ide-iops.c revision 1e86240f3fd33f8052141778ad3dffe2c96184d7
1/*
2 * linux/drivers/ide/ide-iops.c	Version 0.37	Mar 05, 2003
3 *
4 *  Copyright (C) 2000-2002	Andre Hedrick <andre@linux-ide.org>
5 *  Copyright (C) 2003		Red Hat <alan@redhat.com>
6 *
7 */
8
9#include <linux/module.h>
10#include <linux/types.h>
11#include <linux/string.h>
12#include <linux/kernel.h>
13#include <linux/timer.h>
14#include <linux/mm.h>
15#include <linux/interrupt.h>
16#include <linux/major.h>
17#include <linux/errno.h>
18#include <linux/genhd.h>
19#include <linux/blkpg.h>
20#include <linux/slab.h>
21#include <linux/pci.h>
22#include <linux/delay.h>
23#include <linux/hdreg.h>
24#include <linux/ide.h>
25#include <linux/bitops.h>
26#include <linux/nmi.h>
27
28#include <asm/byteorder.h>
29#include <asm/irq.h>
30#include <asm/uaccess.h>
31#include <asm/io.h>
32
33/*
34 *	Conventional PIO operations for ATA devices
35 */
36
37static u8 ide_inb (unsigned long port)
38{
39	return (u8) inb(port);
40}
41
42static u16 ide_inw (unsigned long port)
43{
44	return (u16) inw(port);
45}
46
47static void ide_insw (unsigned long port, void *addr, u32 count)
48{
49	insw(port, addr, count);
50}
51
52static u32 ide_inl (unsigned long port)
53{
54	return (u32) inl(port);
55}
56
57static void ide_insl (unsigned long port, void *addr, u32 count)
58{
59	insl(port, addr, count);
60}
61
62static void ide_outb (u8 val, unsigned long port)
63{
64	outb(val, port);
65}
66
67static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
68{
69	outb(addr, port);
70}
71
72static void ide_outw (u16 val, unsigned long port)
73{
74	outw(val, port);
75}
76
77static void ide_outsw (unsigned long port, void *addr, u32 count)
78{
79	outsw(port, addr, count);
80}
81
82static void ide_outl (u32 val, unsigned long port)
83{
84	outl(val, port);
85}
86
87static void ide_outsl (unsigned long port, void *addr, u32 count)
88{
89	outsl(port, addr, count);
90}
91
92void default_hwif_iops (ide_hwif_t *hwif)
93{
94	hwif->OUTB	= ide_outb;
95	hwif->OUTBSYNC	= ide_outbsync;
96	hwif->OUTW	= ide_outw;
97	hwif->OUTL	= ide_outl;
98	hwif->OUTSW	= ide_outsw;
99	hwif->OUTSL	= ide_outsl;
100	hwif->INB	= ide_inb;
101	hwif->INW	= ide_inw;
102	hwif->INL	= ide_inl;
103	hwif->INSW	= ide_insw;
104	hwif->INSL	= ide_insl;
105}
106
107/*
108 *	MMIO operations, typically used for SATA controllers
109 */
110
111static u8 ide_mm_inb (unsigned long port)
112{
113	return (u8) readb((void __iomem *) port);
114}
115
116static u16 ide_mm_inw (unsigned long port)
117{
118	return (u16) readw((void __iomem *) port);
119}
120
121static void ide_mm_insw (unsigned long port, void *addr, u32 count)
122{
123	__ide_mm_insw((void __iomem *) port, addr, count);
124}
125
126static u32 ide_mm_inl (unsigned long port)
127{
128	return (u32) readl((void __iomem *) port);
129}
130
131static void ide_mm_insl (unsigned long port, void *addr, u32 count)
132{
133	__ide_mm_insl((void __iomem *) port, addr, count);
134}
135
136static void ide_mm_outb (u8 value, unsigned long port)
137{
138	writeb(value, (void __iomem *) port);
139}
140
141static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
142{
143	writeb(value, (void __iomem *) port);
144}
145
146static void ide_mm_outw (u16 value, unsigned long port)
147{
148	writew(value, (void __iomem *) port);
149}
150
151static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
152{
153	__ide_mm_outsw((void __iomem *) port, addr, count);
154}
155
156static void ide_mm_outl (u32 value, unsigned long port)
157{
158	writel(value, (void __iomem *) port);
159}
160
161static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
162{
163	__ide_mm_outsl((void __iomem *) port, addr, count);
164}
165
166void default_hwif_mmiops (ide_hwif_t *hwif)
167{
168	hwif->OUTB	= ide_mm_outb;
169	/* Most systems will need to override OUTBSYNC, alas however
170	   this one is controller specific! */
171	hwif->OUTBSYNC	= ide_mm_outbsync;
172	hwif->OUTW	= ide_mm_outw;
173	hwif->OUTL	= ide_mm_outl;
174	hwif->OUTSW	= ide_mm_outsw;
175	hwif->OUTSL	= ide_mm_outsl;
176	hwif->INB	= ide_mm_inb;
177	hwif->INW	= ide_mm_inw;
178	hwif->INL	= ide_mm_inl;
179	hwif->INSW	= ide_mm_insw;
180	hwif->INSL	= ide_mm_insl;
181}
182
183EXPORT_SYMBOL(default_hwif_mmiops);
184
185u32 ide_read_24 (ide_drive_t *drive)
186{
187	u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG);
