ide-iops.c revision 7e77718579f44d654e299c0fc2096b6b50f14458
1/*
2 *  Copyright (C) 2000-2002	Andre Hedrick <andre@linux-ide.org>
3 *  Copyright (C) 2003		Red Hat <alan@redhat.com>
4 *
5 */
6
7#include <linux/module.h>
8#include <linux/types.h>
9#include <linux/string.h>
10#include <linux/kernel.h>
11#include <linux/timer.h>
12#include <linux/mm.h>
13#include <linux/interrupt.h>
14#include <linux/major.h>
15#include <linux/errno.h>
16#include <linux/genhd.h>
17#include <linux/blkpg.h>
18#include <linux/slab.h>
19#include <linux/pci.h>
20#include <linux/delay.h>
21#include <linux/hdreg.h>
22#include <linux/ide.h>
23#include <linux/bitops.h>
24#include <linux/nmi.h>
25
26#include <asm/byteorder.h>
27#include <asm/irq.h>
28#include <asm/uaccess.h>
29#include <asm/io.h>
30
31/*
32 *	Conventional PIO operations for ATA devices
33 */
34
35static u8 ide_inb (unsigned long port)
36{
37	return (u8) inb(port);
38}
39
40static u16 ide_inw (unsigned long port)
41{
42	return (u16) inw(port);
43}
44
45static void ide_insw (unsigned long port, void *addr, u32 count)
46{
47	insw(port, addr, count);
48}
49
50static void ide_insl (unsigned long port, void *addr, u32 count)
51{
52	insl(port, addr, count);
53}
54
55static void ide_outb (u8 val, unsigned long port)
56{
57	outb(val, port);
58}
59
60static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
61{
62	outb(addr, port);
63}
64
65static void ide_outw (u16 val, unsigned long port)
66{
67	outw(val, port);
68}
69
70static void ide_outsw (unsigned long port, void *addr, u32 count)
71{
72	outsw(port, addr, count);
73}
74
75static void ide_outsl (unsigned long port, void *addr, u32 count)
76{
77	outsl(port, addr, count);
78}
79
80void default_hwif_iops (ide_hwif_t *hwif)
81{
82	hwif->OUTB	= ide_outb;
83	hwif->OUTBSYNC	= ide_outbsync;
84	hwif->OUTW	= ide_outw;
85	hwif->OUTSW	= ide_outsw;
86	hwif->OUTSL	= ide_outsl;
87	hwif->INB	= ide_inb;
88	hwif->INW	= ide_inw;
89	hwif->INSW	= ide_insw;
90	hwif->INSL	= ide_insl;
91}
92
93/*
94 *	MMIO operations, typically used for SATA controllers
95 */
96
97static u8 ide_mm_inb (unsigned long port)
98{
99	return (u8) readb((void __iomem *) port);
100}
101
102static u16 ide_mm_inw (unsigned long port)
103{
104	return (u16) readw((void __iomem *) port);
105}
106
107static void ide_mm_insw (unsigned long port, void *addr, u32 count)
108{
109	__ide_mm_insw((void __iomem *) port, addr, count);
110}
111
112static void ide_mm_insl (unsigned long port, void *addr, u32 count)
113{
114	__ide_mm_insl((void __iomem *) port, addr, count);
115}
116
117static void ide_mm_outb (u8 value, unsigned long port)
118{
119	writeb(value, (void __iomem *) port);
120}
121
122static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
123{
124	writeb(value, (void __iomem *) port);
125}
126
127static void ide_mm_outw (u16 value, unsigned long port)
128{
129	writew(value, (void __iomem *) port);
130}
131
132static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
133{
134	__ide_mm_outsw((void __iomem *) port, addr, count);
135}
136
137static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
138{
139	__ide_mm_outsl((void __iomem *) port, addr, count);
140}
141
142void default_hwif_mmiops (ide_hwif_t *hwif)
143{
144	hwif->OUTB	= ide_mm_outb;
145	/* Most systems will need to override OUTBSYNC, alas however
146	   this one is controller specific! */
147	hwif->OUTBSYNC	= ide_mm_outbsync;
148	hwif->OUTW	= ide_mm_outw;
149	hwif->OUTSW	= ide_mm_outsw;
150	hwif->OUTSL	= ide_mm_outsl;
151	hwif->INB	= ide_mm_inb;
152	hwif->INW	= ide_mm_inw;
153	hwif->INSW	= ide_mm_insw;
154	hwif->INSL	= ide_mm_insl;
155}
156
157EXPORT_SYMBOL(default_hwif_mmiops);
158
159void SELECT_DRIVE (ide_drive_t *drive)
160{
161	if (HWIF(drive)->selectproc)
162		HWIF(drive)->selectproc(drive);
163	HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
164}
165
166void SELECT_MASK (ide_drive_t *drive, int mask)
167{
168	if (HWIF(drive)->maskproc)
169		HWIF(drive)->maskproc(drive, mask);
170}
171
172/*
173 * Some localbus EIDE interfaces require a special access sequence
174 * when using 32-bit I/O instructions to transfer data.  We call this
175 * the "vlb_sync" sequence, which consists of three successive reads
176 * of the sector count register location, with interrupts disabled
177 * to ensure that the reads all happen together.
