ide-iops.c revision 0e3d84a500d4e1672332b4961b98c35f6168e6f1
1/*
2 *  Copyright (C) 2000-2002	Andre Hedrick <andre@linux-ide.org>
3 *  Copyright (C) 2003		Red Hat <alan@redhat.com>
4 *
5 */
6
7#include <linux/module.h>
8#include <linux/types.h>
9#include <linux/string.h>
10#include <linux/kernel.h>
11#include <linux/timer.h>
12#include <linux/mm.h>
13#include <linux/interrupt.h>
14#include <linux/major.h>
15#include <linux/errno.h>
16#include <linux/genhd.h>
17#include <linux/blkpg.h>
18#include <linux/slab.h>
19#include <linux/pci.h>
20#include <linux/delay.h>
21#include <linux/ide.h>
22#include <linux/bitops.h>
23#include <linux/nmi.h>
24
25#include <asm/byteorder.h>
26#include <asm/irq.h>
27#include <asm/uaccess.h>
28#include <asm/io.h>
29
30/*
31 *	Conventional PIO operations for ATA devices
32 */
33
34static u8 ide_inb (unsigned long port)
35{
36	return (u8) inb(port);
37}
38
39static void ide_outb (u8 val, unsigned long port)
40{
41	outb(val, port);
42}
43
44/*
45 *	MMIO operations, typically used for SATA controllers
46 */
47
48static u8 ide_mm_inb (unsigned long port)
49{
50	return (u8) readb((void __iomem *) port);
51}
52
53static void ide_mm_outb (u8 value, unsigned long port)
54{
55	writeb(value, (void __iomem *) port);
56}
57
58void SELECT_DRIVE (ide_drive_t *drive)
59{
60	ide_hwif_t *hwif = drive->hwif;
61	const struct ide_port_ops *port_ops = hwif->port_ops;
62	ide_task_t task;
63
64	if (port_ops && port_ops->selectproc)
65		port_ops->selectproc(drive);
66
67	memset(&task, 0, sizeof(task));
68	task.tf_flags = IDE_TFLAG_OUT_DEVICE;
69
70	drive->hwif->tp_ops->tf_load(drive, &task);
71}
72
73void SELECT_MASK(ide_drive_t *drive, int mask)
74{
75	const struct ide_port_ops *port_ops = drive->hwif->port_ops;
76
77	if (port_ops && port_ops->maskproc)
78		port_ops->maskproc(drive, mask);
79}
80
81void ide_exec_command(ide_hwif_t *hwif, u8 cmd)
82{
83	if (hwif->host_flags & IDE_HFLAG_MMIO)
84		writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
85	else
86		outb(cmd, hwif->io_ports.command_addr);
87}
88EXPORT_SYMBOL_GPL(ide_exec_command);
89
90u8 ide_read_status(ide_hwif_t *hwif)
91{
92	if (hwif->host_flags & IDE_HFLAG_MMIO)
93		return readb((void __iomem *)hwif->io_ports.status_addr);
94	else
95		return inb(hwif->io_ports.status_addr);
96}
97EXPORT_SYMBOL_GPL(ide_read_status);
98
99u8 ide_read_altstatus(ide_hwif_t *hwif)
100{
101	if (hwif->host_flags & IDE_HFLAG_MMIO)
102		return readb((void __iomem *)hwif->io_ports.ctl_addr);
103	else
104		return inb(hwif->io_ports.ctl_addr);
105}
106EXPORT_SYMBOL_GPL(ide_read_altstatus);
107
108u8 ide_read_sff_dma_status(ide_hwif_t *hwif)
109{
110	if (hwif->host_flags & IDE_HFLAG_MMIO)
111		return readb((void __iomem *)(hwif->dma_base + ATA_DMA_STATUS));
112	else
113		return inb(hwif->dma_base + ATA_DMA_STATUS);
114}
115EXPORT_SYMBOL_GPL(ide_read_sff_dma_status);
116
117void ide_set_irq(ide_hwif_t *hwif, int on)
118{
119	u8 ctl = ATA_DEVCTL_OBS;
120
121	if (on == 4) { /* hack for SRST */
122		ctl |= 4;
123		on &= ~4;
124	}
125
126	ctl |= on ? 0 : 2;
127
128	if (hwif->host_flags & IDE_HFLAG_MMIO)
129		writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
130	else
131		outb(ctl, hwif->io_ports.ctl_addr);
132}
133EXPORT_SYMBOL_GPL(ide_set_irq);
134
135void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
136{
137	ide_hwif_t *hwif = drive->hwif;
138	struct ide_io_ports *io_ports = &hwif->io_ports;
139	struct ide_taskfile *tf = &task->tf;
140	void (*tf_outb)(u8 addr, unsigned long port);
141	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
142	u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
143
144	if (mmio)
145		tf_outb = ide_mm_outb;
146	else
147		tf_outb = ide_outb;
148
149	if (task->tf_flags & IDE_TFLAG_FLAGGED)
150		HIHI = 0xFF;
151
152	if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
153		u16 data = (tf->hob_data << 8) | tf->data;
154
155		if (mmio)
156			writew(data, (void __iomem *)io_ports->data_addr);
157		else
158			outw(data, io_ports->data_addr);
159	}
160
161	if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
162		tf_outb(tf->hob_feature, io_ports->feature_addr);