188	u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG);
189	u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG);
190	return (hcyl<<16)|(lcyl<<8)|sect;
191}
192
193void SELECT_DRIVE (ide_drive_t *drive)
194{
195	if (HWIF(drive)->selectproc)
196		HWIF(drive)->selectproc(drive);
197	HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
198}
199
200EXPORT_SYMBOL(SELECT_DRIVE);
201
202void SELECT_INTERRUPT (ide_drive_t *drive)
203{
204	if (HWIF(drive)->intrproc)
205		HWIF(drive)->intrproc(drive);
206	else
207		HWIF(drive)->OUTB(drive->ctl|2, IDE_CONTROL_REG);
208}
209
210void SELECT_MASK (ide_drive_t *drive, int mask)
211{
212	if (HWIF(drive)->maskproc)
213		HWIF(drive)->maskproc(drive, mask);
214}
215
216void QUIRK_LIST (ide_drive_t *drive)
217{
218	if (HWIF(drive)->quirkproc)
219		drive->quirk_list = HWIF(drive)->quirkproc(drive);
220}
221
222/*
223 * Some localbus EIDE interfaces require a special access sequence
224 * when using 32-bit I/O instructions to transfer data.  We call this
225 * the "vlb_sync" sequence, which consists of three successive reads
226 * of the sector count register location, with interrupts disabled
227 * to ensure that the reads all happen together.
228 */
229static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
230{
231	(void) HWIF(drive)->INB(port);
232	(void) HWIF(drive)->INB(port);
233	(void) HWIF(drive)->INB(port);
234}
235
236/*
237 * This is used for most PIO data transfers *from* the IDE interface
238 */
239static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
240{
241	ide_hwif_t *hwif	= HWIF(drive);
242	u8 io_32bit		= drive->io_32bit;
243
244	if (io_32bit) {
245		if (io_32bit & 2) {
246			unsigned long flags;
247			local_irq_save(flags);
248			ata_vlb_sync(drive, IDE_NSECTOR_REG);
249			hwif->INSL(IDE_DATA_REG, buffer, wcount);
250			local_irq_restore(flags);
251		} else
252			hwif->INSL(IDE_DATA_REG, buffer, wcount);
253	} else {
254		hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
255	}
256}
257
258/*
259 * This is used for most PIO data transfers *to* the IDE interface
260 */
261static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
262{
263	ide_hwif_t *hwif	= HWIF(drive);
264	u8 io_32bit		= drive->io_32bit;
265
266	if (io_32bit) {
267		if (io_32bit & 2) {
268			unsigned long flags;
269			local_irq_save(flags);
270			ata_vlb_sync(drive, IDE_NSECTOR_REG);
271			hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
272			local_irq_restore(flags);
273		} else
274			hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
275	} else {
276		hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
277	}
278}
279
280/*
281 * The following routines are mainly used by the ATAPI drivers.
282 *
283 * These routines will round up any request for an odd number of bytes,
284 * so if an odd bytecount is specified, be sure that there's at least one
285 * extra byte allocated for the buffer.
286 */
287
288static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
289{
290	ide_hwif_t *hwif = HWIF(drive);
291
292	++bytecount;
293#if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
294	if (MACH_IS_ATARI || MACH_IS_Q40) {
295		/* Atari has a byte-swapped IDE interface */
296		insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
297		return;
298	}
299#endif /* CONFIG_ATARI || CONFIG_Q40 */
300	hwif->ata_input_data(drive, buffer, bytecount / 4);
301	if ((bytecount & 0x03) >= 2)
302		hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
303}
304
305static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
306{
307	ide_hwif_t *hwif = HWIF(drive);
308
309	++bytecount;
310#if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
311	if (MACH_IS_ATARI || MACH_IS_Q40) {
312		/* Atari has a byte-swapped IDE interface */
313		outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
314		return;
315	}
316#endif /* CONFIG_ATARI || CONFIG_Q40 */
317	hwif->ata_output_data(drive, buffer, bytecount / 4);
318	if ((bytecount & 0x03) >= 2)
319		hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
320}
321
322void default_hwif_transport(ide_hwif_t *hwif)
323{
324	hwif->ata_input_data		= ata_input_data;
325	hwif->ata_output_data		= ata_output_data;
326	hwif->atapi_input_bytes		= atapi_input_bytes;
327	hwif->atapi_output_bytes	= atapi_output_bytes;
328}
329
330/*
331 * Beginning of Taskfile OPCODE Library and feature sets.
