ide-io.c revision ff2779b568e70822e0ef2cc7afeeefbe7c607652
1/*
2 *	IDE I/O functions
3 *
4 *	Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/hdreg.h>
44#include <linux/completion.h>
45#include <linux/reboot.h>
46#include <linux/cdrom.h>
47#include <linux/seq_file.h>
48#include <linux/device.h>
49#include <linux/kmod.h>
50#include <linux/scatterlist.h>
51#include <linux/bitops.h>
52
53#include <asm/byteorder.h>
54#include <asm/irq.h>
55#include <asm/uaccess.h>
56#include <asm/io.h>
57
58static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59			     int uptodate, unsigned int nr_bytes, int dequeue)
60{
61	int ret = 1;
62	int error = 0;
63
64	if (uptodate <= 0)
65		error = uptodate ? uptodate : -EIO;
66
67	/*
68	 * if failfast is set on a request, override number of sectors and
69	 * complete the whole request right now
70	 */
71	if (blk_noretry_request(rq) && error)
72		nr_bytes = rq->hard_nr_sectors << 9;
73
74	if (!blk_fs_request(rq) && error && !rq->errors)
75		rq->errors = -EIO;
76
77	/*
78	 * decide whether to reenable DMA -- 3 is a random magic for now,
79	 * if we DMA timeout more than 3 times, just stay in PIO
80	 */
81	if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
82		drive->state = 0;
83		ide_dma_on(drive);
84	}
85
86	if (!__blk_end_request(rq, error, nr_bytes)) {
87		if (dequeue)
88			HWGROUP(drive)->rq = NULL;
89		ret = 0;
90	}
91
92	return ret;
93}
94
95/**
96 *	ide_end_request		-	complete an IDE I/O
97 *	@drive: IDE device for the I/O
98 *	@uptodate:
99 *	@nr_sectors: number of sectors completed
100 *
101 *	This is our end_request wrapper function. We complete the I/O
102 *	update random number input and dequeue the request, which if
103 *	it was tagged may be out of order.
104 */
105
106int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107{
108	unsigned int nr_bytes = nr_sectors << 9;
109	struct request *rq;
110	unsigned long flags;
111	int ret = 1;
112
113	/*
114	 * room for locking improvements here, the calls below don't
115	 * need the queue lock held at all
116	 */
117	spin_lock_irqsave(&ide_lock, flags);
118	rq = HWGROUP(drive)->rq;
119
120	if (!nr_bytes) {
121		if (blk_pc_request(rq))
122			nr_bytes = rq->data_len;
123		else
124			nr_bytes = rq->hard_cur_sectors << 9;
125	}
126
127	ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128
129	spin_unlock_irqrestore(&ide_lock, flags);
130	return ret;
131}
132EXPORT_SYMBOL(ide_end_request);
133
134/*
135 * Power Management state machine. This one is rather trivial for now,
136 * we should probably add more, like switching back to PIO on suspend
137 * to help some BIOSes, re-do the door locking on resume, etc...
138 */
139
140enum {
141	ide_pm_flush_cache	= ide_pm_state_start_suspend,
142	idedisk_pm_standby,
143
144	idedisk_pm_restore_pio	= ide_pm_state_start_resume,
145	idedisk_pm_idle,
146	ide_pm_restore_dma,
147};
148
149static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150{
151	struct request_pm_state *pm = rq->data;
152
153	if (drive->media != ide_disk)
154		return;
155
156	switch (pm->pm_step) {
157	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) complete */
158		if (pm->pm_state == PM_EVENT_FREEZE)
159			pm->pm_step = ide_pm_state_completed;
160		else
161			pm->pm_step = idedisk_pm_standby;
162		break;
163	case idedisk_pm_standby:	/* Suspend step 2 (standby) complete */
164		pm->pm_step = ide_pm_state_completed;
165		break;
166	case idedisk_pm_restore_pio:	/* Resume step 1 complete */
167		pm->pm_step = idedisk_pm_idle;
168		break;
169	case idedisk_pm_idle:		/* Resume step 2 (idle) complete */
170		pm->pm_step = ide_pm_restore_dma;
171		break;
172	}
173}
174
175static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176{
177	struct request_pm_state *pm = rq->data;
178	ide_task_t *args = rq->special;
179
180	memset(args, 0, sizeof(*args));
181
182	switch (pm->pm_step) {
183	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) */
184		if (drive->media != ide_disk)
185			break;
186		/* Not supported? Switch to next step now. */
187		if (!drive->wcache || ata_id_flush_enabled(drive->id) == 0) {
188			ide_complete_power_step(drive, rq, 0, 0);
189			return ide_stopped;
190		}
191		if (ata_id_flush_ext_enabled(drive->id))
192			args->tf.command = ATA_CMD_FLUSH_EXT;
193		else
194			args->tf.command = ATA_CMD_FLUSH;
195		goto out_do_tf;
196
197	case idedisk_pm_standby:	/* Suspend step 2 (standby) */
198		args->tf.command = ATA_CMD_STANDBYNOW1;
199		goto out_do_tf;
200
201	case idedisk_pm_restore_pio:	/* Resume step 1 (restore PIO) */
202		ide_set_max_pio(drive);
203		/*
204		 * skip idedisk_pm_idle for ATAPI devices
205		 */
206		if (drive->media != ide_disk)
207			pm->pm_step = ide_pm_restore_dma;
208		else
209			ide_complete_power_step(drive, rq, 0, 0);
210		return ide_stopped;
211
212	case idedisk_pm_idle:		/* Resume step 2 (idle) */
213		args->tf.command = ATA_CMD_IDLEIMMEDIATE;
214		goto out_do_tf;
215
216	case ide_pm_restore_dma:	/* Resume step 3 (restore DMA) */
217		/*
218		 * Right now, all we do is call ide_set_dma(drive),
219		 * we could be smarter and check for current xfer_speed
220		 * in struct drive etc...