178 */
179static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
180{
181	(void) HWIF(drive)->INB(port);
182	(void) HWIF(drive)->INB(port);
183	(void) HWIF(drive)->INB(port);
184}
185
186/*
187 * This is used for most PIO data transfers *from* the IDE interface
188 */
189static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
190{
191	ide_hwif_t *hwif	= HWIF(drive);
192	u8 io_32bit		= drive->io_32bit;
193
194	if (io_32bit) {
195		if (io_32bit & 2) {
196			unsigned long flags;
197			local_irq_save(flags);
198			ata_vlb_sync(drive, IDE_NSECTOR_REG);
199			hwif->INSL(IDE_DATA_REG, buffer, wcount);
200			local_irq_restore(flags);
201		} else
202			hwif->INSL(IDE_DATA_REG, buffer, wcount);
203	} else {
204		hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
205	}
206}
207
208/*
209 * This is used for most PIO data transfers *to* the IDE interface
210 */
211static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
212{
213	ide_hwif_t *hwif	= HWIF(drive);
214	u8 io_32bit		= drive->io_32bit;
215
216	if (io_32bit) {
217		if (io_32bit & 2) {
218			unsigned long flags;
219			local_irq_save(flags);
220			ata_vlb_sync(drive, IDE_NSECTOR_REG);
221			hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
222			local_irq_restore(flags);
223		} else
224			hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
225	} else {
226		hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
227	}
228}
229
230/*
231 * The following routines are mainly used by the ATAPI drivers.
232 *
233 * These routines will round up any request for an odd number of bytes,
234 * so if an odd bytecount is specified, be sure that there's at least one
235 * extra byte allocated for the buffer.
236 */
237
238static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
239{
240	ide_hwif_t *hwif = HWIF(drive);
241
242	++bytecount;
243#if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
244	if (MACH_IS_ATARI || MACH_IS_Q40) {
245		/* Atari has a byte-swapped IDE interface */
246		insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
247		return;
248	}
249#endif /* CONFIG_ATARI || CONFIG_Q40 */
250	hwif->ata_input_data(drive, buffer, bytecount / 4);
251	if ((bytecount & 0x03) >= 2)
252		hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
253}
254
255static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
256{
257	ide_hwif_t *hwif = HWIF(drive);
258
259	++bytecount;
260#if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
261	if (MACH_IS_ATARI || MACH_IS_Q40) {
262		/* Atari has a byte-swapped IDE interface */
263		outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
264		return;
265	}
266#endif /* CONFIG_ATARI || CONFIG_Q40 */
267	hwif->ata_output_data(drive, buffer, bytecount / 4);
268	if ((bytecount & 0x03) >= 2)
269		hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
270}
271
272void default_hwif_transport(ide_hwif_t *hwif)
273{
274	hwif->ata_input_data		= ata_input_data;
275	hwif->ata_output_data		= ata_output_data;
276	hwif->atapi_input_bytes		= atapi_input_bytes;
277	hwif->atapi_output_bytes	= atapi_output_bytes;
278}
279
280void ide_fix_driveid (struct hd_driveid *id)
281{
282#ifndef __LITTLE_ENDIAN
283# ifdef __BIG_ENDIAN
284	int i;
285	u16 *stringcast;
286
287	id->config         = __le16_to_cpu(id->config);
288	id->cyls           = __le16_to_cpu(id->cyls);
289	id->reserved2      = __le16_to_cpu(id->reserved2);
290	id->heads          = __le16_to_cpu(id->heads);
291	id->track_bytes    = __le16_to_cpu(id->track_bytes);
292	id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
293	id->sectors        = __le16_to_cpu(id->sectors);
294	id->vendor0        = __le16_to_cpu(id->vendor0);
295	id->vendor1        = __le16_to_cpu(id->vendor1);
296	id->vendor2        = __le16_to_cpu(id->vendor2);
297	stringcast = (u16 *)&id->serial_no[0];
298	for (i = 0; i < (20/2); i++)
299		stringcast[i] = __le16_to_cpu(stringcast[i]);
300	id->buf_type       = __le16_to_cpu(id->buf_type);
