ide-iops.c revision 4c3032d8a4d6c97bd6e02bcab524ef2428d89561
1/*
2 *  Copyright (C) 2000-2002	Andre Hedrick <andre@linux-ide.org>
3 *  Copyright (C) 2003		Red Hat <alan@redhat.com>
4 *
5 */
6
7#include <linux/module.h>
8#include <linux/types.h>
9#include <linux/string.h>
10#include <linux/kernel.h>
11#include <linux/timer.h>
12#include <linux/mm.h>
13#include <linux/interrupt.h>
14#include <linux/major.h>
15#include <linux/errno.h>
16#include <linux/genhd.h>
17#include <linux/blkpg.h>
18#include <linux/slab.h>
19#include <linux/pci.h>
20#include <linux/delay.h>
21#include <linux/hdreg.h>
22#include <linux/ide.h>
23#include <linux/bitops.h>
24#include <linux/nmi.h>
25
26#include <asm/byteorder.h>
27#include <asm/irq.h>
28#include <asm/uaccess.h>
29#include <asm/io.h>
30
31/*
32 *	Conventional PIO operations for ATA devices
33 */
34
35static u8 ide_inb (unsigned long port)
36{
37	return (u8) inb(port);
38}
39
40static u16 ide_inw (unsigned long port)
41{
42	return (u16) inw(port);
43}
44
45static void ide_insw (unsigned long port, void *addr, u32 count)
46{
47	insw(port, addr, count);
48}
49
50static void ide_insl (unsigned long port, void *addr, u32 count)
51{
52	insl(port, addr, count);
53}
54
55static void ide_outb (u8 val, unsigned long port)
56{
57	outb(val, port);
58}
59
60static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
61{
62	outb(addr, port);
63}
64
65static void ide_outw (u16 val, unsigned long port)
66{
67	outw(val, port);
68}
69
70static void ide_outsw (unsigned long port, void *addr, u32 count)
71{
72	outsw(port, addr, count);
73}
74
75static void ide_outsl (unsigned long port, void *addr, u32 count)
76{
77	outsl(port, addr, count);
78}
79
80void default_hwif_iops (ide_hwif_t *hwif)
81{
82	hwif->OUTB	= ide_outb;
83	hwif->OUTBSYNC	= ide_outbsync;
84	hwif->OUTW	= ide_outw;
85	hwif->OUTSW	= ide_outsw;
86	hwif->OUTSL	= ide_outsl;
87	hwif->INB	= ide_inb;
88	hwif->INW	= ide_inw;
89	hwif->INSW	= ide_insw;
90	hwif->INSL	= ide_insl;
91}
92
93/*
94 *	MMIO operations, typically used for SATA controllers
95 */
96
97static u8 ide_mm_inb (unsigned long port)
98{
99	return (u8) readb((void __iomem *) port);
100}
101
102static u16 ide_mm_inw (unsigned long port)
103{
104	return (u16) readw((void __iomem *) port);
105}
106
107static void ide_mm_insw (unsigned long port, void *addr, u32 count)
108{
109	__ide_mm_insw((void __iomem *) port, addr, count);
110}
111
112static void ide_mm_insl (unsigned long port, void *addr, u32 count)
113{
114	__ide_mm_insl((void __iomem *) port, addr, count);
115}
116
117static void ide_mm_outb (u8 value, unsigned long port)
118{
119	writeb(value, (void __iomem *) port);
120}
121
122static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
123{
124	writeb(value, (void __iomem *) port);
125}
126
127static void ide_mm_outw (u16 value, unsigned long port)
128{
129	writew(value, (void __iomem *) port);
130}
131
132static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
133{
134	__ide_mm_outsw((void __iomem *) port, addr, count);
135}
136
137static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
138{
139	__ide_mm_outsl((void __iomem *) port, addr, count);
140}
141
142void default_hwif_mmiops (ide_hwif_t *hwif)
143{
144	hwif->OUTB	= ide_mm_outb;
145	/* Most systems will need to override OUTBSYNC, alas however
146	   this one is controller specific! */
147	hwif->OUTBSYNC	= ide_mm_outbsync;
148	hwif->OUTW	= ide_mm_outw;
149	hwif->OUTSW	= ide_mm_outsw;
150	hwif->OUTSL	= ide_mm_outsl;
151	hwif->INB	= ide_mm_inb;
152	hwif->INW	= ide_mm_inw;
153	hwif->INSW	= ide_mm_insw;
154	hwif->INSL	= ide_mm_insl;
155}
156
157EXPORT_SYMBOL(default_hwif_mmiops);
158
159void SELECT_DRIVE (ide_drive_t *drive)
160{
161	ide_hwif_t *hwif = drive->hwif;
162	const struct ide_port_ops *port_ops = hwif->port_ops;
163
164	if (port_ops && port_ops->selectproc)
165		port_ops->selectproc(drive);
166
167	hwif->OUTB(drive->select.all, hwif->io_ports.device_addr);
168}
169
170void SELECT_MASK (ide_drive_t *drive, int mask)
171{
172	const struct ide_port_ops *port_ops = drive->hwif->port_ops;
173
174	if (port_ops && port_ops->maskproc)
175		port_ops->maskproc(drive, mask);
176}
177
178/*
179 * Some localbus EIDE interfaces require a special access sequence
180 * when using 32-bit I/O instructions to transfer data.  We call this
181 * the "vlb_sync" sequence, which consists of three successive reads
182 * of the sector count register location, with interrupts disabled
183 * to ensure that the reads all happen together.
