ide-iops.c revision 8588a2b732928b343233af9b1855705b8286bed4
1/*
2 * linux/drivers/ide/ide-iops.c	Version 0.37	Mar 05, 2003
3 *
4 *  Copyright (C) 2000-2002	Andre Hedrick <andre@linux-ide.org>
5 *  Copyright (C) 2003		Red Hat <alan@redhat.com>
6 *
7 */
8
9#include <linux/module.h>
10#include <linux/types.h>
11#include <linux/string.h>
12#include <linux/kernel.h>
13#include <linux/timer.h>
14#include <linux/mm.h>
15#include <linux/interrupt.h>
16#include <linux/major.h>
17#include <linux/errno.h>
18#include <linux/genhd.h>
19#include <linux/blkpg.h>
20#include <linux/slab.h>
21#include <linux/pci.h>
22#include <linux/delay.h>
23#include <linux/hdreg.h>
24#include <linux/ide.h>
25#include <linux/bitops.h>
26#include <linux/nmi.h>
27
28#include <asm/byteorder.h>
29#include <asm/irq.h>
30#include <asm/uaccess.h>
31#include <asm/io.h>
32
33/*
34 *	Conventional PIO operations for ATA devices
35 */
36
37static u8 ide_inb (unsigned long port)
38{
39	return (u8) inb(port);
40}
41
42static u16 ide_inw (unsigned long port)
43{
44	return (u16) inw(port);
45}
46
47static void ide_insw (unsigned long port, void *addr, u32 count)
48{
49	insw(port, addr, count);
50}
51
52static void ide_insl (unsigned long port, void *addr, u32 count)
53{
54	insl(port, addr, count);
55}
56
57static void ide_outb (u8 val, unsigned long port)
58{
59	outb(val, port);
60}
61
62static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
63{
64	outb(addr, port);
65}
66
67static void ide_outw (u16 val, unsigned long port)
68{
69	outw(val, port);
70}
71
72static void ide_outsw (unsigned long port, void *addr, u32 count)
73{
74	outsw(port, addr, count);
75}
76
77static void ide_outsl (unsigned long port, void *addr, u32 count)
78{
79	outsl(port, addr, count);
80}
81
82void default_hwif_iops (ide_hwif_t *hwif)
83{
84	hwif->OUTB	= ide_outb;
85	hwif->OUTBSYNC	= ide_outbsync;
86	hwif->OUTW	= ide_outw;
87	hwif->OUTSW	= ide_outsw;
88	hwif->OUTSL	= ide_outsl;
89	hwif->INB	= ide_inb;
90	hwif->INW	= ide_inw;
91	hwif->INSW	= ide_insw;
92	hwif->INSL	= ide_insl;
93}
94
95/*
96 *	MMIO operations, typically used for SATA controllers
97 */
98
99static u8 ide_mm_inb (unsigned long port)
100{
101	return (u8) readb((void __iomem *) port);
102}
103
104static u16 ide_mm_inw (unsigned long port)
105{
106	return (u16) readw((void __iomem *) port);
107}
108
109static void ide_mm_insw (unsigned long port, void *addr, u32 count)
110{
111	__ide_mm_insw((void __iomem *) port, addr, count);
112}
113
114static void ide_mm_insl (unsigned long port, void *addr, u32 count)
115{
116	__ide_mm_insl((void __iomem *) port, addr, count);
117}
118
119static void ide_mm_outb (u8 value, unsigned long port)
120{
121	writeb(value, (void __iomem *) port);
122}
123
124static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
125{
126	writeb(value, (void __iomem *) port);
127}
128
129static void ide_mm_outw (u16 value, unsigned long port)
130{
131	writew(value, (void __iomem *) port);
132}
133
134static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
135{
136	__ide_mm_outsw((void __iomem *) port, addr, count);
137}
138
139static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
140{
141	__ide_mm_outsl((void __iomem *) port, addr, count);
142}
143
144void default_hwif_mmiops (ide_hwif_t *hwif)
145{
146	hwif->OUTB	= ide_mm_outb;
147	/* Most systems will need to override OUTBSYNC, alas however
148	   this one is controller specific! */
149	hwif->OUTBSYNC	= ide_mm_outbsync;
150	hwif->OUTW	= ide_mm_outw;
151	hwif->OUTSW	= ide_mm_outsw;
152	hwif->OUTSL	= ide_mm_outsl;
153	hwif->INB	= ide_mm_inb;
154	hwif->INW	= ide_mm_inw;
155	hwif->INSW	= ide_mm_insw;
156	hwif->INSL	= ide_mm_insl;
157}
158
159EXPORT_SYMBOL(default_hwif_mmiops);
160
161u32 ide_read_24 (ide_drive_t *drive)
162{
163	u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG);
164	u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG);
165	u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG);
166	return (hcyl<<16)|(lcyl<<8)|sect;
167}
168
169void SELECT_DRIVE (ide_drive_t *drive)
170{
171	if (HWIF(drive)->selectproc)
172		HWIF(drive)->selectproc(drive);
173	HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
174}
175
176EXPORT_SYMBOL(SELECT_DRIVE);
177
178void SELECT_INTERRUPT (ide_drive_t *drive)
179{
180	if (HWIF(drive)->intrproc)
181		HWIF(drive)->intrproc(drive);
182	else
183		HWIF(drive)->OUTB(drive->ctl|2, IDE_CONTROL_REG);
184}
185
186void SELECT_MASK (ide_drive_t *drive, int mask)
187{
188	if (HWIF(drive)->maskproc)
189		HWIF(drive)->maskproc(drive, mask);
190}
191
192void QUIRK_LIST (ide_drive_t *drive)
193{
194	if (HWIF(drive)->quirkproc)
195		drive->quirk_list = HWIF(drive)->quirkproc(drive);
196}
197
198/*
199 * Some localbus EIDE interfaces require a special access sequence
200 * when using 32-bit I/O instructions to transfer data.  We call this
201 * the "vlb_sync" sequence, which consists of three successive reads
202 * of the sector count register location, with interrupts disabled
203 * to ensure that the reads all happen together.
