ide-iops.c revision 7469aaf6a30f4187ed6de7c0aed5c2dd2d1c2d31
1/*
2 * linux/drivers/ide/ide-iops.c	Version 0.37	Mar 05, 2003
3 *
4 *  Copyright (C) 2000-2002	Andre Hedrick <andre@linux-ide.org>
5 *  Copyright (C) 2003		Red Hat <alan@redhat.com>
6 *
7 */
8
9#include <linux/module.h>
10#include <linux/types.h>
11#include <linux/string.h>
12#include <linux/kernel.h>
13#include <linux/timer.h>
14#include <linux/mm.h>
15#include <linux/interrupt.h>
16#include <linux/major.h>
17#include <linux/errno.h>
18#include <linux/genhd.h>
19#include <linux/blkpg.h>
20#include <linux/slab.h>
21#include <linux/pci.h>
22#include <linux/delay.h>
23#include <linux/hdreg.h>
24#include <linux/ide.h>
25#include <linux/bitops.h>
26#include <linux/nmi.h>
27
28#include <asm/byteorder.h>
29#include <asm/irq.h>
30#include <asm/uaccess.h>
31#include <asm/io.h>
32
33/*
34 *	Conventional PIO operations for ATA devices
35 */
36
37static u8 ide_inb (unsigned long port)
38{
39	return (u8) inb(port);
40}
41
42static u16 ide_inw (unsigned long port)
43{
44	return (u16) inw(port);
45}
46
47static void ide_insw (unsigned long port, void *addr, u32 count)
48{
49	insw(port, addr, count);
50}
51
52static void ide_insl (unsigned long port, void *addr, u32 count)
53{
54	insl(port, addr, count);
55}
56
57static void ide_outb (u8 val, unsigned long port)
58{
59	outb(val, port);
60}
61
62static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
63{
64	outb(addr, port);
65}
66
67static void ide_outw (u16 val, unsigned long port)
68{
69	outw(val, port);
70}
71
72static void ide_outsw (unsigned long port, void *addr, u32 count)
73{
74	outsw(port, addr, count);
75}
76
77static void ide_outsl (unsigned long port, void *addr, u32 count)
78{
79	outsl(port, addr, count);
80}
81
82void default_hwif_iops (ide_hwif_t *hwif)
83{
84	hwif->OUTB	= ide_outb;
85	hwif->OUTBSYNC	= ide_outbsync;
86	hwif->OUTW	= ide_outw;
87	hwif->OUTSW	= ide_outsw;
88	hwif->OUTSL	= ide_outsl;
89	hwif->INB	= ide_inb;
90	hwif->INW	= ide_inw;
91	hwif->INSW	= ide_insw;
92	hwif->INSL	= ide_insl;
93}
94
95/*
96 *	MMIO operations, typically used for SATA controllers
97 */
98
99static u8 ide_mm_inb (unsigned long port)
100{
101	return (u8) readb((void __iomem *) port);
102}
103
104static u16 ide_mm_inw (unsigned long port)
105{
106	return (u16) readw((void __iomem *) port);
107}
108
109static void ide_mm_insw (unsigned long port, void *addr, u32 count)
110{
111	__ide_mm_insw((void __iomem *) port, addr, count);
112}
113
114static void ide_mm_insl (unsigned long port, void *addr, u32 count)
115{
116	__ide_mm_insl((void __iomem *) port, addr, count);
117}
118
119static void ide_mm_outb (u8 value, unsigned long port)
120{
121	writeb(value, (void __iomem *) port);
122}
123
124static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
125{
126	writeb(value, (void __iomem *) port);
127}
128
129static void ide_mm_outw (u16 value, unsigned long port)
130{
131	writew(value, (void __iomem *) port);
132}
133
134static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
135{
136	__ide_mm_outsw((void __iomem *) port, addr, count);
137}
138
139static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
140{
141	__ide_mm_outsl((void __iomem *) port, addr, count);
142}
143
144void default_hwif_mmiops (ide_hwif_t *hwif)
145{
146	hwif->OUTB	= ide_mm_outb;
147	/* Most systems will need to override OUTBSYNC, alas however
148	   this one is controller specific! */
149	hwif->OUTBSYNC	= ide_mm_outbsync;
150	hwif->OUTW	= ide_mm_outw;
151	hwif->OUTSW	= ide_mm_outsw;
152	hwif->OUTSL	= ide_mm_outsl;
153	hwif->INB	= ide_mm_inb;
154	hwif->INW	= ide_mm_inw;
155	hwif->INSW	= ide_mm_insw;
156	hwif->INSL	= ide_mm_insl;
157}
158
159EXPORT_SYMBOL(default_hwif_mmiops);
160
161u32 ide_read_24 (ide_drive_t *drive)
162{
163	u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG);
164	u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG);
165	u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG);
166	return (hcyl<<16)|(lcyl<<8)|sect;
167}
168
169void SELECT_DRIVE (ide_drive_t *drive)
170{
171	if (HWIF(drive)->selectproc)
172		HWIF(drive)->selectproc(drive);
173	HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
174}
175
176EXPORT_SYMBOL(SELECT_DRIVE);
177
178void SELECT_INTERRUPT (ide_drive_t *drive)
179{
180	if (HWIF(drive)->intrproc)
181		HWIF(drive)->intrproc(drive);
182	else
183		HWIF(drive)->OUTB(drive->ctl|2, IDE_CONTROL_REG);
184}
185
186void SELECT_MASK (ide_drive_t *drive, int mask)
187{
188	if (HWIF(drive)->maskproc)
189		HWIF(drive)->maskproc(drive, mask);
190}
191
192void QUIRK_LIST (ide_drive_t *drive)
193{
194	if (HWIF(drive)->quirkproc)
195		drive->quirk_list = HWIF(drive)->quirkproc(drive);
196}
197
198/*
199 * Some localbus EIDE interfaces require a special access sequence
200 * when using 32-bit I/O instructions to transfer data.  We call this
201 * the "vlb_sync" sequence, which consists of three successive reads
202 * of the sector count register location, with interrupts disabled
203 * to ensure that the reads all happen together.