184 */
185static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
186{
187	(void) HWIF(drive)->INB(port);
188	(void) HWIF(drive)->INB(port);
189	(void) HWIF(drive)->INB(port);
190}
191
192/*
193 * This is used for most PIO data transfers *from* the IDE interface
194 */
195static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
196{
197	ide_hwif_t *hwif = drive->hwif;
198	struct ide_io_ports *io_ports = &hwif->io_ports;
199	u8 io_32bit = drive->io_32bit;
200
201	if (io_32bit) {
202		if (io_32bit & 2) {
203			unsigned long flags;
204
205			local_irq_save(flags);
206			ata_vlb_sync(drive, io_ports->nsect_addr);
207			hwif->INSL(io_ports->data_addr, buffer, wcount);
208			local_irq_restore(flags);
209		} else
210			hwif->INSL(io_ports->data_addr, buffer, wcount);
211	} else
212		hwif->INSW(io_ports->data_addr, buffer, wcount << 1);
213}
214
215/*
216 * This is used for most PIO data transfers *to* the IDE interface
217 */
218static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
219{
220	ide_hwif_t *hwif = drive->hwif;
221	struct ide_io_ports *io_ports = &hwif->io_ports;
222	u8 io_32bit = drive->io_32bit;
223
224	if (io_32bit) {
225		if (io_32bit & 2) {
226			unsigned long flags;
227
228			local_irq_save(flags);
229			ata_vlb_sync(drive, io_ports->nsect_addr);
230			hwif->OUTSL(io_ports->data_addr, buffer, wcount);
231			local_irq_restore(flags);
232		} else
233			hwif->OUTSL(io_ports->data_addr, buffer, wcount);
234	} else
235		hwif->OUTSW(io_ports->data_addr, buffer, wcount << 1);
236}
237
238/*
239 * The following routines are mainly used by the ATAPI drivers.
240 *
241 * These routines will round up any request for an odd number of bytes,
242 * so if an odd bytecount is specified, be sure that there's at least one
243 * extra byte allocated for the buffer.
244 */
245
246static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
247{
248	ide_hwif_t *hwif = HWIF(drive);
249
250	++bytecount;
251#if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
252	if (MACH_IS_ATARI || MACH_IS_Q40) {
253		/* Atari has a byte-swapped IDE interface */
254		insw_swapw(hwif->io_ports.data_addr, buffer, bytecount / 2);
255		return;
256	}
257#endif /* CONFIG_ATARI || CONFIG_Q40 */
258	hwif->ata_input_data(drive, buffer, bytecount / 4);
259	if ((bytecount & 0x03) >= 2)
260		hwif->INSW(hwif->io_ports.data_addr,
261			   (u8 *)buffer + (bytecount & ~0x03), 1);
262}
263
264static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
265{
266	ide_hwif_t *hwif = HWIF(drive);
267
268	++bytecount;
269#if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
270	if (MACH_IS_ATARI || MACH_IS_Q40) {
271		/* Atari has a byte-swapped IDE interface */
272		outsw_swapw(hwif->io_ports.data_addr, buffer, bytecount / 2);
273		return;
274	}
275#endif /* CONFIG_ATARI || CONFIG_Q40 */
276	hwif->ata_output_data(drive, buffer, bytecount / 4);
277	if ((bytecount & 0x03) >= 2)
278		hwif->OUTSW(hwif->io_ports.data_addr,
279			    (u8 *)buffer + (bytecount & ~0x03), 1);
280}
281
282void default_hwif_transport(ide_hwif_t *hwif)
283{
284	hwif->ata_input_data		= ata_input_data;
285	hwif->ata_output_data		= ata_output_data;
286	hwif->atapi_input_bytes		= atapi_input_bytes;
287	hwif->atapi_output_bytes	= atapi_output_bytes;
288}
289
290void ide_fix_driveid (struct hd_driveid *id)
291{
292#ifndef __LITTLE_ENDIAN
293# ifdef __BIG_ENDIAN
294	int i;
295	u16 *stringcast;
296
297	id->config         = __le16_to_cpu(id->config);
298	id->cyls           = __le16_to_cpu(id->cyls);
299	id->reserved2      = __le16_to_cpu(id->reserved2);
300	id->heads          = __le16_to_cpu(id->heads);
301	id->track_bytes    = __le16_to_cpu(id->track_bytes);
302	id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
303	id->sectors        = __le16_to_cpu(id->sectors);
304	id->vendor0        = __le16_to_cpu(id->vendor0);
305	id->vendor1        = __le16_to_cpu(id->vendor1);
306	id->vendor2        = __le16_to_cpu(id->vendor2);
307	stringcast = (u16 *)&id->serial_no[0];
308	for (i = 0; i < (20/2); i++)
309		stringcast[i] = __le16_to_cpu(stringcast[i]);
