ide-iops.c revision 4dde4492d850a4c9bcaa92e5bd7f4eebe3e2f5ab
1/*
2 *  Copyright (C) 2000-2002	Andre Hedrick <andre@linux-ide.org>
3 *  Copyright (C) 2003		Red Hat <alan@redhat.com>
4 *
5 */
6
7#include <linux/module.h>
8#include <linux/types.h>
9#include <linux/string.h>
10#include <linux/kernel.h>
11#include <linux/timer.h>
12#include <linux/mm.h>
13#include <linux/interrupt.h>
14#include <linux/major.h>
15#include <linux/errno.h>
16#include <linux/genhd.h>
17#include <linux/blkpg.h>
18#include <linux/slab.h>
19#include <linux/pci.h>
20#include <linux/delay.h>
21#include <linux/hdreg.h>
22#include <linux/ide.h>
23#include <linux/bitops.h>
24#include <linux/nmi.h>
25
26#include <asm/byteorder.h>
27#include <asm/irq.h>
28#include <asm/uaccess.h>
29#include <asm/io.h>
30
31/*
32 *	Conventional PIO operations for ATA devices
33 */
34
35static u8 ide_inb (unsigned long port)
36{
37	return (u8) inb(port);
38}
39
40static void ide_outb (u8 val, unsigned long port)
41{
42	outb(val, port);
43}
44
45/*
46 *	MMIO operations, typically used for SATA controllers
47 */
48
49static u8 ide_mm_inb (unsigned long port)
50{
51	return (u8) readb((void __iomem *) port);
52}
53
54static void ide_mm_outb (u8 value, unsigned long port)
55{
56	writeb(value, (void __iomem *) port);
57}
58
59void SELECT_DRIVE (ide_drive_t *drive)
60{
61	ide_hwif_t *hwif = drive->hwif;
62	const struct ide_port_ops *port_ops = hwif->port_ops;
63	ide_task_t task;
64
65	if (port_ops && port_ops->selectproc)
66		port_ops->selectproc(drive);
67
68	memset(&task, 0, sizeof(task));
69	task.tf_flags = IDE_TFLAG_OUT_DEVICE;
70
71	drive->hwif->tp_ops->tf_load(drive, &task);
72}
73
74void SELECT_MASK(ide_drive_t *drive, int mask)
75{
76	const struct ide_port_ops *port_ops = drive->hwif->port_ops;
77
78	if (port_ops && port_ops->maskproc)
79		port_ops->maskproc(drive, mask);
80}
81
82void ide_exec_command(ide_hwif_t *hwif, u8 cmd)
83{
84	if (hwif->host_flags & IDE_HFLAG_MMIO)
85		writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
86	else
87		outb(cmd, hwif->io_ports.command_addr);
88}
89EXPORT_SYMBOL_GPL(ide_exec_command);
90
91u8 ide_read_status(ide_hwif_t *hwif)
92{
93	if (hwif->host_flags & IDE_HFLAG_MMIO)
94		return readb((void __iomem *)hwif->io_ports.status_addr);
95	else
96		return inb(hwif->io_ports.status_addr);
97}
98EXPORT_SYMBOL_GPL(ide_read_status);
99
100u8 ide_read_altstatus(ide_hwif_t *hwif)
101{
102	if (hwif->host_flags & IDE_HFLAG_MMIO)
103		return readb((void __iomem *)hwif->io_ports.ctl_addr);
104	else
105		return inb(hwif->io_ports.ctl_addr);
106}
107EXPORT_SYMBOL_GPL(ide_read_altstatus);
108
109u8 ide_read_sff_dma_status(ide_hwif_t *hwif)
110{
111	if (hwif->host_flags & IDE_HFLAG_MMIO)
112		return readb((void __iomem *)(hwif->dma_base + ATA_DMA_STATUS));
113	else
114		return inb(hwif->dma_base + ATA_DMA_STATUS);
115}
116EXPORT_SYMBOL_GPL(ide_read_sff_dma_status);
117
118void ide_set_irq(ide_hwif_t *hwif, int on)
119{
120	u8 ctl = ATA_DEVCTL_OBS;
121
122	if (on == 4) { /* hack for SRST */
123		ctl |= 4;
124		on &= ~4;
125	}
126
127	ctl |= on ? 0 : 2;
128
129	if (hwif->host_flags & IDE_HFLAG_MMIO)
130		writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
131	else
132		outb(ctl, hwif->io_ports.ctl_addr);
133}
134EXPORT_SYMBOL_GPL(ide_set_irq);
135
136void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
137{
138	ide_hwif_t *hwif = drive->hwif;
139	struct ide_io_ports *io_ports = &hwif->io_ports;
140	struct ide_taskfile *tf = &task->tf;
141	void (*tf_outb)(u8 addr, unsigned long port);
142	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
143	u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
144
145	if (mmio)
146		tf_outb = ide_mm_outb;
147	else
148		tf_outb = ide_outb;
149
150	if (task->tf_flags & IDE_TFLAG_FLAGGED)
151		HIHI = 0xFF;
152
153	if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
154		u16 data = (tf->hob_data << 8) | tf->data;
155
156		if (mmio)
157			writew(data, (void __iomem *)io_ports->data_addr);
158		else
159			outw(data, io_ports->data_addr);
160	}
161
162	if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
