ide-iops.c revision 7ed5b157d9dff55bf477b4c8b4708d5d45476677
1/*
2 *  Copyright (C) 2000-2002	Andre Hedrick <andre@linux-ide.org>
3 *  Copyright (C) 2003		Red Hat
4 *
5 */
6
7#include <linux/module.h>
8#include <linux/types.h>
9#include <linux/string.h>
10#include <linux/kernel.h>
11#include <linux/timer.h>
12#include <linux/mm.h>
13#include <linux/interrupt.h>
14#include <linux/major.h>
15#include <linux/errno.h>
16#include <linux/genhd.h>
17#include <linux/blkpg.h>
18#include <linux/slab.h>
19#include <linux/pci.h>
20#include <linux/delay.h>
21#include <linux/ide.h>
22#include <linux/bitops.h>
23#include <linux/nmi.h>
24
25#include <asm/byteorder.h>
26#include <asm/irq.h>
27#include <asm/uaccess.h>
28#include <asm/io.h>
29
30/*
31 *	Conventional PIO operations for ATA devices
32 */
33
34static u8 ide_inb (unsigned long port)
35{
36	return (u8) inb(port);
37}
38
39static void ide_outb (u8 val, unsigned long port)
40{
41	outb(val, port);
42}
43
44/*
45 *	MMIO operations, typically used for SATA controllers
46 */
47
48static u8 ide_mm_inb (unsigned long port)
49{
50	return (u8) readb((void __iomem *) port);
51}
52
53static void ide_mm_outb (u8 value, unsigned long port)
54{
55	writeb(value, (void __iomem *) port);
56}
57
58void SELECT_DRIVE (ide_drive_t *drive)
59{
60	ide_hwif_t *hwif = drive->hwif;
61	const struct ide_port_ops *port_ops = hwif->port_ops;
62	ide_task_t task;
63
64	if (port_ops && port_ops->selectproc)
65		port_ops->selectproc(drive);
66
67	memset(&task, 0, sizeof(task));
68	task.tf_flags = IDE_TFLAG_OUT_DEVICE;
69
70	drive->hwif->tp_ops->tf_load(drive, &task);
71}
72
73void SELECT_MASK(ide_drive_t *drive, int mask)
74{
75	const struct ide_port_ops *port_ops = drive->hwif->port_ops;
76
77	if (port_ops && port_ops->maskproc)
78		port_ops->maskproc(drive, mask);
79}
80
81void ide_exec_command(ide_hwif_t *hwif, u8 cmd)
82{
83	if (hwif->host_flags & IDE_HFLAG_MMIO)
84		writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
85	else
86		outb(cmd, hwif->io_ports.command_addr);
87}
88EXPORT_SYMBOL_GPL(ide_exec_command);
89
90u8 ide_read_status(ide_hwif_t *hwif)
91{
92	if (hwif->host_flags & IDE_HFLAG_MMIO)
93		return readb((void __iomem *)hwif->io_ports.status_addr);
94	else
95		return inb(hwif->io_ports.status_addr);
96}
97EXPORT_SYMBOL_GPL(ide_read_status);
98
99u8 ide_read_altstatus(ide_hwif_t *hwif)
100{
101	if (hwif->host_flags & IDE_HFLAG_MMIO)
102		return readb((void __iomem *)hwif->io_ports.ctl_addr);
103	else
104		return inb(hwif->io_ports.ctl_addr);
105}
106EXPORT_SYMBOL_GPL(ide_read_altstatus);
107
108void ide_set_irq(ide_hwif_t *hwif, int on)
109{
110	u8 ctl = ATA_DEVCTL_OBS;
111
112	if (on == 4) { /* hack for SRST */
113		ctl |= 4;
114		on &= ~4;
115	}
116
117	ctl |= on ? 0 : 2;
118
119	if (hwif->host_flags & IDE_HFLAG_MMIO)
120		writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
121	else
122		outb(ctl, hwif->io_ports.ctl_addr);
123}
124EXPORT_SYMBOL_GPL(ide_set_irq);
125
126void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
127{
128	ide_hwif_t *hwif = drive->hwif;
129	struct ide_io_ports *io_ports = &hwif->io_ports;
130	struct ide_taskfile *tf = &task->tf;
131	void (*tf_outb)(u8 addr, unsigned long port);
132	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
133	u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
134
135	if (mmio)
136		tf_outb = ide_mm_outb;
137	else
138		tf_outb = ide_outb;
139
140	if (task->tf_flags & IDE_TFLAG_FLAGGED)
141		HIHI = 0xFF;
142
143	if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
144		u16 data = (tf->hob_data << 8) | tf->data;
145
146		if (mmio)
147			writew(data, (void __iomem *)io_ports->data_addr);
148		else
149			outw(data, io_ports->data_addr);
150	}
151
152	if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
153		tf_outb(tf->hob_feature, io_ports->feature_addr);
154	if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
155		tf_outb(tf->hob_nsect, io_ports->nsect_addr);