310	id->buf_type       = __le16_to_cpu(id->buf_type);
311	id->buf_size       = __le16_to_cpu(id->buf_size);
312	id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
313	stringcast = (u16 *)&id->fw_rev[0];
314	for (i = 0; i < (8/2); i++)
315		stringcast[i] = __le16_to_cpu(stringcast[i]);
316	stringcast = (u16 *)&id->model[0];
317	for (i = 0; i < (40/2); i++)
318		stringcast[i] = __le16_to_cpu(stringcast[i]);
319	id->dword_io       = __le16_to_cpu(id->dword_io);
320	id->reserved50     = __le16_to_cpu(id->reserved50);
321	id->field_valid    = __le16_to_cpu(id->field_valid);
322	id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
323	id->cur_heads      = __le16_to_cpu(id->cur_heads);
324	id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
325	id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
326	id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
327	id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
328	id->dma_1word      = __le16_to_cpu(id->dma_1word);
329	id->dma_mword      = __le16_to_cpu(id->dma_mword);
330	id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
331	id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
332	id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
333	id->eide_pio       = __le16_to_cpu(id->eide_pio);
334	id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
335	for (i = 0; i < 2; ++i)
336		id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
337	for (i = 0; i < 4; ++i)
338		id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
339	id->queue_depth    = __le16_to_cpu(id->queue_depth);
340	for (i = 0; i < 4; ++i)
341		id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
342	id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
343	id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
344	id->command_set_1  = __le16_to_cpu(id->command_set_1);
345	id->command_set_2  = __le16_to_cpu(id->command_set_2);
346	id->cfsse          = __le16_to_cpu(id->cfsse);
347	id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
348	id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
349	id->csf_default    = __le16_to_cpu(id->csf_default);
350	id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
351	id->trseuc         = __le16_to_cpu(id->trseuc);
352	id->trsEuc         = __le16_to_cpu(id->trsEuc);
353	id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
354	id->mprc           = __le16_to_cpu(id->mprc);
355	id->hw_config      = __le16_to_cpu(id->hw_config);
356	id->acoustic       = __le16_to_cpu(id->acoustic);
357	id->msrqs          = __le16_to_cpu(id->msrqs);
358	id->sxfert         = __le16_to_cpu(id->sxfert);
359	id->sal            = __le16_to_cpu(id->sal);
360	id->spg            = __le32_to_cpu(id->spg);
361	id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
362	for (i = 0; i < 22; i++)
363		id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
364	id->last_lun       = __le16_to_cpu(id->last_lun);
365	id->word127        = __le16_to_cpu(id->word127);
366	id->dlf            = __le16_to_cpu(id->dlf);
367	id->csfo           = __le16_to_cpu(id->csfo);
368	for (i = 0; i < 26; i++)
369		id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
370	id->word156        = __le16_to_cpu(id->word156);
371	for (i = 0; i < 3; i++)
372		id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
373	id->cfa_power      = __le16_to_cpu(id->cfa_power);
374	for (i = 0; i < 14; i++)
375		id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
376	for (i = 0; i < 31; i++)
377		id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
378	for (i = 0; i < 48; i++)
379		id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
380	id->integrity_word  = __le16_to_cpu(id->integrity_word);
381# else
382#  error "Please fix <asm/byteorder.h>"
383# endif
384#endif
385}
386
387/*
388 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
389 * removing leading/trailing blanks and compressing internal blanks.
390 * It is primarily used to tidy up the model name/number fields as
391 * returned by the WIN_[P]IDENTIFY commands.