163		tf_outb(tf->hob_feature, io_ports->feature_addr);
164	if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
165		tf_outb(tf->hob_nsect, io_ports->nsect_addr);
166	if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
167		tf_outb(tf->hob_lbal, io_ports->lbal_addr);
168	if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
169		tf_outb(tf->hob_lbam, io_ports->lbam_addr);
170	if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
171		tf_outb(tf->hob_lbah, io_ports->lbah_addr);
172
173	if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
174		tf_outb(tf->feature, io_ports->feature_addr);
175	if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
176		tf_outb(tf->nsect, io_ports->nsect_addr);
177	if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
178		tf_outb(tf->lbal, io_ports->lbal_addr);
179	if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
180		tf_outb(tf->lbam, io_ports->lbam_addr);
181	if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
182		tf_outb(tf->lbah, io_ports->lbah_addr);
183
184	if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
185		tf_outb((tf->device & HIHI) | drive->select.all,
186			 io_ports->device_addr);
187}
188EXPORT_SYMBOL_GPL(ide_tf_load);
189
190void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
191{
192	ide_hwif_t *hwif = drive->hwif;
193	struct ide_io_ports *io_ports = &hwif->io_ports;
194	struct ide_taskfile *tf = &task->tf;
195	void (*tf_outb)(u8 addr, unsigned long port);
196	u8 (*tf_inb)(unsigned long port);
197	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
198
199	if (mmio) {
200		tf_outb = ide_mm_outb;
201		tf_inb  = ide_mm_inb;
202	} else {
203		tf_outb = ide_outb;
204		tf_inb  = ide_inb;
205	}
206
207	if (task->tf_flags & IDE_TFLAG_IN_DATA) {
208		u16 data;
209
210		if (mmio)
211			data = readw((void __iomem *)io_ports->data_addr);
212		else
213			data = inw(io_ports->data_addr);
214
215		tf->data = data & 0xff;
216		tf->hob_data = (data >> 8) & 0xff;
217	}
218
219	/* be sure we're looking at the low order bits */
220	tf_outb(ATA_DEVCTL_OBS & ~0x80, io_ports->ctl_addr);
221
222	if (task->tf_flags & IDE_TFLAG_IN_FEATURE)
223		tf->feature = tf_inb(io_ports->feature_addr);
224	if (task->tf_flags & IDE_TFLAG_IN_NSECT)
225		tf->nsect  = tf_inb(io_ports->nsect_addr);
226	if (task->tf_flags & IDE_TFLAG_IN_LBAL)
227		tf->lbal   = tf_inb(io_ports->lbal_addr);
228	if (task->tf_flags & IDE_TFLAG_IN_LBAM)
229		tf->lbam   = tf_inb(io_ports->lbam_addr);
230	if (task->tf_flags & IDE_TFLAG_IN_LBAH)
231		tf->lbah   = tf_inb(io_ports->lbah_addr);
232	if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
233		tf->device = tf_inb(io_ports->device_addr);
234
235	if (task->tf_flags & IDE_TFLAG_LBA48) {
236		tf_outb(ATA_DEVCTL_OBS | 0x80, io_ports->ctl_addr);
237
238		if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
239			tf->hob_feature = tf_inb(io_ports->feature_addr);
240		if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
241			tf->hob_nsect   = tf_inb(io_ports->nsect_addr);
242		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
243			tf->hob_lbal    = tf_inb(io_ports->lbal_addr);
244		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
245			tf->hob_lbam    = tf_inb(io_ports->lbam_addr);
246		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
247			tf->hob_lbah    = tf_inb(io_ports->lbah_addr);
248	}
249}
250EXPORT_SYMBOL_GPL(ide_tf_read);
251
252/*
253 * Some localbus EIDE interfaces require a special access sequence
254 * when using 32-bit I/O instructions to transfer data.  We call this
255 * the "vlb_sync" sequence, which consists of three successive reads
256 * of the sector count register location, with interrupts disabled
257 * to ensure that the reads all happen together.
258 */
259static void ata_vlb_sync(unsigned long port)
260{
261	(void)inb(port);
262	(void)inb(port);
263	(void)inb(port);
264}
265
266/*
267 * This is used for most PIO data transfers *from* the IDE interface
268 *
269 * These routines will round up any request for an odd number of bytes,
270 * so if an odd len is specified, be sure that there's at least one
271 * extra byte allocated for the buffer.