204 */
205static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
206{
207	(void) HWIF(drive)->INB(port);
208	(void) HWIF(drive)->INB(port);
209	(void) HWIF(drive)->INB(port);
210}
211
212/*
213 * This is used for most PIO data transfers *from* the IDE interface
214 */
215static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
216{
217	ide_hwif_t *hwif	= HWIF(drive);
218	u8 io_32bit		= drive->io_32bit;
219
220	if (io_32bit) {
221		if (io_32bit & 2) {
222			unsigned long flags;
223			local_irq_save(flags);
224			ata_vlb_sync(drive, IDE_NSECTOR_REG);
225			hwif->INSL(IDE_DATA_REG, buffer, wcount);
226			local_irq_restore(flags);
227		} else
228			hwif->INSL(IDE_DATA_REG, buffer, wcount);
229	} else {
230		hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
231	}
232}
233
234/*
235 * This is used for most PIO data transfers *to* the IDE interface
236 */
237static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
238{
239	ide_hwif_t *hwif	= HWIF(drive);
240	u8 io_32bit		= drive->io_32bit;
241
242	if (io_32bit) {
243		if (io_32bit & 2) {
244			unsigned long flags;
245			local_irq_save(flags);
246			ata_vlb_sync(drive, IDE_NSECTOR_REG);
247			hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
248			local_irq_restore(flags);
249		} else
250			hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
251	} else {
252		hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
253	}
254}
255
256/*
257 * The following routines are mainly used by the ATAPI drivers.
258 *
259 * These routines will round up any request for an odd number of bytes,
260 * so if an odd bytecount is specified, be sure that there's at least one
261 * extra byte allocated for the buffer.
262 */
263
264static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
265{
266	ide_hwif_t *hwif = HWIF(drive);
267
268	++bytecount;
269#if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
270	if (MACH_IS_ATARI || MACH_IS_Q40) {
271		/* Atari has a byte-swapped IDE interface */
272		insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
273		return;
274	}
275#endif /* CONFIG_ATARI || CONFIG_Q40 */
276	hwif->ata_input_data(drive, buffer, bytecount / 4);
277	if ((bytecount & 0x03) >= 2)
278		hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
279}
280
281static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
282{
283	ide_hwif_t *hwif = HWIF(drive);
284
285	++bytecount;
286#if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
287	if (MACH_IS_ATARI || MACH_IS_Q40) {
288		/* Atari has a byte-swapped IDE interface */
289		outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
290		return;
291	}
292#endif /* CONFIG_ATARI || CONFIG_Q40 */
293	hwif->ata_output_data(drive, buffer, bytecount / 4);
294	if ((bytecount & 0x03) >= 2)
295		hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
296}
297
298void default_hwif_transport(ide_hwif_t *hwif)
299{
300	hwif->ata_input_data		= ata_input_data;
301	hwif->ata_output_data		= ata_output_data;
302	hwif->atapi_input_bytes		= atapi_input_bytes;
303	hwif->atapi_output_bytes	= atapi_output_bytes;
304}
305
306/*
307 * Beginning of Taskfile OPCODE Library and feature sets.