392 */
393
394void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
395{
396	u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
397
398	if (byteswap) {
399		/* convert from big-endian to host byte order */
400		for (p = end ; p != s;) {
401			unsigned short *pp = (unsigned short *) (p -= 2);
402			*pp = ntohs(*pp);
403		}
404	}
405	/* strip leading blanks */
406	while (s != end && *s == ' ')
407		++s;
408	/* compress internal blanks and strip trailing blanks */
409	while (s != end && *s) {
410		if (*s++ != ' ' || (s != end && *s && *s != ' '))
411			*p++ = *(s-1);
412	}
413	/* wipe out trailing garbage */
414	while (p != end)
415		*p++ = '\0';
416}
417
418EXPORT_SYMBOL(ide_fixstring);
419
420/*
421 * Needed for PCI irq sharing
422 */
423int drive_is_ready (ide_drive_t *drive)
424{
425	ide_hwif_t *hwif	= HWIF(drive);
426	u8 stat			= 0;
427
428	if (drive->waiting_for_dma)
429		return hwif->dma_ops->dma_test_irq(drive);
430
431#if 0
432	/* need to guarantee 400ns since last command was issued */
433	udelay(1);
434#endif
435
436	/*
437	 * We do a passive status test under shared PCI interrupts on
438	 * cards that truly share the ATA side interrupt, but may also share
439	 * an interrupt with another pci card/device.  We make no assumptions
440	 * about possible isa-pnp and pci-pnp issues yet.
441	 */
442	if (hwif->io_ports.ctl_addr)
443		stat = ide_read_altstatus(drive);
444	else
445		/* Note: this may clear a pending IRQ!! */
446		stat = ide_read_status(drive);
447
448	if (stat & BUSY_STAT)
449		/* drive busy:  definitely not interrupting */
450		return 0;
451
452	/* drive ready: *might* be interrupting */
453	return 1;
454}
455
456EXPORT_SYMBOL(drive_is_ready);
457
458/*
459 * This routine busy-waits for the drive status to be not "busy".
460 * It then checks the status for all of the "good" bits and none
461 * of the "bad" bits, and if all is okay it returns 0.  All other
462 * cases return error -- caller may then invoke ide_error().
463 *
464 * This routine should get fixed to not hog the cpu during extra long waits..
465 * That could be done by busy-waiting for the first jiffy or two, and then
466 * setting a timer to wake up at half second intervals thereafter,
467 * until timeout is achieved, before timing out.
468 */
469static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
470{
471	unsigned long flags;
472	int i;
473	u8 stat;
474
475	udelay(1);	/* spec allows drive 400ns to assert "BUSY" */
476	stat = ide_read_status(drive);
477
478	if (stat & BUSY_STAT) {
479		local_irq_set(flags);
480		timeout += jiffies;
481		while ((stat = ide_read_status(drive)) & BUSY_STAT) {
482			if (time_after(jiffies, timeout)) {
483				/*
484				 * One last read after the timeout in case
485				 * heavy interrupt load made us not make any
486				 * progress during the timeout..
487				 */
488				stat = ide_read_status(drive);
489				if (!(stat & BUSY_STAT))
490					break;
491
492				local_irq_restore(flags);
493				*rstat = stat;
494				return -EBUSY;
495			}
496		}
497		local_irq_restore(flags);
498	}
499	/*
500	 * Allow status to settle, then read it again.
501	 * A few rare drives vastly violate the 400ns spec here,
502	 * so we'll wait up to 10usec for a "good" status
503	 * rather than expensively fail things immediately.
504	 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
505	 */
506	for (i = 0; i < 10; i++) {
507		udelay(1);
508		stat = ide_read_status(drive);
509
510		if (OK_STAT(stat, good, bad)) {
511			*rstat = stat;
512			return 0;
513		}
514	}
515	*rstat = stat;
516	return -EFAULT;
517}
518
519/*
520 * In case of error returns error value after doing "*startstop = ide_error()".
521 * The caller should return the updated value of "startstop" in this case,
522 * "startstop" is unchanged when the function returns 0.
523 */
524int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
525{
526	int err;
527	u8 stat;
528
529	/* bail early if we've exceeded max_failures */
530	if (drive->max_failures && (drive->failures > drive->max_failures)) {
531		*startstop = ide_stopped;
532		return 1;
533	}
534
535	err = __ide_wait_stat(drive, good, bad, timeout, &stat);
536
537	if (err) {
538		char *s = (err == -EBUSY) ? "status timeout" : "status error";
539		*startstop = ide_error(drive, s, stat);
540	}
541
542	return err;
543}
544
545EXPORT_SYMBOL(ide_wait_stat);
546
547/**
548 *	ide_in_drive_list	-	look for drive in black/white list
549 *	@id: drive identifier
550 *	@drive_table: list to inspect
551 *
552 *	Look for a drive in the blacklist and the whitelist tables
553 *	Returns 1 if the drive is found in the table.
554 */
555
556int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
557{
558	for ( ; drive_table->id_model; drive_table++)
559		if ((!strcmp(drive_table->id_model, id->model)) &&
560		    (!drive_table->id_firmware ||
561		     strstr(id->fw_rev, drive_table->id_firmware)))
562			return 1;
563	return 0;
564}
565
566EXPORT_SYMBOL_GPL(ide_in_drive_list);
567
568/*
569 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
570 * We list them here and depend on the device side cable detection for them.