204 */
205static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
206{
207	(void) HWIF(drive)->INB(port);
208	(void) HWIF(drive)->INB(port);
209	(void) HWIF(drive)->INB(port);
210}
211
212/*
213 * This is used for most PIO data transfers *from* the IDE interface
214 */
215static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
216{
217	ide_hwif_t *hwif	= HWIF(drive);
218	u8 io_32bit		= drive->io_32bit;
219
220	if (io_32bit) {
221		if (io_32bit & 2) {
222			unsigned long flags;
223			local_irq_save(flags);
224			ata_vlb_sync(drive, IDE_NSECTOR_REG);
225			hwif->INSL(IDE_DATA_REG, buffer, wcount);
226			local_irq_restore(flags);
227		} else
228			hwif->INSL(IDE_DATA_REG, buffer, wcount);
229	} else {
230		hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
231	}
232}
233
234/*
235 * This is used for most PIO data transfers *to* the IDE interface
236 */
237static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
238{
239	ide_hwif_t *hwif	= HWIF(drive);
240	u8 io_32bit		= drive->io_32bit;
241
242	if (io_32bit) {
243		if (io_32bit & 2) {
244			unsigned long flags;
245			local_irq_save(flags);
246			ata_vlb_sync(drive, IDE_NSECTOR_REG);
247			hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
248			local_irq_restore(flags);
249		} else
250			hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
251	} else {
252		hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
253	}
254}
255
256/*
257 * The following routines are mainly used by the ATAPI drivers.
258 *
259 * These routines will round up any request for an odd number of bytes,
260 * so if an odd bytecount is specified, be sure that there's at least one
261 * extra byte allocated for the buffer.
262 */
263
264static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
265{
266	ide_hwif_t *hwif = HWIF(drive);
267
268	++bytecount;
269#if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
270	if (MACH_IS_ATARI || MACH_IS_Q40) {
271		/* Atari has a byte-swapped IDE interface */
272		insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
273		return;
274	}
275#endif /* CONFIG_ATARI || CONFIG_Q40 */
276	hwif->ata_input_data(drive, buffer, bytecount / 4);
277	if ((bytecount & 0x03) >= 2)
278		hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
279}
280
281static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
282{
283	ide_hwif_t *hwif = HWIF(drive);
284
285	++bytecount;
286#if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
287	if (MACH_IS_ATARI || MACH_IS_Q40) {
288		/* Atari has a byte-swapped IDE interface */
289		outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
290		return;
291	}
292#endif /* CONFIG_ATARI || CONFIG_Q40 */
293	hwif->ata_output_data(drive, buffer, bytecount / 4);
294	if ((bytecount & 0x03) >= 2)
295		hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
296}
297
298void default_hwif_transport(ide_hwif_t *hwif)
299{
300	hwif->ata_input_data		= ata_input_data;
301	hwif->ata_output_data		= ata_output_data;
302	hwif->atapi_input_bytes		= atapi_input_bytes;
303	hwif->atapi_output_bytes	= atapi_output_bytes;
304}
305
306/*
307 * Beginning of Taskfile OPCODE Library and feature sets.
