499	tf->command = ATA_CMD_INIT_DEV_PARAMS;
500}
501
502static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
503{
504	tf->nsect   = drive->sect;
505	tf->command = ATA_CMD_RESTORE;
506}
507
508static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
509{
510	tf->nsect   = drive->mult_req;
511	tf->command = ATA_CMD_SET_MULTI;
512}
513
514static ide_startstop_t ide_disk_special(ide_drive_t *drive)
515{
516	special_t *s = &drive->special;
517	ide_task_t args;
518
519	memset(&args, 0, sizeof(ide_task_t));
520	args.data_phase = TASKFILE_NO_DATA;
521
522	if (s->b.set_geometry) {
523		s->b.set_geometry = 0;
524		ide_tf_set_specify_cmd(drive, &args.tf);
525	} else if (s->b.recalibrate) {
526		s->b.recalibrate = 0;
527		ide_tf_set_restore_cmd(drive, &args.tf);
528	} else if (s->b.set_multmode) {
529		s->b.set_multmode = 0;
530		ide_tf_set_setmult_cmd(drive, &args.tf);
531	} else if (s->all) {
532		int special = s->all;
533		s->all = 0;
534		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
535		return ide_stopped;
536	}
537
538	args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
539			IDE_TFLAG_CUSTOM_HANDLER;
540
541	do_rw_taskfile(drive, &args);
542
543	return ide_started;
544}
545
546/**
547 *	do_special		-	issue some special commands
548 *	@drive: drive the command is for
549 *
550 *	do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
551 *	ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
552 *
553 *	It used to do much more, but has been scaled back.
554 */
555
556static ide_startstop_t do_special (ide_drive_t *drive)
557{
558	special_t *s = &drive->special;
559
560#ifdef DEBUG
561	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
562#endif
563	if (drive->media == ide_disk)
564		return ide_disk_special(drive);
565
566	s->all = 0;
567	drive->mult_req = 0;
568	return ide_stopped;
569}
570
571void ide_map_sg(ide_drive_t *drive, struct request *rq)
572{
573	ide_hwif_t *hwif = drive->hwif;
574	struct scatterlist *sg = hwif->sg_table;
575
576	if (hwif->sg_mapped)	/* needed by ide-scsi */
577		return;
578
579	if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
580		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
581	} else {
582		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
583		hwif->sg_nents = 1;
584	}
585}
586
587EXPORT_SYMBOL_GPL(ide_map_sg);
588
589void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
590{
591	ide_hwif_t *hwif = drive->hwif;
592
593	hwif->nsect = hwif->nleft = rq->nr_sectors;
594	hwif->cursg_ofs = 0;
595	hwif->cursg = NULL;
596}
597
598EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
599
600/**
601 *	execute_drive_command	-	issue special drive command
602 *	@drive: the drive to issue the command on
603 *	@rq: the request structure holding the command
604 *
605 *	execute_drive_cmd() issues a special drive command,  usually
606 *	initiated by ioctl() from the external hdparm program. The
607 *	command can be a drive command, drive task or taskfile
608 *	operation. Weirdly you can call it with NULL to wait for
609 *	all commands to finish. Don't do this as that is due to change
610 */
611
612static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
613		struct request *rq)
614{
615	ide_hwif_t *hwif = HWIF(drive);
616	ide_task_t *task = rq->special;
617
618	if (task) {
619		hwif->data_phase = task->data_phase;
620
621		switch (hwif->data_phase) {
622		case TASKFILE_MULTI_OUT:
623		case TASKFILE_OUT:
624		case TASKFILE_MULTI_IN:
625		case TASKFILE_IN:
626			ide_init_sg_cmd(drive, rq);
627			ide_map_sg(drive, rq);
628		default:
629			break;
630		}
631
632		return do_rw_taskfile(drive, task);
633	}
634
635 	/*
636 	 * NULL is actually a valid way of waiting for
637 	 * all current requests to be flushed from the queue.