272 */
273void ide_input_data(ide_drive_t *drive, struct request *rq, void *buf,
274		    unsigned int len)
275{
276	ide_hwif_t *hwif = drive->hwif;
277	struct ide_io_ports *io_ports = &hwif->io_ports;
278	unsigned long data_addr = io_ports->data_addr;
279	u8 io_32bit = drive->io_32bit;
280	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
281
282	len++;
283
284	if (io_32bit) {
285		unsigned long uninitialized_var(flags);
286
287		if ((io_32bit & 2) && !mmio) {
288			local_irq_save(flags);
289			ata_vlb_sync(io_ports->nsect_addr);
290		}
291
292		if (mmio)
293			__ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
294		else
295			insl(data_addr, buf, len / 4);
296
297		if ((io_32bit & 2) && !mmio)
298			local_irq_restore(flags);
299
300		if ((len & 3) >= 2) {
301			if (mmio)
302				__ide_mm_insw((void __iomem *)data_addr,
303						(u8 *)buf + (len & ~3), 1);
304			else
305				insw(data_addr, (u8 *)buf + (len & ~3), 1);
306		}
307	} else {
308		if (mmio)
309			__ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
310		else
311			insw(data_addr, buf, len / 2);
312	}
313}
314EXPORT_SYMBOL_GPL(ide_input_data);
315
316/*
317 * This is used for most PIO data transfers *to* the IDE interface
318 */
319void ide_output_data(ide_drive_t *drive, struct request *rq, void *buf,
320		     unsigned int len)
321{
322	ide_hwif_t *hwif = drive->hwif;
323	struct ide_io_ports *io_ports = &hwif->io_ports;
324	unsigned long data_addr = io_ports->data_addr;
325	u8 io_32bit = drive->io_32bit;
326	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
327
328	if (io_32bit) {
329		unsigned long uninitialized_var(flags);
330
331		if ((io_32bit & 2) && !mmio) {
332			local_irq_save(flags);
333			ata_vlb_sync(io_ports->nsect_addr);
334		}
335
336		if (mmio)
337			__ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
338		else
339			outsl(data_addr, buf, len / 4);
340
341		if ((io_32bit & 2) && !mmio)
342			local_irq_restore(flags);
343
344		if ((len & 3) >= 2) {
345			if (mmio)
346				__ide_mm_outsw((void __iomem *)data_addr,
347						 (u8 *)buf + (len & ~3), 1);
348			else
349				outsw(data_addr, (u8 *)buf + (len & ~3), 1);
350		}
351	} else {
352		if (mmio)
353			__ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
354		else
355			outsw(data_addr, buf, len / 2);
356	}
357}
358EXPORT_SYMBOL_GPL(ide_output_data);
359
360u8 ide_read_error(ide_drive_t *drive)
361{
362	ide_task_t task;
363
364	memset(&task, 0, sizeof(task));
365	task.tf_flags = IDE_TFLAG_IN_FEATURE;
366
367	drive->hwif->tp_ops->tf_read(drive, &task);
368
369	return task.tf.error;
370}
371EXPORT_SYMBOL_GPL(ide_read_error);
372
373void ide_read_bcount_and_ireason(ide_drive_t *drive, u16 *bcount, u8 *ireason)
374{
375	ide_task_t task;
376
377	memset(&task, 0, sizeof(task));
378	task.tf_flags = IDE_TFLAG_IN_LBAH | IDE_TFLAG_IN_LBAM |
379			IDE_TFLAG_IN_NSECT;
380
381	drive->hwif->tp_ops->tf_read(drive, &task);
382
383	*bcount = (task.tf.lbah << 8) | task.tf.lbam;
384	*ireason = task.tf.nsect & 3;
385}
386EXPORT_SYMBOL_GPL(ide_read_bcount_and_ireason);
387
388const struct ide_tp_ops default_tp_ops = {
389	.exec_command		= ide_exec_command,
390	.read_status		= ide_read_status,
391	.read_altstatus		= ide_read_altstatus,
392	.read_sff_dma_status	= ide_read_sff_dma_status,
393
394	.set_irq		= ide_set_irq,
395
396	.tf_load		= ide_tf_load,
397	.tf_read		= ide_tf_read,
398
399	.input_data		= ide_input_data,
400	.output_data		= ide_output_data,
401};
402
403void ide_fix_driveid(u16 *id)
404{
405#ifndef __LITTLE_ENDIAN
406# ifdef __BIG_ENDIAN
407	struct hd_driveid *driveid = (struct hd_driveid *)id;
408	int i;
409
410	for (i = 0; i < 256; i++) {
411		/*  these words are accessed as two 8-bit values */
412		if (i == 47 || i == 49 || i == 51 || i == 52 || i == 59)
413			continue;
414		if (i == 60 || i == 61)	/* ->lba_capacity is 32-bit */
415			continue;
416		if (i == 98 || i == 99)	/* ->spg is 32-bit */
417			continue;
418		if (i > 99 && i < 104)	/* ->lba_capacity_2 is 64-bit */
419			continue;
420
421		id[i] = __le16_to_cpu(id[i]);
422	}
423
424	driveid->lba_capacity	= __le32_to_cpu(driveid->lba_capacity);
425	driveid->spg		= __le32_to_cpu(driveid->spg);
426	driveid->lba_capacity_2	= __le64_to_cpu(driveid->lba_capacity_2);
427# else
428#  error "Please fix <asm/byteorder.h>"
429# endif
430#endif
431}
432
433/*
434 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
435 * removing leading/trailing blanks and compressing internal blanks.
436 * It is primarily used to tidy up the model name/number fields as
437 * returned by the WIN_[P]IDENTIFY commands.