163	if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
164		tf_outb(tf->hob_nsect, io_ports->nsect_addr);
165	if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
166		tf_outb(tf->hob_lbal, io_ports->lbal_addr);
167	if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
168		tf_outb(tf->hob_lbam, io_ports->lbam_addr);
169	if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
170		tf_outb(tf->hob_lbah, io_ports->lbah_addr);
171
172	if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
173		tf_outb(tf->feature, io_ports->feature_addr);
174	if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
175		tf_outb(tf->nsect, io_ports->nsect_addr);
176	if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
177		tf_outb(tf->lbal, io_ports->lbal_addr);
178	if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
179		tf_outb(tf->lbam, io_ports->lbam_addr);
180	if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
181		tf_outb(tf->lbah, io_ports->lbah_addr);
182
183	if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
184		tf_outb((tf->device & HIHI) | drive->select,
185			 io_ports->device_addr);
186}
187EXPORT_SYMBOL_GPL(ide_tf_load);
188
189void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
190{
191	ide_hwif_t *hwif = drive->hwif;
192	struct ide_io_ports *io_ports = &hwif->io_ports;
193	struct ide_taskfile *tf = &task->tf;
194	void (*tf_outb)(u8 addr, unsigned long port);
195	u8 (*tf_inb)(unsigned long port);
196	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
197
198	if (mmio) {
199		tf_outb = ide_mm_outb;
200		tf_inb  = ide_mm_inb;
201	} else {
202		tf_outb = ide_outb;
203		tf_inb  = ide_inb;
204	}
205
206	if (task->tf_flags & IDE_TFLAG_IN_DATA) {
207		u16 data;
208
209		if (mmio)
210			data = readw((void __iomem *)io_ports->data_addr);
211		else
212			data = inw(io_ports->data_addr);
213
214		tf->data = data & 0xff;
215		tf->hob_data = (data >> 8) & 0xff;
216	}
217
218	/* be sure we're looking at the low order bits */
219	tf_outb(ATA_DEVCTL_OBS & ~0x80, io_ports->ctl_addr);
220
221	if (task->tf_flags & IDE_TFLAG_IN_FEATURE)
222		tf->feature = tf_inb(io_ports->feature_addr);
223	if (task->tf_flags & IDE_TFLAG_IN_NSECT)
224		tf->nsect  = tf_inb(io_ports->nsect_addr);
225	if (task->tf_flags & IDE_TFLAG_IN_LBAL)
226		tf->lbal   = tf_inb(io_ports->lbal_addr);
227	if (task->tf_flags & IDE_TFLAG_IN_LBAM)
228		tf->lbam   = tf_inb(io_ports->lbam_addr);
229	if (task->tf_flags & IDE_TFLAG_IN_LBAH)
230		tf->lbah   = tf_inb(io_ports->lbah_addr);
231	if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
232		tf->device = tf_inb(io_ports->device_addr);
233
234	if (task->tf_flags & IDE_TFLAG_LBA48) {
235		tf_outb(ATA_DEVCTL_OBS | 0x80, io_ports->ctl_addr);
236
237		if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
238			tf->hob_feature = tf_inb(io_ports->feature_addr);
239		if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
240			tf->hob_nsect   = tf_inb(io_ports->nsect_addr);
241		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
242			tf->hob_lbal    = tf_inb(io_ports->lbal_addr);
243		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
244			tf->hob_lbam    = tf_inb(io_ports->lbam_addr);
245		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
246			tf->hob_lbah    = tf_inb(io_ports->lbah_addr);
247	}
248}
249EXPORT_SYMBOL_GPL(ide_tf_read);
250
251/*
252 * Some localbus EIDE interfaces require a special access sequence
253 * when using 32-bit I/O instructions to transfer data.  We call this
254 * the "vlb_sync" sequence, which consists of three successive reads
255 * of the sector count register location, with interrupts disabled
256 * to ensure that the reads all happen together.
257 */
258static void ata_vlb_sync(unsigned long port)
259{
260	(void)inb(port);
261	(void)inb(port);
262	(void)inb(port);
263}
264
265/*
266 * This is used for most PIO data transfers *from* the IDE interface
267 *
268 * These routines will round up any request for an odd number of bytes,
269 * so if an odd len is specified, be sure that there's at least one
270 * extra byte allocated for the buffer.