638 	 */
639#ifdef DEBUG
640 	printk("%s: DRIVE_CMD (null)\n", drive->name);
641#endif
642	ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
643			  ide_read_error(drive));
644
645 	return ide_stopped;
646}
647
648int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
649		       int arg)
650{
651	struct request_queue *q = drive->queue;
652	struct request *rq;
653	int ret = 0;
654
655	if (!(setting->flags & DS_SYNC))
656		return setting->set(drive, arg);
657
658	rq = blk_get_request(q, READ, __GFP_WAIT);
659	rq->cmd_type = REQ_TYPE_SPECIAL;
660	rq->cmd_len = 5;
661	rq->cmd[0] = REQ_DEVSET_EXEC;
662	*(int *)&rq->cmd[1] = arg;
663	rq->special = setting->set;
664
665	if (blk_execute_rq(q, NULL, rq, 0))
666		ret = rq->errors;
667	blk_put_request(rq);
668
669	return ret;
670}
671EXPORT_SYMBOL_GPL(ide_devset_execute);
672
673static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
674{
675	u8 cmd = rq->cmd[0];
676
677	if (cmd == REQ_PARK_HEADS || cmd == REQ_UNPARK_HEADS) {
678		ide_task_t task;
679		struct ide_taskfile *tf = &task.tf;
680
681		memset(&task, 0, sizeof(task));
682		if (cmd == REQ_PARK_HEADS) {
683			drive->sleep = *(unsigned long *)rq->special;
684			drive->dev_flags |= IDE_DFLAG_SLEEPING;
685			tf->command = ATA_CMD_IDLEIMMEDIATE;
686			tf->feature = 0x44;
687			tf->lbal = 0x4c;
688			tf->lbam = 0x4e;
689			tf->lbah = 0x55;
690			task.tf_flags |= IDE_TFLAG_CUSTOM_HANDLER;
691		} else		/* cmd == REQ_UNPARK_HEADS */
692			tf->command = ATA_CMD_CHK_POWER;
693
694		task.tf_flags |= IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
695		task.rq = rq;
696		drive->hwif->data_phase = task.data_phase = TASKFILE_NO_DATA;
697		return do_rw_taskfile(drive, &task);
698	}
699
700	switch (cmd) {
701	case REQ_DEVSET_EXEC:
702	{
703		int err, (*setfunc)(ide_drive_t *, int) = rq->special;
704
705		err = setfunc(drive, *(int *)&rq->cmd[1]);
706		if (err)
707			rq->errors = err;
708		else
709			err = 1;
710		ide_end_request(drive, err, 0);
711		return ide_stopped;
712	}
713	case REQ_DRIVE_RESET:
714		return ide_do_reset(drive);
715	default:
716		blk_dump_rq_flags(rq, "ide_special_rq - bad request");
717		ide_end_request(drive, 0, 0);
718		return ide_stopped;
719	}
720}
721
722static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
723{
724	struct request_pm_state *pm = rq->data;
725
726	if (blk_pm_suspend_request(rq) &&
727	    pm->pm_step == IDE_PM_START_SUSPEND)
728		/* Mark drive blocked when starting the suspend sequence. */
729		drive->dev_flags |= IDE_DFLAG_BLOCKED;
730	else if (blk_pm_resume_request(rq) &&
731		 pm->pm_step == IDE_PM_START_RESUME) {
732		/*
733		 * The first thing we do on wakeup is to wait for BSY bit to
734		 * go away (with a looong timeout) as a drive on this hwif may
735		 * just be POSTing itself.
736		 * We do that before even selecting as the "other" device on
737		 * the bus may be broken enough to walk on our toes at this
738		 * point.
739		 */
740		ide_hwif_t *hwif = drive->hwif;
741		int rc;
742#ifdef DEBUG_PM
743		printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
744#endif
745		rc = ide_wait_not_busy(hwif, 35000);
746		if (rc)
747			printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
748		SELECT_DRIVE(drive);
749		hwif->tp_ops->set_irq(hwif, 1);
750		rc = ide_wait_not_busy(hwif, 100000);
751		if (rc)
752			printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
753	}
754}
755
756/**
757 *	start_request	-	start of I/O and command issuing for IDE
758 *
759 *	start_request() initiates handling of a new I/O request. It
760 *	accepts commands and I/O (read/write) requests.
761 *
762 *	FIXME: this function needs a rename
763 */
764
765static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
766{
767	ide_startstop_t startstop;
768
769	BUG_ON(!blk_rq_started(rq));
770
771#ifdef DEBUG
772	printk("%s: start_request: current=0x%08lx\n",
773		HWIF(drive)->name, (unsigned long) rq);
774#endif
775
776	/* bail early if we've exceeded max_failures */
777	if (drive->max_failures && (drive->failures > drive->max_failures)) {
778		rq->cmd_flags |= REQ_FAILED;
779		goto kill_rq;
780	}
781
782	if (blk_pm_request(rq))
783		ide_check_pm_state(drive, rq);
784
785	SELECT_DRIVE(drive);
786	if (ide_wait_stat(&startstop, drive, drive->ready_stat,
787			  ATA_BUSY | ATA_DRQ, WAIT_READY)) {
788		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
789		return startstop;
790	}
791	if (!drive->special.all) {
792		ide_driver_t *drv;
793
794		/*
795		 * We reset the drive so we need to issue a SETFEATURES.