308 */
309void ide_fix_driveid (struct hd_driveid *id)
310{
311#ifndef __LITTLE_ENDIAN
312# ifdef __BIG_ENDIAN
313	int i;
314	u16 *stringcast;
315
316	id->config         = __le16_to_cpu(id->config);
317	id->cyls           = __le16_to_cpu(id->cyls);
318	id->reserved2      = __le16_to_cpu(id->reserved2);
319	id->heads          = __le16_to_cpu(id->heads);
320	id->track_bytes    = __le16_to_cpu(id->track_bytes);
321	id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
322	id->sectors        = __le16_to_cpu(id->sectors);
323	id->vendor0        = __le16_to_cpu(id->vendor0);
324	id->vendor1        = __le16_to_cpu(id->vendor1);
325	id->vendor2        = __le16_to_cpu(id->vendor2);
326	stringcast = (u16 *)&id->serial_no[0];
327	for (i = 0; i < (20/2); i++)
328		stringcast[i] = __le16_to_cpu(stringcast[i]);
329	id->buf_type       = __le16_to_cpu(id->buf_type);
330	id->buf_size       = __le16_to_cpu(id->buf_size);
331	id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
332	stringcast = (u16 *)&id->fw_rev[0];
333	for (i = 0; i < (8/2); i++)
334		stringcast[i] = __le16_to_cpu(stringcast[i]);
335	stringcast = (u16 *)&id->model[0];
336	for (i = 0; i < (40/2); i++)
337		stringcast[i] = __le16_to_cpu(stringcast[i]);
338	id->dword_io       = __le16_to_cpu(id->dword_io);
339	id->reserved50     = __le16_to_cpu(id->reserved50);
340	id->field_valid    = __le16_to_cpu(id->field_valid);
341	id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
342	id->cur_heads      = __le16_to_cpu(id->cur_heads);
343	id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
344	id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
345	id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
346	id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
347	id->dma_1word      = __le16_to_cpu(id->dma_1word);
348	id->dma_mword      = __le16_to_cpu(id->dma_mword);
349	id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
350	id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
351	id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
352	id->eide_pio       = __le16_to_cpu(id->eide_pio);
353	id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
354	for (i = 0; i < 2; ++i)
355		id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
356	for (i = 0; i < 4; ++i)
357		id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
358	id->queue_depth    = __le16_to_cpu(id->queue_depth);
359	for (i = 0; i < 4; ++i)
360		id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
361	id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
362	id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
363	id->command_set_1  = __le16_to_cpu(id->command_set_1);
364	id->command_set_2  = __le16_to_cpu(id->command_set_2);
365	id->cfsse          = __le16_to_cpu(id->cfsse);
366	id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
367	id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
368	id->csf_default    = __le16_to_cpu(id->csf_default);
369	id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
370	id->trseuc         = __le16_to_cpu(id->trseuc);
371	id->trsEuc         = __le16_to_cpu(id->trsEuc);
372	id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
373	id->mprc           = __le16_to_cpu(id->mprc);
374	id->hw_config      = __le16_to_cpu(id->hw_config);
375	id->acoustic       = __le16_to_cpu(id->acoustic);
376	id->msrqs          = __le16_to_cpu(id->msrqs);
377	id->sxfert         = __le16_to_cpu(id->sxfert);
378	id->sal            = __le16_to_cpu(id->sal);
379	id->spg            = __le32_to_cpu(id->spg);
380	id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
381	for (i = 0; i < 22; i++)
382		id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
383	id->last_lun       = __le16_to_cpu(id->last_lun);
384	id->word127        = __le16_to_cpu(id->word127);
385	id->dlf            = __le16_to_cpu(id->dlf);
386	id->csfo           = __le16_to_cpu(id->csfo);
387	for (i = 0; i < 26; i++)
388		id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
389	id->word156        = __le16_to_cpu(id->word156);
390	for (i = 0; i < 3; i++)
391		id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
392	id->cfa_power      = __le16_to_cpu(id->cfa_power);
393	for (i = 0; i < 14; i++)
394		id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
395	for (i = 0; i < 31; i++)
396		id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
397	for (i = 0; i < 48; i++)
398		id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
399	id->integrity_word  = __le16_to_cpu(id->integrity_word);
400# else
401#  error "Please fix <asm/byteorder.h>"
402# endif
403#endif
404}
405
406/* FIXME: exported for use by the USB storage (isd200.c) code only */
407EXPORT_SYMBOL(ide_fix_driveid);
408
409void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
410{
411	u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
412
413	if (byteswap) {
414		/* convert from big-endian to host byte order */
415		for (p = end ; p != s;) {
416			unsigned short *pp = (unsigned short *) (p -= 2);
417			*pp = ntohs(*pp);
418		}
419	}
420	/* strip leading blanks */
421	while (s != end && *s == ' ')
422		++s;
423	/* compress internal blanks and strip trailing blanks */
424	while (s != end && *s) {
425		if (*s++ != ' ' || (s != end && *s && *s != ' '))
426			*p++ = *(s-1);
427	}
428	/* wipe out trailing garbage */
429	while (p != end)
430		*p++ = '\0';
431}
432
433EXPORT_SYMBOL(ide_fixstring);
434
435/*
436 * Needed for PCI irq sharing
437 */
438int drive_is_ready (ide_drive_t *drive)
439{
440	ide_hwif_t *hwif	= HWIF(drive);
441	u8 stat			= 0;
442
443	if (drive->waiting_for_dma)
444		return hwif->ide_dma_test_irq(drive);
445
446#if 0
447	/* need to guarantee 400ns since last command was issued */
448	udelay(1);
449#endif
450
451#ifdef CONFIG_IDEPCI_SHARE_IRQ
452	/*
453	 * We do a passive status test under shared PCI interrupts on
454	 * cards that truly share the ATA side interrupt, but may also share
455	 * an interrupt with another pci card/device.  We make no assumptions
456	 * about possible isa-pnp and pci-pnp issues yet.