271 */
272void ide_input_data(ide_drive_t *drive, struct request *rq, void *buf,
273		    unsigned int len)
274{
275	ide_hwif_t *hwif = drive->hwif;
276	struct ide_io_ports *io_ports = &hwif->io_ports;
277	unsigned long data_addr = io_ports->data_addr;
278	u8 io_32bit = drive->io_32bit;
279	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
280
281	len++;
282
283	if (io_32bit) {
284		unsigned long uninitialized_var(flags);
285
286		if ((io_32bit & 2) && !mmio) {
287			local_irq_save(flags);
288			ata_vlb_sync(io_ports->nsect_addr);
289		}
290
291		if (mmio)
292			__ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
293		else
294			insl(data_addr, buf, len / 4);
295
296		if ((io_32bit & 2) && !mmio)
297			local_irq_restore(flags);
298
299		if ((len & 3) >= 2) {
300			if (mmio)
301				__ide_mm_insw((void __iomem *)data_addr,
302						(u8 *)buf + (len & ~3), 1);
303			else
304				insw(data_addr, (u8 *)buf + (len & ~3), 1);
305		}
306	} else {
307		if (mmio)
308			__ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
309		else
310			insw(data_addr, buf, len / 2);
311	}
312}
313EXPORT_SYMBOL_GPL(ide_input_data);
314
315/*
316 * This is used for most PIO data transfers *to* the IDE interface
317 */
318void ide_output_data(ide_drive_t *drive, struct request *rq, void *buf,
319		     unsigned int len)
320{
321	ide_hwif_t *hwif = drive->hwif;
322	struct ide_io_ports *io_ports = &hwif->io_ports;
323	unsigned long data_addr = io_ports->data_addr;
324	u8 io_32bit = drive->io_32bit;
325	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
326
327	if (io_32bit) {
328		unsigned long uninitialized_var(flags);
329
330		if ((io_32bit & 2) && !mmio) {
331			local_irq_save(flags);
332			ata_vlb_sync(io_ports->nsect_addr);
333		}
334
335		if (mmio)
336			__ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
337		else
338			outsl(data_addr, buf, len / 4);
339
340		if ((io_32bit & 2) && !mmio)
341			local_irq_restore(flags);
342
343		if ((len & 3) >= 2) {
344			if (mmio)
345				__ide_mm_outsw((void __iomem *)data_addr,
346						 (u8 *)buf + (len & ~3), 1);
347			else
348				outsw(data_addr, (u8 *)buf + (len & ~3), 1);
349		}
350	} else {
351		if (mmio)
352			__ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
353		else
354			outsw(data_addr, buf, len / 2);
355	}
356}
357EXPORT_SYMBOL_GPL(ide_output_data);
358
359u8 ide_read_error(ide_drive_t *drive)
360{
361	ide_task_t task;
362
363	memset(&task, 0, sizeof(task));
364	task.tf_flags = IDE_TFLAG_IN_FEATURE;
365
366	drive->hwif->tp_ops->tf_read(drive, &task);
367
368	return task.tf.error;
369}
370EXPORT_SYMBOL_GPL(ide_read_error);
371
372void ide_read_bcount_and_ireason(ide_drive_t *drive, u16 *bcount, u8 *ireason)
373{
374	ide_task_t task;
375
376	memset(&task, 0, sizeof(task));
377	task.tf_flags = IDE_TFLAG_IN_LBAH | IDE_TFLAG_IN_LBAM |
378			IDE_TFLAG_IN_NSECT;
379
380	drive->hwif->tp_ops->tf_read(drive, &task);
381
382	*bcount = (task.tf.lbah << 8) | task.tf.lbam;
383	*ireason = task.tf.nsect & 3;
384}
385EXPORT_SYMBOL_GPL(ide_read_bcount_and_ireason);
386
387const struct ide_tp_ops default_tp_ops = {
388	.exec_command		= ide_exec_command,
389	.read_status		= ide_read_status,
390	.read_altstatus		= ide_read_altstatus,
391	.read_sff_dma_status	= ide_read_sff_dma_status,
392
393	.set_irq		= ide_set_irq,
394
395	.tf_load		= ide_tf_load,
396	.tf_read		= ide_tf_read,
397
398	.input_data		= ide_input_data,
399	.output_data		= ide_output_data,
400};
401
402void ide_fix_driveid(u16 *id)
403{
404#ifndef __LITTLE_ENDIAN
405# ifdef __BIG_ENDIAN
406	int i;
407
408	for (i = 0; i < 256; i++)
409		id[i] = __le16_to_cpu(id[i]);
410# else
411#  error "Please fix <asm/byteorder.h>"
412# endif
413#endif
414}
415
416/*
417 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
418 * removing leading/trailing blanks and compressing internal blanks.
419 * It is primarily used to tidy up the model name/number fields as
420 * returned by the ATA_CMD_ID_ATA[PI] commands.
421 */
422
423void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
424{
425	u8 *p, *end = &s[bytecount & ~1]; /* bytecount must be even */
426
427	if (byteswap) {
428		/* convert from big-endian to host byte order */
429		for (p = s ; p != end ; p += 2)
430			be16_to_cpus((u16 *) p);
431	}
432
433	/* strip leading blanks */
434	p = s;
435	while (s != end && *s == ' ')
436		++s;
437	/* compress internal blanks and strip trailing blanks */
438	while (s != end && *s) {
439		if (*s++ != ' ' || (s != end && *s && *s != ' '))
440			*p++ = *(s-1);
441	}
442	/* wipe out trailing garbage */
443	while (p != end)
444		*p++ = '\0';
445}
446
447EXPORT_SYMBOL(ide_fixstring);
448
449/*
450 * Needed for PCI irq sharing
451 */
452int drive_is_ready (ide_drive_t *drive)
453{
454	ide_hwif_t *hwif	= HWIF(drive);
455	u8 stat			= 0;
456
457	if (drive->waiting_for_dma)
458		return hwif->dma_ops->dma_test_irq(drive);
459
460#if 0
461	/* need to guarantee 400ns since last command was issued */
462	udelay(1);
463#endif
464
465	/*
466	 * We do a passive status test under shared PCI interrupts on
467	 * cards that truly share the ATA side interrupt, but may also share
468	 * an interrupt with another pci card/device.  We make no assumptions
469	 * about possible isa-pnp and pci-pnp issues yet.