332 */
333void ide_fix_driveid (struct hd_driveid *id)
334{
335#ifndef __LITTLE_ENDIAN
336# ifdef __BIG_ENDIAN
337	int i;
338	u16 *stringcast;
339
340	id->config         = __le16_to_cpu(id->config);
341	id->cyls           = __le16_to_cpu(id->cyls);
342	id->reserved2      = __le16_to_cpu(id->reserved2);
343	id->heads          = __le16_to_cpu(id->heads);
344	id->track_bytes    = __le16_to_cpu(id->track_bytes);
345	id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
346	id->sectors        = __le16_to_cpu(id->sectors);
347	id->vendor0        = __le16_to_cpu(id->vendor0);
348	id->vendor1        = __le16_to_cpu(id->vendor1);
349	id->vendor2        = __le16_to_cpu(id->vendor2);
350	stringcast = (u16 *)&id->serial_no[0];
351	for (i = 0; i < (20/2); i++)
352		stringcast[i] = __le16_to_cpu(stringcast[i]);
353	id->buf_type       = __le16_to_cpu(id->buf_type);
354	id->buf_size       = __le16_to_cpu(id->buf_size);
355	id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
356	stringcast = (u16 *)&id->fw_rev[0];
357	for (i = 0; i < (8/2); i++)
358		stringcast[i] = __le16_to_cpu(stringcast[i]);
359	stringcast = (u16 *)&id->model[0];
360	for (i = 0; i < (40/2); i++)
361		stringcast[i] = __le16_to_cpu(stringcast[i]);
362	id->dword_io       = __le16_to_cpu(id->dword_io);
363	id->reserved50     = __le16_to_cpu(id->reserved50);
364	id->field_valid    = __le16_to_cpu(id->field_valid);
365	id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
366	id->cur_heads      = __le16_to_cpu(id->cur_heads);
367	id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
368	id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
369	id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
370	id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
371	id->dma_1word      = __le16_to_cpu(id->dma_1word);
372	id->dma_mword      = __le16_to_cpu(id->dma_mword);
373	id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
374	id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
375	id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
376	id->eide_pio       = __le16_to_cpu(id->eide_pio);
377	id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
378	for (i = 0; i < 2; ++i)
379		id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
380	for (i = 0; i < 4; ++i)
381		id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
382	id->queue_depth    = __le16_to_cpu(id->queue_depth);
383	for (i = 0; i < 4; ++i)
384		id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
385	id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
386	id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
387	id->command_set_1  = __le16_to_cpu(id->command_set_1);
388	id->command_set_2  = __le16_to_cpu(id->command_set_2);
389	id->cfsse          = __le16_to_cpu(id->cfsse);
390	id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
391	id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
392	id->csf_default    = __le16_to_cpu(id->csf_default);
393	id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
394	id->trseuc         = __le16_to_cpu(id->trseuc);
395	id->trsEuc         = __le16_to_cpu(id->trsEuc);
396	id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
397	id->mprc           = __le16_to_cpu(id->mprc);
398	id->hw_config      = __le16_to_cpu(id->hw_config);
399	id->acoustic       = __le16_to_cpu(id->acoustic);
400	id->msrqs          = __le16_to_cpu(id->msrqs);
401	id->sxfert         = __le16_to_cpu(id->sxfert);
402	id->sal            = __le16_to_cpu(id->sal);
403	id->spg            = __le32_to_cpu(id->spg);
404	id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
405	for (i = 0; i < 22; i++)
406		id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
407	id->last_lun       = __le16_to_cpu(id->last_lun);
408	id->word127        = __le16_to_cpu(id->word127);
409	id->dlf            = __le16_to_cpu(id->dlf);
410	id->csfo           = __le16_to_cpu(id->csfo);
411	for (i = 0; i < 26; i++)
412		id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
413	id->word156        = __le16_to_cpu(id->word156);
414	for (i = 0; i < 3; i++)
415		id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
416	id->cfa_power      = __le16_to_cpu(id->cfa_power);
417	for (i = 0; i < 14; i++)
418		id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
419	for (i = 0; i < 31; i++)
420		id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
421	for (i = 0; i < 48; i++)
422		id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
423	id->integrity_word  = __le16_to_cpu(id->integrity_word);
424# else
425#  error "Please fix <asm/byteorder.h>"
426# endif
427#endif
428}
429
430/* FIXME: exported for use by the USB storage (isd200.c) code only */
431EXPORT_SYMBOL(ide_fix_driveid);
432
433void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
434{
435	u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
436
437	if (byteswap) {
438		/* convert from big-endian to host byte order */
439		for (p = end ; p != s;) {
440			unsigned short *pp = (unsigned short *) (p -= 2);
441			*pp = ntohs(*pp);
442		}
443	}
444	/* strip leading blanks */
445	while (s != end && *s == ' ')
446		++s;
447	/* compress internal blanks and strip trailing blanks */
448	while (s != end && *s) {
449		if (*s++ != ' ' || (s != end && *s && *s != ' '))
450			*p++ = *(s-1);
451	}
452	/* wipe out trailing garbage */
453	while (p != end)
454		*p++ = '\0';
455}
456
457EXPORT_SYMBOL(ide_fixstring);
458
459/*
460 * Needed for PCI irq sharing
461 */
462int drive_is_ready (ide_drive_t *drive)
463{
464	ide_hwif_t *hwif	= HWIF(drive);
465	u8 stat			= 0;
466
467	if (drive->waiting_for_dma)
468		return hwif->ide_dma_test_irq(drive);
469
470#if 0
471	/* need to guarantee 400ns since last command was issued */
472	udelay(1);
473#endif
474
475#ifdef CONFIG_IDEPCI_SHARE_IRQ
476	/*
477	 * We do a passive status test under shared PCI interrupts on
478	 * cards that truly share the ATA side interrupt, but may also share
479	 * an interrupt with another pci card/device.  We make no assumptions
480	 * about possible isa-pnp and pci-pnp issues yet.