457	 */
458	if (IDE_CONTROL_REG)
459		stat = hwif->INB(IDE_ALTSTATUS_REG);
460	else
461#endif /* CONFIG_IDEPCI_SHARE_IRQ */
462		/* Note: this may clear a pending IRQ!! */
463		stat = hwif->INB(IDE_STATUS_REG);
464
465	if (stat & BUSY_STAT)
466		/* drive busy:  definitely not interrupting */
467		return 0;
468
469	/* drive ready: *might* be interrupting */
470	return 1;
471}
472
473EXPORT_SYMBOL(drive_is_ready);
474
475/*
476 * Global for All, and taken from ide-pmac.c. Can be called
477 * with spinlock held & IRQs disabled, so don't schedule !
478 */
479int wait_for_ready (ide_drive_t *drive, int timeout)
480{
481	ide_hwif_t *hwif	= HWIF(drive);
482	u8 stat			= 0;
483
484	while(--timeout) {
485		stat = hwif->INB(IDE_STATUS_REG);
486		if (!(stat & BUSY_STAT)) {
487			if (drive->ready_stat == 0)
488				break;
489			else if ((stat & drive->ready_stat)||(stat & ERR_STAT))
490				break;
491		}
492		mdelay(1);
493	}
494	if ((stat & ERR_STAT) || timeout <= 0) {
495		if (stat & ERR_STAT) {
496			printk(KERN_ERR "%s: wait_for_ready, "
497				"error status: %x\n", drive->name, stat);
498		}
499		return 1;
500	}
501	return 0;
502}
503
504/*
505 * This routine busy-waits for the drive status to be not "busy".
506 * It then checks the status for all of the "good" bits and none
507 * of the "bad" bits, and if all is okay it returns 0.  All other
508 * cases return 1 after invoking ide_error() -- caller should just return.
509 *
510 * This routine should get fixed to not hog the cpu during extra long waits..
511 * That could be done by busy-waiting for the first jiffy or two, and then
512 * setting a timer to wake up at half second intervals thereafter,
513 * until timeout is achieved, before timing out.
514 */
515int ide_wait_stat (ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
516{
517	ide_hwif_t *hwif = HWIF(drive);
518	u8 stat;
519	int i;
520	unsigned long flags;
521
522	/* bail early if we've exceeded max_failures */
523	if (drive->max_failures && (drive->failures > drive->max_failures)) {
524		*startstop = ide_stopped;
525		return 1;
526	}
527
528	udelay(1);	/* spec allows drive 400ns to assert "BUSY" */
529	if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
530		local_irq_set(flags);
531		timeout += jiffies;
532		while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
533			if (time_after(jiffies, timeout)) {
534				/*
535				 * One last read after the timeout in case
536				 * heavy interrupt load made us not make any
537				 * progress during the timeout..
538				 */
539				stat = hwif->INB(IDE_STATUS_REG);
540				if (!(stat & BUSY_STAT))
541					break;
542
543				local_irq_restore(flags);
544				*startstop = ide_error(drive, "status timeout", stat);
545				return 1;
546			}
547		}
548		local_irq_restore(flags);
549	}
550	/*
551	 * Allow status to settle, then read it again.
552	 * A few rare drives vastly violate the 400ns spec here,
553	 * so we'll wait up to 10usec for a "good" status
554	 * rather than expensively fail things immediately.
555	 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
556	 */
557	for (i = 0; i < 10; i++) {
558		udelay(1);
559		if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad))
560			return 0;
561	}
562	*startstop = ide_error(drive, "status error", stat);
563	return 1;
564}
565
566EXPORT_SYMBOL(ide_wait_stat);
567
568/*
569 *  All hosts that use the 80c ribbon must use!
570 *  The name is derived from upper byte of word 93 and the 80c ribbon.
571 */
572u8 eighty_ninty_three (ide_drive_t *drive)
573{
574	if(HWIF(drive)->udma_four == 0)
575		return 0;
576
577	/* Check for SATA but only if we are ATA5 or higher */
578	if (drive->id->hw_config == 0 && (drive->id->major_rev_num & 0x7FE0))
579		return 1;
580	if (!(drive->id->hw_config & 0x6000))
581		return 0;
582#ifndef CONFIG_IDEDMA_IVB
583	if(!(drive->id->hw_config & 0x4000))
584		return 0;
585#endif /* CONFIG_IDEDMA_IVB */
586	return 1;
587}
588
589EXPORT_SYMBOL(eighty_ninty_three);
590
591int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
592{
593	if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
594	    (args->tfRegister[IDE_SECTOR_OFFSET] > XFER_UDMA_2) &&
595	    (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER)) {
596#ifndef CONFIG_IDEDMA_IVB
597		if ((drive->id->hw_config & 0x6000) == 0) {
598#else /* !CONFIG_IDEDMA_IVB */
599		if (((drive->id->hw_config & 0x2000) == 0) ||
600		    ((drive->id->hw_config & 0x4000) == 0)) {
601#endif /* CONFIG_IDEDMA_IVB */
602			printk("%s: Speed warnings UDMA 3/4/5 is not "
603				"functional.\n", drive->name);
604			return 1;
605		}
606		if (!HWIF(drive)->udma_four) {
607			printk("%s: Speed warnings UDMA 3/4/5 is not "
608				"functional.\n",
609				HWIF(drive)->name);
610			return 1;
611		}
612	}
613	return 0;
614}
615
616/*
617 * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
618 * 1 : Safe to update drive->id DMA registers.