470	 */
471	if (hwif->io_ports.ctl_addr)
472		stat = hwif->tp_ops->read_altstatus(hwif);
473	else
474		/* Note: this may clear a pending IRQ!! */
475		stat = hwif->tp_ops->read_status(hwif);
476
477	if (stat & ATA_BUSY)
478		/* drive busy:  definitely not interrupting */
479		return 0;
480
481	/* drive ready: *might* be interrupting */
482	return 1;
483}
484
485EXPORT_SYMBOL(drive_is_ready);
486
487/*
488 * This routine busy-waits for the drive status to be not "busy".
489 * It then checks the status for all of the "good" bits and none
490 * of the "bad" bits, and if all is okay it returns 0.  All other
491 * cases return error -- caller may then invoke ide_error().
492 *
493 * This routine should get fixed to not hog the cpu during extra long waits..
494 * That could be done by busy-waiting for the first jiffy or two, and then
495 * setting a timer to wake up at half second intervals thereafter,
496 * until timeout is achieved, before timing out.
497 */
498static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
499{
500	ide_hwif_t *hwif = drive->hwif;
501	const struct ide_tp_ops *tp_ops = hwif->tp_ops;
502	unsigned long flags;
503	int i;
504	u8 stat;
505
506	udelay(1);	/* spec allows drive 400ns to assert "BUSY" */
507	stat = tp_ops->read_status(hwif);
508
509	if (stat & ATA_BUSY) {
510		local_irq_set(flags);
511		timeout += jiffies;
512		while ((stat = tp_ops->read_status(hwif)) & ATA_BUSY) {
513			if (time_after(jiffies, timeout)) {
514				/*
515				 * One last read after the timeout in case
516				 * heavy interrupt load made us not make any
517				 * progress during the timeout..
518				 */
519				stat = tp_ops->read_status(hwif);
520				if ((stat & ATA_BUSY) == 0)
521					break;
522
523				local_irq_restore(flags);
524				*rstat = stat;
525				return -EBUSY;
526			}
527		}
528		local_irq_restore(flags);
529	}
530	/*
531	 * Allow status to settle, then read it again.
532	 * A few rare drives vastly violate the 400ns spec here,
533	 * so we'll wait up to 10usec for a "good" status
534	 * rather than expensively fail things immediately.
535	 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
536	 */
537	for (i = 0; i < 10; i++) {
538		udelay(1);
539		stat = tp_ops->read_status(hwif);
540
541		if (OK_STAT(stat, good, bad)) {
542			*rstat = stat;
543			return 0;
544		}
545	}
546	*rstat = stat;
547	return -EFAULT;
548}
549
550/*
551 * In case of error returns error value after doing "*startstop = ide_error()".
552 * The caller should return the updated value of "startstop" in this case,
553 * "startstop" is unchanged when the function returns 0.
554 */
555int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
556{
557	int err;
558	u8 stat;
559
560	/* bail early if we've exceeded max_failures */
561	if (drive->max_failures && (drive->failures > drive->max_failures)) {
562		*startstop = ide_stopped;
563		return 1;
564	}
565
566	err = __ide_wait_stat(drive, good, bad, timeout, &stat);
567
568	if (err) {
569		char *s = (err == -EBUSY) ? "status timeout" : "status error";
570		*startstop = ide_error(drive, s, stat);
571	}
572
573	return err;
574}
575
576EXPORT_SYMBOL(ide_wait_stat);
577
578/**
579 *	ide_in_drive_list	-	look for drive in black/white list
580 *	@id: drive identifier
581 *	@table: list to inspect
582 *
583 *	Look for a drive in the blacklist and the whitelist tables
584 *	Returns 1 if the drive is found in the table.
585 */
586
587int ide_in_drive_list(u16 *id, const struct drive_list_entry *table)
588{
589	for ( ; table->id_model; table++)
590		if ((!strcmp(table->id_model, (char *)&id[ATA_ID_PROD])) &&
591		    (!table->id_firmware ||
592		     strstr((char *)&id[ATA_ID_FW_REV], table->id_firmware)))
593			return 1;
594	return 0;
595}
596
597EXPORT_SYMBOL_GPL(ide_in_drive_list);
598
599/*
600 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
601 * We list them here and depend on the device side cable detection for them.
602 *
603 * Some optical devices with the buggy firmwares have the same problem.
604 */
605static const struct drive_list_entry ivb_list[] = {
606	{ "QUANTUM FIREBALLlct10 05"	, "A03.0900"	},
607	{ "TSSTcorp CDDVDW SH-S202J"	, "SB00"	},
608	{ "TSSTcorp CDDVDW SH-S202J"	, "SB01"	},
609	{ "TSSTcorp CDDVDW SH-S202N"	, "SB00"	},
610	{ "TSSTcorp CDDVDW SH-S202N"	, "SB01"	},
611	{ "TSSTcorp CDDVDW SH-S202H"	, "SB00"	},
612	{ "TSSTcorp CDDVDW SH-S202H"	, "SB01"	},
613	{ NULL				, NULL		}
614};
615
616/*
617 *  All hosts that use the 80c ribbon must use!
618 *  The name is derived from upper byte of word 93 and the 80c ribbon.