571 *
572 * Some optical devices with the buggy firmwares have the same problem.
573 */
574static const struct drive_list_entry ivb_list[] = {
575	{ "QUANTUM FIREBALLlct10 05"	, "A03.0900"	},
576	{ "TSSTcorp CDDVDW SH-S202J"	, "SB00"	},
577	{ "TSSTcorp CDDVDW SH-S202J"	, "SB01"	},
578	{ "TSSTcorp CDDVDW SH-S202N"	, "SB00"	},
579	{ "TSSTcorp CDDVDW SH-S202N"	, "SB01"	},
580	{ NULL				, NULL		}
581};
582
583/*
584 *  All hosts that use the 80c ribbon must use!
585 *  The name is derived from upper byte of word 93 and the 80c ribbon.
586 */
587u8 eighty_ninty_three (ide_drive_t *drive)
588{
589	ide_hwif_t *hwif = drive->hwif;
590	struct hd_driveid *id = drive->id;
591	int ivb = ide_in_drive_list(id, ivb_list);
592
593	if (hwif->cbl == ATA_CBL_PATA40_SHORT)
594		return 1;
595
596	if (ivb)
597		printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
598				  drive->name);
599
600	if (ide_dev_is_sata(id) && !ivb)
601		return 1;
602
603	if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
604		goto no_80w;
605
606	/*
607	 * FIXME:
608	 * - change master/slave IDENTIFY order
609	 * - force bit13 (80c cable present) check also for !ivb devices
610	 *   (unless the slave device is pre-ATA3)
611	 */
612	if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
613		return 1;
614
615no_80w:
616	if (drive->udma33_warned == 1)
617		return 0;
618
619	printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
620			    "limiting max speed to UDMA33\n",
621			    drive->name,
622			    hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
623
624	drive->udma33_warned = 1;
625
626	return 0;
627}
628
629int ide_driveid_update(ide_drive_t *drive)
630{
631	ide_hwif_t *hwif = drive->hwif;
632	struct hd_driveid *id;
633	unsigned long timeout, flags;
634	u8 stat;
635
636	/*
637	 * Re-read drive->id for possible DMA mode
638	 * change (copied from ide-probe.c)
639	 */
640
641	SELECT_MASK(drive, 1);
642	ide_set_irq(drive, 1);
643	msleep(50);
644	hwif->OUTB(WIN_IDENTIFY, hwif->io_ports.command_addr);
645	timeout = jiffies + WAIT_WORSTCASE;
646	do {
647		if (time_after(jiffies, timeout)) {
648			SELECT_MASK(drive, 0);
649			return 0;	/* drive timed-out */
650		}
651
652		msleep(50);	/* give drive a breather */
653		stat = ide_read_altstatus(drive);
654	} while (stat & BUSY_STAT);
655
656	msleep(50);	/* wait for IRQ and DRQ_STAT */
657	stat = ide_read_status(drive);
658
659	if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
660		SELECT_MASK(drive, 0);
661		printk("%s: CHECK for good STATUS\n", drive->name);
662		return 0;
663	}
664	local_irq_save(flags);
665	SELECT_MASK(drive, 0);
666	id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
667	if (!id) {
668		local_irq_restore(flags);
669		return 0;
670	}
671	hwif->ata_input_data(drive, id, SECTOR_WORDS);
672	(void)ide_read_status(drive);	/* clear drive IRQ */
673	local_irq_enable();
674	local_irq_restore(flags);
675	ide_fix_driveid(id);
676	if (id) {
677		drive->id->dma_ultra = id->dma_ultra;
678		drive->id->dma_mword = id->dma_mword;
679		drive->id->dma_1word = id->dma_1word;
680		/* anything more ? */
681		kfree(id);
682
683		if (drive->using_dma && ide_id_dma_bug(drive))
684			ide_dma_off(drive);
685	}
686
687	return 1;
688}
689
690int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
691{
692	ide_hwif_t *hwif = drive->hwif;
693	struct ide_io_ports *io_ports = &hwif->io_ports;
694	int error = 0;
695	u8 stat;
696
697//	while (HWGROUP(drive)->busy)
698//		msleep(50);
699
700#ifdef CONFIG_BLK_DEV_IDEDMA
701	if (hwif->dma_ops)	/* check if host supports DMA */
702		hwif->dma_ops->dma_host_set(drive, 0);
703#endif
704
705	/* Skip setting PIO flow-control modes on pre-EIDE drives */
706	if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
707		goto skip;
708
709	/*
710	 * Don't use ide_wait_cmd here - it will
711	 * attempt to set_geometry and recalibrate,
712	 * but for some reason these don't work at
713	 * this point (lost interrupt).