221		 */
222		if (drive->hwif->dma_ops == NULL)
223			break;
224		/*
225		 * TODO: respect ->using_dma setting
226		 */
227		ide_set_dma(drive);
228		break;
229	}
230	pm->pm_step = ide_pm_state_completed;
231	return ide_stopped;
232
233out_do_tf:
234	args->tf_flags	 = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
235	args->data_phase = TASKFILE_NO_DATA;
236	return do_rw_taskfile(drive, args);
237}
238
239/**
240 *	ide_end_dequeued_request	-	complete an IDE I/O
241 *	@drive: IDE device for the I/O
242 *	@uptodate:
243 *	@nr_sectors: number of sectors completed
244 *
245 *	Complete an I/O that is no longer on the request queue. This
246 *	typically occurs when we pull the request and issue a REQUEST_SENSE.
247 *	We must still finish the old request but we must not tamper with the
248 *	queue in the meantime.
249 *
250 *	NOTE: This path does not handle barrier, but barrier is not supported
251 *	on ide-cd anyway.
252 */
253
254int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
255			     int uptodate, int nr_sectors)
256{
257	unsigned long flags;
258	int ret;
259
260	spin_lock_irqsave(&ide_lock, flags);
261	BUG_ON(!blk_rq_started(rq));
262	ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
263	spin_unlock_irqrestore(&ide_lock, flags);
264
265	return ret;
266}
267EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
268
269
270/**
271 *	ide_complete_pm_request - end the current Power Management request
272 *	@drive: target drive
273 *	@rq: request
274 *
275 *	This function cleans up the current PM request and stops the queue
276 *	if necessary.
277 */
278static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
279{
280	unsigned long flags;
281
282#ifdef DEBUG_PM
283	printk("%s: completing PM request, %s\n", drive->name,
284	       blk_pm_suspend_request(rq) ? "suspend" : "resume");
285#endif
286	spin_lock_irqsave(&ide_lock, flags);
287	if (blk_pm_suspend_request(rq)) {
288		blk_stop_queue(drive->queue);
289	} else {
290		drive->blocked = 0;
291		blk_start_queue(drive->queue);
292	}
293	HWGROUP(drive)->rq = NULL;
294	if (__blk_end_request(rq, 0, 0))
295		BUG();
296	spin_unlock_irqrestore(&ide_lock, flags);
297}
298
299/**
300 *	ide_end_drive_cmd	-	end an explicit drive command
301 *	@drive: command
302 *	@stat: status bits
303 *	@err: error bits
304 *
305 *	Clean up after success/failure of an explicit drive command.
306 *	These get thrown onto the queue so they are synchronized with
307 *	real I/O operations on the drive.
308 *
309 *	In LBA48 mode we have to read the register set twice to get
310 *	all the extra information out.
311 */
312
313void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
314{
315	unsigned long flags;
316	struct request *rq;
317
318	spin_lock_irqsave(&ide_lock, flags);
319	rq = HWGROUP(drive)->rq;
320	spin_unlock_irqrestore(&ide_lock, flags);
321
322	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
323		ide_task_t *task = (ide_task_t *)rq->special;
324
325		if (rq->errors == 0)
326			rq->errors = !OK_STAT(stat, ATA_DRDY, BAD_STAT);
327
328		if (task) {
329			struct ide_taskfile *tf = &task->tf;
330
331			tf->error = err;
332			tf->status = stat;
333
334			drive->hwif->tp_ops->tf_read(drive, task);
335
336			if (task->tf_flags & IDE_TFLAG_DYN)
337				kfree(task);
338		}
339	} else if (blk_pm_request(rq)) {
340		struct request_pm_state *pm = rq->data;
341#ifdef DEBUG_PM
342		printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
343			drive->name, rq->pm->pm_step, stat, err);
344#endif
345		ide_complete_power_step(drive, rq, stat, err);
346		if (pm->pm_step == ide_pm_state_completed)
347			ide_complete_pm_request(drive, rq);
348		return;
349	}
350
351	spin_lock_irqsave(&ide_lock, flags);
352	HWGROUP(drive)->rq = NULL;
353	rq->errors = err;
354	if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
355				       blk_rq_bytes(rq))))
356		BUG();
357	spin_unlock_irqrestore(&ide_lock, flags);
358}
359
360EXPORT_SYMBOL(ide_end_drive_cmd);
361
362static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
363{
364	if (rq->rq_disk) {
365		ide_driver_t *drv;
366
367		drv = *(ide_driver_t **)rq->rq_disk->private_data;
368		drv->end_request(drive, 0, 0);
369	} else
370		ide_end_request(drive, 0, 0);
371}
372
373static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
374{
375	ide_hwif_t *hwif = drive->hwif;
376
377	if ((stat & ATA_BUSY) || ((stat & ATA_DF) && !drive->nowerr)) {
378		/* other bits are useless when BUSY */
379		rq->errors |= ERROR_RESET;
380	} else if (stat & ATA_ERR) {
381		/* err has different meaning on cdrom and tape */
382		if (err == ATA_ABORTED) {
383			if (drive->select.b.lba &&
384			    /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
385			    hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
386				return ide_stopped;
387		} else if ((err & BAD_CRC) == BAD_CRC) {
388			/* UDMA crc error, just retry the operation */
389			drive->crc_count++;
390		} else if (err & (ATA_BBK | ATA_UNC)) {
391			/* retries won't help these */
392			rq->errors = ERROR_MAX;
393		} else if (err & ATA_TRK0NF) {
394			/* help it find track zero */
395			rq->errors |= ERROR_RECAL;
396		}
397	}
398
399	if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
400	    (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
401		int nsect = drive->mult_count ? drive->mult_count : 1;
402
403		ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
404	}
405
406	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
407		ide_kill_rq(drive, rq);
408		return ide_stopped;
409	}
410
411	if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
412		rq->errors |= ERROR_RESET;
413
414	if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
415		++rq->errors;
416		return ide_do_reset(drive);
417	}
418
419	if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
420		drive->special.b.recalibrate = 1;
421
422	++rq->errors;
423
424	return ide_stopped;
425}
426
427static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
428{
429	ide_hwif_t *hwif = drive->hwif;
430
431	if ((stat & ATA_BUSY) || ((stat & ATA_DF) && !drive->nowerr)) {
432		/* other bits are useless when BUSY */
433		rq->errors |= ERROR_RESET;
434	} else {
435		/* add decoding error stuff */
436	}
437
438	if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
439		/* force an abort */
440		hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
441
442	if (rq->errors >= ERROR_MAX) {
443		ide_kill_rq(drive, rq);
444	} else {
445		if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
446			++rq->errors;
447			return ide_do_reset(drive);
448		}
449		++rq->errors;
450	}
451
452	return ide_stopped;
453}
454
455ide_startstop_t
456__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
457{
458	if (drive->media == ide_disk)
459		return ide_ata_error(drive, rq, stat, err);
460	return ide_atapi_error(drive, rq, stat, err);
461}
462
463EXPORT_SYMBOL_GPL(__ide_error);
464
465/**
466 *	ide_error	-	handle an error on the IDE
467 *	@drive: drive the error occurred on
468 *	@msg: message to report
469 *	@stat: status bits
470 *
471 *	ide_error() takes action based on the error returned by the drive.