619 */
620u8 eighty_ninty_three (ide_drive_t *drive)
621{
622	ide_hwif_t *hwif = drive->hwif;
623	u16 *id = drive->id;
624	int ivb = ide_in_drive_list(id, ivb_list);
625
626	if (hwif->cbl == ATA_CBL_PATA40_SHORT)
627		return 1;
628
629	if (ivb)
630		printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
631				  drive->name);
632
633	if (ata_id_is_sata(id) && !ivb)
634		return 1;
635
636	if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
637		goto no_80w;
638
639	/*
640	 * FIXME:
641	 * - change master/slave IDENTIFY order
642	 * - force bit13 (80c cable present) check also for !ivb devices
643	 *   (unless the slave device is pre-ATA3)
644	 */
645	if ((id[ATA_ID_HW_CONFIG] & 0x4000) ||
646	    (ivb && (id[ATA_ID_HW_CONFIG] & 0x2000)))
647		return 1;
648
649no_80w:
650	if (drive->dev_flags & IDE_DFLAG_UDMA33_WARNED)
651		return 0;
652
653	printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
654			    "limiting max speed to UDMA33\n",
655			    drive->name,
656			    hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
657
658	drive->dev_flags |= IDE_DFLAG_UDMA33_WARNED;
659
660	return 0;
661}
662
663int ide_driveid_update(ide_drive_t *drive)
664{
665	ide_hwif_t *hwif = drive->hwif;
666	const struct ide_tp_ops *tp_ops = hwif->tp_ops;
667	u16 *id;
668	unsigned long flags;
669	u8 stat;
670
671	/*
672	 * Re-read drive->id for possible DMA mode
673	 * change (copied from ide-probe.c)
674	 */
675
676	SELECT_MASK(drive, 1);
677	tp_ops->set_irq(hwif, 0);
678	msleep(50);
679	tp_ops->exec_command(hwif, ATA_CMD_ID_ATA);
680
681	if (ide_busy_sleep(hwif, WAIT_WORSTCASE, 1)) {
682		SELECT_MASK(drive, 0);
683		return 0;
684	}
685
686	msleep(50);	/* wait for IRQ and ATA_DRQ */
687	stat = tp_ops->read_status(hwif);
688
689	if (!OK_STAT(stat, ATA_DRQ, BAD_R_STAT)) {
690		SELECT_MASK(drive, 0);
691		printk("%s: CHECK for good STATUS\n", drive->name);
692		return 0;
693	}
694	local_irq_save(flags);
695	SELECT_MASK(drive, 0);
696	id = kmalloc(SECTOR_SIZE, GFP_ATOMIC);
697	if (!id) {
698		local_irq_restore(flags);
699		return 0;
700	}
701	tp_ops->input_data(drive, NULL, id, SECTOR_SIZE);
702	(void)tp_ops->read_status(hwif);	/* clear drive IRQ */
703	local_irq_enable();
704	local_irq_restore(flags);
705	ide_fix_driveid(id);
706
707	drive->id[ATA_ID_UDMA_MODES]  = id[ATA_ID_UDMA_MODES];
708	drive->id[ATA_ID_MWDMA_MODES] = id[ATA_ID_MWDMA_MODES];
709	drive->id[ATA_ID_SWDMA_MODES] = id[ATA_ID_SWDMA_MODES];
710	/* anything more ? */
711
712	kfree(id);
713
714	if ((drive->dev_flags & IDE_DFLAG_USING_DMA) && ide_id_dma_bug(drive))
715		ide_dma_off(drive);
716
717	return 1;
718}
719
720int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
721{
722	ide_hwif_t *hwif = drive->hwif;
723	const struct ide_tp_ops *tp_ops = hwif->tp_ops;
724	u16 *id = drive->id, i;
725	int error = 0;
726	u8 stat;
727	ide_task_t task;
728
729#ifdef CONFIG_BLK_DEV_IDEDMA
730	if (hwif->dma_ops)	/* check if host supports DMA */
731		hwif->dma_ops->dma_host_set(drive, 0);
732#endif
733
734	/* Skip setting PIO flow-control modes on pre-EIDE drives */
735	if ((speed & 0xf8) == XFER_PIO_0 && ata_id_has_iordy(drive->id) == 0)
736		goto skip;
737
738	/*
739	 * Don't use ide_wait_cmd here - it will
740	 * attempt to set_geometry and recalibrate,
741	 * but for some reason these don't work at
742	 * this point (lost interrupt).
743	 */
744        /*
745         * Select the drive, and issue the SETFEATURES command
746         */
747	disable_irq_nosync(hwif->irq);
748
749	/*
750	 *	FIXME: we race against the running IRQ here if
751	 *	this is called from non IRQ context. If we use
752	 *	disable_irq() we hang on the error path. Work
753	 *	is needed.