796		 * Do it _after_ do_special() restored device parameters.
797		 */
798		if (drive->current_speed == 0xff)
799			ide_config_drive_speed(drive, drive->desired_speed);
800
801		if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
802			return execute_drive_cmd(drive, rq);
803		else if (blk_pm_request(rq)) {
804			struct request_pm_state *pm = rq->data;
805#ifdef DEBUG_PM
806			printk("%s: start_power_step(step: %d)\n",
807				drive->name, rq->pm->pm_step);
808#endif
809			startstop = ide_start_power_step(drive, rq);
810			if (startstop == ide_stopped &&
811			    pm->pm_step == IDE_PM_COMPLETED)
812				ide_complete_pm_request(drive, rq);
813			return startstop;
814		} else if (!rq->rq_disk && blk_special_request(rq))
815			/*
816			 * TODO: Once all ULDs have been modified to
817			 * check for specific op codes rather than
818			 * blindly accepting any special request, the
819			 * check for ->rq_disk above may be replaced
820			 * by a more suitable mechanism or even
821			 * dropped entirely.
822			 */
823			return ide_special_rq(drive, rq);
824
825		drv = *(ide_driver_t **)rq->rq_disk->private_data;
826
827		return drv->do_request(drive, rq, rq->sector);
828	}
829	return do_special(drive);
830kill_rq:
831	ide_kill_rq(drive, rq);
832	return ide_stopped;
833}
834
835/**
836 *	ide_stall_queue		-	pause an IDE device
837 *	@drive: drive to stall
838 *	@timeout: time to stall for (jiffies)
839 *
840 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
841 *	to the hwgroup by sleeping for timeout jiffies.
842 */
843
844void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
845{
846	if (timeout > WAIT_WORSTCASE)
847		timeout = WAIT_WORSTCASE;
848	drive->sleep = timeout + jiffies;
849	drive->dev_flags |= IDE_DFLAG_SLEEPING;
850}
851
852EXPORT_SYMBOL(ide_stall_queue);
853
854#define WAKEUP(drive)	((drive)->service_start + 2 * (drive)->service_time)
855
856/**
857 *	choose_drive		-	select a drive to service
858 *	@hwgroup: hardware group to select on
859 *
860 *	choose_drive() selects the next drive which will be serviced.
861 *	This is necessary because the IDE layer can't issue commands
862 *	to both drives on the same cable, unlike SCSI.
863 */
864
865static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
866{
867	ide_drive_t *drive, *best;
868
869repeat:
870	best = NULL;
871	drive = hwgroup->drive;
872
873	/*
874	 * drive is doing pre-flush, ordered write, post-flush sequence. even
875	 * though that is 3 requests, it must be seen as a single transaction.
876	 * we must not preempt this drive until that is complete
877	 */
878	if (blk_queue_flushing(drive->queue)) {
879		/*
880		 * small race where queue could get replugged during
881		 * the 3-request flush cycle, just yank the plug since
882		 * we want it to finish asap
883		 */
884		blk_remove_plug(drive->queue);
885		return drive;
886	}
887
888	do {
889		u8 dev_s = !!(drive->dev_flags & IDE_DFLAG_SLEEPING);
890		u8 best_s = (best && !!(best->dev_flags & IDE_DFLAG_SLEEPING));
891
892		if ((dev_s == 0 || time_after_eq(jiffies, drive->sleep)) &&
893		    !elv_queue_empty(drive->queue)) {
894			if (best == NULL ||
895			    (dev_s && (best_s == 0 || time_before(drive->sleep, best->sleep))) ||
896			    (best_s == 0 && time_before(WAKEUP(drive), WAKEUP(best)))) {
897				if (!blk_queue_plugged(drive->queue))
898					best = drive;
899			}
900		}
901	} while ((drive = drive->next) != hwgroup->drive);
902
903	if (best && (best->dev_flags & IDE_DFLAG_NICE1) &&
904	    (best->dev_flags & IDE_DFLAG_SLEEPING) == 0 &&
905	    best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
906		long t = (signed long)(WAKEUP(best) - jiffies);
907		if (t >= WAIT_MIN_SLEEP) {
908		/*
909		 * We *may* have some time to spare, but first let's see if
910		 * someone can potentially benefit from our nice mood today..