472 *	For normal I/O that may well include retries. We deal with
473 *	both new-style (taskfile) and old style command handling here.
474 *	In the case of taskfile command handling there is work left to
475 *	do
476 */
477
478ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
479{
480	struct request *rq;
481	u8 err;
482
483	err = ide_dump_status(drive, msg, stat);
484
485	if ((rq = HWGROUP(drive)->rq) == NULL)
486		return ide_stopped;
487
488	/* retry only "normal" I/O: */
489	if (!blk_fs_request(rq)) {
490		rq->errors = 1;
491		ide_end_drive_cmd(drive, stat, err);
492		return ide_stopped;
493	}
494
495	if (rq->rq_disk) {
496		ide_driver_t *drv;
497
498		drv = *(ide_driver_t **)rq->rq_disk->private_data;
499		return drv->error(drive, rq, stat, err);
500	} else
501		return __ide_error(drive, rq, stat, err);
502}
503
504EXPORT_SYMBOL_GPL(ide_error);
505
506static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
507{
508	tf->nsect   = drive->sect;
509	tf->lbal    = drive->sect;
510	tf->lbam    = drive->cyl;
511	tf->lbah    = drive->cyl >> 8;
512	tf->device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
513	tf->command = ATA_CMD_INIT_DEV_PARAMS;
514}
515
516static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
517{
518	tf->nsect   = drive->sect;
519	tf->command = ATA_CMD_RESTORE;
520}
521
522static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
523{
524	tf->nsect   = drive->mult_req;
525	tf->command = ATA_CMD_SET_MULTI;
526}
527
528static ide_startstop_t ide_disk_special(ide_drive_t *drive)
529{
530	special_t *s = &drive->special;
531	ide_task_t args;
532
533	memset(&args, 0, sizeof(ide_task_t));
534	args.data_phase = TASKFILE_NO_DATA;
535
536	if (s->b.set_geometry) {
537		s->b.set_geometry = 0;
538		ide_tf_set_specify_cmd(drive, &args.tf);
539	} else if (s->b.recalibrate) {
540		s->b.recalibrate = 0;
541		ide_tf_set_restore_cmd(drive, &args.tf);
542	} else if (s->b.set_multmode) {
543		s->b.set_multmode = 0;
544		ide_tf_set_setmult_cmd(drive, &args.tf);
545	} else if (s->all) {
546		int special = s->all;
547		s->all = 0;
548		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
549		return ide_stopped;
550	}
551
552	args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
553			IDE_TFLAG_CUSTOM_HANDLER;
554
555	do_rw_taskfile(drive, &args);
556
557	return ide_started;
558}
559
560/*
561 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
562 */
563static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
564{
565	switch (req_pio) {
566	case 202:
567	case 201:
568	case 200:
569	case 102:
570	case 101:
571	case 100:
572		return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
573	case 9:
574	case 8:
575		return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
576	case 7:
577	case 6:
578		return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
579	default:
580		return 0;
581	}
582}
583
584/**
585 *	do_special		-	issue some special commands
586 *	@drive: drive the command is for
587 *
588 *	do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
589 *	ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
590 *
591 *	It used to do much more, but has been scaled back.
592 */
593
594static ide_startstop_t do_special (ide_drive_t *drive)
595{
596	special_t *s = &drive->special;
597
598#ifdef DEBUG
599	printk("%s: do_special: 0x%02x\n", drive->name, s->all);
600#endif
601	if (s->b.set_tune) {
602		ide_hwif_t *hwif = drive->hwif;
603		const struct ide_port_ops *port_ops = hwif->port_ops;
604		u8 req_pio = drive->tune_req;
605
606		s->b.set_tune = 0;
607
608		if (set_pio_mode_abuse(drive->hwif, req_pio)) {
609			/*
610			 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
611			 */
612			if (req_pio == 8 || req_pio == 9) {
613				unsigned long flags;
614
615				spin_lock_irqsave(&ide_lock, flags);
616				port_ops->set_pio_mode(drive, req_pio);
617				spin_unlock_irqrestore(&ide_lock, flags);
618			} else
619				port_ops->set_pio_mode(drive, req_pio);
620		} else {
621			int keep_dma = drive->using_dma;
622
623			ide_set_pio(drive, req_pio);
624
625			if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
626				if (keep_dma)
627					ide_dma_on(drive);
628			}
629		}
630
631		return ide_stopped;
632	} else {
633		if (drive->media == ide_disk)
634			return ide_disk_special(drive);
635
636		s->all = 0;
637		drive->mult_req = 0;
638		return ide_stopped;
639	}
640}
641
642void ide_map_sg(ide_drive_t *drive, struct request *rq)
643{
644	ide_hwif_t *hwif = drive->hwif;
645	struct scatterlist *sg = hwif->sg_table;
646
647	if (hwif->sg_mapped)	/* needed by ide-scsi */
648		return;
649
650	if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
651		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
652	} else {
653		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
654		hwif->sg_nents = 1;
655	}
656}
657
658EXPORT_SYMBOL_GPL(ide_map_sg);
659
660void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
661{
662	ide_hwif_t *hwif = drive->hwif;
663
664	hwif->nsect = hwif->nleft = rq->nr_sectors;
665	hwif->cursg_ofs = 0;
666	hwif->cursg = NULL;
667}
668
669EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
670
671/**
672 *	execute_drive_command	-	issue special drive command
673 *	@drive: the drive to issue the command on
674 *	@rq: the request structure holding the command
675 *
676 *	execute_drive_cmd() issues a special drive command,  usually
677 *	initiated by ioctl() from the external hdparm program. The
678 *	command can be a drive command, drive task or taskfile
679 *	operation. Weirdly you can call it with NULL to wait for
680 *	all commands to finish. Don't do this as that is due to change
681 */
682
683static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
684		struct request *rq)
685{
686	ide_hwif_t *hwif = HWIF(drive);
687	ide_task_t *task = rq->special;
688
689	if (task) {
690		hwif->data_phase = task->data_phase;
691
692		switch (hwif->data_phase) {
693		case TASKFILE_MULTI_OUT:
694		case TASKFILE_OUT:
695		case TASKFILE_MULTI_IN:
696		case TASKFILE_IN:
697			ide_init_sg_cmd(drive, rq);
698			ide_map_sg(drive, rq);
699		default:
700			break;
701		}
702
703		return do_rw_taskfile(drive, task);
704	}
705
706 	/*
707 	 * NULL is actually a valid way of waiting for
708 	 * all current requests to be flushed from the queue.
