ide-iops.c revision 1a7809e3499921a016d203b9ee51a77d3cc1dc98
1/*
2 *  Copyright (C) 2000-2002	Andre Hedrick <andre@linux-ide.org>
3 *  Copyright (C) 2003		Red Hat <alan@redhat.com>
4 *
5 */
6
7#include <linux/module.h>
8#include <linux/types.h>
9#include <linux/string.h>
10#include <linux/kernel.h>
11#include <linux/timer.h>
12#include <linux/mm.h>
13#include <linux/interrupt.h>
14#include <linux/major.h>
15#include <linux/errno.h>
16#include <linux/genhd.h>
17#include <linux/blkpg.h>
18#include <linux/slab.h>
19#include <linux/pci.h>
20#include <linux/delay.h>
21#include <linux/hdreg.h>
22#include <linux/ide.h>
23#include <linux/bitops.h>
24#include <linux/nmi.h>
25
26#include <asm/byteorder.h>
27#include <asm/irq.h>
28#include <asm/uaccess.h>
29#include <asm/io.h>
30
31/*
32 *	Conventional PIO operations for ATA devices
33 */
34
35static u8 ide_inb (unsigned long port)
36{
37	return (u8) inb(port);
38}
39
40static void ide_outb (u8 val, unsigned long port)
41{
42	outb(val, port);
43}
44
45/*
46 *	MMIO operations, typically used for SATA controllers
47 */
48
49static u8 ide_mm_inb (unsigned long port)
50{
51	return (u8) readb((void __iomem *) port);
52}
53
54static void ide_mm_outb (u8 value, unsigned long port)
55{
56	writeb(value, (void __iomem *) port);
57}
58
59void SELECT_DRIVE (ide_drive_t *drive)
60{
61	ide_hwif_t *hwif = drive->hwif;
62	const struct ide_port_ops *port_ops = hwif->port_ops;
63	ide_task_t task;
64
65	if (port_ops && port_ops->selectproc)
66		port_ops->selectproc(drive);
67
68	memset(&task, 0, sizeof(task));
69	task.tf_flags = IDE_TFLAG_OUT_DEVICE;
70
71	drive->hwif->tp_ops->tf_load(drive, &task);
72}
73
74void SELECT_MASK(ide_drive_t *drive, int mask)
75{
76	const struct ide_port_ops *port_ops = drive->hwif->port_ops;
77
78	if (port_ops && port_ops->maskproc)
79		port_ops->maskproc(drive, mask);
80}
81
82void ide_exec_command(ide_hwif_t *hwif, u8 cmd)
83{
84	if (hwif->host_flags & IDE_HFLAG_MMIO)
85		writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
86	else
87		outb(cmd, hwif->io_ports.command_addr);
88}
89EXPORT_SYMBOL_GPL(ide_exec_command);
90
91u8 ide_read_status(ide_hwif_t *hwif)
92{
93	if (hwif->host_flags & IDE_HFLAG_MMIO)
94		return readb((void __iomem *)hwif->io_ports.status_addr);
95	else
96		return inb(hwif->io_ports.status_addr);
97}
98EXPORT_SYMBOL_GPL(ide_read_status);
99
100u8 ide_read_altstatus(ide_hwif_t *hwif)
101{
102	if (hwif->host_flags & IDE_HFLAG_MMIO)
103		return readb((void __iomem *)hwif->io_ports.ctl_addr);
104	else
105		return inb(hwif->io_ports.ctl_addr);
106}
107EXPORT_SYMBOL_GPL(ide_read_altstatus);
108
109u8 ide_read_sff_dma_status(ide_hwif_t *hwif)
110{
111	if (hwif->host_flags & IDE_HFLAG_MMIO)
112		return readb((void __iomem *)(hwif->dma_base + ATA_DMA_STATUS));
113	else
114		return inb(hwif->dma_base + ATA_DMA_STATUS);
115}
116EXPORT_SYMBOL_GPL(ide_read_sff_dma_status);
117
118void ide_set_irq(ide_hwif_t *hwif, int on)
119{
120	u8 ctl = ATA_DEVCTL_OBS;
121
122	if (on == 4) { /* hack for SRST */
123		ctl |= 4;
124		on &= ~4;
125	}
126
127	ctl |= on ? 0 : 2;
128
129	if (hwif->host_flags & IDE_HFLAG_MMIO)
130		writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
131	else
132		outb(ctl, hwif->io_ports.ctl_addr);
133}
134EXPORT_SYMBOL_GPL(ide_set_irq);
135
136void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
137{
138	ide_hwif_t *hwif = drive->hwif;
139	struct ide_io_ports *io_ports = &hwif->io_ports;
140	struct ide_taskfile *tf = &task->tf;
141	void (*tf_outb)(u8 addr, unsigned long port);
142	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
143	u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
144
145	if (mmio)
146		tf_outb = ide_mm_outb;
147	else
148		tf_outb = ide_outb;
149
150	if (task->tf_flags & IDE_TFLAG_FLAGGED)
151		HIHI = 0xFF;
152
153	if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
154		u16 data = (tf->hob_data << 8) | tf->data;
155
156		if (mmio)
157			writew(data, (void __iomem *)io_ports->data_addr);
158		else
159			outw(data, io_ports->data_addr);
160	}
161
162	if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