438 */
439
440void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
441{
442	u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
443
444	if (byteswap) {
445		/* convert from big-endian to host byte order */
446		for (p = end ; p != s;)
447			be16_to_cpus((u16 *)(p -= 2));
448	}
449	/* strip leading blanks */
450	while (s != end && *s == ' ')
451		++s;
452	/* compress internal blanks and strip trailing blanks */
453	while (s != end && *s) {
454		if (*s++ != ' ' || (s != end && *s && *s != ' '))
455			*p++ = *(s-1);
456	}
457	/* wipe out trailing garbage */
458	while (p != end)
459		*p++ = '\0';
460}
461
462EXPORT_SYMBOL(ide_fixstring);
463
464/*
465 * Needed for PCI irq sharing
466 */
467int drive_is_ready (ide_drive_t *drive)
468{
469	ide_hwif_t *hwif	= HWIF(drive);
470	u8 stat			= 0;
471
472	if (drive->waiting_for_dma)
473		return hwif->dma_ops->dma_test_irq(drive);
474
475#if 0
476	/* need to guarantee 400ns since last command was issued */
477	udelay(1);
478#endif
479
480	/*
481	 * We do a passive status test under shared PCI interrupts on
482	 * cards that truly share the ATA side interrupt, but may also share
483	 * an interrupt with another pci card/device.  We make no assumptions
484	 * about possible isa-pnp and pci-pnp issues yet.
485	 */
486	if (hwif->io_ports.ctl_addr)
487		stat = hwif->tp_ops->read_altstatus(hwif);
488	else
489		/* Note: this may clear a pending IRQ!! */
490		stat = hwif->tp_ops->read_status(hwif);
491
492	if (stat & BUSY_STAT)
493		/* drive busy:  definitely not interrupting */
494		return 0;
495
496	/* drive ready: *might* be interrupting */
497	return 1;
498}
499
500EXPORT_SYMBOL(drive_is_ready);
501
502/*
503 * This routine busy-waits for the drive status to be not "busy".
504 * It then checks the status for all of the "good" bits and none
505 * of the "bad" bits, and if all is okay it returns 0.  All other
506 * cases return error -- caller may then invoke ide_error().
507 *
508 * This routine should get fixed to not hog the cpu during extra long waits..
509 * That could be done by busy-waiting for the first jiffy or two, and then
510 * setting a timer to wake up at half second intervals thereafter,
511 * until timeout is achieved, before timing out.
512 */
513static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
514{
515	ide_hwif_t *hwif = drive->hwif;
516	const struct ide_tp_ops *tp_ops = hwif->tp_ops;
517	unsigned long flags;
518	int i;
519	u8 stat;
520
521	udelay(1);	/* spec allows drive 400ns to assert "BUSY" */
522	stat = tp_ops->read_status(hwif);
523
524	if (stat & BUSY_STAT) {
525		local_irq_set(flags);
526		timeout += jiffies;
527		while ((stat = tp_ops->read_status(hwif)) & BUSY_STAT) {
528			if (time_after(jiffies, timeout)) {
529				/*
530				 * One last read after the timeout in case
531				 * heavy interrupt load made us not make any
532				 * progress during the timeout..
533				 */
534				stat = tp_ops->read_status(hwif);
535				if (!(stat & BUSY_STAT))
536					break;
537
538				local_irq_restore(flags);
539				*rstat = stat;
540				return -EBUSY;
541			}
542		}
543		local_irq_restore(flags);
544	}
545	/*
546	 * Allow status to settle, then read it again.
547	 * A few rare drives vastly violate the 400ns spec here,
548	 * so we'll wait up to 10usec for a "good" status
549	 * rather than expensively fail things immediately.
550	 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
551	 */
552	for (i = 0; i < 10; i++) {
553		udelay(1);
554		stat = tp_ops->read_status(hwif);
555
556		if (OK_STAT(stat, good, bad)) {
557			*rstat = stat;
558			return 0;
559		}
560	}
561	*rstat = stat;
562	return -EFAULT;
563}
564
565/*
566 * In case of error returns error value after doing "*startstop = ide_error()".
567 * The caller should return the updated value of "startstop" in this case,
568 * "startstop" is unchanged when the function returns 0.
569 */
570int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
571{
572	int err;
573	u8 stat;
574
575	/* bail early if we've exceeded max_failures */
576	if (drive->max_failures && (drive->failures > drive->max_failures)) {
577		*startstop = ide_stopped;
578		return 1;
579	}
580
581	err = __ide_wait_stat(drive, good, bad, timeout, &stat);
582
583	if (err) {
584		char *s = (err == -EBUSY) ? "status timeout" : "status error";
585		*startstop = ide_error(drive, s, stat);
586	}
587
588	return err;
589}
590
591EXPORT_SYMBOL(ide_wait_stat);
592
593/**
594 *	ide_in_drive_list	-	look for drive in black/white list
595 *	@id: drive identifier
596 *	@table: list to inspect
597 *
598 *	Look for a drive in the blacklist and the whitelist tables
599 *	Returns 1 if the drive is found in the table.
600 */
601
602int ide_in_drive_list(u16 *id, const struct drive_list_entry *table)
603{
604	for ( ; table->id_model; table++)
605		if ((!strcmp(table->id_model, (char *)&id[ATA_ID_PROD])) &&
606		    (!table->id_firmware ||
607		     strstr((char *)&id[ATA_ID_FW_REV], table->id_firmware)))
608			return 1;
609	return 0;
610}
611
612EXPORT_SYMBOL_GPL(ide_in_drive_list);
613
614/*
615 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
616 * We list them here and depend on the device side cable detection for them.
617 *
618 * Some optical devices with the buggy firmwares have the same problem.