754	 */
755
756	udelay(1);
757	SELECT_DRIVE(drive);
758	SELECT_MASK(drive, 0);
759	udelay(1);
760	tp_ops->set_irq(hwif, 0);
761
762	memset(&task, 0, sizeof(task));
763	task.tf_flags = IDE_TFLAG_OUT_FEATURE | IDE_TFLAG_OUT_NSECT;
764	task.tf.feature = SETFEATURES_XFER;
765	task.tf.nsect   = speed;
766
767	tp_ops->tf_load(drive, &task);
768
769	tp_ops->exec_command(hwif, ATA_CMD_SET_FEATURES);
770
771	if (drive->quirk_list == 2)
772		tp_ops->set_irq(hwif, 1);
773
774	error = __ide_wait_stat(drive, drive->ready_stat,
775				ATA_BUSY | ATA_DRQ | ATA_ERR,
776				WAIT_CMD, &stat);
777
778	SELECT_MASK(drive, 0);
779
780	enable_irq(hwif->irq);
781
782	if (error) {
783		(void) ide_dump_status(drive, "set_drive_speed_status", stat);
784		return error;
785	}
786
787	id[ATA_ID_UDMA_MODES]  &= ~0xFF00;
788	id[ATA_ID_MWDMA_MODES] &= ~0x0F00;
789	id[ATA_ID_SWDMA_MODES] &= ~0x0F00;
790
791 skip:
792#ifdef CONFIG_BLK_DEV_IDEDMA
793	if (speed >= XFER_SW_DMA_0 && (drive->dev_flags & IDE_DFLAG_USING_DMA))
794		hwif->dma_ops->dma_host_set(drive, 1);
795	else if (hwif->dma_ops)	/* check if host supports DMA */
796		ide_dma_off_quietly(drive);
797#endif
798
799	if (speed >= XFER_UDMA_0) {
800		i = 1 << (speed - XFER_UDMA_0);
801		id[ATA_ID_UDMA_MODES] |= (i << 8 | i);
802	} else if (speed >= XFER_MW_DMA_0) {
803		i = 1 << (speed - XFER_MW_DMA_0);
804		id[ATA_ID_MWDMA_MODES] |= (i << 8 | i);
805	} else if (speed >= XFER_SW_DMA_0) {
806		i = 1 << (speed - XFER_SW_DMA_0);
807		id[ATA_ID_SWDMA_MODES] |= (i << 8 | i);
808	}
809
810	if (!drive->init_speed)
811		drive->init_speed = speed;
812	drive->current_speed = speed;
813	return error;
814}
815
816/*
817 * This should get invoked any time we exit the driver to
818 * wait for an interrupt response from a drive.  handler() points
819 * at the appropriate code to handle the next interrupt, and a
820 * timer is started to prevent us from waiting forever in case
821 * something goes wrong (see the ide_timer_expiry() handler later on).
822 *
823 * See also ide_execute_command
824 */
825static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
826		      unsigned int timeout, ide_expiry_t *expiry)
827{
828	ide_hwgroup_t *hwgroup = HWGROUP(drive);
829
830	BUG_ON(hwgroup->handler);
831	hwgroup->handler	= handler;
832	hwgroup->expiry		= expiry;
833	hwgroup->timer.expires	= jiffies + timeout;
834	hwgroup->req_gen_timer	= hwgroup->req_gen;
835	add_timer(&hwgroup->timer);
836}
837
838void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
839		      unsigned int timeout, ide_expiry_t *expiry)
840{
841	unsigned long flags;
842	spin_lock_irqsave(&ide_lock, flags);
843	__ide_set_handler(drive, handler, timeout, expiry);
844	spin_unlock_irqrestore(&ide_lock, flags);
845}
846
847EXPORT_SYMBOL(ide_set_handler);
848
849/**
850 *	ide_execute_command	-	execute an IDE command
851 *	@drive: IDE drive to issue the command against
852 *	@command: command byte to write
853 *	@handler: handler for next phase
854 *	@timeout: timeout for command
855 *	@expiry:  handler to run on timeout
856 *
857 *	Helper function to issue an IDE command. This handles the
858 *	atomicity requirements, command timing and ensures that the
859 *	handler and IRQ setup do not race. All IDE command kick off
860 *	should go via this function or do equivalent locking.
861 */
862
863void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
864			 unsigned timeout, ide_expiry_t *expiry)
865{
866	unsigned long flags;
867	ide_hwif_t *hwif = HWIF(drive);
868
869	spin_lock_irqsave(&ide_lock, flags);
870	__ide_set_handler(drive, handler, timeout, expiry);
871	hwif->tp_ops->exec_command(hwif, cmd);
872	/*
873	 * Drive takes 400nS to respond, we must avoid the IRQ being
874	 * serviced before that.
875	 *
876	 * FIXME: we could skip this delay with care on non shared devices
877	 */
878	ndelay(400);
879	spin_unlock_irqrestore(&ide_lock, flags);
880}
881EXPORT_SYMBOL(ide_execute_command);
882
883void ide_execute_pkt_cmd(ide_drive_t *drive)
884{
885	ide_hwif_t *hwif = drive->hwif;
886	unsigned long flags;
887
888	spin_lock_irqsave(&ide_lock, flags);
889	hwif->tp_ops->exec_command(hwif, ATA_CMD_PACKET);
890	ndelay(400);
891	spin_unlock_irqrestore(&ide_lock, flags);
892}
893EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
894
895static inline void ide_complete_drive_reset(ide_drive_t *drive, int err)
896{
897	struct request *rq = drive->hwif->hwgroup->rq;
898
899	if (rq && blk_special_request(rq) && rq->cmd[0] == REQ_DRIVE_RESET)
900		ide_end_request(drive, err ? err : 1, 0);
901}
902
903/* needed below */
904static ide_startstop_t do_reset1 (ide_drive_t *, int);
905
906/*
907 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
908 * during an atapi drive reset operation. If the drive has not yet responded,
909 * and we have not yet hit our maximum waiting time, then the timer is restarted
910 * for another 50ms.