911		 */
912			drive = best->next;
913			do {
914				if ((drive->dev_flags & IDE_DFLAG_SLEEPING) == 0
915				 && time_before(jiffies - best->service_time, WAKEUP(drive))
916				 && time_before(WAKEUP(drive), jiffies + t))
917				{
918					ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
919					goto repeat;
920				}
921			} while ((drive = drive->next) != best);
922		}
923	}
924	return best;
925}
926
927/*
928 * Issue a new request to a drive from hwgroup
929 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
930 *
931 * A hwgroup is a serialized group of IDE interfaces.  Usually there is
932 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
933 * may have both interfaces in a single hwgroup to "serialize" access.
934 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
935 * together into one hwgroup for serialized access.
936 *
937 * Note also that several hwgroups can end up sharing a single IRQ,
938 * possibly along with many other devices.  This is especially common in
939 * PCI-based systems with off-board IDE controller cards.
940 *
941 * The IDE driver uses the single global ide_lock spinlock to protect
942 * access to the request queues, and to protect the hwgroup->busy flag.
943 *
944 * The first thread into the driver for a particular hwgroup sets the
945 * hwgroup->busy flag to indicate that this hwgroup is now active,
946 * and then initiates processing of the top request from the request queue.
947 *
948 * Other threads attempting entry notice the busy setting, and will simply
949 * queue their new requests and exit immediately.  Note that hwgroup->busy
950 * remains set even when the driver is merely awaiting the next interrupt.
951 * Thus, the meaning is "this hwgroup is busy processing a request".
952 *
953 * When processing of a request completes, the completing thread or IRQ-handler
954 * will start the next request from the queue.  If no more work remains,
955 * the driver will clear the hwgroup->busy flag and exit.
956 *
957 * The ide_lock (spinlock) is used to protect all access to the
958 * hwgroup->busy flag, but is otherwise not needed for most processing in
959 * the driver.  This makes the driver much more friendlier to shared IRQs
960 * than previous designs, while remaining 100% (?) SMP safe and capable.
961 */
962static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
963{
964	ide_drive_t	*drive;
965	ide_hwif_t	*hwif;
966	struct request	*rq;
967	ide_startstop_t	startstop;
968	int             loops = 0;
969
970	/* caller must own ide_lock */
971	BUG_ON(!irqs_disabled());
972
973	while (!hwgroup->busy) {
974		hwgroup->busy = 1;
975		/* for atari only */
976		ide_get_lock(ide_intr, hwgroup);
977		drive = choose_drive(hwgroup);
978		if (drive == NULL) {
979			int sleeping = 0;
980			unsigned long sleep = 0; /* shut up, gcc */
981			hwgroup->rq = NULL;
982			drive = hwgroup->drive;
983			do {
984				if ((drive->dev_flags & IDE_DFLAG_SLEEPING) &&
985				    (sleeping == 0 ||
986				     time_before(drive->sleep, sleep))) {
987					sleeping = 1;
988					sleep = drive->sleep;
989				}
990			} while ((drive = drive->next) != hwgroup->drive);
991			if (sleeping) {
992		/*
993		 * Take a short snooze, and then wake up this hwgroup again.
994		 * This gives other hwgroups on the same a chance to
995		 * play fairly with us, just in case there are big differences
996		 * in relative throughputs.. don't want to hog the cpu too much.
997		 */
998				if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
999					sleep = jiffies + WAIT_MIN_SLEEP;
1000#if 1
1001				if (timer_pending(&hwgroup->timer))
1002					printk(KERN_CRIT "ide_set_handler: timer already active\n");
1003#endif
1004				/* so that ide_timer_expiry knows what to do */
1005				hwgroup->sleeping = 1;
1006				hwgroup->req_gen_timer = hwgroup->req_gen;
1007				mod_timer(&hwgroup->timer, sleep);
1008				/* we purposely leave hwgroup->busy==1
1009				 * while sleeping */
1010			} else {
1011				/* Ugly, but how can we sleep for the lock
1012				 * otherwise? perhaps from tq_disk?
1013				 */
1014
1015				/* for atari only */
1016				ide_release_lock();
1017				hwgroup->busy = 0;
1018			}
1019
1020			/* no more work for this hwgroup (for now) */
1021			return;
1022		}
1023	again:
1024		hwif = HWIF(drive);
1025		if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1026			/*
1027			 * set nIEN for previous hwif, drives in the
1028			 * quirk_list may not like intr setups/cleanups
1029			 */
1030			if (drive->quirk_list != 1)
1031				hwif->tp_ops->set_irq(hwif, 0);
1032		}
1033		hwgroup->hwif = hwif;
1034		hwgroup->drive = drive;
1035		drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
1036		drive->service_start = jiffies;
1037
1038		if (blk_queue_plugged(drive->queue)) {
1039			printk(KERN_ERR "ide: huh? queue was plugged!\n");
1040			break;
1041		}
1042
1043		/*
1044		 * we know that the queue isn't empty, but this can happen
1045		 * if the q->prep_rq_fn() decides to kill a request
1046		 */
1047		rq = elv_next_request(drive->queue);
1048		if (!rq) {
1049			hwgroup->busy = 0;
1050			break;
1051		}
1052
1053		/*
1054		 * Sanity: don't accept a request that isn't a PM request
1055		 * if we are currently power managed. This is very important as
1056		 * blk_stop_queue() doesn't prevent the elv_next_request()
1057		 * above to return us whatever is in the queue. Since we call
1058		 * ide_do_request() ourselves, we end up taking requests while
1059		 * the queue is blocked...