156	if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
157		tf_outb(tf->hob_lbal, io_ports->lbal_addr);
158	if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
159		tf_outb(tf->hob_lbam, io_ports->lbam_addr);
160	if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
161		tf_outb(tf->hob_lbah, io_ports->lbah_addr);
162
163	if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
164		tf_outb(tf->feature, io_ports->feature_addr);
165	if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
166		tf_outb(tf->nsect, io_ports->nsect_addr);
167	if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
168		tf_outb(tf->lbal, io_ports->lbal_addr);
169	if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
170		tf_outb(tf->lbam, io_ports->lbam_addr);
171	if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
172		tf_outb(tf->lbah, io_ports->lbah_addr);
173
174	if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
175		tf_outb((tf->device & HIHI) | drive->select,
176			 io_ports->device_addr);
177}
178EXPORT_SYMBOL_GPL(ide_tf_load);
179
180void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
181{
182	ide_hwif_t *hwif = drive->hwif;
183	struct ide_io_ports *io_ports = &hwif->io_ports;
184	struct ide_taskfile *tf = &task->tf;
185	void (*tf_outb)(u8 addr, unsigned long port);
186	u8 (*tf_inb)(unsigned long port);
187	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
188
189	if (mmio) {
190		tf_outb = ide_mm_outb;
191		tf_inb  = ide_mm_inb;
192	} else {
193		tf_outb = ide_outb;
194		tf_inb  = ide_inb;
195	}
196
197	if (task->tf_flags & IDE_TFLAG_IN_DATA) {
198		u16 data;
199
200		if (mmio)
201			data = readw((void __iomem *)io_ports->data_addr);
202		else
203			data = inw(io_ports->data_addr);
204
205		tf->data = data & 0xff;
206		tf->hob_data = (data >> 8) & 0xff;
207	}
208
209	/* be sure we're looking at the low order bits */
210	tf_outb(ATA_DEVCTL_OBS & ~0x80, io_ports->ctl_addr);
211
212	if (task->tf_flags & IDE_TFLAG_IN_FEATURE)
213		tf->feature = tf_inb(io_ports->feature_addr);
214	if (task->tf_flags & IDE_TFLAG_IN_NSECT)
215		tf->nsect  = tf_inb(io_ports->nsect_addr);
216	if (task->tf_flags & IDE_TFLAG_IN_LBAL)
217		tf->lbal   = tf_inb(io_ports->lbal_addr);
218	if (task->tf_flags & IDE_TFLAG_IN_LBAM)
219		tf->lbam   = tf_inb(io_ports->lbam_addr);
220	if (task->tf_flags & IDE_TFLAG_IN_LBAH)
221		tf->lbah   = tf_inb(io_ports->lbah_addr);
222	if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
223		tf->device = tf_inb(io_ports->device_addr);
224
225	if (task->tf_flags & IDE_TFLAG_LBA48) {
226		tf_outb(ATA_DEVCTL_OBS | 0x80, io_ports->ctl_addr);
227
228		if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
229			tf->hob_feature = tf_inb(io_ports->feature_addr);
230		if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
231			tf->hob_nsect   = tf_inb(io_ports->nsect_addr);
232		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
233			tf->hob_lbal    = tf_inb(io_ports->lbal_addr);
234		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
235			tf->hob_lbam    = tf_inb(io_ports->lbam_addr);
236		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
237			tf->hob_lbah    = tf_inb(io_ports->lbah_addr);
238	}
239}
240EXPORT_SYMBOL_GPL(ide_tf_read);
241
242/*
243 * Some localbus EIDE interfaces require a special access sequence
244 * when using 32-bit I/O instructions to transfer data.  We call this
245 * the "vlb_sync" sequence, which consists of three successive reads
246 * of the sector count register location, with interrupts disabled
247 * to ensure that the reads all happen together.
248 */
249static void ata_vlb_sync(unsigned long port)
250{
251	(void)inb(port);
252	(void)inb(port);
253	(void)inb(port);
254}
255
256/*
257 * This is used for most PIO data transfers *from* the IDE interface
258 *
259 * These routines will round up any request for an odd number of bytes,
260 * so if an odd len is specified, be sure that there's at least one
261 * extra byte allocated for the buffer.