619 */
620static const struct drive_list_entry ivb_list[] = {
621	{ "QUANTUM FIREBALLlct10 05"	, "A03.0900"	},
622	{ "TSSTcorp CDDVDW SH-S202J"	, "SB00"	},
623	{ "TSSTcorp CDDVDW SH-S202J"	, "SB01"	},
624	{ "TSSTcorp CDDVDW SH-S202N"	, "SB00"	},
625	{ "TSSTcorp CDDVDW SH-S202N"	, "SB01"	},
626	{ "TSSTcorp CDDVDW SH-S202H"	, "SB00"	},
627	{ "TSSTcorp CDDVDW SH-S202H"	, "SB01"	},
628	{ NULL				, NULL		}
629};
630
631/*
632 *  All hosts that use the 80c ribbon must use!
633 *  The name is derived from upper byte of word 93 and the 80c ribbon.
634 */
635u8 eighty_ninty_three (ide_drive_t *drive)
636{
637	ide_hwif_t *hwif = drive->hwif;
638	u16 *id = drive->id;
639	int ivb = ide_in_drive_list(id, ivb_list);
640
641	if (hwif->cbl == ATA_CBL_PATA40_SHORT)
642		return 1;
643
644	if (ivb)
645		printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
646				  drive->name);
647
648	if (ide_dev_is_sata(id) && !ivb)
649		return 1;
650
651	if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
652		goto no_80w;
653
654	/*
655	 * FIXME:
656	 * - change master/slave IDENTIFY order
657	 * - force bit13 (80c cable present) check also for !ivb devices
658	 *   (unless the slave device is pre-ATA3)
659	 */
660	if ((id[ATA_ID_HW_CONFIG] & 0x4000) ||
661	    (ivb && (id[ATA_ID_HW_CONFIG] & 0x2000)))
662		return 1;
663
664no_80w:
665	if (drive->udma33_warned == 1)
666		return 0;
667
668	printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
669			    "limiting max speed to UDMA33\n",
670			    drive->name,
671			    hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
672
673	drive->udma33_warned = 1;
674
675	return 0;
676}
677
678int ide_driveid_update(ide_drive_t *drive)
679{
680	ide_hwif_t *hwif = drive->hwif;
681	const struct ide_tp_ops *tp_ops = hwif->tp_ops;
682	u16 *id;
683	unsigned long timeout, flags;
684	u8 stat;
685
686	/*
687	 * Re-read drive->id for possible DMA mode
688	 * change (copied from ide-probe.c)
689	 */
690
691	SELECT_MASK(drive, 1);
692	tp_ops->set_irq(hwif, 0);
693	msleep(50);
694	tp_ops->exec_command(hwif, WIN_IDENTIFY);
695	timeout = jiffies + WAIT_WORSTCASE;
696	do {
697		if (time_after(jiffies, timeout)) {
698			SELECT_MASK(drive, 0);
699			return 0;	/* drive timed-out */
700		}
701
702		msleep(50);	/* give drive a breather */
703		stat = tp_ops->read_altstatus(hwif);
704	} while (stat & BUSY_STAT);
705
706	msleep(50);	/* wait for IRQ and DRQ_STAT */
707	stat = tp_ops->read_status(hwif);
708
709	if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
710		SELECT_MASK(drive, 0);
711		printk("%s: CHECK for good STATUS\n", drive->name);
712		return 0;
713	}
714	local_irq_save(flags);
715	SELECT_MASK(drive, 0);
716	id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
717	if (!id) {
718		local_irq_restore(flags);
719		return 0;
720	}
721	tp_ops->input_data(drive, NULL, id, SECTOR_SIZE);
722	(void)tp_ops->read_status(hwif);	/* clear drive IRQ */
723	local_irq_enable();
724	local_irq_restore(flags);
725	ide_fix_driveid(id);
726
727	drive->id[ATA_ID_UDMA_MODES]  = id[ATA_ID_UDMA_MODES];
728	drive->id[ATA_ID_MWDMA_MODES] = id[ATA_ID_MWDMA_MODES];
729	drive->id[ATA_ID_SWDMA_MODES] = id[ATA_ID_SWDMA_MODES];
730	/* anything more ? */
731
732	kfree(id);
733
734	if (drive->using_dma && ide_id_dma_bug(drive))
735		ide_dma_off(drive);
736
737	return 1;
738}
739
740int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
741{
742	ide_hwif_t *hwif = drive->hwif;
743	const struct ide_tp_ops *tp_ops = hwif->tp_ops;
744	u16 *id = drive->id, i;
745	int error = 0;
746	u8 stat;
747	ide_task_t task;
748
749#ifdef CONFIG_BLK_DEV_IDEDMA
750	if (hwif->dma_ops)	/* check if host supports DMA */
751		hwif->dma_ops->dma_host_set(drive, 0);
752#endif
753
754	/* Skip setting PIO flow-control modes on pre-EIDE drives */
755	if ((speed & 0xf8) == XFER_PIO_0 && !(drive->driveid->capability & 8))
756		goto skip;
757
758	/*
759	 * Don't use ide_wait_cmd here - it will
760	 * attempt to set_geometry and recalibrate,
761	 * but for some reason these don't work at
762	 * this point (lost interrupt).