1060		 *
1061		 * We let requests forced at head of queue with ide-preempt
1062		 * though. I hope that doesn't happen too much, hopefully not
1063		 * unless the subdriver triggers such a thing in its own PM
1064		 * state machine.
1065		 *
1066		 * We count how many times we loop here to make sure we service
1067		 * all drives in the hwgroup without looping for ever
1068		 */
1069		if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
1070		    blk_pm_request(rq) == 0 &&
1071		    (rq->cmd_flags & REQ_PREEMPT) == 0) {
1072			drive = drive->next ? drive->next : hwgroup->drive;
1073			if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1074				goto again;
1075			/* We clear busy, there should be no pending ATA command at this point. */
1076			hwgroup->busy = 0;
1077			break;
1078		}
1079
1080		hwgroup->rq = rq;
1081
1082		/*
1083		 * Some systems have trouble with IDE IRQs arriving while
1084		 * the driver is still setting things up.  So, here we disable
1085		 * the IRQ used by this interface while the request is being started.
1086		 * This may look bad at first, but pretty much the same thing
1087		 * happens anyway when any interrupt comes in, IDE or otherwise
1088		 *  -- the kernel masks the IRQ while it is being handled.
1089		 */
1090		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1091			disable_irq_nosync(hwif->irq);
1092		spin_unlock(&ide_lock);
1093		local_irq_enable_in_hardirq();
1094			/* allow other IRQs while we start this request */
1095		startstop = start_request(drive, rq);
1096		spin_lock_irq(&ide_lock);
1097		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1098			enable_irq(hwif->irq);
1099		if (startstop == ide_stopped)
1100			hwgroup->busy = 0;
1101	}
1102}
1103
1104/*
1105 * Passes the stuff to ide_do_request
1106 */
1107void do_ide_request(struct request_queue *q)
1108{
1109	ide_drive_t *drive = q->queuedata;
1110
1111	ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1112}
1113
1114/*
1115 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1116 * retry the current request in pio mode instead of risking tossing it
1117 * all away
1118 */
1119static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1120{
1121	ide_hwif_t *hwif = HWIF(drive);
1122	struct request *rq;
1123	ide_startstop_t ret = ide_stopped;
1124
1125	/*
1126	 * end current dma transaction
1127	 */
1128
1129	if (error < 0) {
1130		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1131		(void)hwif->dma_ops->dma_end(drive);
1132		ret = ide_error(drive, "dma timeout error",
1133				hwif->tp_ops->read_status(hwif));
1134	} else {
1135		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1136		hwif->dma_ops->dma_timeout(drive);
1137	}
1138
1139	/*
1140	 * disable dma for now, but remember that we did so because of
1141	 * a timeout -- we'll reenable after we finish this next request
1142	 * (or rather the first chunk of it) in pio.
1143	 */
1144	drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY;
1145	drive->retry_pio++;
1146	ide_dma_off_quietly(drive);
1147
1148	/*
1149	 * un-busy drive etc (hwgroup->busy is cleared on return) and
1150	 * make sure request is sane
1151	 */
1152	rq = HWGROUP(drive)->rq;
1153
1154	if (!rq)
1155		goto out;
1156
1157	HWGROUP(drive)->rq = NULL;
1158
1159	rq->errors = 0;
1160
1161	if (!rq->bio)
1162		goto out;
1163
1164	rq->sector = rq->bio->bi_sector;
1165	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1166	rq->hard_cur_sectors = rq->current_nr_sectors;
1167	rq->buffer = bio_data(rq->bio);
1168out:
1169	return ret;
1170}
1171
1172/**
1173 *	ide_timer_expiry	-	handle lack of an IDE interrupt
1174 *	@data: timer callback magic (hwgroup)
1175 *
1176 *	An IDE command has timed out before the expected drive return
1177 *	occurred. At this point we attempt to clean up the current
1178 *	mess. If the current handler includes an expiry handler then
1179 *	we invoke the expiry handler, and providing it is happy the
1180 *	work is done. If that fails we apply generic recovery rules
1181 *	invoking the handler and checking the drive DMA status. We
1182 *	have an excessively incestuous relationship with the DMA
1183 *	logic that wants cleaning up.