619 * 0 : OOPs not allowed.
620 */
621int set_transfer (ide_drive_t *drive, ide_task_t *args)
622{
623	if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
624	    (args->tfRegister[IDE_SECTOR_OFFSET] >= XFER_SW_DMA_0) &&
625	    (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER) &&
626	    (drive->id->dma_ultra ||
627	     drive->id->dma_mword ||
628	     drive->id->dma_1word))
629		return 1;
630
631	return 0;
632}
633
634#ifdef CONFIG_BLK_DEV_IDEDMA
635static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
636{
637	if (!drive->crc_count)
638		return drive->current_speed;
639	drive->crc_count = 0;
640
641	switch(drive->current_speed) {
642		case XFER_UDMA_7:	return XFER_UDMA_6;
643		case XFER_UDMA_6:	return XFER_UDMA_5;
644		case XFER_UDMA_5:	return XFER_UDMA_4;
645		case XFER_UDMA_4:	return XFER_UDMA_3;
646		case XFER_UDMA_3:	return XFER_UDMA_2;
647		case XFER_UDMA_2:	return XFER_UDMA_1;
648		case XFER_UDMA_1:	return XFER_UDMA_0;
649			/*
650			 * OOPS we do not goto non Ultra DMA modes
651			 * without iCRC's available we force
652			 * the system to PIO and make the user
653			 * invoke the ATA-1 ATA-2 DMA modes.
654			 */
655		case XFER_UDMA_0:
656		default:		return XFER_PIO_4;
657	}
658}
659#endif /* CONFIG_BLK_DEV_IDEDMA */
660
661/*
662 * Update the
663 */
664int ide_driveid_update (ide_drive_t *drive)
665{
666	ide_hwif_t *hwif	= HWIF(drive);
667	struct hd_driveid *id;
668#if 0
669	id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
670	if (!id)
671		return 0;
672
673	taskfile_lib_get_identify(drive, (char *)&id);
674
675	ide_fix_driveid(id);
676	if (id) {
677		drive->id->dma_ultra = id->dma_ultra;
678		drive->id->dma_mword = id->dma_mword;
679		drive->id->dma_1word = id->dma_1word;
680		/* anything more ? */
681		kfree(id);
682	}
683	return 1;
684#else
685	/*
686	 * Re-read drive->id for possible DMA mode
687	 * change (copied from ide-probe.c)
688	 */
689	unsigned long timeout, flags;
690
691	SELECT_MASK(drive, 1);
692	if (IDE_CONTROL_REG)
693		hwif->OUTB(drive->ctl,IDE_CONTROL_REG);
694	msleep(50);
695	hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
696	timeout = jiffies + WAIT_WORSTCASE;
697	do {
698		if (time_after(jiffies, timeout)) {
699			SELECT_MASK(drive, 0);
700			return 0;	/* drive timed-out */
701		}
702		msleep(50);	/* give drive a breather */
703	} while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
704	msleep(50);	/* wait for IRQ and DRQ_STAT */
705	if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
706		SELECT_MASK(drive, 0);
707		printk("%s: CHECK for good STATUS\n", drive->name);
708		return 0;
709	}
710	local_irq_save(flags);
711	SELECT_MASK(drive, 0);
712	id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
713	if (!id) {
714		local_irq_restore(flags);
715		return 0;
716	}
717	ata_input_data(drive, id, SECTOR_WORDS);
718	(void) hwif->INB(IDE_STATUS_REG);	/* clear drive IRQ */
719	local_irq_enable();
720	local_irq_restore(flags);
721	ide_fix_driveid(id);
722	if (id) {
723		drive->id->dma_ultra = id->dma_ultra;
724		drive->id->dma_mword = id->dma_mword;
725		drive->id->dma_1word = id->dma_1word;
726		/* anything more ? */
727		kfree(id);
728	}
729
730	return 1;
731#endif
732}
733
734/*
735 * Similar to ide_wait_stat(), except it never calls ide_error internally.
736 * This is a kludge to handle the new ide_config_drive_speed() function,
737 * and should not otherwise be used anywhere.  Eventually, the tuneproc's
738 * should be updated to return ide_startstop_t, in which case we can get
739 * rid of this abomination again.  :)   -ml
740 *
741 * It is gone..........
742 *
743 * const char *msg == consider adding for verbose errors.
744 */
745int ide_config_drive_speed (ide_drive_t *drive, u8 speed)
746{
747	ide_hwif_t *hwif	= HWIF(drive);
748	int	i, error	= 1;
749	u8 stat;
750
751//	while (HWGROUP(drive)->busy)
752//		msleep(50);
753
754#ifdef CONFIG_BLK_DEV_IDEDMA
755	if (hwif->ide_dma_check)	 /* check if host supports DMA */
756		hwif->dma_host_off(drive);
757#endif
758
759	/*
760	 * Don't use ide_wait_cmd here - it will
761	 * attempt to set_geometry and recalibrate,
762	 * but for some reason these don't work at
763	 * this point (lost interrupt).