301	id->buf_size       = __le16_to_cpu(id->buf_size);
302	id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
303	stringcast = (u16 *)&id->fw_rev[0];
304	for (i = 0; i < (8/2); i++)
305		stringcast[i] = __le16_to_cpu(stringcast[i]);
306	stringcast = (u16 *)&id->model[0];
307	for (i = 0; i < (40/2); i++)
308		stringcast[i] = __le16_to_cpu(stringcast[i]);
309	id->dword_io       = __le16_to_cpu(id->dword_io);
310	id->reserved50     = __le16_to_cpu(id->reserved50);
311	id->field_valid    = __le16_to_cpu(id->field_valid);
312	id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
313	id->cur_heads      = __le16_to_cpu(id->cur_heads);
314	id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
315	id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
316	id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
317	id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
318	id->dma_1word      = __le16_to_cpu(id->dma_1word);
319	id->dma_mword      = __le16_to_cpu(id->dma_mword);
320	id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
321	id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
322	id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
323	id->eide_pio       = __le16_to_cpu(id->eide_pio);
324	id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
325	for (i = 0; i < 2; ++i)
326		id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
327	for (i = 0; i < 4; ++i)
328		id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
329	id->queue_depth    = __le16_to_cpu(id->queue_depth);
330	for (i = 0; i < 4; ++i)
331		id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
332	id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
333	id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
334	id->command_set_1  = __le16_to_cpu(id->command_set_1);
335	id->command_set_2  = __le16_to_cpu(id->command_set_2);
336	id->cfsse          = __le16_to_cpu(id->cfsse);
337	id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
338	id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
339	id->csf_default    = __le16_to_cpu(id->csf_default);
340	id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
341	id->trseuc         = __le16_to_cpu(id->trseuc);
342	id->trsEuc         = __le16_to_cpu(id->trsEuc);
343	id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
344	id->mprc           = __le16_to_cpu(id->mprc);
345	id->hw_config      = __le16_to_cpu(id->hw_config);
346	id->acoustic       = __le16_to_cpu(id->acoustic);
347	id->msrqs          = __le16_to_cpu(id->msrqs);
348	id->sxfert         = __le16_to_cpu(id->sxfert);
349	id->sal            = __le16_to_cpu(id->sal);
350	id->spg            = __le32_to_cpu(id->spg);
351	id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
352	for (i = 0; i < 22; i++)
353		id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
354	id->last_lun       = __le16_to_cpu(id->last_lun);
355	id->word127        = __le16_to_cpu(id->word127);
356	id->dlf            = __le16_to_cpu(id->dlf);
357	id->csfo           = __le16_to_cpu(id->csfo);
358	for (i = 0; i < 26; i++)
359		id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
360	id->word156        = __le16_to_cpu(id->word156);
361	for (i = 0; i < 3; i++)
362		id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
363	id->cfa_power      = __le16_to_cpu(id->cfa_power);
364	for (i = 0; i < 14; i++)
365		id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
366	for (i = 0; i < 31; i++)
367		id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
368	for (i = 0; i < 48; i++)
369		id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
370	id->integrity_word  = __le16_to_cpu(id->integrity_word);
371# else
372#  error "Please fix <asm/byteorder.h>"
373# endif
374#endif
375}
376
377/*
378 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
379 * removing leading/trailing blanks and compressing internal blanks.
380 * It is primarily used to tidy up the model name/number fields as
381 * returned by the WIN_[P]IDENTIFY commands.