163		tf_outb(tf->hob_feature, io_ports->feature_addr);
164	if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
165		tf_outb(tf->hob_nsect, io_ports->nsect_addr);
166	if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
167		tf_outb(tf->hob_lbal, io_ports->lbal_addr);
168	if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
169		tf_outb(tf->hob_lbam, io_ports->lbam_addr);
170	if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
171		tf_outb(tf->hob_lbah, io_ports->lbah_addr);
172
173	if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
174		tf_outb(tf->feature, io_ports->feature_addr);
175	if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
176		tf_outb(tf->nsect, io_ports->nsect_addr);
177	if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
178		tf_outb(tf->lbal, io_ports->lbal_addr);
179	if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
180		tf_outb(tf->lbam, io_ports->lbam_addr);
181	if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
182		tf_outb(tf->lbah, io_ports->lbah_addr);
183
184	if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
185		tf_outb((tf->device & HIHI) | drive->select.all,
186			 io_ports->device_addr);
187}
188EXPORT_SYMBOL_GPL(ide_tf_load);
189
190void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
191{
192	ide_hwif_t *hwif = drive->hwif;
193	struct ide_io_ports *io_ports = &hwif->io_ports;
194	struct ide_taskfile *tf = &task->tf;
195	void (*tf_outb)(u8 addr, unsigned long port);
196	u8 (*tf_inb)(unsigned long port);
197	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
198
199	if (mmio) {
200		tf_outb = ide_mm_outb;
201		tf_inb  = ide_mm_inb;
202	} else {
203		tf_outb = ide_outb;
204		tf_inb  = ide_inb;
205	}
206
207	if (task->tf_flags & IDE_TFLAG_IN_DATA) {
208		u16 data;
209
210		if (mmio)
211			data = readw((void __iomem *)io_ports->data_addr);
212		else
213			data = inw(io_ports->data_addr);
214
215		tf->data = data & 0xff;
216		tf->hob_data = (data >> 8) & 0xff;
217	}
218
219	/* be sure we're looking at the low order bits */
220	tf_outb(ATA_DEVCTL_OBS & ~0x80, io_ports->ctl_addr);
221
222	if (task->tf_flags & IDE_TFLAG_IN_FEATURE)
223		tf->feature = tf_inb(io_ports->feature_addr);
224	if (task->tf_flags & IDE_TFLAG_IN_NSECT)
225		tf->nsect  = tf_inb(io_ports->nsect_addr);
226	if (task->tf_flags & IDE_TFLAG_IN_LBAL)
227		tf->lbal   = tf_inb(io_ports->lbal_addr);
228	if (task->tf_flags & IDE_TFLAG_IN_LBAM)
229		tf->lbam   = tf_inb(io_ports->lbam_addr);
230	if (task->tf_flags & IDE_TFLAG_IN_LBAH)
231		tf->lbah   = tf_inb(io_ports->lbah_addr);
232	if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
233		tf->device = tf_inb(io_ports->device_addr);
234
235	if (task->tf_flags & IDE_TFLAG_LBA48) {
236		tf_outb(ATA_DEVCTL_OBS | 0x80, io_ports->ctl_addr);
237
238		if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
239			tf->hob_feature = tf_inb(io_ports->feature_addr);
240		if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
241			tf->hob_nsect   = tf_inb(io_ports->nsect_addr);
242		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
243			tf->hob_lbal    = tf_inb(io_ports->lbal_addr);
244		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
245			tf->hob_lbam    = tf_inb(io_ports->lbam_addr);
246		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
247			tf->hob_lbah    = tf_inb(io_ports->lbah_addr);
248	}
249}
250EXPORT_SYMBOL_GPL(ide_tf_read);
251
252/*
253 * Some localbus EIDE interfaces require a special access sequence
254 * when using 32-bit I/O instructions to transfer data.  We call this
255 * the "vlb_sync" sequence, which consists of three successive reads
256 * of the sector count register location, with interrupts disabled
257 * to ensure that the reads all happen together.
258 */
259static void ata_vlb_sync(unsigned long port)
260{
261	(void)inb(port);
262	(void)inb(port);
263	(void)inb(port);
264}
265
266/*
267 * This is used for most PIO data transfers *from* the IDE interface
268 *
269 * These routines will round up any request for an odd number of bytes,
270 * so if an odd len is specified, be sure that there's at least one
271 * extra byte allocated for the buffer.