481	 */
482	if (IDE_CONTROL_REG)
483		stat = hwif->INB(IDE_ALTSTATUS_REG);
484	else
485#endif /* CONFIG_IDEPCI_SHARE_IRQ */
486		/* Note: this may clear a pending IRQ!! */
487		stat = hwif->INB(IDE_STATUS_REG);
488
489	if (stat & BUSY_STAT)
490		/* drive busy:  definitely not interrupting */
491		return 0;
492
493	/* drive ready: *might* be interrupting */
494	return 1;
495}
496
497EXPORT_SYMBOL(drive_is_ready);
498
499/*
500 * Global for All, and taken from ide-pmac.c. Can be called
501 * with spinlock held & IRQs disabled, so don't schedule !
502 */
503int wait_for_ready (ide_drive_t *drive, int timeout)
504{
505	ide_hwif_t *hwif	= HWIF(drive);
506	u8 stat			= 0;
507
508	while(--timeout) {
509		stat = hwif->INB(IDE_STATUS_REG);
510		if (!(stat & BUSY_STAT)) {
511			if (drive->ready_stat == 0)
512				break;
513			else if ((stat & drive->ready_stat)||(stat & ERR_STAT))
514				break;
515		}
516		mdelay(1);
517	}
518	if ((stat & ERR_STAT) || timeout <= 0) {
519		if (stat & ERR_STAT) {
520			printk(KERN_ERR "%s: wait_for_ready, "
521				"error status: %x\n", drive->name, stat);
522		}
523		return 1;
524	}
525	return 0;
526}
527
528/*
529 * This routine busy-waits for the drive status to be not "busy".
530 * It then checks the status for all of the "good" bits and none
531 * of the "bad" bits, and if all is okay it returns 0.  All other
532 * cases return 1 after invoking ide_error() -- caller should just return.
533 *
534 * This routine should get fixed to not hog the cpu during extra long waits..
535 * That could be done by busy-waiting for the first jiffy or two, and then
536 * setting a timer to wake up at half second intervals thereafter,
537 * until timeout is achieved, before timing out.
538 */
539int ide_wait_stat (ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
540{
541	ide_hwif_t *hwif = HWIF(drive);
542	u8 stat;
543	int i;
544	unsigned long flags;
545
546	/* bail early if we've exceeded max_failures */
547	if (drive->max_failures && (drive->failures > drive->max_failures)) {
548		*startstop = ide_stopped;
549		return 1;
550	}
551
552	udelay(1);	/* spec allows drive 400ns to assert "BUSY" */
553	if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
554		local_irq_set(flags);
555		timeout += jiffies;
556		while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
557			if (time_after(jiffies, timeout)) {
558				/*
559				 * One last read after the timeout in case
560				 * heavy interrupt load made us not make any
561				 * progress during the timeout..
562				 */
563				stat = hwif->INB(IDE_STATUS_REG);
564				if (!(stat & BUSY_STAT))
565					break;
566
567				local_irq_restore(flags);
568				*startstop = ide_error(drive, "status timeout", stat);
569				return 1;
570			}
571		}
572		local_irq_restore(flags);
573	}
574	/*
575	 * Allow status to settle, then read it again.
576	 * A few rare drives vastly violate the 400ns spec here,
577	 * so we'll wait up to 10usec for a "good" status
578	 * rather than expensively fail things immediately.
579	 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
580	 */
581	for (i = 0; i < 10; i++) {
582		udelay(1);
583		if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad))
584			return 0;
585	}
586	*startstop = ide_error(drive, "status error", stat);
587	return 1;
588}
589
590EXPORT_SYMBOL(ide_wait_stat);
591
592/*
593 *  All hosts that use the 80c ribbon must use!
594 *  The name is derived from upper byte of word 93 and the 80c ribbon.
595 */
596u8 eighty_ninty_three (ide_drive_t *drive)
597{
598	if(HWIF(drive)->udma_four == 0)
599		return 0;
600
601	/* Check for SATA but only if we are ATA5 or higher */
602	if (drive->id->hw_config == 0 && (drive->id->major_rev_num & 0x7FE0))
603		return 1;
604	if (!(drive->id->hw_config & 0x6000))
605		return 0;
606#ifndef CONFIG_IDEDMA_IVB
607	if(!(drive->id->hw_config & 0x4000))
608		return 0;
609#endif /* CONFIG_IDEDMA_IVB */
610	return 1;
611}
612
613EXPORT_SYMBOL(eighty_ninty_three);
614
615int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
616{
617	if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
618	    (args->tfRegister[IDE_SECTOR_OFFSET] > XFER_UDMA_2) &&
619	    (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER)) {
620#ifndef CONFIG_IDEDMA_IVB
621		if ((drive->id->hw_config & 0x6000) == 0) {
622#else /* !CONFIG_IDEDMA_IVB */
623		if (((drive->id->hw_config & 0x2000) == 0) ||
624		    ((drive->id->hw_config & 0x4000) == 0)) {
625#endif /* CONFIG_IDEDMA_IVB */
626			printk("%s: Speed warnings UDMA 3/4/5 is not "
627				"functional.\n", drive->name);
628			return 1;
629		}
630		if (!HWIF(drive)->udma_four) {
631			printk("%s: Speed warnings UDMA 3/4/5 is not "
632				"functional.\n",
633				HWIF(drive)->name);
634			return 1;
635		}
636	}
637	return 0;
638}
639
640/*
641 * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
642 * 1 : Safe to update drive->id DMA registers.