764	 */
765        /*
766         * Select the drive, and issue the SETFEATURES command
767         */
768	disable_irq_nosync(hwif->irq);
769
770	/*
771	 *	FIXME: we race against the running IRQ here if
772	 *	this is called from non IRQ context. If we use
773	 *	disable_irq() we hang on the error path. Work
774	 *	is needed.
775	 */
776
777	udelay(1);
778	SELECT_DRIVE(drive);
779	SELECT_MASK(drive, 0);
780	udelay(1);
781	if (IDE_CONTROL_REG)
782		hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
783	hwif->OUTB(speed, IDE_NSECTOR_REG);
784	hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
785	hwif->OUTB(WIN_SETFEATURES, IDE_COMMAND_REG);
786	if ((IDE_CONTROL_REG) && (drive->quirk_list == 2))
787		hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
788	udelay(1);
789	/*
790	 * Wait for drive to become non-BUSY
791	 */
792	if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
793		unsigned long flags, timeout;
794		local_irq_set(flags);
795		timeout = jiffies + WAIT_CMD;
796		while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
797			if (time_after(jiffies, timeout))
798				break;
799		}
800		local_irq_restore(flags);
801	}
802
803	/*
804	 * Allow status to settle, then read it again.
805	 * A few rare drives vastly violate the 400ns spec here,
806	 * so we'll wait up to 10usec for a "good" status
807	 * rather than expensively fail things immediately.
808	 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
809	 */
810	for (i = 0; i < 10; i++) {
811		udelay(1);
812		if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), DRIVE_READY, BUSY_STAT|DRQ_STAT|ERR_STAT)) {
813			error = 0;
814			break;
815		}
816	}
817
818	SELECT_MASK(drive, 0);
819
820	enable_irq(hwif->irq);
821
822	if (error) {
823		(void) ide_dump_status(drive, "set_drive_speed_status", stat);
824		return error;
825	}
826
827	drive->id->dma_ultra &= ~0xFF00;
828	drive->id->dma_mword &= ~0x0F00;
829	drive->id->dma_1word &= ~0x0F00;
830
831#ifdef CONFIG_BLK_DEV_IDEDMA
832	if (speed >= XFER_SW_DMA_0)
833		hwif->ide_dma_host_on(drive);
834	else if (hwif->ide_dma_check)	/* check if host supports DMA */
835		hwif->dma_off_quietly(drive);
836#endif
837
838	switch(speed) {
839		case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
840		case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
841		case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
842		case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
843		case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
844		case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
845		case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
846		case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
847		case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
848		case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
849		case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
850		case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
851		case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
852		case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
853		default: break;
854	}
855	if (!drive->init_speed)
856		drive->init_speed = speed;
857	drive->current_speed = speed;
858	return error;
859}
860
861EXPORT_SYMBOL(ide_config_drive_speed);
862
863
864/*
865 * This should get invoked any time we exit the driver to
866 * wait for an interrupt response from a drive.  handler() points
867 * at the appropriate code to handle the next interrupt, and a
868 * timer is started to prevent us from waiting forever in case
869 * something goes wrong (see the ide_timer_expiry() handler later on).
870 *
871 * See also ide_execute_command
872 */
873static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
874		      unsigned int timeout, ide_expiry_t *expiry)
875{
876	ide_hwgroup_t *hwgroup = HWGROUP(drive);
877
878	if (hwgroup->handler != NULL) {
879		printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
880			"old=%p, new=%p\n",
881			drive->name, hwgroup->handler, handler);
882	}
883	hwgroup->handler	= handler;
884	hwgroup->expiry		= expiry;
885	hwgroup->timer.expires	= jiffies + timeout;
886	add_timer(&hwgroup->timer);
887}
888
889void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
890		      unsigned int timeout, ide_expiry_t *expiry)
891{
892	unsigned long flags;
893	spin_lock_irqsave(&ide_lock, flags);
894	__ide_set_handler(drive, handler, timeout, expiry);
895	spin_unlock_irqrestore(&ide_lock, flags);
896}
897
898EXPORT_SYMBOL(ide_set_handler);
899
900/**
901 *	ide_execute_command	-	execute an IDE command
902 *	@drive: IDE drive to issue the command against
903 *	@command: command byte to write
904 *	@handler: handler for next phase
905 *	@timeout: timeout for command
906 *	@expiry:  handler to run on timeout
907 *
908 *	Helper function to issue an IDE command. This handles the
909 *	atomicity requirements, command timing and ensures that the
910 *	handler and IRQ setup do not race. All IDE command kick off
911 *	should go via this function or do equivalent locking.