272 */
273void ide_input_data(ide_drive_t *drive, struct request *rq, void *buf,
274		    unsigned int len)
275{
276	ide_hwif_t *hwif = drive->hwif;
277	struct ide_io_ports *io_ports = &hwif->io_ports;
278	unsigned long data_addr = io_ports->data_addr;
279	u8 io_32bit = drive->io_32bit;
280	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
281
282	len++;
283
284	if (io_32bit) {
285		unsigned long uninitialized_var(flags);
286
287		if ((io_32bit & 2) && !mmio) {
288			local_irq_save(flags);
289			ata_vlb_sync(io_ports->nsect_addr);
290		}
291
292		if (mmio)
293			__ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
294		else
295			insl(data_addr, buf, len / 4);
296
297		if ((io_32bit & 2) && !mmio)
298			local_irq_restore(flags);
299
300		if ((len & 3) >= 2) {
301			if (mmio)
302				__ide_mm_insw((void __iomem *)data_addr,
303						(u8 *)buf + (len & ~3), 1);
304			else
305				insw(data_addr, (u8 *)buf + (len & ~3), 1);
306		}
307	} else {
308		if (mmio)
309			__ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
310		else
311			insw(data_addr, buf, len / 2);
312	}
313}
314EXPORT_SYMBOL_GPL(ide_input_data);
315
316/*
317 * This is used for most PIO data transfers *to* the IDE interface
318 */
319void ide_output_data(ide_drive_t *drive, struct request *rq, void *buf,
320		     unsigned int len)
321{
322	ide_hwif_t *hwif = drive->hwif;
323	struct ide_io_ports *io_ports = &hwif->io_ports;
324	unsigned long data_addr = io_ports->data_addr;
325	u8 io_32bit = drive->io_32bit;
326	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
327
328	if (io_32bit) {
329		unsigned long uninitialized_var(flags);
330
331		if ((io_32bit & 2) && !mmio) {
332			local_irq_save(flags);
333			ata_vlb_sync(io_ports->nsect_addr);
334		}
335
336		if (mmio)
337			__ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
338		else
339			outsl(data_addr, buf, len / 4);
340
341		if ((io_32bit & 2) && !mmio)
342			local_irq_restore(flags);
343
344		if ((len & 3) >= 2) {
345			if (mmio)
346				__ide_mm_outsw((void __iomem *)data_addr,
347						 (u8 *)buf + (len & ~3), 1);
348			else
349				outsw(data_addr, (u8 *)buf + (len & ~3), 1);
350		}
351	} else {
352		if (mmio)
353			__ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
354		else
355			outsw(data_addr, buf, len / 2);
356	}
357}
358EXPORT_SYMBOL_GPL(ide_output_data);
359
360u8 ide_read_error(ide_drive_t *drive)
361{
362	ide_task_t task;
363
364	memset(&task, 0, sizeof(task));
365	task.tf_flags = IDE_TFLAG_IN_FEATURE;
366
367	drive->hwif->tp_ops->tf_read(drive, &task);
368
369	return task.tf.error;
370}
371EXPORT_SYMBOL_GPL(ide_read_error);
372
373void ide_read_bcount_and_ireason(ide_drive_t *drive, u16 *bcount, u8 *ireason)
374{
375	ide_task_t task;
376
377	memset(&task, 0, sizeof(task));
378	task.tf_flags = IDE_TFLAG_IN_LBAH | IDE_TFLAG_IN_LBAM |
379			IDE_TFLAG_IN_NSECT;
380
381	drive->hwif->tp_ops->tf_read(drive, &task);
382
383	*bcount = (task.tf.lbah << 8) | task.tf.lbam;
384	*ireason = task.tf.nsect & 3;
385}
386EXPORT_SYMBOL_GPL(ide_read_bcount_and_ireason);
387
388const struct ide_tp_ops default_tp_ops = {
389	.exec_command		= ide_exec_command,
390	.read_status		= ide_read_status,
391	.read_altstatus		= ide_read_altstatus,
392	.read_sff_dma_status	= ide_read_sff_dma_status,
393
394	.set_irq		= ide_set_irq,
395
396	.tf_load		= ide_tf_load,
397	.tf_read		= ide_tf_read,
398
399	.input_data		= ide_input_data,
400	.output_data		= ide_output_data,
401};
402
403void ide_fix_driveid(u16 *id)
404{
405#ifndef __LITTLE_ENDIAN
406# ifdef __BIG_ENDIAN
407	int i;
408
409	for (i = 0; i < 256; i++)
410		id[i] = __le16_to_cpu(id[i]);
411# else
412#  error "Please fix <asm/byteorder.h>"
413# endif
414#endif
415}
416
417/*
418 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
419 * removing leading/trailing blanks and compressing internal blanks.
420 * It is primarily used to tidy up the model name/number fields as
421 * returned by the ATA_CMD_ID_ATA[PI] commands.
422 */
423
424void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
425{
426	u8 *p, *end = &s[bytecount & ~1]; /* bytecount must be even */
427
428	if (byteswap) {
429		/* convert from big-endian to host byte order */
430		for (p = s ; p != end ; p += 2)
431			be16_to_cpus((u16 *) p);
432	}
433
434	/* strip leading blanks */
435	p = s;
436	while (s != end && *s == ' ')
437		++s;
438	/* compress internal blanks and strip trailing blanks */
439	while (s != end && *s) {
440		if (*s++ != ' ' || (s != end && *s && *s != ' '))
441			*p++ = *(s-1);
442	}
443	/* wipe out trailing garbage */
444	while (p != end)
445		*p++ = '\0';
446}
447
448EXPORT_SYMBOL(ide_fixstring);
449
450/*
451 * Needed for PCI irq sharing
452 */
453int drive_is_ready (ide_drive_t *drive)
454{
455	ide_hwif_t *hwif	= HWIF(drive);
456	u8 stat			= 0;
457
458	if (drive->waiting_for_dma)
459		return hwif->dma_ops->dma_test_irq(drive);
460
461#if 0
462	/* need to guarantee 400ns since last command was issued */
463	udelay(1);
464#endif
465
466	/*
467	 * We do a passive status test under shared PCI interrupts on
468	 * cards that truly share the ATA side interrupt, but may also share
469	 * an interrupt with another pci card/device.  We make no assumptions
470	 * about possible isa-pnp and pci-pnp issues yet.