709 	 */
710#ifdef DEBUG
711 	printk("%s: DRIVE_CMD (null)\n", drive->name);
712#endif
713	ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
714			  ide_read_error(drive));
715
716 	return ide_stopped;
717}
718
719static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
720{
721	switch (rq->cmd[0]) {
722	case REQ_DRIVE_RESET:
723		return ide_do_reset(drive);
724	default:
725		blk_dump_rq_flags(rq, "ide_special_rq - bad request");
726		ide_end_request(drive, 0, 0);
727		return ide_stopped;
728	}
729}
730
731static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
732{
733	struct request_pm_state *pm = rq->data;
734
735	if (blk_pm_suspend_request(rq) &&
736	    pm->pm_step == ide_pm_state_start_suspend)
737		/* Mark drive blocked when starting the suspend sequence. */
738		drive->blocked = 1;
739	else if (blk_pm_resume_request(rq) &&
740		 pm->pm_step == ide_pm_state_start_resume) {
741		/*
742		 * The first thing we do on wakeup is to wait for BSY bit to
743		 * go away (with a looong timeout) as a drive on this hwif may
744		 * just be POSTing itself.
745		 * We do that before even selecting as the "other" device on
746		 * the bus may be broken enough to walk on our toes at this
747		 * point.
748		 */
749		ide_hwif_t *hwif = drive->hwif;
750		int rc;
751#ifdef DEBUG_PM
752		printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
753#endif
754		rc = ide_wait_not_busy(hwif, 35000);
755		if (rc)
756			printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
757		SELECT_DRIVE(drive);
758		hwif->tp_ops->set_irq(hwif, 1);
759		rc = ide_wait_not_busy(hwif, 100000);
760		if (rc)
761			printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
762	}
763}
764
765/**
766 *	start_request	-	start of I/O and command issuing for IDE
767 *
768 *	start_request() initiates handling of a new I/O request. It
769 *	accepts commands and I/O (read/write) requests.
770 *
771 *	FIXME: this function needs a rename
772 */
773
774static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
775{
776	ide_startstop_t startstop;
777
778	BUG_ON(!blk_rq_started(rq));
779
780#ifdef DEBUG
781	printk("%s: start_request: current=0x%08lx\n",
782		HWIF(drive)->name, (unsigned long) rq);
783#endif
784
785	/* bail early if we've exceeded max_failures */
786	if (drive->max_failures && (drive->failures > drive->max_failures)) {
787		rq->cmd_flags |= REQ_FAILED;
788		goto kill_rq;
789	}
790
791	if (blk_pm_request(rq))
792		ide_check_pm_state(drive, rq);
793
794	SELECT_DRIVE(drive);
795	if (ide_wait_stat(&startstop, drive, drive->ready_stat,
796			  ATA_BUSY | ATA_DRQ, WAIT_READY)) {
797		printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
798		return startstop;
799	}
800	if (!drive->special.all) {
801		ide_driver_t *drv;
802
803		/*
804		 * We reset the drive so we need to issue a SETFEATURES.
805		 * Do it _after_ do_special() restored device parameters.
806		 */
807		if (drive->current_speed == 0xff)
808			ide_config_drive_speed(drive, drive->desired_speed);
809
810		if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
811			return execute_drive_cmd(drive, rq);
812		else if (blk_pm_request(rq)) {
813			struct request_pm_state *pm = rq->data;
814#ifdef DEBUG_PM
815			printk("%s: start_power_step(step: %d)\n",
816				drive->name, rq->pm->pm_step);
817#endif
818			startstop = ide_start_power_step(drive, rq);
819			if (startstop == ide_stopped &&
820			    pm->pm_step == ide_pm_state_completed)
821				ide_complete_pm_request(drive, rq);
822			return startstop;
823		} else if (!rq->rq_disk && blk_special_request(rq))
824			/*
825			 * TODO: Once all ULDs have been modified to
826			 * check for specific op codes rather than
827			 * blindly accepting any special request, the
828			 * check for ->rq_disk above may be replaced
829			 * by a more suitable mechanism or even
830			 * dropped entirely.
831			 */
832			return ide_special_rq(drive, rq);
833
834		drv = *(ide_driver_t **)rq->rq_disk->private_data;
835
836		return drv->do_request(drive, rq, rq->sector);
837	}
838	return do_special(drive);
839kill_rq:
840	ide_kill_rq(drive, rq);
841	return ide_stopped;
842}
843
844/**
845 *	ide_stall_queue		-	pause an IDE device
846 *	@drive: drive to stall
847 *	@timeout: time to stall for (jiffies)
848 *
849 *	ide_stall_queue() can be used by a drive to give excess bandwidth back
850 *	to the hwgroup by sleeping for timeout jiffies.
851 */
852
853void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
854{
855	if (timeout > WAIT_WORSTCASE)
856		timeout = WAIT_WORSTCASE;
857	drive->sleep = timeout + jiffies;
858	drive->sleeping = 1;
859}
860
861EXPORT_SYMBOL(ide_stall_queue);
862
863#define WAKEUP(drive)	((drive)->service_start + 2 * (drive)->service_time)
864
865/**
866 *	choose_drive		-	select a drive to service
867 *	@hwgroup: hardware group to select on
868 *
869 *	choose_drive() selects the next drive which will be serviced.