911 */
912static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
913{
914	ide_hwif_t *hwif = drive->hwif;
915	ide_hwgroup_t *hwgroup = hwif->hwgroup;
916	u8 stat;
917
918	SELECT_DRIVE(drive);
919	udelay (10);
920	stat = hwif->tp_ops->read_status(hwif);
921
922	if (OK_STAT(stat, 0, ATA_BUSY))
923		printk("%s: ATAPI reset complete\n", drive->name);
924	else {
925		if (time_before(jiffies, hwgroup->poll_timeout)) {
926			ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
927			/* continue polling */
928			return ide_started;
929		}
930		/* end of polling */
931		hwgroup->polling = 0;
932		printk("%s: ATAPI reset timed-out, status=0x%02x\n",
933				drive->name, stat);
934		/* do it the old fashioned way */
935		return do_reset1(drive, 1);
936	}
937	/* done polling */
938	hwgroup->polling = 0;
939	ide_complete_drive_reset(drive, 0);
940	return ide_stopped;
941}
942
943static void ide_reset_report_error(ide_hwif_t *hwif, u8 err)
944{
945	static const char *err_master_vals[] =
946		{ NULL, "passed", "formatter device error",
947		  "sector buffer error", "ECC circuitry error",
948		  "controlling MPU error" };
949
950	u8 err_master = err & 0x7f;
951
952	printk(KERN_ERR "%s: reset: master: ", hwif->name);
953	if (err_master && err_master < 6)
954		printk(KERN_CONT "%s", err_master_vals[err_master]);
955	else
956		printk(KERN_CONT "error (0x%02x?)", err);
957	if (err & 0x80)
958		printk(KERN_CONT "; slave: failed");
959	printk(KERN_CONT "\n");
960}
961
962/*
963 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
964 * during an ide reset operation. If the drives have not yet responded,
965 * and we have not yet hit our maximum waiting time, then the timer is restarted
966 * for another 50ms.
967 */
968static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
969{
970	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
971	ide_hwif_t *hwif	= HWIF(drive);
972	const struct ide_port_ops *port_ops = hwif->port_ops;
973	u8 tmp;
974	int err = 0;
975
976	if (port_ops && port_ops->reset_poll) {
977		err = port_ops->reset_poll(drive);
978		if (err) {
979			printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
980				hwif->name, drive->name);
981			goto out;
982		}
983	}
984
985	tmp = hwif->tp_ops->read_status(hwif);
986
987	if (!OK_STAT(tmp, 0, ATA_BUSY)) {
988		if (time_before(jiffies, hwgroup->poll_timeout)) {
989			ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
990			/* continue polling */
991			return ide_started;
992		}
993		printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
994		drive->failures++;
995		err = -EIO;
996	} else  {
997		tmp = ide_read_error(drive);
998
999		if (tmp == 1) {
1000			printk(KERN_INFO "%s: reset: success\n", hwif->name);
1001			drive->failures = 0;
1002		} else {
1003			ide_reset_report_error(hwif, tmp);
1004			drive->failures++;
1005			err = -EIO;
1006		}
1007	}
1008out:
1009	hwgroup->polling = 0;	/* done polling */
1010	ide_complete_drive_reset(drive, err);
1011	return ide_stopped;
1012}
1013
1014static void ide_disk_pre_reset(ide_drive_t *drive)
1015{
1016	int legacy = (drive->id[ATA_ID_CFS_ENABLE_2] & 0x0400) ? 0 : 1;
1017
1018	drive->special.all = 0;
1019	drive->special.b.set_geometry = legacy;
1020	drive->special.b.recalibrate  = legacy;
1021
1022	drive->mult_count = 0;
1023
1024	if ((drive->dev_flags & IDE_DFLAG_KEEP_SETTINGS) == 0 &&
1025	    (drive->dev_flags & IDE_DFLAG_USING_DMA) == 0)
1026		drive->mult_req = 0;
1027
1028	if (drive->mult_req != drive->mult_count)
1029		drive->special.b.set_multmode = 1;
1030}
1031
1032static void pre_reset(ide_drive_t *drive)
1033{
1034	const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1035
1036	if (drive->media == ide_disk)
1037		ide_disk_pre_reset(drive);
1038	else
1039		drive->dev_flags |= IDE_DFLAG_POST_RESET;
1040
1041	if (drive->dev_flags & IDE_DFLAG_USING_DMA) {
1042		if (drive->crc_count)
1043			ide_check_dma_crc(drive);
1044		else
1045			ide_dma_off(drive);
1046	}
1047
1048	if ((drive->dev_flags & IDE_DFLAG_KEEP_SETTINGS) == 0) {
1049		if ((drive->dev_flags & IDE_DFLAG_USING_DMA) == 0) {
1050			drive->dev_flags &= ~IDE_DFLAG_UNMASK;
1051			drive->io_32bit = 0;
1052		}
1053		return;
1054	}
1055
1056	if (port_ops && port_ops->pre_reset)
1057		port_ops->pre_reset(drive);
1058
1059	if (drive->current_speed != 0xff)
1060		drive->desired_speed = drive->current_speed;
1061	drive->current_speed = 0xff;
1062}
1063
1064/*
1065 * do_reset1() attempts to recover a confused drive by resetting it.