471	 */
472	if (hwif->io_ports.ctl_addr)
473		stat = hwif->tp_ops->read_altstatus(hwif);
474	else
475		/* Note: this may clear a pending IRQ!! */
476		stat = hwif->tp_ops->read_status(hwif);
477
478	if (stat & ATA_BUSY)
479		/* drive busy:  definitely not interrupting */
480		return 0;
481
482	/* drive ready: *might* be interrupting */
483	return 1;
484}
485
486EXPORT_SYMBOL(drive_is_ready);
487
488/*
489 * This routine busy-waits for the drive status to be not "busy".
490 * It then checks the status for all of the "good" bits and none
491 * of the "bad" bits, and if all is okay it returns 0.  All other
492 * cases return error -- caller may then invoke ide_error().
493 *
494 * This routine should get fixed to not hog the cpu during extra long waits..
495 * That could be done by busy-waiting for the first jiffy or two, and then
496 * setting a timer to wake up at half second intervals thereafter,
497 * until timeout is achieved, before timing out.
498 */
499static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
500{
501	ide_hwif_t *hwif = drive->hwif;
502	const struct ide_tp_ops *tp_ops = hwif->tp_ops;
503	unsigned long flags;
504	int i;
505	u8 stat;
506
507	udelay(1);	/* spec allows drive 400ns to assert "BUSY" */
508	stat = tp_ops->read_status(hwif);
509
510	if (stat & ATA_BUSY) {
511		local_irq_set(flags);
512		timeout += jiffies;
513		while ((stat = tp_ops->read_status(hwif)) & ATA_BUSY) {
514			if (time_after(jiffies, timeout)) {
515				/*
516				 * One last read after the timeout in case
517				 * heavy interrupt load made us not make any
518				 * progress during the timeout..
519				 */
520				stat = tp_ops->read_status(hwif);
521				if ((stat & ATA_BUSY) == 0)
522					break;
523
524				local_irq_restore(flags);
525				*rstat = stat;
526				return -EBUSY;
527			}
528		}
529		local_irq_restore(flags);
530	}
531	/*
532	 * Allow status to settle, then read it again.
533	 * A few rare drives vastly violate the 400ns spec here,
534	 * so we'll wait up to 10usec for a "good" status
535	 * rather than expensively fail things immediately.
536	 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
537	 */
538	for (i = 0; i < 10; i++) {
539		udelay(1);
540		stat = tp_ops->read_status(hwif);
541
542		if (OK_STAT(stat, good, bad)) {
543			*rstat = stat;
544			return 0;
545		}
546	}
547	*rstat = stat;
548	return -EFAULT;
549}
550
551/*
552 * In case of error returns error value after doing "*startstop = ide_error()".
553 * The caller should return the updated value of "startstop" in this case,
554 * "startstop" is unchanged when the function returns 0.
555 */
556int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
557{
558	int err;
559	u8 stat;
560
561	/* bail early if we've exceeded max_failures */
562	if (drive->max_failures && (drive->failures > drive->max_failures)) {
563		*startstop = ide_stopped;
564		return 1;
565	}
566
567	err = __ide_wait_stat(drive, good, bad, timeout, &stat);
568
569	if (err) {
570		char *s = (err == -EBUSY) ? "status timeout" : "status error";
571		*startstop = ide_error(drive, s, stat);
572	}
573
574	return err;
575}
576
577EXPORT_SYMBOL(ide_wait_stat);
578
579/**
580 *	ide_in_drive_list	-	look for drive in black/white list
581 *	@id: drive identifier
582 *	@table: list to inspect
583 *
584 *	Look for a drive in the blacklist and the whitelist tables
585 *	Returns 1 if the drive is found in the table.
586 */
587
588int ide_in_drive_list(u16 *id, const struct drive_list_entry *table)
589{
590	for ( ; table->id_model; table++)
591		if ((!strcmp(table->id_model, (char *)&id[ATA_ID_PROD])) &&
592		    (!table->id_firmware ||
593		     strstr((char *)&id[ATA_ID_FW_REV], table->id_firmware)))
594			return 1;
595	return 0;
596}
597
598EXPORT_SYMBOL_GPL(ide_in_drive_list);
599
600/*
601 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
602 * We list them here and depend on the device side cable detection for them.
603 *
604 * Some optical devices with the buggy firmwares have the same problem.
605 */
606static const struct drive_list_entry ivb_list[] = {
607	{ "QUANTUM FIREBALLlct10 05"	, "A03.0900"	},
608	{ "TSSTcorp CDDVDW SH-S202J"	, "SB00"	},
609	{ "TSSTcorp CDDVDW SH-S202J"	, "SB01"	},
610	{ "TSSTcorp CDDVDW SH-S202N"	, "SB00"	},
611	{ "TSSTcorp CDDVDW SH-S202N"	, "SB01"	},
612	{ "TSSTcorp CDDVDW SH-S202H"	, "SB00"	},
613	{ "TSSTcorp CDDVDW SH-S202H"	, "SB01"	},
614	{ NULL				, NULL		}
615};
616
617/*
618 *  All hosts that use the 80c ribbon must use!