382 */
383
384void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
385{
386	u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
387
388	if (byteswap) {
389		/* convert from big-endian to host byte order */
390		for (p = end ; p != s;) {
391			unsigned short *pp = (unsigned short *) (p -= 2);
392			*pp = ntohs(*pp);
393		}
394	}
395	/* strip leading blanks */
396	while (s != end && *s == ' ')
397		++s;
398	/* compress internal blanks and strip trailing blanks */
399	while (s != end && *s) {
400		if (*s++ != ' ' || (s != end && *s && *s != ' '))
401			*p++ = *(s-1);
402	}
403	/* wipe out trailing garbage */
404	while (p != end)
405		*p++ = '\0';
406}
407
408EXPORT_SYMBOL(ide_fixstring);
409
410/*
411 * Needed for PCI irq sharing
412 */
413int drive_is_ready (ide_drive_t *drive)
414{
415	ide_hwif_t *hwif	= HWIF(drive);
416	u8 stat			= 0;
417
418	if (drive->waiting_for_dma)
419		return hwif->ide_dma_test_irq(drive);
420
421#if 0
422	/* need to guarantee 400ns since last command was issued */
423	udelay(1);
424#endif
425
426	/*
427	 * We do a passive status test under shared PCI interrupts on
428	 * cards that truly share the ATA side interrupt, but may also share
429	 * an interrupt with another pci card/device.  We make no assumptions
430	 * about possible isa-pnp and pci-pnp issues yet.
431	 */
432	if (IDE_CONTROL_REG)
433		stat = ide_read_altstatus(drive);
434	else
435		/* Note: this may clear a pending IRQ!! */
436		stat = ide_read_status(drive);
437
438	if (stat & BUSY_STAT)
439		/* drive busy:  definitely not interrupting */
440		return 0;
441
442	/* drive ready: *might* be interrupting */
443	return 1;
444}
445
446EXPORT_SYMBOL(drive_is_ready);
447
448/*
449 * This routine busy-waits for the drive status to be not "busy".
450 * It then checks the status for all of the "good" bits and none
451 * of the "bad" bits, and if all is okay it returns 0.  All other
452 * cases return error -- caller may then invoke ide_error().
453 *
454 * This routine should get fixed to not hog the cpu during extra long waits..
455 * That could be done by busy-waiting for the first jiffy or two, and then
456 * setting a timer to wake up at half second intervals thereafter,
457 * until timeout is achieved, before timing out.
458 */
459static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
460{
461	unsigned long flags;
462	int i;
463	u8 stat;
464
465	udelay(1);	/* spec allows drive 400ns to assert "BUSY" */
466	stat = ide_read_status(drive);
467
468	if (stat & BUSY_STAT) {
469		local_irq_set(flags);
470		timeout += jiffies;
471		while ((stat = ide_read_status(drive)) & BUSY_STAT) {
472			if (time_after(jiffies, timeout)) {
473				/*
474				 * One last read after the timeout in case
475				 * heavy interrupt load made us not make any
476				 * progress during the timeout..
477				 */
478				stat = ide_read_status(drive);
479				if (!(stat & BUSY_STAT))
480					break;
481
482				local_irq_restore(flags);
483				*rstat = stat;
484				return -EBUSY;
485			}
486		}
487		local_irq_restore(flags);
488	}
489	/*
490	 * Allow status to settle, then read it again.
491	 * A few rare drives vastly violate the 400ns spec here,
492	 * so we'll wait up to 10usec for a "good" status
493	 * rather than expensively fail things immediately.
494	 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
495	 */
496	for (i = 0; i < 10; i++) {
497		udelay(1);
498		stat = ide_read_status(drive);
499
500		if (OK_STAT(stat, good, bad)) {
501			*rstat = stat;
502			return 0;
503		}
504	}
505	*rstat = stat;
506	return -EFAULT;
507}
508
509/*
510 * In case of error returns error value after doing "*startstop = ide_error()".
511 * The caller should return the updated value of "startstop" in this case,
512 * "startstop" is unchanged when the function returns 0.
513 */
514int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
515{
516	int err;
517	u8 stat;
518
519	/* bail early if we've exceeded max_failures */
520	if (drive->max_failures && (drive->failures > drive->max_failures)) {
521		*startstop = ide_stopped;
522		return 1;
523	}
524
525	err = __ide_wait_stat(drive, good, bad, timeout, &stat);
526
527	if (err) {
528		char *s = (err == -EBUSY) ? "status timeout" : "status error";
529		*startstop = ide_error(drive, s, stat);
530	}
531
532	return err;
533}
534
535EXPORT_SYMBOL(ide_wait_stat);
536
537/**
538 *	ide_in_drive_list	-	look for drive in black/white list
539 *	@id: drive identifier
540 *	@drive_table: list to inspect
541 *
542 *	Look for a drive in the blacklist and the whitelist tables
543 *	Returns 1 if the drive is found in the table.