1066 * Unfortunately, resetting a disk drive actually resets all devices on
1067 * the same interface, so it can really be thought of as resetting the
1068 * interface rather than resetting the drive.
1069 *
1070 * ATAPI devices have their own reset mechanism which allows them to be
1071 * individually reset without clobbering other devices on the same interface.
1072 *
1073 * Unfortunately, the IDE interface does not generate an interrupt to let
1074 * us know when the reset operation has finished, so we must poll for this.
1075 * Equally poor, though, is the fact that this may a very long time to complete,
1076 * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1077 * we set a timer to poll at 50ms intervals.
1078 */
1079static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1080{
1081	unsigned int unit;
1082	unsigned long flags;
1083	ide_hwif_t *hwif;
1084	ide_hwgroup_t *hwgroup;
1085	struct ide_io_ports *io_ports;
1086	const struct ide_tp_ops *tp_ops;
1087	const struct ide_port_ops *port_ops;
1088
1089	spin_lock_irqsave(&ide_lock, flags);
1090	hwif = HWIF(drive);
1091	hwgroup = HWGROUP(drive);
1092
1093	io_ports = &hwif->io_ports;
1094
1095	tp_ops = hwif->tp_ops;
1096
1097	/* We must not reset with running handlers */
1098	BUG_ON(hwgroup->handler != NULL);
1099
1100	/* For an ATAPI device, first try an ATAPI SRST. */
1101	if (drive->media != ide_disk && !do_not_try_atapi) {
1102		pre_reset(drive);
1103		SELECT_DRIVE(drive);
1104		udelay (20);
1105		tp_ops->exec_command(hwif, ATA_CMD_DEV_RESET);
1106		ndelay(400);
1107		hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1108		hwgroup->polling = 1;
1109		__ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1110		spin_unlock_irqrestore(&ide_lock, flags);
1111		return ide_started;
1112	}
1113
1114	/*
1115	 * First, reset any device state data we were maintaining
1116	 * for any of the drives on this interface.
1117	 */
1118	for (unit = 0; unit < MAX_DRIVES; ++unit)
1119		pre_reset(&hwif->drives[unit]);
1120
1121	if (io_ports->ctl_addr == 0) {
1122		spin_unlock_irqrestore(&ide_lock, flags);
1123		ide_complete_drive_reset(drive, -ENXIO);
1124		return ide_stopped;
1125	}
1126
1127	/*
1128	 * Note that we also set nIEN while resetting the device,
1129	 * to mask unwanted interrupts from the interface during the reset.
1130	 * However, due to the design of PC hardware, this will cause an
1131	 * immediate interrupt due to the edge transition it produces.
1132	 * This single interrupt gives us a "fast poll" for drives that
1133	 * recover from reset very quickly, saving us the first 50ms wait time.
1134	 *
1135	 * TODO: add ->softreset method and stop abusing ->set_irq
1136	 */
1137	/* set SRST and nIEN */
1138	tp_ops->set_irq(hwif, 4);
1139	/* more than enough time */
1140	udelay(10);
1141	/* clear SRST, leave nIEN (unless device is on the quirk list) */
1142	tp_ops->set_irq(hwif, drive->quirk_list == 2);
1143	/* more than enough time */
1144	udelay(10);
1145	hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1146	hwgroup->polling = 1;
1147	__ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1148
1149	/*
1150	 * Some weird controller like resetting themselves to a strange
1151	 * state when the disks are reset this way. At least, the Winbond
1152	 * 553 documentation says that
1153	 */
1154	port_ops = hwif->port_ops;
1155	if (port_ops && port_ops->resetproc)
1156		port_ops->resetproc(drive);
1157
1158	spin_unlock_irqrestore(&ide_lock, flags);
1159	return ide_started;
1160}
1161
1162/*
1163 * ide_do_reset() is the entry point to the drive/interface reset code.
1164 */
1165
1166ide_startstop_t ide_do_reset (ide_drive_t *drive)
1167{
1168	return do_reset1(drive, 0);
1169}
1170
1171EXPORT_SYMBOL(ide_do_reset);
1172
1173/*
1174 * ide_wait_not_busy() waits for the currently selected device on the hwif
1175 * to report a non-busy status, see comments in ide_probe_port().
1176 */
1177int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1178{
1179	u8 stat = 0;
1180
1181	while(timeout--) {
1182		/*
1183		 * Turn this into a schedule() sleep once I'm sure
1184		 * about locking issues (2.5 work ?).
1185		 */
1186		mdelay(1);
1187		stat = hwif->tp_ops->read_status(hwif);
1188		if ((stat & ATA_BUSY) == 0)
1189			return 0;
1190		/*
1191		 * Assume a value of 0xff means nothing is connected to
1192		 * the interface and it doesn't implement the pull-down
1193		 * resistor on D7.
1194		 */
1195		if (stat == 0xff)
1196			return -ENODEV;
1197		touch_softlockup_watchdog();
1198		touch_nmi_watchdog();
1199	}
1200	return -EBUSY;
1201}
1202
1203EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1204
1205