619 *  The name is derived from upper byte of word 93 and the 80c ribbon.
620 */
621u8 eighty_ninty_three (ide_drive_t *drive)
622{
623	ide_hwif_t *hwif = drive->hwif;
624	u16 *id = drive->id;
625	int ivb = ide_in_drive_list(id, ivb_list);
626
627	if (hwif->cbl == ATA_CBL_PATA40_SHORT)
628		return 1;
629
630	if (ivb)
631		printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
632				  drive->name);
633
634	if (ide_dev_is_sata(id) && !ivb)
635		return 1;
636
637	if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
638		goto no_80w;
639
640	/*
641	 * FIXME:
642	 * - change master/slave IDENTIFY order
643	 * - force bit13 (80c cable present) check also for !ivb devices
644	 *   (unless the slave device is pre-ATA3)
645	 */
646	if ((id[ATA_ID_HW_CONFIG] & 0x4000) ||
647	    (ivb && (id[ATA_ID_HW_CONFIG] & 0x2000)))
648		return 1;
649
650no_80w:
651	if (drive->udma33_warned == 1)
652		return 0;
653
654	printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
655			    "limiting max speed to UDMA33\n",
656			    drive->name,
657			    hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
658
659	drive->udma33_warned = 1;
660
661	return 0;
662}
663
664int ide_driveid_update(ide_drive_t *drive)
665{
666	ide_hwif_t *hwif = drive->hwif;
667	const struct ide_tp_ops *tp_ops = hwif->tp_ops;
668	u16 *id;
669	unsigned long timeout, flags;
670	u8 stat;
671
672	/*
673	 * Re-read drive->id for possible DMA mode
674	 * change (copied from ide-probe.c)
675	 */
676
677	SELECT_MASK(drive, 1);
678	tp_ops->set_irq(hwif, 0);
679	msleep(50);
680	tp_ops->exec_command(hwif, ATA_CMD_ID_ATA);
681	timeout = jiffies + WAIT_WORSTCASE;
682	do {
683		if (time_after(jiffies, timeout)) {
684			SELECT_MASK(drive, 0);
685			return 0;	/* drive timed-out */
686		}
687
688		msleep(50);	/* give drive a breather */
689		stat = tp_ops->read_altstatus(hwif);
690	} while (stat & ATA_BUSY);
691
692	msleep(50);	/* wait for IRQ and ATA_DRQ */
693	stat = tp_ops->read_status(hwif);
694
695	if (!OK_STAT(stat, ATA_DRQ, BAD_R_STAT)) {
696		SELECT_MASK(drive, 0);
697		printk("%s: CHECK for good STATUS\n", drive->name);
698		return 0;
699	}
700	local_irq_save(flags);
701	SELECT_MASK(drive, 0);
702	id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
703	if (!id) {
704		local_irq_restore(flags);
705		return 0;
706	}
707	tp_ops->input_data(drive, NULL, id, SECTOR_SIZE);
708	(void)tp_ops->read_status(hwif);	/* clear drive IRQ */
709	local_irq_enable();
710	local_irq_restore(flags);
711	ide_fix_driveid(id);
712
713	drive->id[ATA_ID_UDMA_MODES]  = id[ATA_ID_UDMA_MODES];
714	drive->id[ATA_ID_MWDMA_MODES] = id[ATA_ID_MWDMA_MODES];
715	drive->id[ATA_ID_SWDMA_MODES] = id[ATA_ID_SWDMA_MODES];
716	/* anything more ? */
717
718	kfree(id);
719
720	if (drive->using_dma && ide_id_dma_bug(drive))
721		ide_dma_off(drive);
722
723	return 1;
724}
725
726int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
727{
728	ide_hwif_t *hwif = drive->hwif;
729	const struct ide_tp_ops *tp_ops = hwif->tp_ops;
730	u16 *id = drive->id, i;
731	int error = 0;
732	u8 stat;
733	ide_task_t task;
734
735#ifdef CONFIG_BLK_DEV_IDEDMA
736	if (hwif->dma_ops)	/* check if host supports DMA */
737		hwif->dma_ops->dma_host_set(drive, 0);
738#endif
739
740	/* Skip setting PIO flow-control modes on pre-EIDE drives */
741	if ((speed & 0xf8) == XFER_PIO_0 && ata_id_has_iordy(drive->id) == 0)
742		goto skip;
743
744	/*
745	 * Don't use ide_wait_cmd here - it will
746	 * attempt to set_geometry and recalibrate,
747	 * but for some reason these don't work at
748	 * this point (lost interrupt).
749	 */
750        /*
751         * Select the drive, and issue the SETFEATURES command
752         */
753	disable_irq_nosync(hwif->irq);
754
755	/*
756	 *	FIXME: we race against the running IRQ here if
757	 *	this is called from non IRQ context. If we use
758	 *	disable_irq() we hang on the error path. Work
759	 *	is needed.