870 *	This is necessary because the IDE layer can't issue commands
871 *	to both drives on the same cable, unlike SCSI.
872 */
873
874static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
875{
876	ide_drive_t *drive, *best;
877
878repeat:
879	best = NULL;
880	drive = hwgroup->drive;
881
882	/*
883	 * drive is doing pre-flush, ordered write, post-flush sequence. even
884	 * though that is 3 requests, it must be seen as a single transaction.
885	 * we must not preempt this drive until that is complete
886	 */
887	if (blk_queue_flushing(drive->queue)) {
888		/*
889		 * small race where queue could get replugged during
890		 * the 3-request flush cycle, just yank the plug since
891		 * we want it to finish asap
892		 */
893		blk_remove_plug(drive->queue);
894		return drive;
895	}
896
897	do {
898		if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
899		    && !elv_queue_empty(drive->queue)) {
900			if (!best
901			 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
902			 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
903			{
904				if (!blk_queue_plugged(drive->queue))
905					best = drive;
906			}
907		}
908	} while ((drive = drive->next) != hwgroup->drive);
909	if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
910		long t = (signed long)(WAKEUP(best) - jiffies);
911		if (t >= WAIT_MIN_SLEEP) {
912		/*
913		 * We *may* have some time to spare, but first let's see if
914		 * someone can potentially benefit from our nice mood today..
915		 */
916			drive = best->next;
917			do {
918				if (!drive->sleeping
919				 && time_before(jiffies - best->service_time, WAKEUP(drive))
920				 && time_before(WAKEUP(drive), jiffies + t))
921				{
922					ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
923					goto repeat;
924				}
925			} while ((drive = drive->next) != best);
926		}
927	}
928	return best;
929}
930
931/*
932 * Issue a new request to a drive from hwgroup
933 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
934 *
935 * A hwgroup is a serialized group of IDE interfaces.  Usually there is
936 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
937 * may have both interfaces in a single hwgroup to "serialize" access.
938 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
939 * together into one hwgroup for serialized access.
940 *
941 * Note also that several hwgroups can end up sharing a single IRQ,
942 * possibly along with many other devices.  This is especially common in
943 * PCI-based systems with off-board IDE controller cards.
944 *
945 * The IDE driver uses the single global ide_lock spinlock to protect
946 * access to the request queues, and to protect the hwgroup->busy flag.
947 *
948 * The first thread into the driver for a particular hwgroup sets the
949 * hwgroup->busy flag to indicate that this hwgroup is now active,
950 * and then initiates processing of the top request from the request queue.
951 *
952 * Other threads attempting entry notice the busy setting, and will simply
953 * queue their new requests and exit immediately.  Note that hwgroup->busy
954 * remains set even when the driver is merely awaiting the next interrupt.
955 * Thus, the meaning is "this hwgroup is busy processing a request".
956 *
957 * When processing of a request completes, the completing thread or IRQ-handler
958 * will start the next request from the queue.  If no more work remains,
959 * the driver will clear the hwgroup->busy flag and exit.
960 *
961 * The ide_lock (spinlock) is used to protect all access to the
962 * hwgroup->busy flag, but is otherwise not needed for most processing in
963 * the driver.  This makes the driver much more friendlier to shared IRQs
964 * than previous designs, while remaining 100% (?) SMP safe and capable.
965 */
966static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
967{
968	ide_drive_t	*drive;
969	ide_hwif_t	*hwif;
970	struct request	*rq;
971	ide_startstop_t	startstop;
972	int             loops = 0;
973
974	/* for atari only: POSSIBLY BROKEN HERE(?) */
975	ide_get_lock(ide_intr, hwgroup);
976
977	/* caller must own ide_lock */
978	BUG_ON(!irqs_disabled());
979
980	while (!hwgroup->busy) {
981		hwgroup->busy = 1;
982		drive = choose_drive(hwgroup);
983		if (drive == NULL) {
984			int sleeping = 0;
985			unsigned long sleep = 0; /* shut up, gcc */
986			hwgroup->rq = NULL;
987			drive = hwgroup->drive;
988			do {
989				if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
990					sleeping = 1;
991					sleep = drive->sleep;
992				}
993			} while ((drive = drive->next) != hwgroup->drive);
994			if (sleeping) {
995		/*
996		 * Take a short snooze, and then wake up this hwgroup again.
997		 * This gives other hwgroups on the same a chance to
998		 * play fairly with us, just in case there are big differences
999		 * in relative throughputs.. don't want to hog the cpu too much.
1000		 */
1001				if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1002					sleep = jiffies + WAIT_MIN_SLEEP;
1003#if 1
1004				if (timer_pending(&hwgroup->timer))
1005					printk(KERN_CRIT "ide_set_handler: timer already active\n");
1006#endif
1007				/* so that ide_timer_expiry knows what to do */
1008				hwgroup->sleeping = 1;
1009				hwgroup->req_gen_timer = hwgroup->req_gen;
1010				mod_timer(&hwgroup->timer, sleep);
1011				/* we purposely leave hwgroup->busy==1
1012				 * while sleeping */
1013			} else {
1014				/* Ugly, but how can we sleep for the lock
1015				 * otherwise? perhaps from tq_disk?
1016				 */
1017
1018				/* for atari only */
1019				ide_release_lock();
1020				hwgroup->busy = 0;
1021			}
1022
1023			/* no more work for this hwgroup (for now) */
1024			return;
1025		}
1026	again:
1027		hwif = HWIF(drive);
1028		if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1029			/*
1030			 * set nIEN for previous hwif, drives in the
1031			 * quirk_list may not like intr setups/cleanups
1032			 */
1033			if (drive->quirk_list != 1)
1034				hwif->tp_ops->set_irq(hwif, 0);
1035		}
1036		hwgroup->hwif = hwif;
1037		hwgroup->drive = drive;
1038		drive->sleeping = 0;
1039		drive->service_start = jiffies;
1040
1041		if (blk_queue_plugged(drive->queue)) {
1042			printk(KERN_ERR "ide: huh? queue was plugged!\n");
1043			break;
1044		}
1045
1046		/*
1047		 * we know that the queue isn't empty, but this can happen
1048		 * if the q->prep_rq_fn() decides to kill a request
1049		 */
1050		rq = elv_next_request(drive->queue);
1051		if (!rq) {
1052			hwgroup->busy = 0;
1053			break;
1054		}
1055
1056		/*
1057		 * Sanity: don't accept a request that isn't a PM request
1058		 * if we are currently power managed. This is very important as
1059		 * blk_stop_queue() doesn't prevent the elv_next_request()
1060		 * above to return us whatever is in the queue. Since we call
1061		 * ide_do_request() ourselves, we end up taking requests while
1062		 * the queue is blocked...