763	 */
764        /*
765         * Select the drive, and issue the SETFEATURES command
766         */
767	disable_irq_nosync(hwif->irq);
768
769	/*
770	 *	FIXME: we race against the running IRQ here if
771	 *	this is called from non IRQ context. If we use
772	 *	disable_irq() we hang on the error path. Work
773	 *	is needed.
774	 */
775
776	udelay(1);
777	SELECT_DRIVE(drive);
778	SELECT_MASK(drive, 0);
779	udelay(1);
780	tp_ops->set_irq(hwif, 0);
781
782	memset(&task, 0, sizeof(task));
783	task.tf_flags = IDE_TFLAG_OUT_FEATURE | IDE_TFLAG_OUT_NSECT;
784	task.tf.feature = SETFEATURES_XFER;
785	task.tf.nsect   = speed;
786
787	tp_ops->tf_load(drive, &task);
788
789	tp_ops->exec_command(hwif, WIN_SETFEATURES);
790
791	if (drive->quirk_list == 2)
792		tp_ops->set_irq(hwif, 1);
793
794	error = __ide_wait_stat(drive, drive->ready_stat,
795				BUSY_STAT|DRQ_STAT|ERR_STAT,
796				WAIT_CMD, &stat);
797
798	SELECT_MASK(drive, 0);
799
800	enable_irq(hwif->irq);
801
802	if (error) {
803		(void) ide_dump_status(drive, "set_drive_speed_status", stat);
804		return error;
805	}
806
807	id[ATA_ID_UDMA_MODES]  &= ~0xFF00;
808	id[ATA_ID_MWDMA_MODES] &= ~0x0F00;
809	id[ATA_ID_SWDMA_MODES] &= ~0x0F00;
810
811 skip:
812#ifdef CONFIG_BLK_DEV_IDEDMA
813	if (speed >= XFER_SW_DMA_0 && drive->using_dma)
814		hwif->dma_ops->dma_host_set(drive, 1);
815	else if (hwif->dma_ops)	/* check if host supports DMA */
816		ide_dma_off_quietly(drive);
817#endif
818
819	if (speed >= XFER_UDMA_0) {
820		i = 1 << (speed - XFER_UDMA_0);
821		id[ATA_ID_UDMA_MODES] |= (i << 8 | i);
822	} else if (speed >= XFER_MW_DMA_0) {
823		i = 1 << (speed - XFER_MW_DMA_0);
824		id[ATA_ID_MWDMA_MODES] |= (i << 8 | i);
825	} else if (speed >= XFER_SW_DMA_0) {
826		i = 1 << (speed - XFER_SW_DMA_0);
827		id[ATA_ID_SWDMA_MODES] |= (i << 8 | i);
828	}
829
830	if (!drive->init_speed)
831		drive->init_speed = speed;
832	drive->current_speed = speed;
833	return error;
834}
835
836/*
837 * This should get invoked any time we exit the driver to
838 * wait for an interrupt response from a drive.  handler() points
839 * at the appropriate code to handle the next interrupt, and a
840 * timer is started to prevent us from waiting forever in case
841 * something goes wrong (see the ide_timer_expiry() handler later on).
842 *
843 * See also ide_execute_command
844 */
845static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
846		      unsigned int timeout, ide_expiry_t *expiry)
847{
848	ide_hwgroup_t *hwgroup = HWGROUP(drive);
849
850	BUG_ON(hwgroup->handler);
851	hwgroup->handler	= handler;
852	hwgroup->expiry		= expiry;
853	hwgroup->timer.expires	= jiffies + timeout;
854	hwgroup->req_gen_timer	= hwgroup->req_gen;
855	add_timer(&hwgroup->timer);
856}
857
858void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
859		      unsigned int timeout, ide_expiry_t *expiry)
860{
861	unsigned long flags;
862	spin_lock_irqsave(&ide_lock, flags);
863	__ide_set_handler(drive, handler, timeout, expiry);
864	spin_unlock_irqrestore(&ide_lock, flags);
865}
866
867EXPORT_SYMBOL(ide_set_handler);
868
869/**
870 *	ide_execute_command	-	execute an IDE command
871 *	@drive: IDE drive to issue the command against
872 *	@command: command byte to write
873 *	@handler: handler for next phase
874 *	@timeout: timeout for command
875 *	@expiry:  handler to run on timeout
876 *
877 *	Helper function to issue an IDE command. This handles the
878 *	atomicity requirements, command timing and ensures that the
879 *	handler and IRQ setup do not race. All IDE command kick off
880 *	should go via this function or do equivalent locking.
881 */
882
883void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
884			 unsigned timeout, ide_expiry_t *expiry)
885{
886	unsigned long flags;
887	ide_hwif_t *hwif = HWIF(drive);
888
889	spin_lock_irqsave(&ide_lock, flags);
890	__ide_set_handler(drive, handler, timeout, expiry);
891	hwif->tp_ops->exec_command(hwif, cmd);
892	/*
893	 * Drive takes 400nS to respond, we must avoid the IRQ being
894	 * serviced before that.