760	 */
761
762	udelay(1);
763	SELECT_DRIVE(drive);
764	SELECT_MASK(drive, 0);
765	udelay(1);
766	tp_ops->set_irq(hwif, 0);
767
768	memset(&task, 0, sizeof(task));
769	task.tf_flags = IDE_TFLAG_OUT_FEATURE | IDE_TFLAG_OUT_NSECT;
770	task.tf.feature = SETFEATURES_XFER;
771	task.tf.nsect   = speed;
772
773	tp_ops->tf_load(drive, &task);
774
775	tp_ops->exec_command(hwif, ATA_CMD_SET_FEATURES);
776
777	if (drive->quirk_list == 2)
778		tp_ops->set_irq(hwif, 1);
779
780	error = __ide_wait_stat(drive, drive->ready_stat,
781				ATA_BUSY | ATA_DRQ | ATA_ERR,
782				WAIT_CMD, &stat);
783
784	SELECT_MASK(drive, 0);
785
786	enable_irq(hwif->irq);
787
788	if (error) {
789		(void) ide_dump_status(drive, "set_drive_speed_status", stat);
790		return error;
791	}
792
793	id[ATA_ID_UDMA_MODES]  &= ~0xFF00;
794	id[ATA_ID_MWDMA_MODES] &= ~0x0F00;
795	id[ATA_ID_SWDMA_MODES] &= ~0x0F00;
796
797 skip:
798#ifdef CONFIG_BLK_DEV_IDEDMA
799	if (speed >= XFER_SW_DMA_0 && drive->using_dma)
800		hwif->dma_ops->dma_host_set(drive, 1);
801	else if (hwif->dma_ops)	/* check if host supports DMA */
802		ide_dma_off_quietly(drive);
803#endif
804
805	if (speed >= XFER_UDMA_0) {
806		i = 1 << (speed - XFER_UDMA_0);
807		id[ATA_ID_UDMA_MODES] |= (i << 8 | i);
808	} else if (speed >= XFER_MW_DMA_0) {
809		i = 1 << (speed - XFER_MW_DMA_0);
810		id[ATA_ID_MWDMA_MODES] |= (i << 8 | i);
811	} else if (speed >= XFER_SW_DMA_0) {
812		i = 1 << (speed - XFER_SW_DMA_0);
813		id[ATA_ID_SWDMA_MODES] |= (i << 8 | i);
814	}
815
816	if (!drive->init_speed)
817		drive->init_speed = speed;
818	drive->current_speed = speed;
819	return error;
820}
821
822/*
823 * This should get invoked any time we exit the driver to
824 * wait for an interrupt response from a drive.  handler() points
825 * at the appropriate code to handle the next interrupt, and a
826 * timer is started to prevent us from waiting forever in case
827 * something goes wrong (see the ide_timer_expiry() handler later on).
828 *
829 * See also ide_execute_command
830 */
831static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
832		      unsigned int timeout, ide_expiry_t *expiry)
833{
834	ide_hwgroup_t *hwgroup = HWGROUP(drive);
835
836	BUG_ON(hwgroup->handler);
837	hwgroup->handler	= handler;
838	hwgroup->expiry		= expiry;
839	hwgroup->timer.expires	= jiffies + timeout;
840	hwgroup->req_gen_timer	= hwgroup->req_gen;
841	add_timer(&hwgroup->timer);
842}
843
844void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
845		      unsigned int timeout, ide_expiry_t *expiry)
846{
847	unsigned long flags;
848	spin_lock_irqsave(&ide_lock, flags);
849	__ide_set_handler(drive, handler, timeout, expiry);
850	spin_unlock_irqrestore(&ide_lock, flags);
851}
852
853EXPORT_SYMBOL(ide_set_handler);
854
855/**
856 *	ide_execute_command	-	execute an IDE command
857 *	@drive: IDE drive to issue the command against
858 *	@command: command byte to write
859 *	@handler: handler for next phase
860 *	@timeout: timeout for command
861 *	@expiry:  handler to run on timeout
862 *
863 *	Helper function to issue an IDE command. This handles the
864 *	atomicity requirements, command timing and ensures that the
865 *	handler and IRQ setup do not race. All IDE command kick off
866 *	should go via this function or do equivalent locking.
867 */
868
869void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
870			 unsigned timeout, ide_expiry_t *expiry)
871{
872	unsigned long flags;
873	ide_hwif_t *hwif = HWIF(drive);
874
875	spin_lock_irqsave(&ide_lock, flags);
876	__ide_set_handler(drive, handler, timeout, expiry);
877	hwif->tp_ops->exec_command(hwif, cmd);
878	/*
879	 * Drive takes 400nS to respond, we must avoid the IRQ being
880	 * serviced before that.