262 */
263void ide_input_data(ide_drive_t *drive, struct request *rq, void *buf,
264		    unsigned int len)
265{
266	ide_hwif_t *hwif = drive->hwif;
267	struct ide_io_ports *io_ports = &hwif->io_ports;
268	unsigned long data_addr = io_ports->data_addr;
269	u8 io_32bit = drive->io_32bit;
270	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
271
272	len++;
273
274	if (io_32bit) {
275		unsigned long uninitialized_var(flags);
276
277		if ((io_32bit & 2) && !mmio) {
278			local_irq_save(flags);
279			ata_vlb_sync(io_ports->nsect_addr);
280		}
281
282		if (mmio)
283			__ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
284		else
285			insl(data_addr, buf, len / 4);
286
287		if ((io_32bit & 2) && !mmio)
288			local_irq_restore(flags);
289
290		if ((len & 3) >= 2) {
291			if (mmio)
292				__ide_mm_insw((void __iomem *)data_addr,
293						(u8 *)buf + (len & ~3), 1);
294			else
295				insw(data_addr, (u8 *)buf + (len & ~3), 1);
296		}
297	} else {
298		if (mmio)
299			__ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
300		else
301			insw(data_addr, buf, len / 2);
302	}
303}
304EXPORT_SYMBOL_GPL(ide_input_data);
305
306/*
307 * This is used for most PIO data transfers *to* the IDE interface
308 */
309void ide_output_data(ide_drive_t *drive, struct request *rq, void *buf,
310		     unsigned int len)
311{
312	ide_hwif_t *hwif = drive->hwif;
313	struct ide_io_ports *io_ports = &hwif->io_ports;
314	unsigned long data_addr = io_ports->data_addr;
315	u8 io_32bit = drive->io_32bit;
316	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
317
318	len++;
319
320	if (io_32bit) {
321		unsigned long uninitialized_var(flags);
322
323		if ((io_32bit & 2) && !mmio) {
324			local_irq_save(flags);
325			ata_vlb_sync(io_ports->nsect_addr);
326		}
327
328		if (mmio)
329			__ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
330		else
331			outsl(data_addr, buf, len / 4);
332
333		if ((io_32bit & 2) && !mmio)
334			local_irq_restore(flags);
335
336		if ((len & 3) >= 2) {
337			if (mmio)
338				__ide_mm_outsw((void __iomem *)data_addr,
339						 (u8 *)buf + (len & ~3), 1);
340			else
341				outsw(data_addr, (u8 *)buf + (len & ~3), 1);
342		}
343	} else {
344		if (mmio)
345			__ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
346		else
347			outsw(data_addr, buf, len / 2);
348	}
349}
350EXPORT_SYMBOL_GPL(ide_output_data);
351
352u8 ide_read_error(ide_drive_t *drive)
353{
354	ide_task_t task;
355
356	memset(&task, 0, sizeof(task));
357	task.tf_flags = IDE_TFLAG_IN_FEATURE;
358
359	drive->hwif->tp_ops->tf_read(drive, &task);
360
361	return task.tf.error;
362}
363EXPORT_SYMBOL_GPL(ide_read_error);
364
365void ide_read_bcount_and_ireason(ide_drive_t *drive, u16 *bcount, u8 *ireason)
366{
367	ide_task_t task;
368
369	memset(&task, 0, sizeof(task));
370	task.tf_flags = IDE_TFLAG_IN_LBAH | IDE_TFLAG_IN_LBAM |
371			IDE_TFLAG_IN_NSECT;
372
373	drive->hwif->tp_ops->tf_read(drive, &task);
374
375	*bcount = (task.tf.lbah << 8) | task.tf.lbam;
376	*ireason = task.tf.nsect & 3;
377}
378EXPORT_SYMBOL_GPL(ide_read_bcount_and_ireason);
379
380const struct ide_tp_ops default_tp_ops = {
381	.exec_command		= ide_exec_command,
382	.read_status		= ide_read_status,
383	.read_altstatus		= ide_read_altstatus,
384
385	.set_irq		= ide_set_irq,
386
387	.tf_load		= ide_tf_load,
388	.tf_read		= ide_tf_read,
389
390	.input_data		= ide_input_data,
391	.output_data		= ide_output_data,
392};
393
394void ide_fix_driveid(u16 *id)
395{
396#ifndef __LITTLE_ENDIAN
397# ifdef __BIG_ENDIAN
398	int i;
399
400	for (i = 0; i < 256; i++)
401		id[i] = __le16_to_cpu(id[i]);
402# else
403#  error "Please fix <asm/byteorder.h>"
404# endif
405#endif
406}
407
408/*
409 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
410 * removing leading/trailing blanks and compressing internal blanks.
411 * It is primarily used to tidy up the model name/number fields as
412 * returned by the ATA_CMD_ID_ATA[PI] commands.
413 */
414
415void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
416{
417	u8 *p, *end = &s[bytecount & ~1]; /* bytecount must be even */
418
419	if (byteswap) {
420		/* convert from big-endian to host byte order */
421		for (p = s ; p != end ; p += 2)
422			be16_to_cpus((u16 *) p);
423	}
424
425	/* strip leading blanks */
426	p = s;
427	while (s != end && *s == ' ')
428		++s;
429	/* compress internal blanks and strip trailing blanks */
430	while (s != end && *s) {
431		if (*s++ != ' ' || (s != end && *s && *s != ' '))
432			*p++ = *(s-1);
433	}
434	/* wipe out trailing garbage */
435	while (p != end)
436		*p++ = '\0';
437}
438
439EXPORT_SYMBOL(ide_fixstring);
440
441/*
442 * Needed for PCI irq sharing
443 */
444int drive_is_ready (ide_drive_t *drive)
445{
446	ide_hwif_t *hwif	= drive->hwif;
447	u8 stat			= 0;
448
449	if (drive->waiting_for_dma)
450		return hwif->dma_ops->dma_test_irq(drive);
451
452	/*
453	 * We do a passive status test under shared PCI interrupts on
454	 * cards that truly share the ATA side interrupt, but may also share
455	 * an interrupt with another pci card/device.  We make no assumptions
456	 * about possible isa-pnp and pci-pnp issues yet.
457	 */
458	if (hwif->io_ports.ctl_addr &&
459	    (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
460		stat = hwif->tp_ops->read_altstatus(hwif);
461	else
462		/* Note: this may clear a pending IRQ!! */
463		stat = hwif->tp_ops->read_status(hwif);
464
465	if (stat & ATA_BUSY)
466		/* drive busy:  definitely not interrupting */
467		return 0;
468
469	/* drive ready: *might* be interrupting */
470	return 1;
471}
472
473EXPORT_SYMBOL(drive_is_ready);
474
475/*
476 * This routine busy-waits for the drive status to be not "busy".