1184 */
1185
1186void ide_timer_expiry (unsigned long data)
1187{
1188	ide_hwgroup_t	*hwgroup = (ide_hwgroup_t *) data;
1189	ide_handler_t	*handler;
1190	ide_expiry_t	*expiry;
1191	unsigned long	flags;
1192	unsigned long	wait = -1;
1193
1194	spin_lock_irqsave(&ide_lock, flags);
1195
1196	if (((handler = hwgroup->handler) == NULL) ||
1197	    (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1198		/*
1199		 * Either a marginal timeout occurred
1200		 * (got the interrupt just as timer expired),
1201		 * or we were "sleeping" to give other devices a chance.
1202		 * Either way, we don't really want to complain about anything.
1203		 */
1204		if (hwgroup->sleeping) {
1205			hwgroup->sleeping = 0;
1206			hwgroup->busy = 0;
1207		}
1208	} else {
1209		ide_drive_t *drive = hwgroup->drive;
1210		if (!drive) {
1211			printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1212			hwgroup->handler = NULL;
1213		} else {
1214			ide_hwif_t *hwif;
1215			ide_startstop_t startstop = ide_stopped;
1216			if (!hwgroup->busy) {
1217				hwgroup->busy = 1;	/* paranoia */
1218				printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1219			}
1220			if ((expiry = hwgroup->expiry) != NULL) {
1221				/* continue */
1222				if ((wait = expiry(drive)) > 0) {
1223					/* reset timer */
1224					hwgroup->timer.expires  = jiffies + wait;
1225					hwgroup->req_gen_timer = hwgroup->req_gen;
1226					add_timer(&hwgroup->timer);
1227					spin_unlock_irqrestore(&ide_lock, flags);
1228					return;
1229				}
1230			}
1231			hwgroup->handler = NULL;
1232			/*
1233			 * We need to simulate a real interrupt when invoking
1234			 * the handler() function, which means we need to
1235			 * globally mask the specific IRQ:
1236			 */
1237			spin_unlock(&ide_lock);
1238			hwif  = HWIF(drive);
1239			/* disable_irq_nosync ?? */
1240			disable_irq(hwif->irq);
1241			/* local CPU only,
1242			 * as if we were handling an interrupt */
1243			local_irq_disable();
1244			if (hwgroup->polling) {
1245				startstop = handler(drive);
1246			} else if (drive_is_ready(drive)) {
1247				if (drive->waiting_for_dma)
1248					hwif->dma_ops->dma_lost_irq(drive);
1249				(void)ide_ack_intr(hwif);
1250				printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1251				startstop = handler(drive);
1252			} else {
1253				if (drive->waiting_for_dma) {
1254					startstop = ide_dma_timeout_retry(drive, wait);
1255				} else
1256					startstop =
1257					ide_error(drive, "irq timeout",
1258						  hwif->tp_ops->read_status(hwif));
1259			}
1260			drive->service_time = jiffies - drive->service_start;
1261			spin_lock_irq(&ide_lock);
1262			enable_irq(hwif->irq);
1263			if (startstop == ide_stopped)
1264				hwgroup->busy = 0;
1265		}
1266	}
1267	ide_do_request(hwgroup, IDE_NO_IRQ);
1268	spin_unlock_irqrestore(&ide_lock, flags);
1269}
1270
1271/**
1272 *	unexpected_intr		-	handle an unexpected IDE interrupt
1273 *	@irq: interrupt line
1274 *	@hwgroup: hwgroup being processed
1275 *
1276 *	There's nothing really useful we can do with an unexpected interrupt,
1277 *	other than reading the status register (to clear it), and logging it.
1278 *	There should be no way that an irq can happen before we're ready for it,
1279 *	so we needn't worry much about losing an "important" interrupt here.
1280 *
1281 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1282 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
1283 *	looks "good", we just ignore the interrupt completely.
1284 *
1285 *	This routine assumes __cli() is in effect when called.
1286 *
1287 *	If an unexpected interrupt happens on irq15 while we are handling irq14
1288 *	and if the two interfaces are "serialized" (CMD640), then it looks like
1289 *	we could screw up by interfering with a new request being set up for
1290 *	irq15.