643 * 0 : OOPs not allowed.
644 */
645int set_transfer (ide_drive_t *drive, ide_task_t *args)
646{
647	if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
648	    (args->tfRegister[IDE_SECTOR_OFFSET] >= XFER_SW_DMA_0) &&
649	    (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER) &&
650	    (drive->id->dma_ultra ||
651	     drive->id->dma_mword ||
652	     drive->id->dma_1word))
653		return 1;
654
655	return 0;
656}
657
658#ifdef CONFIG_BLK_DEV_IDEDMA
659static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
660{
661	if (!drive->crc_count)
662		return drive->current_speed;
663	drive->crc_count = 0;
664
665	switch(drive->current_speed) {
666		case XFER_UDMA_7:	return XFER_UDMA_6;
667		case XFER_UDMA_6:	return XFER_UDMA_5;
668		case XFER_UDMA_5:	return XFER_UDMA_4;
669		case XFER_UDMA_4:	return XFER_UDMA_3;
670		case XFER_UDMA_3:	return XFER_UDMA_2;
671		case XFER_UDMA_2:	return XFER_UDMA_1;
672		case XFER_UDMA_1:	return XFER_UDMA_0;
673			/*
674			 * OOPS we do not goto non Ultra DMA modes
675			 * without iCRC's available we force
676			 * the system to PIO and make the user
677			 * invoke the ATA-1 ATA-2 DMA modes.
678			 */
679		case XFER_UDMA_0:
680		default:		return XFER_PIO_4;
681	}
682}
683#endif /* CONFIG_BLK_DEV_IDEDMA */
684
685/*
686 * Update the
687 */
688int ide_driveid_update (ide_drive_t *drive)
689{
690	ide_hwif_t *hwif	= HWIF(drive);
691	struct hd_driveid *id;
692#if 0
693	id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
694	if (!id)
695		return 0;
696
697	taskfile_lib_get_identify(drive, (char *)&id);
698
699	ide_fix_driveid(id);
700	if (id) {
701		drive->id->dma_ultra = id->dma_ultra;
702		drive->id->dma_mword = id->dma_mword;
703		drive->id->dma_1word = id->dma_1word;
704		/* anything more ? */
705		kfree(id);
706	}
707	return 1;
708#else
709	/*
710	 * Re-read drive->id for possible DMA mode
711	 * change (copied from ide-probe.c)
712	 */
713	unsigned long timeout, flags;
714
715	SELECT_MASK(drive, 1);
716	if (IDE_CONTROL_REG)
717		hwif->OUTB(drive->ctl,IDE_CONTROL_REG);
718	msleep(50);
719	hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
720	timeout = jiffies + WAIT_WORSTCASE;
721	do {
722		if (time_after(jiffies, timeout)) {
723			SELECT_MASK(drive, 0);
724			return 0;	/* drive timed-out */
725		}
726		msleep(50);	/* give drive a breather */
727	} while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
728	msleep(50);	/* wait for IRQ and DRQ_STAT */
729	if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
730		SELECT_MASK(drive, 0);
731		printk("%s: CHECK for good STATUS\n", drive->name);
732		return 0;
733	}
734	local_irq_save(flags);
735	SELECT_MASK(drive, 0);
736	id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
737	if (!id) {
738		local_irq_restore(flags);
739		return 0;
740	}
741	ata_input_data(drive, id, SECTOR_WORDS);
742	(void) hwif->INB(IDE_STATUS_REG);	/* clear drive IRQ */
743	local_irq_enable();
744	local_irq_restore(flags);
745	ide_fix_driveid(id);
746	if (id) {
747		drive->id->dma_ultra = id->dma_ultra;
748		drive->id->dma_mword = id->dma_mword;
749		drive->id->dma_1word = id->dma_1word;
750		/* anything more ? */
751		kfree(id);
752	}
753
754	return 1;
755#endif
756}
757
758/*
759 * Similar to ide_wait_stat(), except it never calls ide_error internally.
760 * This is a kludge to handle the new ide_config_drive_speed() function,
761 * and should not otherwise be used anywhere.  Eventually, the tuneproc's
762 * should be updated to return ide_startstop_t, in which case we can get
763 * rid of this abomination again.  :)   -ml
764 *
765 * It is gone..........
766 *
767 * const char *msg == consider adding for verbose errors.