477 * It then checks the status for all of the "good" bits and none
478 * of the "bad" bits, and if all is okay it returns 0.  All other
479 * cases return error -- caller may then invoke ide_error().
480 *
481 * This routine should get fixed to not hog the cpu during extra long waits..
482 * That could be done by busy-waiting for the first jiffy or two, and then
483 * setting a timer to wake up at half second intervals thereafter,
484 * until timeout is achieved, before timing out.
485 */
486static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
487{
488	ide_hwif_t *hwif = drive->hwif;
489	const struct ide_tp_ops *tp_ops = hwif->tp_ops;
490	unsigned long flags;
491	int i;
492	u8 stat;
493
494	udelay(1);	/* spec allows drive 400ns to assert "BUSY" */
495	stat = tp_ops->read_status(hwif);
496
497	if (stat & ATA_BUSY) {
498		local_save_flags(flags);
499		local_irq_enable_in_hardirq();
500		timeout += jiffies;
501		while ((stat = tp_ops->read_status(hwif)) & ATA_BUSY) {
502			if (time_after(jiffies, timeout)) {
503				/*
504				 * One last read after the timeout in case
505				 * heavy interrupt load made us not make any
506				 * progress during the timeout..
507				 */
508				stat = tp_ops->read_status(hwif);
509				if ((stat & ATA_BUSY) == 0)
510					break;
511
512				local_irq_restore(flags);
513				*rstat = stat;
514				return -EBUSY;
515			}
516		}
517		local_irq_restore(flags);
518	}
519	/*
520	 * Allow status to settle, then read it again.
521	 * A few rare drives vastly violate the 400ns spec here,
522	 * so we'll wait up to 10usec for a "good" status
523	 * rather than expensively fail things immediately.
524	 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
525	 */
526	for (i = 0; i < 10; i++) {
527		udelay(1);
528		stat = tp_ops->read_status(hwif);
529
530		if (OK_STAT(stat, good, bad)) {
531			*rstat = stat;
532			return 0;
533		}
534	}
535	*rstat = stat;
536	return -EFAULT;
537}
538
539/*
540 * In case of error returns error value after doing "*startstop = ide_error()".
541 * The caller should return the updated value of "startstop" in this case,
542 * "startstop" is unchanged when the function returns 0.
543 */
544int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
545{
546	int err;
547	u8 stat;
548
549	/* bail early if we've exceeded max_failures */
550	if (drive->max_failures && (drive->failures > drive->max_failures)) {
551		*startstop = ide_stopped;
552		return 1;
553	}
554
555	err = __ide_wait_stat(drive, good, bad, timeout, &stat);
556
557	if (err) {
558		char *s = (err == -EBUSY) ? "status timeout" : "status error";
559		*startstop = ide_error(drive, s, stat);
560	}
561
562	return err;
563}
564
565EXPORT_SYMBOL(ide_wait_stat);
566
567/**
568 *	ide_in_drive_list	-	look for drive in black/white list
569 *	@id: drive identifier
570 *	@table: list to inspect
571 *
572 *	Look for a drive in the blacklist and the whitelist tables
573 *	Returns 1 if the drive is found in the table.
574 */
575
576int ide_in_drive_list(u16 *id, const struct drive_list_entry *table)
577{
578	for ( ; table->id_model; table++)
579		if ((!strcmp(table->id_model, (char *)&id[ATA_ID_PROD])) &&
580		    (!table->id_firmware ||
581		     strstr((char *)&id[ATA_ID_FW_REV], table->id_firmware)))
582			return 1;
583	return 0;
584}
585
586EXPORT_SYMBOL_GPL(ide_in_drive_list);
587
588/*
589 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
590 * We list them here and depend on the device side cable detection for them.
591 *
592 * Some optical devices with the buggy firmwares have the same problem.
593 */
594static const struct drive_list_entry ivb_list[] = {
595	{ "QUANTUM FIREBALLlct10 05"	, "A03.0900"	},
596	{ "TSSTcorp CDDVDW SH-S202J"	, "SB00"	},
597	{ "TSSTcorp CDDVDW SH-S202J"	, "SB01"	},
598	{ "TSSTcorp CDDVDW SH-S202N"	, "SB00"	},
599	{ "TSSTcorp CDDVDW SH-S202N"	, "SB01"	},
600	{ "TSSTcorp CDDVDW SH-S202H"	, "SB00"	},
601	{ "TSSTcorp CDDVDW SH-S202H"	, "SB01"	},
602	{ "SAMSUNG SP0822N"		, "WA100-10"	},
603	{ NULL				, NULL		}
604};
605
606/*
607 *  All hosts that use the 80c ribbon must use!
608 *  The name is derived from upper byte of word 93 and the 80c ribbon.