1291 *
1292 *	In reality, this is a non-issue.  The new command is not sent unless
1293 *	the drive is ready to accept one, in which case we know the drive is
1294 *	not trying to interrupt us.  And ide_set_handler() is always invoked
1295 *	before completing the issuance of any new drive command, so we will not
1296 *	be accidentally invoked as a result of any valid command completion
1297 *	interrupt.
1298 *
1299 *	Note that we must walk the entire hwgroup here. We know which hwif
1300 *	is doing the current command, but we don't know which hwif burped
1301 *	mysteriously.
1302 */
1303
1304static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1305{
1306	u8 stat;
1307	ide_hwif_t *hwif = hwgroup->hwif;
1308
1309	/*
1310	 * handle the unexpected interrupt
1311	 */
1312	do {
1313		if (hwif->irq == irq) {
1314			stat = hwif->tp_ops->read_status(hwif);
1315
1316			if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1317				/* Try to not flood the console with msgs */
1318				static unsigned long last_msgtime, count;
1319				++count;
1320				if (time_after(jiffies, last_msgtime + HZ)) {
1321					last_msgtime = jiffies;
1322					printk(KERN_ERR "%s%s: unexpected interrupt, "
1323						"status=0x%02x, count=%ld\n",
1324						hwif->name,
1325						(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1326				}
1327			}
1328		}
1329	} while ((hwif = hwif->next) != hwgroup->hwif);
1330}
1331
1332/**
1333 *	ide_intr	-	default IDE interrupt handler
1334 *	@irq: interrupt number
1335 *	@dev_id: hwif group
1336 *	@regs: unused weirdness from the kernel irq layer
1337 *
1338 *	This is the default IRQ handler for the IDE layer. You should
1339 *	not need to override it. If you do be aware it is subtle in
1340 *	places
1341 *
1342 *	hwgroup->hwif is the interface in the group currently performing
1343 *	a command. hwgroup->drive is the drive and hwgroup->handler is
1344 *	the IRQ handler to call. As we issue a command the handlers
1345 *	step through multiple states, reassigning the handler to the
1346 *	next step in the process. Unlike a smart SCSI controller IDE
1347 *	expects the main processor to sequence the various transfer
1348 *	stages. We also manage a poll timer to catch up with most
1349 *	timeout situations. There are still a few where the handlers
1350 *	don't ever decide to give up.
1351 *
1352 *	The handler eventually returns ide_stopped to indicate the
1353 *	request completed. At this point we issue the next request
1354 *	on the hwgroup and the process begins again.
1355 */
1356
1357irqreturn_t ide_intr (int irq, void *dev_id)
1358{
1359	unsigned long flags;
1360	ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1361	ide_hwif_t *hwif;
1362	ide_drive_t *drive;
1363	ide_handler_t *handler;
1364	ide_startstop_t startstop;
1365
1366	spin_lock_irqsave(&ide_lock, flags);
1367	hwif = hwgroup->hwif;
1368
1369	if (!ide_ack_intr(hwif)) {
1370		spin_unlock_irqrestore(&ide_lock, flags);
1371		return IRQ_NONE;
1372	}
1373
1374	if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1375		/*
1376		 * Not expecting an interrupt from this drive.
1377		 * That means this could be:
1378		 *	(1) an interrupt from another PCI device
1379		 *	sharing the same PCI INT# as us.
1380		 * or	(2) a drive just entered sleep or standby mode,
1381		 *	and is interrupting to let us know.
1382		 * or	(3) a spurious interrupt of unknown origin.
1383		 *
1384		 * For PCI, we cannot tell the difference,
1385		 * so in that case we just ignore it and hope it goes away.
1386		 *
1387		 * FIXME: unexpected_intr should be hwif-> then we can
1388		 * remove all the ifdef PCI crap
1389		 */
1390#ifdef CONFIG_BLK_DEV_IDEPCI
1391		if (hwif->chipset != ide_pci)
1392#endif	/* CONFIG_BLK_DEV_IDEPCI */
1393		{
1394			/*
1395			 * Probably not a shared PCI interrupt,
1396			 * so we can safely try to do something about it:
1397			 */
1398			unexpected_intr(irq, hwgroup);
1399#ifdef CONFIG_BLK_DEV_IDEPCI
1400		} else {
1401			/*
1402			 * Whack the status register, just in case
1403			 * we have a leftover pending IRQ.
1404			 */
1405			(void)hwif->tp_ops->read_status(hwif);
1406#endif /* CONFIG_BLK_DEV_IDEPCI */
1407		}
1408		spin_unlock_irqrestore(&ide_lock, flags);
1409		return IRQ_NONE;
1410	}
1411	drive = hwgroup->drive;
1412	if (!drive) {
1413		/*
1414		 * This should NEVER happen, and there isn't much
1415		 * we could do about it here.