768 */
769int ide_config_drive_speed (ide_drive_t *drive, u8 speed)
770{
771	ide_hwif_t *hwif	= HWIF(drive);
772	int	i, error	= 1;
773	u8 stat;
774
775//	while (HWGROUP(drive)->busy)
776//		msleep(50);
777
778#ifdef CONFIG_BLK_DEV_IDEDMA
779	if (hwif->ide_dma_check)	 /* check if host supports DMA */
780		hwif->ide_dma_host_off(drive);
781#endif
782
783	/*
784	 * Don't use ide_wait_cmd here - it will
785	 * attempt to set_geometry and recalibrate,
786	 * but for some reason these don't work at
787	 * this point (lost interrupt).
788	 */
789        /*
790         * Select the drive, and issue the SETFEATURES command
791         */
792	disable_irq_nosync(hwif->irq);
793
794	/*
795	 *	FIXME: we race against the running IRQ here if
796	 *	this is called from non IRQ context. If we use
797	 *	disable_irq() we hang on the error path. Work
798	 *	is needed.
799	 */
800
801	udelay(1);
802	SELECT_DRIVE(drive);
803	SELECT_MASK(drive, 0);
804	udelay(1);
805	if (IDE_CONTROL_REG)
806		hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
807	hwif->OUTB(speed, IDE_NSECTOR_REG);
808	hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
809	hwif->OUTB(WIN_SETFEATURES, IDE_COMMAND_REG);
810	if ((IDE_CONTROL_REG) && (drive->quirk_list == 2))
811		hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
812	udelay(1);
813	/*
814	 * Wait for drive to become non-BUSY
815	 */
816	if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
817		unsigned long flags, timeout;
818		local_irq_set(flags);
819		timeout = jiffies + WAIT_CMD;
820		while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
821			if (time_after(jiffies, timeout))
822				break;
823		}
824		local_irq_restore(flags);
825	}
826
827	/*
828	 * Allow status to settle, then read it again.
829	 * A few rare drives vastly violate the 400ns spec here,
830	 * so we'll wait up to 10usec for a "good" status
831	 * rather than expensively fail things immediately.
832	 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
833	 */
834	for (i = 0; i < 10; i++) {
835		udelay(1);
836		if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), DRIVE_READY, BUSY_STAT|DRQ_STAT|ERR_STAT)) {
837			error = 0;
838			break;
839		}
840	}
841
842	SELECT_MASK(drive, 0);
843
844	enable_irq(hwif->irq);
845
846	if (error) {
847		(void) ide_dump_status(drive, "set_drive_speed_status", stat);
848		return error;
849	}
850
851	drive->id->dma_ultra &= ~0xFF00;
852	drive->id->dma_mword &= ~0x0F00;
853	drive->id->dma_1word &= ~0x0F00;
854
855#ifdef CONFIG_BLK_DEV_IDEDMA
856	if (speed >= XFER_SW_DMA_0)
857		hwif->ide_dma_host_on(drive);
858	else if (hwif->ide_dma_check)	/* check if host supports DMA */
859		hwif->ide_dma_off_quietly(drive);
860#endif
861
862	switch(speed) {
863		case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
864		case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
865		case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
866		case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
867		case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
868		case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
869		case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
870		case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
871		case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
872		case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
873		case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
874		case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
875		case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
876		case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
877		default: break;
878	}
879	if (!drive->init_speed)
880		drive->init_speed = speed;
881	drive->current_speed = speed;
882	return error;
883}
884
885EXPORT_SYMBOL(ide_config_drive_speed);
886
887
888/*
889 * This should get invoked any time we exit the driver to
890 * wait for an interrupt response from a drive.  handler() points
891 * at the appropriate code to handle the next interrupt, and a
892 * timer is started to prevent us from waiting forever in case
893 * something goes wrong (see the ide_timer_expiry() handler later on).
894 *
895 * See also ide_execute_command
896 */
897static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
898		      unsigned int timeout, ide_expiry_t *expiry)
899{
900	ide_hwgroup_t *hwgroup = HWGROUP(drive);
901
902	if (hwgroup->handler != NULL) {
903		printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
904			"old=%p, new=%p\n",
905			drive->name, hwgroup->handler, handler);
906	}
907	hwgroup->handler	= handler;
908	hwgroup->expiry		= expiry;
909	hwgroup->timer.expires	= jiffies + timeout;
910	add_timer(&hwgroup->timer);
911}
912
913void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
914		      unsigned int timeout, ide_expiry_t *expiry)
915{
916	unsigned long flags;
917	spin_lock_irqsave(&ide_lock, flags);
918	__ide_set_handler(drive, handler, timeout, expiry);
919	spin_unlock_irqrestore(&ide_lock, flags);
920}
921
922EXPORT_SYMBOL(ide_set_handler);
923
924/**
925 *	ide_execute_command	-	execute an IDE command
926 *	@drive: IDE drive to issue the command against
927 *	@command: command byte to write
928 *	@handler: handler for next phase
929 *	@timeout: timeout for command
930 *	@expiry:  handler to run on timeout
931 *
932 *	Helper function to issue an IDE command. This handles the
933 *	atomicity requirements, command timing and ensures that the
934 *	handler and IRQ setup do not race. All IDE command kick off
935 *	should go via this function or do equivalent locking.