609 */
610u8 eighty_ninty_three (ide_drive_t *drive)
611{
612	ide_hwif_t *hwif = drive->hwif;
613	u16 *id = drive->id;
614	int ivb = ide_in_drive_list(id, ivb_list);
615
616	if (hwif->cbl == ATA_CBL_PATA40_SHORT)
617		return 1;
618
619	if (ivb)
620		printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
621				  drive->name);
622
623	if (ata_id_is_sata(id) && !ivb)
624		return 1;
625
626	if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
627		goto no_80w;
628
629	/*
630	 * FIXME:
631	 * - change master/slave IDENTIFY order
632	 * - force bit13 (80c cable present) check also for !ivb devices
633	 *   (unless the slave device is pre-ATA3)
634	 */
635	if ((id[ATA_ID_HW_CONFIG] & 0x4000) ||
636	    (ivb && (id[ATA_ID_HW_CONFIG] & 0x2000)))
637		return 1;
638
639no_80w:
640	if (drive->dev_flags & IDE_DFLAG_UDMA33_WARNED)
641		return 0;
642
643	printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
644			    "limiting max speed to UDMA33\n",
645			    drive->name,
646			    hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
647
648	drive->dev_flags |= IDE_DFLAG_UDMA33_WARNED;
649
650	return 0;
651}
652
653int ide_driveid_update(ide_drive_t *drive)
654{
655	ide_hwif_t *hwif = drive->hwif;
656	const struct ide_tp_ops *tp_ops = hwif->tp_ops;
657	u16 *id;
658	unsigned long flags;
659	u8 stat;
660
661	/*
662	 * Re-read drive->id for possible DMA mode
663	 * change (copied from ide-probe.c)
664	 */
665
666	SELECT_MASK(drive, 1);
667	tp_ops->set_irq(hwif, 0);
668	msleep(50);
669	tp_ops->exec_command(hwif, ATA_CMD_ID_ATA);
670
671	if (ide_busy_sleep(hwif, WAIT_WORSTCASE, 1)) {
672		SELECT_MASK(drive, 0);
673		return 0;
674	}
675
676	msleep(50);	/* wait for IRQ and ATA_DRQ */
677	stat = tp_ops->read_status(hwif);
678
679	if (!OK_STAT(stat, ATA_DRQ, BAD_R_STAT)) {
680		SELECT_MASK(drive, 0);
681		printk("%s: CHECK for good STATUS\n", drive->name);
682		return 0;
683	}
684	local_irq_save(flags);
685	SELECT_MASK(drive, 0);
686	id = kmalloc(SECTOR_SIZE, GFP_ATOMIC);
687	if (!id) {
688		local_irq_restore(flags);
689		return 0;
690	}
691	tp_ops->input_data(drive, NULL, id, SECTOR_SIZE);
692	(void)tp_ops->read_status(hwif);	/* clear drive IRQ */
693	local_irq_enable();
694	local_irq_restore(flags);
695	ide_fix_driveid(id);
696
697	drive->id[ATA_ID_UDMA_MODES]  = id[ATA_ID_UDMA_MODES];
698	drive->id[ATA_ID_MWDMA_MODES] = id[ATA_ID_MWDMA_MODES];
699	drive->id[ATA_ID_SWDMA_MODES] = id[ATA_ID_SWDMA_MODES];
700	/* anything more ? */
701
702	kfree(id);
703
704	if ((drive->dev_flags & IDE_DFLAG_USING_DMA) && ide_id_dma_bug(drive))
705		ide_dma_off(drive);
706
707	return 1;
708}
709
710int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
711{
712	ide_hwif_t *hwif = drive->hwif;
713	const struct ide_tp_ops *tp_ops = hwif->tp_ops;
714	u16 *id = drive->id, i;
715	int error = 0;
716	u8 stat;
717	ide_task_t task;
718
719#ifdef CONFIG_BLK_DEV_IDEDMA
720	if (hwif->dma_ops)	/* check if host supports DMA */
721		hwif->dma_ops->dma_host_set(drive, 0);
722#endif
723
724	/* Skip setting PIO flow-control modes on pre-EIDE drives */
725	if ((speed & 0xf8) == XFER_PIO_0 && ata_id_has_iordy(drive->id) == 0)
726		goto skip;
727
728	/*
729	 * Don't use ide_wait_cmd here - it will
730	 * attempt to set_geometry and recalibrate,
731	 * but for some reason these don't work at
732	 * this point (lost interrupt).
733	 */
734        /*
735         * Select the drive, and issue the SETFEATURES command
736         */
737	disable_irq_nosync(hwif->irq);
738
739	/*
740	 *	FIXME: we race against the running IRQ here if
741	 *	this is called from non IRQ context. If we use
742	 *	disable_irq() we hang on the error path. Work
743	 *	is needed.