714	 */
715        /*
716         * Select the drive, and issue the SETFEATURES command
717         */
718	disable_irq_nosync(hwif->irq);
719
720	/*
721	 *	FIXME: we race against the running IRQ here if
722	 *	this is called from non IRQ context. If we use
723	 *	disable_irq() we hang on the error path. Work
724	 *	is needed.
725	 */
726
727	udelay(1);
728	SELECT_DRIVE(drive);
729	SELECT_MASK(drive, 0);
730	udelay(1);
731	ide_set_irq(drive, 0);
732	hwif->OUTB(speed, io_ports->nsect_addr);
733	hwif->OUTB(SETFEATURES_XFER, io_ports->feature_addr);
734	hwif->OUTBSYNC(drive, WIN_SETFEATURES, io_ports->command_addr);
735	if (drive->quirk_list == 2)
736		ide_set_irq(drive, 1);
737
738	error = __ide_wait_stat(drive, drive->ready_stat,
739				BUSY_STAT|DRQ_STAT|ERR_STAT,
740				WAIT_CMD, &stat);
741
742	SELECT_MASK(drive, 0);
743
744	enable_irq(hwif->irq);
745
746	if (error) {
747		(void) ide_dump_status(drive, "set_drive_speed_status", stat);
748		return error;
749	}
750
751	drive->id->dma_ultra &= ~0xFF00;
752	drive->id->dma_mword &= ~0x0F00;
753	drive->id->dma_1word &= ~0x0F00;
754
755 skip:
756#ifdef CONFIG_BLK_DEV_IDEDMA
757	if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
758	    drive->using_dma)
759		hwif->dma_ops->dma_host_set(drive, 1);
760	else if (hwif->dma_ops)	/* check if host supports DMA */
761		ide_dma_off_quietly(drive);
762#endif
763
764	switch(speed) {
765		case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
766		case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
767		case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
768		case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
769		case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
770		case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
771		case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
772		case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
773		case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
774		case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
775		case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
776		case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
777		case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
778		case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
779		default: break;
780	}
781	if (!drive->init_speed)
782		drive->init_speed = speed;
783	drive->current_speed = speed;
784	return error;
785}
786
787/*
788 * This should get invoked any time we exit the driver to
789 * wait for an interrupt response from a drive.  handler() points
790 * at the appropriate code to handle the next interrupt, and a
791 * timer is started to prevent us from waiting forever in case
792 * something goes wrong (see the ide_timer_expiry() handler later on).
793 *
794 * See also ide_execute_command
795 */
796static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
797		      unsigned int timeout, ide_expiry_t *expiry)
798{
799	ide_hwgroup_t *hwgroup = HWGROUP(drive);
800
801	BUG_ON(hwgroup->handler);
802	hwgroup->handler	= handler;
803	hwgroup->expiry		= expiry;
804	hwgroup->timer.expires	= jiffies + timeout;
805	hwgroup->req_gen_timer	= hwgroup->req_gen;
806	add_timer(&hwgroup->timer);
807}
808
809void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
810		      unsigned int timeout, ide_expiry_t *expiry)
811{
812	unsigned long flags;
813	spin_lock_irqsave(&ide_lock, flags);
814	__ide_set_handler(drive, handler, timeout, expiry);
815	spin_unlock_irqrestore(&ide_lock, flags);
816}
817
818EXPORT_SYMBOL(ide_set_handler);
819
820/**
821 *	ide_execute_command	-	execute an IDE command
822 *	@drive: IDE drive to issue the command against
823 *	@command: command byte to write
824 *	@handler: handler for next phase
825 *	@timeout: timeout for command
826 *	@expiry:  handler to run on timeout
827 *
828 *	Helper function to issue an IDE command. This handles the
829 *	atomicity requirements, command timing and ensures that the
830 *	handler and IRQ setup do not race. All IDE command kick off
831 *	should go via this function or do equivalent locking.
832 */
833
834void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
835			 unsigned timeout, ide_expiry_t *expiry)
836{
837	unsigned long flags;
838	ide_hwif_t *hwif = HWIF(drive);
839
840	spin_lock_irqsave(&ide_lock, flags);
841	__ide_set_handler(drive, handler, timeout, expiry);
842	hwif->OUTBSYNC(drive, cmd, hwif->io_ports.command_addr);
843	/*
844	 * Drive takes 400nS to respond, we must avoid the IRQ being
845	 * serviced before that.