544 */
545
546int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
547{
548	for ( ; drive_table->id_model; drive_table++)
549		if ((!strcmp(drive_table->id_model, id->model)) &&
550		    (!drive_table->id_firmware ||
551		     strstr(id->fw_rev, drive_table->id_firmware)))
552			return 1;
553	return 0;
554}
555
556EXPORT_SYMBOL_GPL(ide_in_drive_list);
557
558/*
559 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
560 * We list them here and depend on the device side cable detection for them.
561 *
562 * Some optical devices with the buggy firmwares have the same problem.
563 */
564static const struct drive_list_entry ivb_list[] = {
565	{ "QUANTUM FIREBALLlct10 05"	, "A03.0900"	},
566	{ "TSSTcorp CDDVDW SH-S202J"	, "SB00"	},
567	{ "TSSTcorp CDDVDW SH-S202J"	, "SB01"	},
568	{ "TSSTcorp CDDVDW SH-S202N"	, "SB00"	},
569	{ "TSSTcorp CDDVDW SH-S202N"	, "SB01"	},
570	{ NULL				, NULL		}
571};
572
573/*
574 *  All hosts that use the 80c ribbon must use!
575 *  The name is derived from upper byte of word 93 and the 80c ribbon.
576 */
577u8 eighty_ninty_three (ide_drive_t *drive)
578{
579	ide_hwif_t *hwif = drive->hwif;
580	struct hd_driveid *id = drive->id;
581	int ivb = ide_in_drive_list(id, ivb_list);
582
583	if (hwif->cbl == ATA_CBL_PATA40_SHORT)
584		return 1;
585
586	if (ivb)
587		printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
588				  drive->name);
589
590	if (ide_dev_is_sata(id) && !ivb)
591		return 1;
592
593	if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
594		goto no_80w;
595
596	/*
597	 * FIXME:
598	 * - change master/slave IDENTIFY order
599	 * - force bit13 (80c cable present) check also for !ivb devices
600	 *   (unless the slave device is pre-ATA3)
601	 */
602	if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
603		return 1;
604
605no_80w:
606	if (drive->udma33_warned == 1)
607		return 0;
608
609	printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
610			    "limiting max speed to UDMA33\n",
611			    drive->name,
612			    hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
613
614	drive->udma33_warned = 1;
615
616	return 0;
617}
618
619int ide_driveid_update(ide_drive_t *drive)
620{
621	ide_hwif_t *hwif = drive->hwif;
622	struct hd_driveid *id;
623	unsigned long timeout, flags;
624	u8 stat;
625
626	/*
627	 * Re-read drive->id for possible DMA mode
628	 * change (copied from ide-probe.c)
629	 */
630
631	SELECT_MASK(drive, 1);
632	ide_set_irq(drive, 1);
633	msleep(50);
634	hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
635	timeout = jiffies + WAIT_WORSTCASE;
636	do {
637		if (time_after(jiffies, timeout)) {
638			SELECT_MASK(drive, 0);
639			return 0;	/* drive timed-out */
640		}
641
642		msleep(50);	/* give drive a breather */
643		stat = ide_read_altstatus(drive);
644	} while (stat & BUSY_STAT);
645
646	msleep(50);	/* wait for IRQ and DRQ_STAT */
647	stat = ide_read_status(drive);
648
649	if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
650		SELECT_MASK(drive, 0);
651		printk("%s: CHECK for good STATUS\n", drive->name);
652		return 0;
653	}
654	local_irq_save(flags);
655	SELECT_MASK(drive, 0);
656	id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
657	if (!id) {
658		local_irq_restore(flags);
659		return 0;
660	}
661	hwif->ata_input_data(drive, id, SECTOR_WORDS);
662	(void)ide_read_status(drive);	/* clear drive IRQ */
663	local_irq_enable();
664	local_irq_restore(flags);
665	ide_fix_driveid(id);
666	if (id) {
667		drive->id->dma_ultra = id->dma_ultra;
668		drive->id->dma_mword = id->dma_mword;
669		drive->id->dma_1word = id->dma_1word;
670		/* anything more ? */
671		kfree(id);
672
673		if (drive->using_dma && ide_id_dma_bug(drive))
674			ide_dma_off(drive);
675	}
676
677	return 1;
678}
679
680int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
681{
682	ide_hwif_t *hwif = drive->hwif;
683	int error = 0;
684	u8 stat;
685
686//	while (HWGROUP(drive)->busy)
687//		msleep(50);
688
689#ifdef CONFIG_BLK_DEV_IDEDMA
690	if (hwif->dma_host_set)	/* check if host supports DMA */
691		hwif->dma_host_set(drive, 0);
692#endif
693
694	/* Skip setting PIO flow-control modes on pre-EIDE drives */
695	if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
696		goto skip;
697
698	/*
699	 * Don't use ide_wait_cmd here - it will
700	 * attempt to set_geometry and recalibrate,
701	 * but for some reason these don't work at
702	 * this point (lost interrupt).