744	 */
745
746	udelay(1);
747	SELECT_DRIVE(drive);
748	SELECT_MASK(drive, 1);
749	udelay(1);
750	tp_ops->set_irq(hwif, 0);
751
752	memset(&task, 0, sizeof(task));
753	task.tf_flags = IDE_TFLAG_OUT_FEATURE | IDE_TFLAG_OUT_NSECT;
754	task.tf.feature = SETFEATURES_XFER;
755	task.tf.nsect   = speed;
756
757	tp_ops->tf_load(drive, &task);
758
759	tp_ops->exec_command(hwif, ATA_CMD_SET_FEATURES);
760
761	if (drive->quirk_list == 2)
762		tp_ops->set_irq(hwif, 1);
763
764	error = __ide_wait_stat(drive, drive->ready_stat,
765				ATA_BUSY | ATA_DRQ | ATA_ERR,
766				WAIT_CMD, &stat);
767
768	SELECT_MASK(drive, 0);
769
770	enable_irq(hwif->irq);
771
772	if (error) {
773		(void) ide_dump_status(drive, "set_drive_speed_status", stat);
774		return error;
775	}
776
777	id[ATA_ID_UDMA_MODES]  &= ~0xFF00;
778	id[ATA_ID_MWDMA_MODES] &= ~0x0F00;
779	id[ATA_ID_SWDMA_MODES] &= ~0x0F00;
780
781 skip:
782#ifdef CONFIG_BLK_DEV_IDEDMA
783	if (speed >= XFER_SW_DMA_0 && (drive->dev_flags & IDE_DFLAG_USING_DMA))
784		hwif->dma_ops->dma_host_set(drive, 1);
785	else if (hwif->dma_ops)	/* check if host supports DMA */
786		ide_dma_off_quietly(drive);
787#endif
788
789	if (speed >= XFER_UDMA_0) {
790		i = 1 << (speed - XFER_UDMA_0);
791		id[ATA_ID_UDMA_MODES] |= (i << 8 | i);
792	} else if (speed >= XFER_MW_DMA_0) {
793		i = 1 << (speed - XFER_MW_DMA_0);
794		id[ATA_ID_MWDMA_MODES] |= (i << 8 | i);
795	} else if (speed >= XFER_SW_DMA_0) {
796		i = 1 << (speed - XFER_SW_DMA_0);
797		id[ATA_ID_SWDMA_MODES] |= (i << 8 | i);
798	}
799
800	if (!drive->init_speed)
801		drive->init_speed = speed;
802	drive->current_speed = speed;
803	return error;
804}
805
806/*
807 * This should get invoked any time we exit the driver to
808 * wait for an interrupt response from a drive.  handler() points
809 * at the appropriate code to handle the next interrupt, and a
810 * timer is started to prevent us from waiting forever in case
811 * something goes wrong (see the ide_timer_expiry() handler later on).
812 *
813 * See also ide_execute_command
814 */
815static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
816		      unsigned int timeout, ide_expiry_t *expiry)
817{
818	ide_hwif_t *hwif = drive->hwif;
819
820	BUG_ON(hwif->handler);
821	hwif->handler		= handler;
822	hwif->expiry		= expiry;
823	hwif->timer.expires	= jiffies + timeout;
824	hwif->req_gen_timer	= hwif->req_gen;
825	add_timer(&hwif->timer);
826}
827
828void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
829		      unsigned int timeout, ide_expiry_t *expiry)
830{
831	ide_hwif_t *hwif = drive->hwif;
832	unsigned long flags;
833
834	spin_lock_irqsave(&hwif->lock, flags);
835	__ide_set_handler(drive, handler, timeout, expiry);
836	spin_unlock_irqrestore(&hwif->lock, flags);
837}
838
839EXPORT_SYMBOL(ide_set_handler);
840
841/**
842 *	ide_execute_command	-	execute an IDE command
843 *	@drive: IDE drive to issue the command against
844 *	@command: command byte to write
845 *	@handler: handler for next phase
846 *	@timeout: timeout for command
847 *	@expiry:  handler to run on timeout
848 *
849 *	Helper function to issue an IDE command. This handles the
850 *	atomicity requirements, command timing and ensures that the
851 *	handler and IRQ setup do not race. All IDE command kick off
852 *	should go via this function or do equivalent locking.
853 */
854
855void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
856			 unsigned timeout, ide_expiry_t *expiry)
857{
858	ide_hwif_t *hwif = drive->hwif;
859	unsigned long flags;
860
861	spin_lock_irqsave(&hwif->lock, flags);
862	__ide_set_handler(drive, handler, timeout, expiry);
863	hwif->tp_ops->exec_command(hwif, cmd);
864	/*
865	 * Drive takes 400nS to respond, we must avoid the IRQ being
866	 * serviced before that.
867	 *
868	 * FIXME: we could skip this delay with care on non shared devices
869	 */
870	ndelay(400);
871	spin_unlock_irqrestore(&hwif->lock, flags);
872}
873EXPORT_SYMBOL(ide_execute_command);
874
875void ide_execute_pkt_cmd(ide_drive_t *drive)
876{
877	ide_hwif_t *hwif = drive->hwif;
878	unsigned long flags;
879
880	spin_lock_irqsave(&hwif->lock, flags);
881	hwif->tp_ops->exec_command(hwif, ATA_CMD_PACKET);
882	ndelay(400);
883	spin_unlock_irqrestore(&hwif->lock, flags);
884}
885EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
886
887static inline void ide_complete_drive_reset(ide_drive_t *drive, int err)
888{
889	struct request *rq = drive->hwif->rq;
890
891	if (rq && blk_special_request(rq) && rq->cmd[0] == REQ_DRIVE_RESET)
892		ide_end_request(drive, err ? err : 1, 0);
893}
894
895/* needed below */
896static ide_startstop_t do_reset1 (ide_drive_t *, int);
897
898/*
899 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
900 * during an atapi drive reset operation. If the drive has not yet responded,
901 * and we have not yet hit our maximum waiting time, then the timer is restarted
902 * for another 50ms.