1063		 *
1064		 * We let requests forced at head of queue with ide-preempt
1065		 * though. I hope that doesn't happen too much, hopefully not
1066		 * unless the subdriver triggers such a thing in its own PM
1067		 * state machine.
1068		 *
1069		 * We count how many times we loop here to make sure we service
1070		 * all drives in the hwgroup without looping for ever
1071		 */
1072		if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1073			drive = drive->next ? drive->next : hwgroup->drive;
1074			if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1075				goto again;
1076			/* We clear busy, there should be no pending ATA command at this point. */
1077			hwgroup->busy = 0;
1078			break;
1079		}
1080
1081		hwgroup->rq = rq;
1082
1083		/*
1084		 * Some systems have trouble with IDE IRQs arriving while
1085		 * the driver is still setting things up.  So, here we disable
1086		 * the IRQ used by this interface while the request is being started.
1087		 * This may look bad at first, but pretty much the same thing
1088		 * happens anyway when any interrupt comes in, IDE or otherwise
1089		 *  -- the kernel masks the IRQ while it is being handled.
1090		 */
1091		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1092			disable_irq_nosync(hwif->irq);
1093		spin_unlock(&ide_lock);
1094		local_irq_enable_in_hardirq();
1095			/* allow other IRQs while we start this request */
1096		startstop = start_request(drive, rq);
1097		spin_lock_irq(&ide_lock);
1098		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1099			enable_irq(hwif->irq);
1100		if (startstop == ide_stopped)
1101			hwgroup->busy = 0;
1102	}
1103}
1104
1105/*
1106 * Passes the stuff to ide_do_request
1107 */
1108void do_ide_request(struct request_queue *q)
1109{
1110	ide_drive_t *drive = q->queuedata;
1111
1112	ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1113}
1114
1115/*
1116 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1117 * retry the current request in pio mode instead of risking tossing it
1118 * all away
1119 */
1120static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1121{
1122	ide_hwif_t *hwif = HWIF(drive);
1123	struct request *rq;
1124	ide_startstop_t ret = ide_stopped;
1125
1126	/*
1127	 * end current dma transaction
1128	 */
1129
1130	if (error < 0) {
1131		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1132		(void)hwif->dma_ops->dma_end(drive);
1133		ret = ide_error(drive, "dma timeout error",
1134				hwif->tp_ops->read_status(hwif));
1135	} else {
1136		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1137		hwif->dma_ops->dma_timeout(drive);
1138	}
1139
1140	/*
1141	 * disable dma for now, but remember that we did so because of
1142	 * a timeout -- we'll reenable after we finish this next request
1143	 * (or rather the first chunk of it) in pio.
1144	 */
1145	drive->retry_pio++;
1146	drive->state = DMA_PIO_RETRY;
1147	ide_dma_off_quietly(drive);
1148
1149	/*
1150	 * un-busy drive etc (hwgroup->busy is cleared on return) and
1151	 * make sure request is sane
1152	 */
1153	rq = HWGROUP(drive)->rq;
1154
1155	if (!rq)
1156		goto out;
1157
1158	HWGROUP(drive)->rq = NULL;
1159
1160	rq->errors = 0;
1161
1162	if (!rq->bio)
1163		goto out;
1164
1165	rq->sector = rq->bio->bi_sector;
1166	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1167	rq->hard_cur_sectors = rq->current_nr_sectors;
1168	rq->buffer = bio_data(rq->bio);
1169out:
1170	return ret;
1171}
1172
1173/**
1174 *	ide_timer_expiry	-	handle lack of an IDE interrupt
1175 *	@data: timer callback magic (hwgroup)
1176 *
1177 *	An IDE command has timed out before the expected drive return
1178 *	occurred. At this point we attempt to clean up the current
1179 *	mess. If the current handler includes an expiry handler then
1180 *	we invoke the expiry handler, and providing it is happy the
1181 *	work is done. If that fails we apply generic recovery rules
1182 *	invoking the handler and checking the drive DMA status. We
1183 *	have an excessively incestuous relationship with the DMA
1184 *	logic that wants cleaning up.
1185 */
1186
1187void ide_timer_expiry (unsigned long data)
1188{
1189	ide_hwgroup_t	*hwgroup = (ide_hwgroup_t *) data;
1190	ide_handler_t	*handler;
1191	ide_expiry_t	*expiry;
1192	unsigned long	flags;
1193	unsigned long	wait = -1;
1194
1195	spin_lock_irqsave(&ide_lock, flags);
1196
1197	if (((handler = hwgroup->handler) == NULL) ||
1198	    (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1199		/*
1200		 * Either a marginal timeout occurred
1201		 * (got the interrupt just as timer expired),
1202		 * or we were "sleeping" to give other devices a chance.
1203		 * Either way, we don't really want to complain about anything.