881	 *
882	 * FIXME: we could skip this delay with care on non shared devices
883	 */
884	ndelay(400);
885	spin_unlock_irqrestore(&ide_lock, flags);
886}
887EXPORT_SYMBOL(ide_execute_command);
888
889void ide_execute_pkt_cmd(ide_drive_t *drive)
890{
891	ide_hwif_t *hwif = drive->hwif;
892	unsigned long flags;
893
894	spin_lock_irqsave(&ide_lock, flags);
895	hwif->tp_ops->exec_command(hwif, ATA_CMD_PACKET);
896	ndelay(400);
897	spin_unlock_irqrestore(&ide_lock, flags);
898}
899EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
900
901static inline void ide_complete_drive_reset(ide_drive_t *drive, int err)
902{
903	struct request *rq = drive->hwif->hwgroup->rq;
904
905	if (rq && blk_special_request(rq) && rq->cmd[0] == REQ_DRIVE_RESET)
906		ide_end_request(drive, err ? err : 1, 0);
907}
908
909/* needed below */
910static ide_startstop_t do_reset1 (ide_drive_t *, int);
911
912/*
913 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
914 * during an atapi drive reset operation. If the drive has not yet responded,
915 * and we have not yet hit our maximum waiting time, then the timer is restarted
916 * for another 50ms.
917 */
918static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
919{
920	ide_hwif_t *hwif = drive->hwif;
921	ide_hwgroup_t *hwgroup = hwif->hwgroup;
922	u8 stat;
923
924	SELECT_DRIVE(drive);
925	udelay (10);
926	stat = hwif->tp_ops->read_status(hwif);
927
928	if (OK_STAT(stat, 0, ATA_BUSY))
929		printk("%s: ATAPI reset complete\n", drive->name);
930	else {
931		if (time_before(jiffies, hwgroup->poll_timeout)) {
932			ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
933			/* continue polling */
934			return ide_started;
935		}
936		/* end of polling */
937		hwgroup->polling = 0;
938		printk("%s: ATAPI reset timed-out, status=0x%02x\n",
939				drive->name, stat);
940		/* do it the old fashioned way */
941		return do_reset1(drive, 1);
942	}
943	/* done polling */
944	hwgroup->polling = 0;
945	ide_complete_drive_reset(drive, 0);
946	return ide_stopped;
947}
948
949/*
950 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
951 * during an ide reset operation. If the drives have not yet responded,
952 * and we have not yet hit our maximum waiting time, then the timer is restarted
953 * for another 50ms.
954 */
955static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
956{
957	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
958	ide_hwif_t *hwif	= HWIF(drive);
959	const struct ide_port_ops *port_ops = hwif->port_ops;
960	u8 tmp;
961	int err = 0;
962
963	if (port_ops && port_ops->reset_poll) {
964		err = port_ops->reset_poll(drive);
965		if (err) {
966			printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
967				hwif->name, drive->name);
968			goto out;
969		}
970	}
971
972	tmp = hwif->tp_ops->read_status(hwif);
973
974	if (!OK_STAT(tmp, 0, ATA_BUSY)) {
975		if (time_before(jiffies, hwgroup->poll_timeout)) {
976			ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
977			/* continue polling */
978			return ide_started;
979		}
980		printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
981		drive->failures++;
982		err = -EIO;
983	} else  {
984		printk("%s: reset: ", hwif->name);
985		tmp = ide_read_error(drive);
986
987		if (tmp == 1) {
988			printk("success\n");
989			drive->failures = 0;
990		} else {
991			drive->failures++;
992			printk("master: ");
993			switch (tmp & 0x7f) {
994				case 1: printk("passed");
995					break;
996				case 2: printk("formatter device error");
997					break;
998				case 3: printk("sector buffer error");
999					break;
1000				case 4: printk("ECC circuitry error");
1001					break;
1002				case 5: printk("controlling MPU error");
1003					break;
1004				default:printk("error (0x%02x?)", tmp);
1005			}
1006			if (tmp & 0x80)
1007				printk("; slave: failed");
1008			printk("\n");
1009			err = -EIO;
1010		}
1011	}
1012out:
1013	hwgroup->polling = 0;	/* done polling */
1014	ide_complete_drive_reset(drive, err);
1015	return ide_stopped;
1016}
1017
1018static void ide_disk_pre_reset(ide_drive_t *drive)
1019{
1020	int legacy = (drive->id[ATA_ID_CFS_ENABLE_2] & 0x0400) ? 0 : 1;
1021
1022	drive->special.all = 0;
1023	drive->special.b.set_geometry = legacy;
1024	drive->special.b.recalibrate  = legacy;
1025	drive->mult_count = 0;
1026	if (!drive->keep_settings && !drive->using_dma)
1027		drive->mult_req = 0;
1028	if (drive->mult_req != drive->mult_count)
1029		drive->special.b.set_multmode = 1;
1030}
1031
1032static void pre_reset(ide_drive_t *drive)
1033{
1034	const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1035
1036	if (drive->media == ide_disk)
1037		ide_disk_pre_reset(drive);
1038	else
1039		drive->post_reset = 1;
1040
1041	if (drive->using_dma) {
1042		if (drive->crc_count)
1043			ide_check_dma_crc(drive);
1044		else
1045			ide_dma_off(drive);
1046	}
1047
1048	if (!drive->keep_settings) {
1049		if (!drive->using_dma) {
1050			drive->unmask = 0;
1051			drive->io_32bit = 0;
1052		}
1053		return;
1054	}
1055
1056	if (port_ops && port_ops->pre_reset)
1057		port_ops->pre_reset(drive);
1058
1059	if (drive->current_speed != 0xff)
1060		drive->desired_speed = drive->current_speed;
1061	drive->current_speed = 0xff;
1062}
1063
1064/*
1065 * do_reset1() attempts to recover a confused drive by resetting it.