936 */
937
938void ide_execute_command(ide_drive_t *drive, task_ioreg_t cmd, ide_handler_t *handler, unsigned timeout, ide_expiry_t *expiry)
939{
940	unsigned long flags;
941	ide_hwgroup_t *hwgroup = HWGROUP(drive);
942	ide_hwif_t *hwif = HWIF(drive);
943
944	spin_lock_irqsave(&ide_lock, flags);
945
946	BUG_ON(hwgroup->handler);
947	hwgroup->handler	= handler;
948	hwgroup->expiry		= expiry;
949	hwgroup->timer.expires	= jiffies + timeout;
950	add_timer(&hwgroup->timer);
951	hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
952	/* Drive takes 400nS to respond, we must avoid the IRQ being
953	   serviced before that.
954
955	   FIXME: we could skip this delay with care on non shared
956	   devices
957	*/
958	ndelay(400);
959	spin_unlock_irqrestore(&ide_lock, flags);
960}
961
962EXPORT_SYMBOL(ide_execute_command);
963
964
965/* needed below */
966static ide_startstop_t do_reset1 (ide_drive_t *, int);
967
968/*
969 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
970 * during an atapi drive reset operation. If the drive has not yet responded,
971 * and we have not yet hit our maximum waiting time, then the timer is restarted
972 * for another 50ms.
973 */
974static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
975{
976	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
977	ide_hwif_t *hwif	= HWIF(drive);
978	u8 stat;
979
980	SELECT_DRIVE(drive);
981	udelay (10);
982
983	if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
984		printk("%s: ATAPI reset complete\n", drive->name);
985	} else {
986		if (time_before(jiffies, hwgroup->poll_timeout)) {
987			BUG_ON(HWGROUP(drive)->handler != NULL);
988			ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
989			/* continue polling */
990			return ide_started;
991		}
992		/* end of polling */
993		hwgroup->polling = 0;
994		printk("%s: ATAPI reset timed-out, status=0x%02x\n",
995				drive->name, stat);
996		/* do it the old fashioned way */
997		return do_reset1(drive, 1);
998	}
999	/* done polling */
1000	hwgroup->polling = 0;
1001	return ide_stopped;
1002}
1003
1004/*
1005 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
1006 * during an ide reset operation. If the drives have not yet responded,
1007 * and we have not yet hit our maximum waiting time, then the timer is restarted
1008 * for another 50ms.
1009 */
1010static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
1011{
1012	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
1013	ide_hwif_t *hwif	= HWIF(drive);
1014	u8 tmp;
1015
1016	if (hwif->reset_poll != NULL) {
1017		if (hwif->reset_poll(drive)) {
1018			printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
1019				hwif->name, drive->name);
1020			return ide_stopped;
1021		}
1022	}
1023
1024	if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
1025		if (time_before(jiffies, hwgroup->poll_timeout)) {
1026			BUG_ON(HWGROUP(drive)->handler != NULL);
1027			ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1028			/* continue polling */
1029			return ide_started;
1030		}
1031		printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
1032		drive->failures++;
1033	} else  {
1034		printk("%s: reset: ", hwif->name);
1035		if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
1036			printk("success\n");
1037			drive->failures = 0;
1038		} else {
1039			drive->failures++;
1040			printk("master: ");
1041			switch (tmp & 0x7f) {
1042				case 1: printk("passed");
1043					break;
1044				case 2: printk("formatter device error");
1045					break;
1046				case 3: printk("sector buffer error");
1047					break;
1048				case 4: printk("ECC circuitry error");
1049					break;
1050				case 5: printk("controlling MPU error");
1051					break;
1052				default:printk("error (0x%02x?)", tmp);
1053			}
1054			if (tmp & 0x80)
1055				printk("; slave: failed");
1056			printk("\n");
1057		}
1058	}
1059	hwgroup->polling = 0;	/* done polling */
1060	return ide_stopped;
1061}
1062
1063static void check_dma_crc(ide_drive_t *drive)
1064{
1065#ifdef CONFIG_BLK_DEV_IDEDMA
1066	if (drive->crc_count) {
1067		(void) HWIF(drive)->ide_dma_off_quietly(drive);
1068		ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
1069		if (drive->current_speed >= XFER_SW_DMA_0)
1070			(void) HWIF(drive)->ide_dma_on(drive);
1071	} else
1072		(void)__ide_dma_off(drive);
1073#endif
1074}
1075
1076static void ide_disk_pre_reset(ide_drive_t *drive)
1077{
1078	int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1079
1080	drive->special.all = 0;
1081	drive->special.b.set_geometry = legacy;
1082	drive->special.b.recalibrate  = legacy;
1083	if (OK_TO_RESET_CONTROLLER)
1084		drive->mult_count = 0;
1085	if (!drive->keep_settings && !drive->using_dma)
1086		drive->mult_req = 0;
1087	if (drive->mult_req != drive->mult_count)
1088		drive->special.b.set_multmode = 1;
1089}
1090
1091static void pre_reset(ide_drive_t *drive)
1092{
1093	if (drive->media == ide_disk)
1094		ide_disk_pre_reset(drive);
1095	else
1096		drive->post_reset = 1;
1097
1098	if (!drive->keep_settings) {
1099		if (drive->using_dma) {
1100			check_dma_crc(drive);
1101		} else {
1102			drive->unmask = 0;
1103			drive->io_32bit = 0;
1104		}
1105		return;
1106	}
1107	if (drive->using_dma)
1108		check_dma_crc(drive);
1109
1110	if (HWIF(drive)->pre_reset != NULL)
1111		HWIF(drive)->pre_reset(drive);
1112
1113}
1114
1115/*
1116 * do_reset1() attempts to recover a confused drive by resetting it.