1204		 */
1205		if (hwgroup->sleeping) {
1206			hwgroup->sleeping = 0;
1207			hwgroup->busy = 0;
1208		}
1209	} else {
1210		ide_drive_t *drive = hwgroup->drive;
1211		if (!drive) {
1212			printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1213			hwgroup->handler = NULL;
1214		} else {
1215			ide_hwif_t *hwif;
1216			ide_startstop_t startstop = ide_stopped;
1217			if (!hwgroup->busy) {
1218				hwgroup->busy = 1;	/* paranoia */
1219				printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1220			}
1221			if ((expiry = hwgroup->expiry) != NULL) {
1222				/* continue */
1223				if ((wait = expiry(drive)) > 0) {
1224					/* reset timer */
1225					hwgroup->timer.expires  = jiffies + wait;
1226					hwgroup->req_gen_timer = hwgroup->req_gen;
1227					add_timer(&hwgroup->timer);
1228					spin_unlock_irqrestore(&ide_lock, flags);
1229					return;
1230				}
1231			}
1232			hwgroup->handler = NULL;
1233			/*
1234			 * We need to simulate a real interrupt when invoking
1235			 * the handler() function, which means we need to
1236			 * globally mask the specific IRQ:
1237			 */
1238			spin_unlock(&ide_lock);
1239			hwif  = HWIF(drive);
1240			/* disable_irq_nosync ?? */
1241			disable_irq(hwif->irq);
1242			/* local CPU only,
1243			 * as if we were handling an interrupt */
1244			local_irq_disable();
1245			if (hwgroup->polling) {
1246				startstop = handler(drive);
1247			} else if (drive_is_ready(drive)) {
1248				if (drive->waiting_for_dma)
1249					hwif->dma_ops->dma_lost_irq(drive);
1250				(void)ide_ack_intr(hwif);
1251				printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1252				startstop = handler(drive);
1253			} else {
1254				if (drive->waiting_for_dma) {
1255					startstop = ide_dma_timeout_retry(drive, wait);
1256				} else
1257					startstop =
1258					ide_error(drive, "irq timeout",
1259						  hwif->tp_ops->read_status(hwif));
1260			}
1261			drive->service_time = jiffies - drive->service_start;
1262			spin_lock_irq(&ide_lock);
1263			enable_irq(hwif->irq);
1264			if (startstop == ide_stopped)
1265				hwgroup->busy = 0;
1266		}
1267	}
1268	ide_do_request(hwgroup, IDE_NO_IRQ);
1269	spin_unlock_irqrestore(&ide_lock, flags);
1270}
1271
1272/**
1273 *	unexpected_intr		-	handle an unexpected IDE interrupt
1274 *	@irq: interrupt line
1275 *	@hwgroup: hwgroup being processed
1276 *
1277 *	There's nothing really useful we can do with an unexpected interrupt,
1278 *	other than reading the status register (to clear it), and logging it.
1279 *	There should be no way that an irq can happen before we're ready for it,
1280 *	so we needn't worry much about losing an "important" interrupt here.
1281 *
1282 *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1283 *	the drive enters "idle", "standby", or "sleep" mode, so if the status
1284 *	looks "good", we just ignore the interrupt completely.
1285 *
1286 *	This routine assumes __cli() is in effect when called.
1287 *
1288 *	If an unexpected interrupt happens on irq15 while we are handling irq14
1289 *	and if the two interfaces are "serialized" (CMD640), then it looks like
1290 *	we could screw up by interfering with a new request being set up for
1291 *	irq15.
1292 *
1293 *	In reality, this is a non-issue.  The new command is not sent unless
1294 *	the drive is ready to accept one, in which case we know the drive is
1295 *	not trying to interrupt us.  And ide_set_handler() is always invoked
1296 *	before completing the issuance of any new drive command, so we will not
1297 *	be accidentally invoked as a result of any valid command completion
1298 *	interrupt.
1299 *
1300 *	Note that we must walk the entire hwgroup here. We know which hwif
1301 *	is doing the current command, but we don't know which hwif burped
1302 *	mysteriously.
1303 */
1304
1305static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1306{
1307	u8 stat;
1308	ide_hwif_t *hwif = hwgroup->hwif;
1309
1310	/*
1311	 * handle the unexpected interrupt
1312	 */
1313	do {
1314		if (hwif->irq == irq) {
1315			stat = hwif->tp_ops->read_status(hwif);
1316
1317			if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1318				/* Try to not flood the console with msgs */
1319				static unsigned long last_msgtime, count;
1320				++count;
1321				if (time_after(jiffies, last_msgtime + HZ)) {
1322					last_msgtime = jiffies;
1323					printk(KERN_ERR "%s%s: unexpected interrupt, "
1324						"status=0x%02x, count=%ld\n",
1325						hwif->name,
1326						(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1327				}
1328			}
1329		}
1330	} while ((hwif = hwif->next) != hwgroup->hwif);
1331}
1332
1333/**
1334 *	ide_intr	-	default IDE interrupt handler
1335 *	@irq: interrupt number
1336 *	@dev_id: hwif group
1337 *	@regs: unused weirdness from the kernel irq layer
1338 *
1339 *	This is the default IRQ handler for the IDE layer. You should
1340 *	not need to override it. If you do be aware it is subtle in
1341 *	places
1342 *
1343 *	hwgroup->hwif is the interface in the group currently performing
1344 *	a command. hwgroup->drive is the drive and hwgroup->handler is
1345 *	the IRQ handler to call. As we issue a command the handlers
1346 *	step through multiple states, reassigning the handler to the
1347 *	next step in the process. Unlike a smart SCSI controller IDE
1348 *	expects the main processor to sequence the various transfer
1349 *	stages. We also manage a poll timer to catch up with most
1350 *	timeout situations. There are still a few where the handlers
1351 *	don't ever decide to give up.
1352 *
1353 *	The handler eventually returns ide_stopped to indicate the
1354 *	request completed. At this point we issue the next request
1355 *	on the hwgroup and the process begins again.
1356 */
1357
1358irqreturn_t ide_intr (int irq, void *dev_id)
1359{
1360	unsigned long flags;
1361	ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1362	ide_hwif_t *hwif;
1363	ide_drive_t *drive;
1364	ide_handler_t *handler;
1365	ide_startstop_t startstop;
1366
1367	spin_lock_irqsave(&ide_lock, flags);
1368	hwif = hwgroup->hwif;
1369
1370	if (!ide_ack_intr(hwif)) {
1371		spin_unlock_irqrestore(&ide_lock, flags);
1372		return IRQ_NONE;
1373	}
1374
1375	if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1376		/*
1377		 * Not expecting an interrupt from this drive.
1378		 * That means this could be:
1379		 *	(1) an interrupt from another PCI device
1380		 *	sharing the same PCI INT# as us.