846	 *
847	 * FIXME: we could skip this delay with care on non shared devices
848	 */
849	ndelay(400);
850	spin_unlock_irqrestore(&ide_lock, flags);
851}
852
853EXPORT_SYMBOL(ide_execute_command);
854
855
856/* needed below */
857static ide_startstop_t do_reset1 (ide_drive_t *, int);
858
859/*
860 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
861 * during an atapi drive reset operation. If the drive has not yet responded,
862 * and we have not yet hit our maximum waiting time, then the timer is restarted
863 * for another 50ms.
864 */
865static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
866{
867	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
868	u8 stat;
869
870	SELECT_DRIVE(drive);
871	udelay (10);
872	stat = ide_read_status(drive);
873
874	if (OK_STAT(stat, 0, BUSY_STAT))
875		printk("%s: ATAPI reset complete\n", drive->name);
876	else {
877		if (time_before(jiffies, hwgroup->poll_timeout)) {
878			ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
879			/* continue polling */
880			return ide_started;
881		}
882		/* end of polling */
883		hwgroup->polling = 0;
884		printk("%s: ATAPI reset timed-out, status=0x%02x\n",
885				drive->name, stat);
886		/* do it the old fashioned way */
887		return do_reset1(drive, 1);
888	}
889	/* done polling */
890	hwgroup->polling = 0;
891	hwgroup->resetting = 0;
892	return ide_stopped;
893}
894
895/*
896 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
897 * during an ide reset operation. If the drives have not yet responded,
898 * and we have not yet hit our maximum waiting time, then the timer is restarted
899 * for another 50ms.
900 */
901static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
902{
903	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
904	ide_hwif_t *hwif	= HWIF(drive);
905	const struct ide_port_ops *port_ops = hwif->port_ops;
906	u8 tmp;
907
908	if (port_ops && port_ops->reset_poll) {
909		if (port_ops->reset_poll(drive)) {
910			printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
911				hwif->name, drive->name);
912			return ide_stopped;
913		}
914	}
915
916	tmp = ide_read_status(drive);
917
918	if (!OK_STAT(tmp, 0, BUSY_STAT)) {
919		if (time_before(jiffies, hwgroup->poll_timeout)) {
920			ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
921			/* continue polling */
922			return ide_started;
923		}
924		printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
925		drive->failures++;
926	} else  {
927		printk("%s: reset: ", hwif->name);
928		tmp = ide_read_error(drive);
929
930		if (tmp == 1) {
931			printk("success\n");
932			drive->failures = 0;
933		} else {
934			drive->failures++;
935			printk("master: ");
936			switch (tmp & 0x7f) {
937				case 1: printk("passed");
938					break;
939				case 2: printk("formatter device error");
940					break;
941				case 3: printk("sector buffer error");
942					break;
943				case 4: printk("ECC circuitry error");
944					break;
945				case 5: printk("controlling MPU error");
946					break;
947				default:printk("error (0x%02x?)", tmp);
948			}
949			if (tmp & 0x80)
950				printk("; slave: failed");
951			printk("\n");
952		}
953	}
954	hwgroup->polling = 0;	/* done polling */
955	hwgroup->resetting = 0; /* done reset attempt */
956	return ide_stopped;
957}
958
959static void ide_disk_pre_reset(ide_drive_t *drive)
960{
961	int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
962
963	drive->special.all = 0;
964	drive->special.b.set_geometry = legacy;
965	drive->special.b.recalibrate  = legacy;
966	drive->mult_count = 0;
967	if (!drive->keep_settings && !drive->using_dma)
968		drive->mult_req = 0;
969	if (drive->mult_req != drive->mult_count)
970		drive->special.b.set_multmode = 1;
971}
972
973static void pre_reset(ide_drive_t *drive)
974{
975	const struct ide_port_ops *port_ops = drive->hwif->port_ops;
976
977	if (drive->media == ide_disk)
978		ide_disk_pre_reset(drive);
979	else
980		drive->post_reset = 1;
981
982	if (drive->using_dma) {
983		if (drive->crc_count)
984			ide_check_dma_crc(drive);
985		else
986			ide_dma_off(drive);
987	}
988
989	if (!drive->keep_settings) {
990		if (!drive->using_dma) {
991			drive->unmask = 0;
992			drive->io_32bit = 0;
993		}
994		return;
995	}
996
997	if (port_ops && port_ops->pre_reset)
998		port_ops->pre_reset(drive);
999
1000	if (drive->current_speed != 0xff)
1001		drive->desired_speed = drive->current_speed;
1002	drive->current_speed = 0xff;
1003}
1004
1005/*
1006 * do_reset1() attempts to recover a confused drive by resetting it.
1007 * Unfortunately, resetting a disk drive actually resets all devices on
1008 * the same interface, so it can really be thought of as resetting the
1009 * interface rather than resetting the drive.
1010 *
1011 * ATAPI devices have their own reset mechanism which allows them to be
1012 * individually reset without clobbering other devices on the same interface.