1066 * Unfortunately, resetting a disk drive actually resets all devices on
1067 * the same interface, so it can really be thought of as resetting the
1068 * interface rather than resetting the drive.
1069 *
1070 * ATAPI devices have their own reset mechanism which allows them to be
1071 * individually reset without clobbering other devices on the same interface.
1072 *
1073 * Unfortunately, the IDE interface does not generate an interrupt to let
1074 * us know when the reset operation has finished, so we must poll for this.
1075 * Equally poor, though, is the fact that this may a very long time to complete,
1076 * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1077 * we set a timer to poll at 50ms intervals.
1078 */
1079static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1080{
1081	unsigned int unit;
1082	unsigned long flags;
1083	ide_hwif_t *hwif;
1084	ide_hwgroup_t *hwgroup;
1085	struct ide_io_ports *io_ports;
1086	const struct ide_tp_ops *tp_ops;
1087	const struct ide_port_ops *port_ops;
1088
1089	spin_lock_irqsave(&ide_lock, flags);
1090	hwif = HWIF(drive);
1091	hwgroup = HWGROUP(drive);
1092
1093	io_ports = &hwif->io_ports;
1094
1095	tp_ops = hwif->tp_ops;
1096
1097	/* We must not reset with running handlers */
1098	BUG_ON(hwgroup->handler != NULL);
1099
1100	/* For an ATAPI device, first try an ATAPI SRST. */
1101	if (drive->media != ide_disk && !do_not_try_atapi) {
1102		pre_reset(drive);
1103		SELECT_DRIVE(drive);
1104		udelay (20);
1105		tp_ops->exec_command(hwif, ATA_CMD_DEV_RESET);
1106		ndelay(400);
1107		hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1108		hwgroup->polling = 1;
1109		__ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1110		spin_unlock_irqrestore(&ide_lock, flags);
1111		return ide_started;
1112	}
1113
1114	/*
1115	 * First, reset any device state data we were maintaining
1116	 * for any of the drives on this interface.
1117	 */
1118	for (unit = 0; unit < MAX_DRIVES; ++unit)
1119		pre_reset(&hwif->drives[unit]);
1120
1121	if (io_ports->ctl_addr == 0) {
1122		spin_unlock_irqrestore(&ide_lock, flags);
1123		ide_complete_drive_reset(drive, -ENXIO);
1124		return ide_stopped;
1125	}
1126
1127	/*
1128	 * Note that we also set nIEN while resetting the device,
1129	 * to mask unwanted interrupts from the interface during the reset.
1130	 * However, due to the design of PC hardware, this will cause an
1131	 * immediate interrupt due to the edge transition it produces.
1132	 * This single interrupt gives us a "fast poll" for drives that
1133	 * recover from reset very quickly, saving us the first 50ms wait time.
1134	 *
1135	 * TODO: add ->softreset method and stop abusing ->set_irq
1136	 */
1137	/* set SRST and nIEN */
1138	tp_ops->set_irq(hwif, 4);
1139	/* more than enough time */
1140	udelay(10);
1141	/* clear SRST, leave nIEN (unless device is on the quirk list) */
1142	tp_ops->set_irq(hwif, drive->quirk_list == 2);
1143	/* more than enough time */
1144	udelay(10);
1145	hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1146	hwgroup->polling = 1;
1147	__ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1148
1149	/*
1150	 * Some weird controller like resetting themselves to a strange
1151	 * state when the disks are reset this way. At least, the Winbond
1152	 * 553 documentation says that
1153	 */
1154	port_ops = hwif->port_ops;
1155	if (port_ops && port_ops->resetproc)
1156		port_ops->resetproc(drive);
1157
1158	spin_unlock_irqrestore(&ide_lock, flags);
1159	return ide_started;
1160}
1161
1162/*
1163 * ide_do_reset() is the entry point to the drive/interface reset code.
1164 */
1165
1166ide_startstop_t ide_do_reset (ide_drive_t *drive)
1167{
1168	return do_reset1(drive, 0);
1169}
1170
1171EXPORT_SYMBOL(ide_do_reset);
1172
1173/*
1174 * ide_wait_not_busy() waits for the currently selected device on the hwif
1175 * to report a non-busy status, see comments in ide_probe_port().
1176 */
1177int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1178{
1179	u8 stat = 0;
1180
1181	while(timeout--) {
1182		/*
1183		 * Turn this into a schedule() sleep once I'm sure
1184		 * about locking issues (2.5 work ?).
1185		 */
1186		mdelay(1);
1187		stat = hwif->tp_ops->read_status(hwif);
1188		if ((stat & ATA_BUSY) == 0)
1189			return 0;
1190		/*
1191		 * Assume a value of 0xff means nothing is connected to
1192		 * the interface and it doesn't implement the pull-down
1193		 * resistor on D7.
1194		 */
1195		if (stat == 0xff)
1196			return -ENODEV;
1197		touch_softlockup_watchdog();
1198		touch_nmi_watchdog();
1199	}
1200	return -EBUSY;
1201}
1202
1203EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1204
1205