895	 *
896	 * FIXME: we could skip this delay with care on non shared devices
897	 */
898	ndelay(400);
899	spin_unlock_irqrestore(&ide_lock, flags);
900}
901EXPORT_SYMBOL(ide_execute_command);
902
903void ide_execute_pkt_cmd(ide_drive_t *drive)
904{
905	ide_hwif_t *hwif = drive->hwif;
906	unsigned long flags;
907
908	spin_lock_irqsave(&ide_lock, flags);
909	hwif->tp_ops->exec_command(hwif, WIN_PACKETCMD);
910	ndelay(400);
911	spin_unlock_irqrestore(&ide_lock, flags);
912}
913EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
914
915static inline void ide_complete_drive_reset(ide_drive_t *drive, int err)
916{
917	struct request *rq = drive->hwif->hwgroup->rq;
918
919	if (rq && blk_special_request(rq) && rq->cmd[0] == REQ_DRIVE_RESET)
920		ide_end_request(drive, err ? err : 1, 0);
921}
922
923/* needed below */
924static ide_startstop_t do_reset1 (ide_drive_t *, int);
925
926/*
927 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
928 * during an atapi drive reset operation. If the drive has not yet responded,
929 * and we have not yet hit our maximum waiting time, then the timer is restarted
930 * for another 50ms.
931 */
932static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
933{
934	ide_hwif_t *hwif = drive->hwif;
935	ide_hwgroup_t *hwgroup = hwif->hwgroup;
936	u8 stat;
937
938	SELECT_DRIVE(drive);
939	udelay (10);
940	stat = hwif->tp_ops->read_status(hwif);
941
942	if (OK_STAT(stat, 0, BUSY_STAT))
943		printk("%s: ATAPI reset complete\n", drive->name);
944	else {
945		if (time_before(jiffies, hwgroup->poll_timeout)) {
946			ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
947			/* continue polling */
948			return ide_started;
949		}
950		/* end of polling */
951		hwgroup->polling = 0;
952		printk("%s: ATAPI reset timed-out, status=0x%02x\n",
953				drive->name, stat);
954		/* do it the old fashioned way */
955		return do_reset1(drive, 1);
956	}
957	/* done polling */
958	hwgroup->polling = 0;
959	ide_complete_drive_reset(drive, 0);
960	return ide_stopped;
961}
962
963/*
964 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
965 * during an ide reset operation. If the drives have not yet responded,
966 * and we have not yet hit our maximum waiting time, then the timer is restarted
967 * for another 50ms.
968 */
969static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
970{
971	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
972	ide_hwif_t *hwif	= HWIF(drive);
973	const struct ide_port_ops *port_ops = hwif->port_ops;
974	u8 tmp;
975	int err = 0;
976
977	if (port_ops && port_ops->reset_poll) {
978		err = port_ops->reset_poll(drive);
979		if (err) {
980			printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
981				hwif->name, drive->name);
982			goto out;
983		}
984	}
985
986	tmp = hwif->tp_ops->read_status(hwif);
987
988	if (!OK_STAT(tmp, 0, BUSY_STAT)) {
989		if (time_before(jiffies, hwgroup->poll_timeout)) {
990			ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
991			/* continue polling */
992			return ide_started;
993		}
994		printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
995		drive->failures++;
996		err = -EIO;
997	} else  {
998		printk("%s: reset: ", hwif->name);
999		tmp = ide_read_error(drive);
1000
1001		if (tmp == 1) {
1002			printk("success\n");
1003			drive->failures = 0;
1004		} else {
1005			drive->failures++;
1006			printk("master: ");
1007			switch (tmp & 0x7f) {
1008				case 1: printk("passed");
1009					break;
1010				case 2: printk("formatter device error");
1011					break;
1012				case 3: printk("sector buffer error");
1013					break;
1014				case 4: printk("ECC circuitry error");
1015					break;
1016				case 5: printk("controlling MPU error");
1017					break;
1018				default:printk("error (0x%02x?)", tmp);
1019			}
1020			if (tmp & 0x80)
1021				printk("; slave: failed");
1022			printk("\n");
1023			err = -EIO;
1024		}
1025	}
1026out:
1027	hwgroup->polling = 0;	/* done polling */
1028	ide_complete_drive_reset(drive, err);
1029	return ide_stopped;
1030}
1031
1032static void ide_disk_pre_reset(ide_drive_t *drive)
1033{
1034	int legacy = (drive->id[ATA_ID_CFS_ENABLE_2] & 0x0400) ? 0 : 1;
1035
1036	drive->special.all = 0;
1037	drive->special.b.set_geometry = legacy;
1038	drive->special.b.recalibrate  = legacy;
1039	drive->mult_count = 0;
1040	if (!drive->keep_settings && !drive->using_dma)
1041		drive->mult_req = 0;
1042	if (drive->mult_req != drive->mult_count)
1043		drive->special.b.set_multmode = 1;
1044}
1045
1046static void pre_reset(ide_drive_t *drive)
1047{
1048	const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1049
1050	if (drive->media == ide_disk)
1051		ide_disk_pre_reset(drive);
1052	else
1053		drive->post_reset = 1;
1054
1055	if (drive->using_dma) {
1056		if (drive->crc_count)
1057			ide_check_dma_crc(drive);
1058		else
1059			ide_dma_off(drive);
1060	}
1061
1062	if (!drive->keep_settings) {
1063		if (!drive->using_dma) {
1064			drive->unmask = 0;
1065			drive->io_32bit = 0;
1066		}
1067		return;
1068	}
1069
1070	if (port_ops && port_ops->pre_reset)
1071		port_ops->pre_reset(drive);
1072
1073	if (drive->current_speed != 0xff)
1074		drive->desired_speed = drive->current_speed;
1075	drive->current_speed = 0xff;
1076}
1077
1078/*
1079 * do_reset1() attempts to recover a confused drive by resetting it.