1117 * Unfortunately, resetting a disk drive actually resets all devices on
1118 * the same interface, so it can really be thought of as resetting the
1119 * interface rather than resetting the drive.
1120 *
1121 * ATAPI devices have their own reset mechanism which allows them to be
1122 * individually reset without clobbering other devices on the same interface.
1123 *
1124 * Unfortunately, the IDE interface does not generate an interrupt to let
1125 * us know when the reset operation has finished, so we must poll for this.
1126 * Equally poor, though, is the fact that this may a very long time to complete,
1127 * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1128 * we set a timer to poll at 50ms intervals.
1129 */
1130static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1131{
1132	unsigned int unit;
1133	unsigned long flags;
1134	ide_hwif_t *hwif;
1135	ide_hwgroup_t *hwgroup;
1136
1137	spin_lock_irqsave(&ide_lock, flags);
1138	hwif = HWIF(drive);
1139	hwgroup = HWGROUP(drive);
1140
1141	/* We must not reset with running handlers */
1142	BUG_ON(hwgroup->handler != NULL);
1143
1144	/* For an ATAPI device, first try an ATAPI SRST. */
1145	if (drive->media != ide_disk && !do_not_try_atapi) {
1146		pre_reset(drive);
1147		SELECT_DRIVE(drive);
1148		udelay (20);
1149		hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1150		ndelay(400);
1151		hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1152		hwgroup->polling = 1;
1153		__ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1154		spin_unlock_irqrestore(&ide_lock, flags);
1155		return ide_started;
1156	}
1157
1158	/*
1159	 * First, reset any device state data we were maintaining
1160	 * for any of the drives on this interface.
1161	 */
1162	for (unit = 0; unit < MAX_DRIVES; ++unit)
1163		pre_reset(&hwif->drives[unit]);
1164
1165#if OK_TO_RESET_CONTROLLER
1166	if (!IDE_CONTROL_REG) {
1167		spin_unlock_irqrestore(&ide_lock, flags);
1168		return ide_stopped;
1169	}
1170
1171	/*
1172	 * Note that we also set nIEN while resetting the device,
1173	 * to mask unwanted interrupts from the interface during the reset.
1174	 * However, due to the design of PC hardware, this will cause an
1175	 * immediate interrupt due to the edge transition it produces.
1176	 * This single interrupt gives us a "fast poll" for drives that
1177	 * recover from reset very quickly, saving us the first 50ms wait time.
1178	 */
1179	/* set SRST and nIEN */
1180	hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1181	/* more than enough time */
1182	udelay(10);
1183	if (drive->quirk_list == 2) {
1184		/* clear SRST and nIEN */
1185		hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1186	} else {
1187		/* clear SRST, leave nIEN */
1188		hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1189	}
1190	/* more than enough time */
1191	udelay(10);
1192	hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1193	hwgroup->polling = 1;
1194	__ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1195
1196	/*
1197	 * Some weird controller like resetting themselves to a strange
1198	 * state when the disks are reset this way. At least, the Winbond
1199	 * 553 documentation says that
1200	 */
1201	if (hwif->resetproc != NULL) {
1202		hwif->resetproc(drive);
1203	}
1204
1205#endif	/* OK_TO_RESET_CONTROLLER */
1206
1207	spin_unlock_irqrestore(&ide_lock, flags);
1208	return ide_started;
1209}
1210
1211/*
1212 * ide_do_reset() is the entry point to the drive/interface reset code.
1213 */
1214
1215ide_startstop_t ide_do_reset (ide_drive_t *drive)
1216{
1217	return do_reset1(drive, 0);
1218}
1219
1220EXPORT_SYMBOL(ide_do_reset);
1221
1222/*
1223 * ide_wait_not_busy() waits for the currently selected device on the hwif
1224 * to report a non-busy status, see comments in probe_hwif().
1225 */
1226int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1227{
1228	u8 stat = 0;
1229
1230	while(timeout--) {
1231		/*
1232		 * Turn this into a schedule() sleep once I'm sure
1233		 * about locking issues (2.5 work ?).
1234		 */
1235		mdelay(1);
1236		stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1237		if ((stat & BUSY_STAT) == 0)
1238			return 0;
1239		/*
1240		 * Assume a value of 0xff means nothing is connected to
1241		 * the interface and it doesn't implement the pull-down
1242		 * resistor on D7.
1243		 */
1244		if (stat == 0xff)
1245			return -ENODEV;
1246		touch_softlockup_watchdog();
1247		touch_nmi_watchdog();
1248	}
1249	return -EBUSY;
1250}
1251
1252EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1253
1254