1013 *
1014 * Unfortunately, the IDE interface does not generate an interrupt to let
1015 * us know when the reset operation has finished, so we must poll for this.
1016 * Equally poor, though, is the fact that this may a very long time to complete,
1017 * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1018 * we set a timer to poll at 50ms intervals.
1019 */
1020static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1021{
1022	unsigned int unit;
1023	unsigned long flags;
1024	ide_hwif_t *hwif;
1025	ide_hwgroup_t *hwgroup;
1026	struct ide_io_ports *io_ports;
1027	const struct ide_port_ops *port_ops;
1028	u8 ctl;
1029
1030	spin_lock_irqsave(&ide_lock, flags);
1031	hwif = HWIF(drive);
1032	hwgroup = HWGROUP(drive);
1033
1034	io_ports = &hwif->io_ports;
1035
1036	/* We must not reset with running handlers */
1037	BUG_ON(hwgroup->handler != NULL);
1038
1039	/* For an ATAPI device, first try an ATAPI SRST. */
1040	if (drive->media != ide_disk && !do_not_try_atapi) {
1041		hwgroup->resetting = 1;
1042		pre_reset(drive);
1043		SELECT_DRIVE(drive);
1044		udelay (20);
1045		hwif->OUTBSYNC(drive, WIN_SRST, io_ports->command_addr);
1046		ndelay(400);
1047		hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1048		hwgroup->polling = 1;
1049		__ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1050		spin_unlock_irqrestore(&ide_lock, flags);
1051		return ide_started;
1052	}
1053
1054	/*
1055	 * First, reset any device state data we were maintaining
1056	 * for any of the drives on this interface.
1057	 */
1058	for (unit = 0; unit < MAX_DRIVES; ++unit)
1059		pre_reset(&hwif->drives[unit]);
1060
1061	if (io_ports->ctl_addr == 0) {
1062		spin_unlock_irqrestore(&ide_lock, flags);
1063		return ide_stopped;
1064	}
1065
1066	hwgroup->resetting = 1;
1067	/*
1068	 * Note that we also set nIEN while resetting the device,
1069	 * to mask unwanted interrupts from the interface during the reset.
1070	 * However, due to the design of PC hardware, this will cause an
1071	 * immediate interrupt due to the edge transition it produces.
1072	 * This single interrupt gives us a "fast poll" for drives that
1073	 * recover from reset very quickly, saving us the first 50ms wait time.
1074	 */
1075	/* set SRST and nIEN */
1076	hwif->OUTBSYNC(drive, drive->ctl|6, io_ports->ctl_addr);
1077	/* more than enough time */
1078	udelay(10);
1079	if (drive->quirk_list == 2)
1080		ctl = drive->ctl;	/* clear SRST and nIEN */
1081	else
1082		ctl = drive->ctl | 2;	/* clear SRST, leave nIEN */
1083	hwif->OUTBSYNC(drive, ctl, io_ports->ctl_addr);
1084	/* more than enough time */
1085	udelay(10);
1086	hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1087	hwgroup->polling = 1;
1088	__ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1089
1090	/*
1091	 * Some weird controller like resetting themselves to a strange
1092	 * state when the disks are reset this way. At least, the Winbond
1093	 * 553 documentation says that
1094	 */
1095	port_ops = hwif->port_ops;
1096	if (port_ops && port_ops->resetproc)
1097		port_ops->resetproc(drive);
1098
1099	spin_unlock_irqrestore(&ide_lock, flags);
1100	return ide_started;
1101}
1102
1103/*
1104 * ide_do_reset() is the entry point to the drive/interface reset code.
1105 */
1106
1107ide_startstop_t ide_do_reset (ide_drive_t *drive)
1108{
1109	return do_reset1(drive, 0);
1110}
1111
1112EXPORT_SYMBOL(ide_do_reset);
1113
1114/*
1115 * ide_wait_not_busy() waits for the currently selected device on the hwif
1116 * to report a non-busy status, see comments in ide_probe_port().
1117 */
1118int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1119{
1120	u8 stat = 0;
1121
1122	while(timeout--) {
1123		/*
1124		 * Turn this into a schedule() sleep once I'm sure
1125		 * about locking issues (2.5 work ?).
1126		 */
1127		mdelay(1);
1128		stat = hwif->INB(hwif->io_ports.status_addr);
1129		if ((stat & BUSY_STAT) == 0)
1130			return 0;
1131		/*
1132		 * Assume a value of 0xff means nothing is connected to
1133		 * the interface and it doesn't implement the pull-down
1134		 * resistor on D7.
1135		 */
1136		if (stat == 0xff)
1137			return -ENODEV;
1138		touch_softlockup_watchdog();
1139		touch_nmi_watchdog();
1140	}
1141	return -EBUSY;
1142}
1143
1144EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1145
1146