912 */
913
914void ide_execute_command(ide_drive_t *drive, task_ioreg_t cmd, ide_handler_t *handler, unsigned timeout, ide_expiry_t *expiry)
915{
916	unsigned long flags;
917	ide_hwgroup_t *hwgroup = HWGROUP(drive);
918	ide_hwif_t *hwif = HWIF(drive);
919
920	spin_lock_irqsave(&ide_lock, flags);
921
922	BUG_ON(hwgroup->handler);
923	hwgroup->handler	= handler;
924	hwgroup->expiry		= expiry;
925	hwgroup->timer.expires	= jiffies + timeout;
926	add_timer(&hwgroup->timer);
927	hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
928	/* Drive takes 400nS to respond, we must avoid the IRQ being
929	   serviced before that.
930
931	   FIXME: we could skip this delay with care on non shared
932	   devices
933	*/
934	ndelay(400);
935	spin_unlock_irqrestore(&ide_lock, flags);
936}
937
938EXPORT_SYMBOL(ide_execute_command);
939
940
941/* needed below */
942static ide_startstop_t do_reset1 (ide_drive_t *, int);
943
944/*
945 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
946 * during an atapi drive reset operation. If the drive has not yet responded,
947 * and we have not yet hit our maximum waiting time, then the timer is restarted
948 * for another 50ms.
949 */
950static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
951{
952	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
953	ide_hwif_t *hwif	= HWIF(drive);
954	u8 stat;
955
956	SELECT_DRIVE(drive);
957	udelay (10);
958
959	if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
960		printk("%s: ATAPI reset complete\n", drive->name);
961	} else {
962		if (time_before(jiffies, hwgroup->poll_timeout)) {
963			BUG_ON(HWGROUP(drive)->handler != NULL);
964			ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
965			/* continue polling */
966			return ide_started;
967		}
968		/* end of polling */
969		hwgroup->polling = 0;
970		printk("%s: ATAPI reset timed-out, status=0x%02x\n",
971				drive->name, stat);
972		/* do it the old fashioned way */
973		return do_reset1(drive, 1);
974	}
975	/* done polling */
976	hwgroup->polling = 0;
977	hwgroup->resetting = 0;
978	return ide_stopped;
979}
980
981/*
982 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
983 * during an ide reset operation. If the drives have not yet responded,
984 * and we have not yet hit our maximum waiting time, then the timer is restarted
985 * for another 50ms.
986 */
987static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
988{
989	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
990	ide_hwif_t *hwif	= HWIF(drive);
991	u8 tmp;
992
993	if (hwif->reset_poll != NULL) {
994		if (hwif->reset_poll(drive)) {
995			printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
996				hwif->name, drive->name);
997			return ide_stopped;
998		}
999	}
1000
1001	if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
1002		if (time_before(jiffies, hwgroup->poll_timeout)) {
1003			BUG_ON(HWGROUP(drive)->handler != NULL);
1004			ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1005			/* continue polling */
1006			return ide_started;
1007		}
1008		printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
1009		drive->failures++;
1010	} else  {
1011		printk("%s: reset: ", hwif->name);
1012		if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
1013			printk("success\n");
1014			drive->failures = 0;
1015		} else {
1016			drive->failures++;
1017			printk("master: ");
1018			switch (tmp & 0x7f) {
1019				case 1: printk("passed");
1020					break;
1021				case 2: printk("formatter device error");
1022					break;
1023				case 3: printk("sector buffer error");
1024					break;
1025				case 4: printk("ECC circuitry error");
1026					break;
1027				case 5: printk("controlling MPU error");
1028					break;
1029				default:printk("error (0x%02x?)", tmp);
1030			}
1031			if (tmp & 0x80)
1032				printk("; slave: failed");
1033			printk("\n");
1034		}
1035	}
1036	hwgroup->polling = 0;	/* done polling */
1037	hwgroup->resetting = 0; /* done reset attempt */
1038	return ide_stopped;
1039}
1040
1041static void check_dma_crc(ide_drive_t *drive)
1042{
1043#ifdef CONFIG_BLK_DEV_IDEDMA
1044	if (drive->crc_count) {
1045		drive->hwif->dma_off_quietly(drive);
1046		ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
1047		if (drive->current_speed >= XFER_SW_DMA_0)
1048			(void) HWIF(drive)->ide_dma_on(drive);
1049	} else
1050		ide_dma_off(drive);
1051#endif
1052}
1053
1054static void ide_disk_pre_reset(ide_drive_t *drive)
1055{
1056	int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1057
1058	drive->special.all = 0;
1059	drive->special.b.set_geometry = legacy;
1060	drive->special.b.recalibrate  = legacy;
1061	if (OK_TO_RESET_CONTROLLER)
1062		drive->mult_count = 0;
1063	if (!drive->keep_settings && !drive->using_dma)
1064		drive->mult_req = 0;
1065	if (drive->mult_req != drive->mult_count)
1066		drive->special.b.set_multmode = 1;
1067}
1068
1069static void pre_reset(ide_drive_t *drive)
1070{
1071	if (drive->media == ide_disk)
1072		ide_disk_pre_reset(drive);
1073	else
1074		drive->post_reset = 1;
1075
1076	if (!drive->keep_settings) {
1077		if (drive->using_dma) {
1078			check_dma_crc(drive);
1079		} else {
1080			drive->unmask = 0;
1081			drive->io_32bit = 0;
1082		}
1083		return;
1084	}
1085	if (drive->using_dma)
1086		check_dma_crc(drive);
1087
1088	if (HWIF(drive)->pre_reset != NULL)
1089		HWIF(drive)->pre_reset(drive);
1090
1091}
1092
1093/*
1094 * do_reset1() attempts to recover a confused drive by resetting it.