903 */
904static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
905{
906	ide_hwif_t *hwif = drive->hwif;
907	u8 stat;
908
909	SELECT_DRIVE(drive);
910	udelay (10);
911	stat = hwif->tp_ops->read_status(hwif);
912
913	if (OK_STAT(stat, 0, ATA_BUSY))
914		printk("%s: ATAPI reset complete\n", drive->name);
915	else {
916		if (time_before(jiffies, hwif->poll_timeout)) {
917			ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
918			/* continue polling */
919			return ide_started;
920		}
921		/* end of polling */
922		hwif->polling = 0;
923		printk("%s: ATAPI reset timed-out, status=0x%02x\n",
924				drive->name, stat);
925		/* do it the old fashioned way */
926		return do_reset1(drive, 1);
927	}
928	/* done polling */
929	hwif->polling = 0;
930	ide_complete_drive_reset(drive, 0);
931	return ide_stopped;
932}
933
934static void ide_reset_report_error(ide_hwif_t *hwif, u8 err)
935{
936	static const char *err_master_vals[] =
937		{ NULL, "passed", "formatter device error",
938		  "sector buffer error", "ECC circuitry error",
939		  "controlling MPU error" };
940
941	u8 err_master = err & 0x7f;
942
943	printk(KERN_ERR "%s: reset: master: ", hwif->name);
944	if (err_master && err_master < 6)
945		printk(KERN_CONT "%s", err_master_vals[err_master]);
946	else
947		printk(KERN_CONT "error (0x%02x?)", err);
948	if (err & 0x80)
949		printk(KERN_CONT "; slave: failed");
950	printk(KERN_CONT "\n");
951}
952
953/*
954 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
955 * during an ide reset operation. If the drives have not yet responded,
956 * and we have not yet hit our maximum waiting time, then the timer is restarted
957 * for another 50ms.
958 */
959static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
960{
961	ide_hwif_t *hwif = drive->hwif;
962	const struct ide_port_ops *port_ops = hwif->port_ops;
963	u8 tmp;
964	int err = 0;
965
966	if (port_ops && port_ops->reset_poll) {
967		err = port_ops->reset_poll(drive);
968		if (err) {
969			printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
970				hwif->name, drive->name);
971			goto out;
972		}
973	}
974
975	tmp = hwif->tp_ops->read_status(hwif);
976
977	if (!OK_STAT(tmp, 0, ATA_BUSY)) {
978		if (time_before(jiffies, hwif->poll_timeout)) {
979			ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
980			/* continue polling */
981			return ide_started;
982		}
983		printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
984		drive->failures++;
985		err = -EIO;
986	} else  {
987		tmp = ide_read_error(drive);
988
989		if (tmp == 1) {
990			printk(KERN_INFO "%s: reset: success\n", hwif->name);
991			drive->failures = 0;
992		} else {
993			ide_reset_report_error(hwif, tmp);
994			drive->failures++;
995			err = -EIO;
996		}
997	}
998out:
999	hwif->polling = 0;	/* done polling */
1000	ide_complete_drive_reset(drive, err);
1001	return ide_stopped;
1002}
1003
1004static void ide_disk_pre_reset(ide_drive_t *drive)
1005{
1006	int legacy = (drive->id[ATA_ID_CFS_ENABLE_2] & 0x0400) ? 0 : 1;
1007
1008	drive->special.all = 0;
1009	drive->special.b.set_geometry = legacy;
1010	drive->special.b.recalibrate  = legacy;
1011
1012	drive->mult_count = 0;
1013	drive->dev_flags &= ~IDE_DFLAG_PARKED;
1014
1015	if ((drive->dev_flags & IDE_DFLAG_KEEP_SETTINGS) == 0 &&
1016	    (drive->dev_flags & IDE_DFLAG_USING_DMA) == 0)
1017		drive->mult_req = 0;
1018
1019	if (drive->mult_req != drive->mult_count)
1020		drive->special.b.set_multmode = 1;
1021}
1022
1023static void pre_reset(ide_drive_t *drive)
1024{
1025	const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1026
1027	if (drive->media == ide_disk)
1028		ide_disk_pre_reset(drive);
1029	else
1030		drive->dev_flags |= IDE_DFLAG_POST_RESET;
1031
1032	if (drive->dev_flags & IDE_DFLAG_USING_DMA) {
1033		if (drive->crc_count)
1034			ide_check_dma_crc(drive);
1035		else
1036			ide_dma_off(drive);
1037	}
1038
1039	if ((drive->dev_flags & IDE_DFLAG_KEEP_SETTINGS) == 0) {
1040		if ((drive->dev_flags & IDE_DFLAG_USING_DMA) == 0) {
1041			drive->dev_flags &= ~IDE_DFLAG_UNMASK;
1042			drive->io_32bit = 0;
1043		}
1044		return;
1045	}
1046
1047	if (port_ops && port_ops->pre_reset)
1048		port_ops->pre_reset(drive);
1049
1050	if (drive->current_speed != 0xff)
1051		drive->desired_speed = drive->current_speed;
1052	drive->current_speed = 0xff;
1053}
1054
1055/*
1056 * do_reset1() attempts to recover a confused drive by resetting it.
1057 * Unfortunately, resetting a disk drive actually resets all devices on
1058 * the same interface, so it can really be thought of as resetting the
1059 * interface rather than resetting the drive.
1060 *
1061 * ATAPI devices have their own reset mechanism which allows them to be
1062 * individually reset without clobbering other devices on the same interface.
1063 *
1064 * Unfortunately, the IDE interface does not generate an interrupt to let
1065 * us know when the reset operation has finished, so we must poll for this.
1066 * Equally poor, though, is the fact that this may a very long time to complete,
1067 * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1068 * we set a timer to poll at 50ms intervals.