703	 */
704        /*
705         * Select the drive, and issue the SETFEATURES command
706         */
707	disable_irq_nosync(hwif->irq);
708
709	/*
710	 *	FIXME: we race against the running IRQ here if
711	 *	this is called from non IRQ context. If we use
712	 *	disable_irq() we hang on the error path. Work
713	 *	is needed.
714	 */
715
716	udelay(1);
717	SELECT_DRIVE(drive);
718	SELECT_MASK(drive, 0);
719	udelay(1);
720	ide_set_irq(drive, 0);
721	hwif->OUTB(speed, IDE_NSECTOR_REG);
722	hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
723	hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
724	if (drive->quirk_list == 2)
725		ide_set_irq(drive, 1);
726
727	error = __ide_wait_stat(drive, drive->ready_stat,
728				BUSY_STAT|DRQ_STAT|ERR_STAT,
729				WAIT_CMD, &stat);
730
731	SELECT_MASK(drive, 0);
732
733	enable_irq(hwif->irq);
734
735	if (error) {
736		(void) ide_dump_status(drive, "set_drive_speed_status", stat);
737		return error;
738	}
739
740	drive->id->dma_ultra &= ~0xFF00;
741	drive->id->dma_mword &= ~0x0F00;
742	drive->id->dma_1word &= ~0x0F00;
743
744 skip:
745#ifdef CONFIG_BLK_DEV_IDEDMA
746	if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
747	    drive->using_dma)
748		hwif->dma_host_set(drive, 1);
749	else if (hwif->dma_host_set)	/* check if host supports DMA */
750		ide_dma_off_quietly(drive);
751#endif
752
753	switch(speed) {
754		case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
755		case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
756		case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
757		case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
758		case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
759		case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
760		case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
761		case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
762		case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
763		case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
764		case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
765		case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
766		case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
767		case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
768		default: break;
769	}
770	if (!drive->init_speed)
771		drive->init_speed = speed;
772	drive->current_speed = speed;
773	return error;
774}
775
776/*
777 * This should get invoked any time we exit the driver to
778 * wait for an interrupt response from a drive.  handler() points
779 * at the appropriate code to handle the next interrupt, and a
780 * timer is started to prevent us from waiting forever in case
781 * something goes wrong (see the ide_timer_expiry() handler later on).
782 *
783 * See also ide_execute_command
784 */
785static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
786		      unsigned int timeout, ide_expiry_t *expiry)
787{
788	ide_hwgroup_t *hwgroup = HWGROUP(drive);
789
790	BUG_ON(hwgroup->handler);
791	hwgroup->handler	= handler;
792	hwgroup->expiry		= expiry;
793	hwgroup->timer.expires	= jiffies + timeout;
794	hwgroup->req_gen_timer	= hwgroup->req_gen;
795	add_timer(&hwgroup->timer);
796}
797
798void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
799		      unsigned int timeout, ide_expiry_t *expiry)
800{
801	unsigned long flags;
802	spin_lock_irqsave(&ide_lock, flags);
803	__ide_set_handler(drive, handler, timeout, expiry);
804	spin_unlock_irqrestore(&ide_lock, flags);
805}
806
807EXPORT_SYMBOL(ide_set_handler);
808
809/**
810 *	ide_execute_command	-	execute an IDE command
811 *	@drive: IDE drive to issue the command against
812 *	@command: command byte to write
813 *	@handler: handler for next phase
814 *	@timeout: timeout for command
815 *	@expiry:  handler to run on timeout
816 *
817 *	Helper function to issue an IDE command. This handles the
818 *	atomicity requirements, command timing and ensures that the
819 *	handler and IRQ setup do not race. All IDE command kick off
820 *	should go via this function or do equivalent locking.
821 */
822
823void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
824			 unsigned timeout, ide_expiry_t *expiry)
825{
826	unsigned long flags;
827	ide_hwif_t *hwif = HWIF(drive);
828
829	spin_lock_irqsave(&ide_lock, flags);
830	__ide_set_handler(drive, handler, timeout, expiry);
831	hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
832	/*
833	 * Drive takes 400nS to respond, we must avoid the IRQ being
834	 * serviced before that.