1416		 *
1417		 * [Note - this can occur if the drive is hot unplugged]
1418		 */
1419		spin_unlock_irqrestore(&ide_lock, flags);
1420		return IRQ_HANDLED;
1421	}
1422	if (!drive_is_ready(drive)) {
1423		/*
1424		 * This happens regularly when we share a PCI IRQ with
1425		 * another device.  Unfortunately, it can also happen
1426		 * with some buggy drives that trigger the IRQ before
1427		 * their status register is up to date.  Hopefully we have
1428		 * enough advance overhead that the latter isn't a problem.
1429		 */
1430		spin_unlock_irqrestore(&ide_lock, flags);
1431		return IRQ_NONE;
1432	}
1433	if (!hwgroup->busy) {
1434		hwgroup->busy = 1;	/* paranoia */
1435		printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1436	}
1437	hwgroup->handler = NULL;
1438	hwgroup->req_gen++;
1439	del_timer(&hwgroup->timer);
1440	spin_unlock(&ide_lock);
1441
1442	if (hwif->port_ops && hwif->port_ops->clear_irq)
1443		hwif->port_ops->clear_irq(drive);
1444
1445	if (drive->dev_flags & IDE_DFLAG_UNMASK)
1446		local_irq_enable_in_hardirq();
1447
1448	/* service this interrupt, may set handler for next interrupt */
1449	startstop = handler(drive);
1450
1451	spin_lock_irq(&ide_lock);
1452	/*
1453	 * Note that handler() may have set things up for another
1454	 * interrupt to occur soon, but it cannot happen until
1455	 * we exit from this routine, because it will be the
1456	 * same irq as is currently being serviced here, and Linux
1457	 * won't allow another of the same (on any CPU) until we return.
1458	 */
1459	drive->service_time = jiffies - drive->service_start;
1460	if (startstop == ide_stopped) {
1461		if (hwgroup->handler == NULL) {	/* paranoia */
1462			hwgroup->busy = 0;
1463			ide_do_request(hwgroup, hwif->irq);
1464		} else {
1465			printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1466				"on exit\n", drive->name);
1467		}
1468	}
1469	spin_unlock_irqrestore(&ide_lock, flags);
1470	return IRQ_HANDLED;
1471}
1472
1473/**
1474 *	ide_do_drive_cmd	-	issue IDE special command
1475 *	@drive: device to issue command
1476 *	@rq: request to issue
1477 *
1478 *	This function issues a special IDE device request
1479 *	onto the request queue.
1480 *
1481 *	the rq is queued at the head of the request queue, displacing
1482 *	the currently-being-processed request and this function
1483 *	returns immediately without waiting for the new rq to be
1484 *	completed.  This is VERY DANGEROUS, and is intended for
1485 *	careful use by the ATAPI tape/cdrom driver code.
1486 */
1487
1488void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1489{
1490	unsigned long flags;
1491	ide_hwgroup_t *hwgroup = HWGROUP(drive);
1492
1493	spin_lock_irqsave(&ide_lock, flags);
1494	hwgroup->rq = NULL;
1495	__elv_add_request(drive->queue, rq, ELEVATOR_INSERT_FRONT, 0);
1496	blk_start_queueing(drive->queue);
1497	spin_unlock_irqrestore(&ide_lock, flags);
1498}
1499
1500EXPORT_SYMBOL(ide_do_drive_cmd);
1501
1502void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1503{
1504	ide_hwif_t *hwif = drive->hwif;
1505	ide_task_t task;
1506
1507	memset(&task, 0, sizeof(task));
1508	task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1509			IDE_TFLAG_OUT_FEATURE | tf_flags;
1510	task.tf.feature = dma;		/* Use PIO/DMA */
1511	task.tf.lbam    = bcount & 0xff;
1512	task.tf.lbah    = (bcount >> 8) & 0xff;
1513
1514	ide_tf_dump(drive->name, &task.tf);
1515	hwif->tp_ops->set_irq(hwif, 1);
1516	SELECT_MASK(drive, 0);
1517	hwif->tp_ops->tf_load(drive, &task);
1518}
1519
1520EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1521
1522void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1523{
1524	ide_hwif_t *hwif = drive->hwif;
1525	u8 buf[4] = { 0 };
1526
1527	while (len > 0) {
1528		if (write)
1529			hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1530		else
1531			hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1532		len -= 4;
1533	}
1534}
1535EXPORT_SYMBOL_GPL(ide_pad_transfer);
1536