1069 */
1070static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1071{
1072	ide_hwif_t *hwif = drive->hwif;
1073	struct ide_io_ports *io_ports = &hwif->io_ports;
1074	const struct ide_tp_ops *tp_ops = hwif->tp_ops;
1075	const struct ide_port_ops *port_ops;
1076	ide_drive_t *tdrive;
1077	unsigned long flags, timeout;
1078	int i;
1079	DEFINE_WAIT(wait);
1080
1081	spin_lock_irqsave(&hwif->lock, flags);
1082
1083	/* We must not reset with running handlers */
1084	BUG_ON(hwif->handler != NULL);
1085
1086	/* For an ATAPI device, first try an ATAPI SRST. */
1087	if (drive->media != ide_disk && !do_not_try_atapi) {
1088		pre_reset(drive);
1089		SELECT_DRIVE(drive);
1090		udelay (20);
1091		tp_ops->exec_command(hwif, ATA_CMD_DEV_RESET);
1092		ndelay(400);
1093		hwif->poll_timeout = jiffies + WAIT_WORSTCASE;
1094		hwif->polling = 1;
1095		__ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1096		spin_unlock_irqrestore(&hwif->lock, flags);
1097		return ide_started;
1098	}
1099
1100	/* We must not disturb devices in the IDE_DFLAG_PARKED state. */
1101	do {
1102		unsigned long now;
1103
1104		prepare_to_wait(&ide_park_wq, &wait, TASK_UNINTERRUPTIBLE);
1105		timeout = jiffies;
1106		ide_port_for_each_present_dev(i, tdrive, hwif) {
1107			if ((tdrive->dev_flags & IDE_DFLAG_PARKED) &&
1108			    time_after(tdrive->sleep, timeout))
1109				timeout = tdrive->sleep;
1110		}
1111
1112		now = jiffies;
1113		if (time_before_eq(timeout, now))
1114			break;
1115
1116		spin_unlock_irqrestore(&hwif->lock, flags);
1117		timeout = schedule_timeout_uninterruptible(timeout - now);
1118		spin_lock_irqsave(&hwif->lock, flags);
1119	} while (timeout);
1120	finish_wait(&ide_park_wq, &wait);
1121
1122	/*
1123	 * First, reset any device state data we were maintaining
1124	 * for any of the drives on this interface.
1125	 */
1126	ide_port_for_each_dev(i, tdrive, hwif)
1127		pre_reset(tdrive);
1128
1129	if (io_ports->ctl_addr == 0) {
1130		spin_unlock_irqrestore(&hwif->lock, flags);
1131		ide_complete_drive_reset(drive, -ENXIO);
1132		return ide_stopped;
1133	}
1134
1135	/*
1136	 * Note that we also set nIEN while resetting the device,
1137	 * to mask unwanted interrupts from the interface during the reset.
1138	 * However, due to the design of PC hardware, this will cause an
1139	 * immediate interrupt due to the edge transition it produces.
1140	 * This single interrupt gives us a "fast poll" for drives that
1141	 * recover from reset very quickly, saving us the first 50ms wait time.
1142	 *
1143	 * TODO: add ->softreset method and stop abusing ->set_irq
1144	 */
1145	/* set SRST and nIEN */
1146	tp_ops->set_irq(hwif, 4);
1147	/* more than enough time */
1148	udelay(10);
1149	/* clear SRST, leave nIEN (unless device is on the quirk list) */
1150	tp_ops->set_irq(hwif, drive->quirk_list == 2);
1151	/* more than enough time */
1152	udelay(10);
1153	hwif->poll_timeout = jiffies + WAIT_WORSTCASE;
1154	hwif->polling = 1;
1155	__ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1156
1157	/*
1158	 * Some weird controller like resetting themselves to a strange
1159	 * state when the disks are reset this way. At least, the Winbond
1160	 * 553 documentation says that
1161	 */
1162	port_ops = hwif->port_ops;
1163	if (port_ops && port_ops->resetproc)
1164		port_ops->resetproc(drive);
1165
1166	spin_unlock_irqrestore(&hwif->lock, flags);
1167	return ide_started;
1168}
1169
1170/*
1171 * ide_do_reset() is the entry point to the drive/interface reset code.
1172 */
1173
1174ide_startstop_t ide_do_reset (ide_drive_t *drive)
1175{
1176	return do_reset1(drive, 0);
1177}
1178
1179EXPORT_SYMBOL(ide_do_reset);
1180
1181/*
1182 * ide_wait_not_busy() waits for the currently selected device on the hwif
1183 * to report a non-busy status, see comments in ide_probe_port().
1184 */
1185int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1186{
1187	u8 stat = 0;
1188
1189	while(timeout--) {
1190		/*
1191		 * Turn this into a schedule() sleep once I'm sure
1192		 * about locking issues (2.5 work ?).
1193		 */
1194		mdelay(1);
1195		stat = hwif->tp_ops->read_status(hwif);
1196		if ((stat & ATA_BUSY) == 0)
1197			return 0;
1198		/*
1199		 * Assume a value of 0xff means nothing is connected to
1200		 * the interface and it doesn't implement the pull-down
1201		 * resistor on D7.
1202		 */
1203		if (stat == 0xff)
1204			return -ENODEV;
1205		touch_softlockup_watchdog();
1206		touch_nmi_watchdog();
1207	}
1208	return -EBUSY;
1209}
1210