1381		 * or	(2) a drive just entered sleep or standby mode,
1382		 *	and is interrupting to let us know.
1383		 * or	(3) a spurious interrupt of unknown origin.
1384		 *
1385		 * For PCI, we cannot tell the difference,
1386		 * so in that case we just ignore it and hope it goes away.
1387		 *
1388		 * FIXME: unexpected_intr should be hwif-> then we can
1389		 * remove all the ifdef PCI crap
1390		 */
1391#ifdef CONFIG_BLK_DEV_IDEPCI
1392		if (hwif->chipset != ide_pci)
1393#endif	/* CONFIG_BLK_DEV_IDEPCI */
1394		{
1395			/*
1396			 * Probably not a shared PCI interrupt,
1397			 * so we can safely try to do something about it:
1398			 */
1399			unexpected_intr(irq, hwgroup);
1400#ifdef CONFIG_BLK_DEV_IDEPCI
1401		} else {
1402			/*
1403			 * Whack the status register, just in case
1404			 * we have a leftover pending IRQ.
1405			 */
1406			(void)hwif->tp_ops->read_status(hwif);
1407#endif /* CONFIG_BLK_DEV_IDEPCI */
1408		}
1409		spin_unlock_irqrestore(&ide_lock, flags);
1410		return IRQ_NONE;
1411	}
1412	drive = hwgroup->drive;
1413	if (!drive) {
1414		/*
1415		 * This should NEVER happen, and there isn't much
1416		 * we could do about it here.
1417		 *
1418		 * [Note - this can occur if the drive is hot unplugged]
1419		 */
1420		spin_unlock_irqrestore(&ide_lock, flags);
1421		return IRQ_HANDLED;
1422	}
1423	if (!drive_is_ready(drive)) {
1424		/*
1425		 * This happens regularly when we share a PCI IRQ with
1426		 * another device.  Unfortunately, it can also happen
1427		 * with some buggy drives that trigger the IRQ before
1428		 * their status register is up to date.  Hopefully we have
1429		 * enough advance overhead that the latter isn't a problem.
1430		 */
1431		spin_unlock_irqrestore(&ide_lock, flags);
1432		return IRQ_NONE;
1433	}
1434	if (!hwgroup->busy) {
1435		hwgroup->busy = 1;	/* paranoia */
1436		printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1437	}
1438	hwgroup->handler = NULL;
1439	hwgroup->req_gen++;
1440	del_timer(&hwgroup->timer);
1441	spin_unlock(&ide_lock);
1442
1443	/* Some controllers might set DMA INTR no matter DMA or PIO;
1444	 * bmdma status might need to be cleared even for
1445	 * PIO interrupts to prevent spurious/lost irq.
1446	 */
1447	if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1448		/* ide_dma_end() needs bmdma status for error checking.
1449		 * So, skip clearing bmdma status here and leave it
1450		 * to ide_dma_end() if this is dma interrupt.
1451		 */
1452		hwif->ide_dma_clear_irq(drive);
1453
1454	if (drive->unmask)
1455		local_irq_enable_in_hardirq();
1456	/* service this interrupt, may set handler for next interrupt */
1457	startstop = handler(drive);
1458	spin_lock_irq(&ide_lock);
1459
1460	/*
1461	 * Note that handler() may have set things up for another
1462	 * interrupt to occur soon, but it cannot happen until
1463	 * we exit from this routine, because it will be the
1464	 * same irq as is currently being serviced here, and Linux
1465	 * won't allow another of the same (on any CPU) until we return.
1466	 */
1467	drive->service_time = jiffies - drive->service_start;
1468	if (startstop == ide_stopped) {
1469		if (hwgroup->handler == NULL) {	/* paranoia */
1470			hwgroup->busy = 0;
1471			ide_do_request(hwgroup, hwif->irq);
1472		} else {
1473			printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1474				"on exit\n", drive->name);
1475		}
1476	}
1477	spin_unlock_irqrestore(&ide_lock, flags);
1478	return IRQ_HANDLED;
1479}
1480
1481/**
1482 *	ide_do_drive_cmd	-	issue IDE special command
1483 *	@drive: device to issue command
1484 *	@rq: request to issue
1485 *
1486 *	This function issues a special IDE device request
1487 *	onto the request queue.
1488 *
1489 *	the rq is queued at the head of the request queue, displacing
1490 *	the currently-being-processed request and this function
1491 *	returns immediately without waiting for the new rq to be
1492 *	completed.  This is VERY DANGEROUS, and is intended for
1493 *	careful use by the ATAPI tape/cdrom driver code.
1494 */
1495
1496void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1497{
1498	unsigned long flags;
1499	ide_hwgroup_t *hwgroup = HWGROUP(drive);
1500
1501	spin_lock_irqsave(&ide_lock, flags);
1502	hwgroup->rq = NULL;
1503	__elv_add_request(drive->queue, rq, ELEVATOR_INSERT_FRONT, 1);
1504	__generic_unplug_device(drive->queue);
1505	spin_unlock_irqrestore(&ide_lock, flags);
1506}
1507
1508EXPORT_SYMBOL(ide_do_drive_cmd);
1509
1510void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1511{
1512	ide_hwif_t *hwif = drive->hwif;
1513	ide_task_t task;
1514
1515	memset(&task, 0, sizeof(task));
1516	task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1517			IDE_TFLAG_OUT_FEATURE | tf_flags;
1518	task.tf.feature = dma;		/* Use PIO/DMA */
1519	task.tf.lbam    = bcount & 0xff;
1520	task.tf.lbah    = (bcount >> 8) & 0xff;
1521
1522	ide_tf_dump(drive->name, &task.tf);
1523	hwif->tp_ops->set_irq(hwif, 1);
1524	SELECT_MASK(drive, 0);
1525	hwif->tp_ops->tf_load(drive, &task);
1526}
1527
1528EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1529
1530void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1531{
1532	ide_hwif_t *hwif = drive->hwif;
1533	u8 buf[4] = { 0 };
1534
1535	while (len > 0) {
1536		if (write)
1537			hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1538		else
1539			hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1540		len -= 4;
1541	}
1542}
1543EXPORT_SYMBOL_GPL(ide_pad_transfer);
1544