1095 * Unfortunately, resetting a disk drive actually resets all devices on
1096 * the same interface, so it can really be thought of as resetting the
1097 * interface rather than resetting the drive.
1098 *
1099 * ATAPI devices have their own reset mechanism which allows them to be
1100 * individually reset without clobbering other devices on the same interface.
1101 *
1102 * Unfortunately, the IDE interface does not generate an interrupt to let
1103 * us know when the reset operation has finished, so we must poll for this.
1104 * Equally poor, though, is the fact that this may a very long time to complete,
1105 * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1106 * we set a timer to poll at 50ms intervals.
1107 */
1108static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1109{
1110	unsigned int unit;
1111	unsigned long flags;
1112	ide_hwif_t *hwif;
1113	ide_hwgroup_t *hwgroup;
1114
1115	spin_lock_irqsave(&ide_lock, flags);
1116	hwif = HWIF(drive);
1117	hwgroup = HWGROUP(drive);
1118
1119	/* We must not reset with running handlers */
1120	BUG_ON(hwgroup->handler != NULL);
1121
1122	/* For an ATAPI device, first try an ATAPI SRST. */
1123	if (drive->media != ide_disk && !do_not_try_atapi) {
1124		hwgroup->resetting = 1;
1125		pre_reset(drive);
1126		SELECT_DRIVE(drive);
1127		udelay (20);
1128		hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1129		ndelay(400);
1130		hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1131		hwgroup->polling = 1;
1132		__ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1133		spin_unlock_irqrestore(&ide_lock, flags);
1134		return ide_started;
1135	}
1136
1137	/*
1138	 * First, reset any device state data we were maintaining
1139	 * for any of the drives on this interface.
1140	 */
1141	for (unit = 0; unit < MAX_DRIVES; ++unit)
1142		pre_reset(&hwif->drives[unit]);
1143
1144#if OK_TO_RESET_CONTROLLER
1145	if (!IDE_CONTROL_REG) {
1146		spin_unlock_irqrestore(&ide_lock, flags);
1147		return ide_stopped;
1148	}
1149
1150	hwgroup->resetting = 1;
1151	/*
1152	 * Note that we also set nIEN while resetting the device,
1153	 * to mask unwanted interrupts from the interface during the reset.
1154	 * However, due to the design of PC hardware, this will cause an
1155	 * immediate interrupt due to the edge transition it produces.
1156	 * This single interrupt gives us a "fast poll" for drives that
1157	 * recover from reset very quickly, saving us the first 50ms wait time.
1158	 */
1159	/* set SRST and nIEN */
1160	hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1161	/* more than enough time */
1162	udelay(10);
1163	if (drive->quirk_list == 2) {
1164		/* clear SRST and nIEN */
1165		hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1166	} else {
1167		/* clear SRST, leave nIEN */
1168		hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1169	}
1170	/* more than enough time */
1171	udelay(10);
1172	hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1173	hwgroup->polling = 1;
1174	__ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1175
1176	/*
1177	 * Some weird controller like resetting themselves to a strange
1178	 * state when the disks are reset this way. At least, the Winbond
1179	 * 553 documentation says that
1180	 */
1181	if (hwif->resetproc != NULL) {
1182		hwif->resetproc(drive);
1183	}
1184
1185#endif	/* OK_TO_RESET_CONTROLLER */
1186
1187	spin_unlock_irqrestore(&ide_lock, flags);
1188	return ide_started;
1189}
1190
1191/*
1192 * ide_do_reset() is the entry point to the drive/interface reset code.
1193 */
1194
1195ide_startstop_t ide_do_reset (ide_drive_t *drive)
1196{
1197	return do_reset1(drive, 0);
1198}
1199
1200EXPORT_SYMBOL(ide_do_reset);
1201
1202/*
1203 * ide_wait_not_busy() waits for the currently selected device on the hwif
1204 * to report a non-busy status, see comments in probe_hwif().
1205 */
1206int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1207{
1208	u8 stat = 0;
1209
1210	while(timeout--) {
1211		/*
1212		 * Turn this into a schedule() sleep once I'm sure
1213		 * about locking issues (2.5 work ?).
1214		 */
1215		mdelay(1);
1216		stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1217		if ((stat & BUSY_STAT) == 0)
1218			return 0;
1219		/*
1220		 * Assume a value of 0xff means nothing is connected to
1221		 * the interface and it doesn't implement the pull-down
1222		 * resistor on D7.
1223		 */
1224		if (stat == 0xff)
1225			return -ENODEV;
1226		touch_softlockup_watchdog();
1227		touch_nmi_watchdog();
1228	}
1229	return -EBUSY;
1230}
1231
1232EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1233
1234