835	 *
836	 * FIXME: we could skip this delay with care on non shared devices
837	 */
838	ndelay(400);
839	spin_unlock_irqrestore(&ide_lock, flags);
840}
841
842EXPORT_SYMBOL(ide_execute_command);
843
844
845/* needed below */
846static ide_startstop_t do_reset1 (ide_drive_t *, int);
847
848/*
849 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
850 * during an atapi drive reset operation. If the drive has not yet responded,
851 * and we have not yet hit our maximum waiting time, then the timer is restarted
852 * for another 50ms.
853 */
854static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
855{
856	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
857	u8 stat;
858
859	SELECT_DRIVE(drive);
860	udelay (10);
861	stat = ide_read_status(drive);
862
863	if (OK_STAT(stat, 0, BUSY_STAT))
864		printk("%s: ATAPI reset complete\n", drive->name);
865	else {
866		if (time_before(jiffies, hwgroup->poll_timeout)) {
867			ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
868			/* continue polling */
869			return ide_started;
870		}
871		/* end of polling */
872		hwgroup->polling = 0;
873		printk("%s: ATAPI reset timed-out, status=0x%02x\n",
874				drive->name, stat);
875		/* do it the old fashioned way */
876		return do_reset1(drive, 1);
877	}
878	/* done polling */
879	hwgroup->polling = 0;
880	hwgroup->resetting = 0;
881	return ide_stopped;
882}
883
884/*
885 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
886 * during an ide reset operation. If the drives have not yet responded,
887 * and we have not yet hit our maximum waiting time, then the timer is restarted
888 * for another 50ms.
889 */
890static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
891{
892	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
893	ide_hwif_t *hwif	= HWIF(drive);
894	u8 tmp;
895
896	if (hwif->reset_poll != NULL) {
897		if (hwif->reset_poll(drive)) {
898			printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
899				hwif->name, drive->name);
900			return ide_stopped;
901		}
902	}
903
904	tmp = ide_read_status(drive);
905
906	if (!OK_STAT(tmp, 0, BUSY_STAT)) {
907		if (time_before(jiffies, hwgroup->poll_timeout)) {
908			ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
909			/* continue polling */
910			return ide_started;
911		}
912		printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
913		drive->failures++;
914	} else  {
915		printk("%s: reset: ", hwif->name);
916		tmp = ide_read_error(drive);
917
918		if (tmp == 1) {
919			printk("success\n");
920			drive->failures = 0;
921		} else {
922			drive->failures++;
923			printk("master: ");
924			switch (tmp & 0x7f) {
925				case 1: printk("passed");
926					break;
927				case 2: printk("formatter device error");
928					break;
929				case 3: printk("sector buffer error");
930					break;
931				case 4: printk("ECC circuitry error");
932					break;
933				case 5: printk("controlling MPU error");
934					break;
935				default:printk("error (0x%02x?)", tmp);
936			}
937			if (tmp & 0x80)
938				printk("; slave: failed");
939			printk("\n");
940		}
941	}
942	hwgroup->polling = 0;	/* done polling */
943	hwgroup->resetting = 0; /* done reset attempt */
944	return ide_stopped;
945}
946
947static void ide_disk_pre_reset(ide_drive_t *drive)
948{
949	int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
950
951	drive->special.all = 0;
952	drive->special.b.set_geometry = legacy;
953	drive->special.b.recalibrate  = legacy;
954	drive->mult_count = 0;
955	if (!drive->keep_settings && !drive->using_dma)
956		drive->mult_req = 0;
957	if (drive->mult_req != drive->mult_count)
958		drive->special.b.set_multmode = 1;
959}
960
961static void pre_reset(ide_drive_t *drive)
962{
963	if (drive->media == ide_disk)
964		ide_disk_pre_reset(drive);
965	else
966		drive->post_reset = 1;
967
968	if (drive->using_dma) {
969		if (drive->crc_count)
970			ide_check_dma_crc(drive);
971		else
972			ide_dma_off(drive);
973	}
974
975	if (!drive->keep_settings) {
976		if (!drive->using_dma) {
977			drive->unmask = 0;
978			drive->io_32bit = 0;
979		}
980		return;
981	}
982
983	if (HWIF(drive)->pre_reset != NULL)
984		HWIF(drive)->pre_reset(drive);
985
986	if (drive->current_speed != 0xff)
987		drive->desired_speed = drive->current_speed;
988	drive->current_speed = 0xff;
989}
990
991/*
992 * do_reset1() attempts to recover a confused drive by resetting it.