1080 * Unfortunately, resetting a disk drive actually resets all devices on
1081 * the same interface, so it can really be thought of as resetting the
1082 * interface rather than resetting the drive.
1083 *
1084 * ATAPI devices have their own reset mechanism which allows them to be
1085 * individually reset without clobbering other devices on the same interface.
1086 *
1087 * Unfortunately, the IDE interface does not generate an interrupt to let
1088 * us know when the reset operation has finished, so we must poll for this.
1089 * Equally poor, though, is the fact that this may a very long time to complete,
1090 * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1091 * we set a timer to poll at 50ms intervals.
1092 */
1093static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1094{
1095	unsigned int unit;
1096	unsigned long flags;
1097	ide_hwif_t *hwif;
1098	ide_hwgroup_t *hwgroup;
1099	struct ide_io_ports *io_ports;
1100	const struct ide_tp_ops *tp_ops;
1101	const struct ide_port_ops *port_ops;
1102
1103	spin_lock_irqsave(&ide_lock, flags);
1104	hwif = HWIF(drive);
1105	hwgroup = HWGROUP(drive);
1106
1107	io_ports = &hwif->io_ports;
1108
1109	tp_ops = hwif->tp_ops;
1110
1111	/* We must not reset with running handlers */
1112	BUG_ON(hwgroup->handler != NULL);
1113
1114	/* For an ATAPI device, first try an ATAPI SRST. */
1115	if (drive->media != ide_disk && !do_not_try_atapi) {
1116		pre_reset(drive);
1117		SELECT_DRIVE(drive);
1118		udelay (20);
1119		tp_ops->exec_command(hwif, WIN_SRST);
1120		ndelay(400);
1121		hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1122		hwgroup->polling = 1;
1123		__ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1124		spin_unlock_irqrestore(&ide_lock, flags);
1125		return ide_started;
1126	}
1127
1128	/*
1129	 * First, reset any device state data we were maintaining
1130	 * for any of the drives on this interface.
1131	 */
1132	for (unit = 0; unit < MAX_DRIVES; ++unit)
1133		pre_reset(&hwif->drives[unit]);
1134
1135	if (io_ports->ctl_addr == 0) {
1136		spin_unlock_irqrestore(&ide_lock, flags);
1137		ide_complete_drive_reset(drive, -ENXIO);
1138		return ide_stopped;
1139	}
1140
1141	/*
1142	 * Note that we also set nIEN while resetting the device,
1143	 * to mask unwanted interrupts from the interface during the reset.
1144	 * However, due to the design of PC hardware, this will cause an
1145	 * immediate interrupt due to the edge transition it produces.
1146	 * This single interrupt gives us a "fast poll" for drives that
1147	 * recover from reset very quickly, saving us the first 50ms wait time.
1148	 *
1149	 * TODO: add ->softreset method and stop abusing ->set_irq
1150	 */
1151	/* set SRST and nIEN */
1152	tp_ops->set_irq(hwif, 4);
1153	/* more than enough time */
1154	udelay(10);
1155	/* clear SRST, leave nIEN (unless device is on the quirk list) */
1156	tp_ops->set_irq(hwif, drive->quirk_list == 2);
1157	/* more than enough time */
1158	udelay(10);
1159	hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1160	hwgroup->polling = 1;
1161	__ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1162
1163	/*
1164	 * Some weird controller like resetting themselves to a strange
1165	 * state when the disks are reset this way. At least, the Winbond
1166	 * 553 documentation says that
1167	 */
1168	port_ops = hwif->port_ops;
1169	if (port_ops && port_ops->resetproc)
1170		port_ops->resetproc(drive);
1171
1172	spin_unlock_irqrestore(&ide_lock, flags);
1173	return ide_started;
1174}
1175
1176/*
1177 * ide_do_reset() is the entry point to the drive/interface reset code.
1178 */
1179
1180ide_startstop_t ide_do_reset (ide_drive_t *drive)
1181{
1182	return do_reset1(drive, 0);
1183}
1184
1185EXPORT_SYMBOL(ide_do_reset);
1186
1187/*
1188 * ide_wait_not_busy() waits for the currently selected device on the hwif
1189 * to report a non-busy status, see comments in ide_probe_port().
1190 */
1191int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1192{
1193	u8 stat = 0;
1194
1195	while(timeout--) {
1196		/*
1197		 * Turn this into a schedule() sleep once I'm sure
1198		 * about locking issues (2.5 work ?).
1199		 */
1200		mdelay(1);
1201		stat = hwif->tp_ops->read_status(hwif);
1202		if ((stat & BUSY_STAT) == 0)
1203			return 0;
1204		/*
1205		 * Assume a value of 0xff means nothing is connected to
1206		 * the interface and it doesn't implement the pull-down
1207		 * resistor on D7.
1208		 */
1209		if (stat == 0xff)
1210			return -ENODEV;
1211		touch_softlockup_watchdog();
1212		touch_nmi_watchdog();
1213	}
1214	return -EBUSY;
1215}
1216
1217EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1218
1219