993 * Unfortunately, resetting a disk drive actually resets all devices on
994 * the same interface, so it can really be thought of as resetting the
995 * interface rather than resetting the drive.
996 *
997 * ATAPI devices have their own reset mechanism which allows them to be
998 * individually reset without clobbering other devices on the same interface.
999 *
1000 * Unfortunately, the IDE interface does not generate an interrupt to let
1001 * us know when the reset operation has finished, so we must poll for this.
1002 * Equally poor, though, is the fact that this may a very long time to complete,
1003 * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1004 * we set a timer to poll at 50ms intervals.
1005 */
1006static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1007{
1008	unsigned int unit;
1009	unsigned long flags;
1010	ide_hwif_t *hwif;
1011	ide_hwgroup_t *hwgroup;
1012
1013	spin_lock_irqsave(&ide_lock, flags);
1014	hwif = HWIF(drive);
1015	hwgroup = HWGROUP(drive);
1016
1017	/* We must not reset with running handlers */
1018	BUG_ON(hwgroup->handler != NULL);
1019
1020	/* For an ATAPI device, first try an ATAPI SRST. */
1021	if (drive->media != ide_disk && !do_not_try_atapi) {
1022		hwgroup->resetting = 1;
1023		pre_reset(drive);
1024		SELECT_DRIVE(drive);
1025		udelay (20);
1026		hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1027		ndelay(400);
1028		hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1029		hwgroup->polling = 1;
1030		__ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1031		spin_unlock_irqrestore(&ide_lock, flags);
1032		return ide_started;
1033	}
1034
1035	/*
1036	 * First, reset any device state data we were maintaining
1037	 * for any of the drives on this interface.
1038	 */
1039	for (unit = 0; unit < MAX_DRIVES; ++unit)
1040		pre_reset(&hwif->drives[unit]);
1041
1042	if (!IDE_CONTROL_REG) {
1043		spin_unlock_irqrestore(&ide_lock, flags);
1044		return ide_stopped;
1045	}
1046
1047	hwgroup->resetting = 1;
1048	/*
1049	 * Note that we also set nIEN while resetting the device,
1050	 * to mask unwanted interrupts from the interface during the reset.
1051	 * However, due to the design of PC hardware, this will cause an
1052	 * immediate interrupt due to the edge transition it produces.
1053	 * This single interrupt gives us a "fast poll" for drives that
1054	 * recover from reset very quickly, saving us the first 50ms wait time.
1055	 */
1056	/* set SRST and nIEN */
1057	hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1058	/* more than enough time */
1059	udelay(10);
1060	if (drive->quirk_list == 2) {
1061		/* clear SRST and nIEN */
1062		hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1063	} else {
1064		/* clear SRST, leave nIEN */
1065		hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1066	}
1067	/* more than enough time */
1068	udelay(10);
1069	hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1070	hwgroup->polling = 1;
1071	__ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1072
1073	/*
1074	 * Some weird controller like resetting themselves to a strange
1075	 * state when the disks are reset this way. At least, the Winbond
1076	 * 553 documentation says that
1077	 */
1078	if (hwif->resetproc)
1079		hwif->resetproc(drive);
1080
1081	spin_unlock_irqrestore(&ide_lock, flags);
1082	return ide_started;
1083}
1084
1085/*
1086 * ide_do_reset() is the entry point to the drive/interface reset code.
1087 */
1088
1089ide_startstop_t ide_do_reset (ide_drive_t *drive)
1090{
1091	return do_reset1(drive, 0);
1092}
1093
1094EXPORT_SYMBOL(ide_do_reset);
1095
1096/*
1097 * ide_wait_not_busy() waits for the currently selected device on the hwif
1098 * to report a non-busy status, see comments in ide_probe_port().
1099 */
1100int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1101{
1102	u8 stat = 0;
1103
1104	while(timeout--) {
1105		/*
1106		 * Turn this into a schedule() sleep once I'm sure
1107		 * about locking issues (2.5 work ?).
1108		 */
1109		mdelay(1);
1110		stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1111		if ((stat & BUSY_STAT) == 0)
1112			return 0;
1113		/*
1114		 * Assume a value of 0xff means nothing is connected to
1115		 * the interface and it doesn't implement the pull-down
1116		 * resistor on D7.
1117		 */
1118		if (stat == 0xff)
1119			return -ENODEV;
1120		touch_softlockup_watchdog();
1121		touch_nmi_watchdog();
1122	}
1123	return -EBUSY;
1124}
1125
1126EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1127
1128