308 */
309void ide_fix_driveid (struct hd_driveid *id)
310{
311#ifndef __LITTLE_ENDIAN
312# ifdef __BIG_ENDIAN
313	int i;
314	u16 *stringcast;
315
316	id->config         = __le16_to_cpu(id->config);
317	id->cyls           = __le16_to_cpu(id->cyls);
318	id->reserved2      = __le16_to_cpu(id->reserved2);
319	id->heads          = __le16_to_cpu(id->heads);
320	id->track_bytes    = __le16_to_cpu(id->track_bytes);
321	id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
322	id->sectors        = __le16_to_cpu(id->sectors);
323	id->vendor0        = __le16_to_cpu(id->vendor0);
324	id->vendor1        = __le16_to_cpu(id->vendor1);
325	id->vendor2        = __le16_to_cpu(id->vendor2);
326	stringcast = (u16 *)&id->serial_no[0];
327	for (i = 0; i < (20/2); i++)
328		stringcast[i] = __le16_to_cpu(stringcast[i]);
329	id->buf_type       = __le16_to_cpu(id->buf_type);
330	id->buf_size       = __le16_to_cpu(id->buf_size);
331	id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
332	stringcast = (u16 *)&id->fw_rev[0];
333	for (i = 0; i < (8/2); i++)
334		stringcast[i] = __le16_to_cpu(stringcast[i]);
335	stringcast = (u16 *)&id->model[0];
336	for (i = 0; i < (40/2); i++)
337		stringcast[i] = __le16_to_cpu(stringcast[i]);
338	id->dword_io       = __le16_to_cpu(id->dword_io);
339	id->reserved50     = __le16_to_cpu(id->reserved50);
340	id->field_valid    = __le16_to_cpu(id->field_valid);
341	id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
342	id->cur_heads      = __le16_to_cpu(id->cur_heads);
343	id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
344	id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
345	id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
346	id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
347	id->dma_1word      = __le16_to_cpu(id->dma_1word);
348	id->dma_mword      = __le16_to_cpu(id->dma_mword);
349	id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
350	id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
351	id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
352	id->eide_pio       = __le16_to_cpu(id->eide_pio);
353	id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
354	for (i = 0; i < 2; ++i)
355		id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
356	for (i = 0; i < 4; ++i)
357		id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
358	id->queue_depth    = __le16_to_cpu(id->queue_depth);
359	for (i = 0; i < 4; ++i)
360		id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
361	id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
362	id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
363	id->command_set_1  = __le16_to_cpu(id->command_set_1);
364	id->command_set_2  = __le16_to_cpu(id->command_set_2);
365	id->cfsse          = __le16_to_cpu(id->cfsse);
366	id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
367	id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
368	id->csf_default    = __le16_to_cpu(id->csf_default);
369	id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
370	id->trseuc         = __le16_to_cpu(id->trseuc);
371	id->trsEuc         = __le16_to_cpu(id->trsEuc);
372	id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
373	id->mprc           = __le16_to_cpu(id->mprc);
374	id->hw_config      = __le16_to_cpu(id->hw_config);
375	id->acoustic       = __le16_to_cpu(id->acoustic);
376	id->msrqs          = __le16_to_cpu(id->msrqs);
377	id->sxfert         = __le16_to_cpu(id->sxfert);
378	id->sal            = __le16_to_cpu(id->sal);
379	id->spg            = __le32_to_cpu(id->spg);
380	id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
381	for (i = 0; i < 22; i++)
382		id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
383	id->last_lun       = __le16_to_cpu(id->last_lun);
384	id->word127        = __le16_to_cpu(id->word127);
385	id->dlf            = __le16_to_cpu(id->dlf);
386	id->csfo           = __le16_to_cpu(id->csfo);
387	for (i = 0; i < 26; i++)
388		id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
389	id->word156        = __le16_to_cpu(id->word156);
390	for (i = 0; i < 3; i++)
391		id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
392	id->cfa_power      = __le16_to_cpu(id->cfa_power);
393	for (i = 0; i < 14; i++)
394		id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
395	for (i = 0; i < 31; i++)
396		id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
397	for (i = 0; i < 48; i++)
398		id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
399	id->integrity_word  = __le16_to_cpu(id->integrity_word);
400# else
401#  error "Please fix <asm/byteorder.h>"
402# endif
403#endif
404}
405
406/* FIXME: exported for use by the USB storage (isd200.c) code only */
407EXPORT_SYMBOL(ide_fix_driveid);
408
409void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
410{
411	u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
412
413	if (byteswap) {
414		/* convert from big-endian to host byte order */
415		for (p = end ; p != s;) {
416			unsigned short *pp = (unsigned short *) (p -= 2);
417			*pp = ntohs(*pp);
418		}
419	}
420	/* strip leading blanks */
421	while (s != end && *s == ' ')
422		++s;
423	/* compress internal blanks and strip trailing blanks */
424	while (s != end && *s) {
425		if (*s++ != ' ' || (s != end && *s && *s != ' '))
426			*p++ = *(s-1);
427	}
428	/* wipe out trailing garbage */
429	while (p != end)
430		*p++ = '\0';
431}
432
433EXPORT_SYMBOL(ide_fixstring);
434
435/*
436 * Needed for PCI irq sharing
437 */
438int drive_is_ready (ide_drive_t *drive)
439{
440	ide_hwif_t *hwif	= HWIF(drive);
441	u8 stat			= 0;
442
443	if (drive->waiting_for_dma)
444		return hwif->ide_dma_test_irq(drive);
445
446#if 0
447	/* need to guarantee 400ns since last command was issued */
448	udelay(1);
449#endif
450
451#ifdef CONFIG_IDEPCI_SHARE_IRQ
452	/*
453	 * We do a passive status test under shared PCI interrupts on
454	 * cards that truly share the ATA side interrupt, but may also share
455	 * an interrupt with another pci card/device.  We make no assumptions
456	 * about possible isa-pnp and pci-pnp issues yet.
457	 */
458	if (IDE_CONTROL_REG)
459		stat = hwif->INB(IDE_ALTSTATUS_REG);
460	else
461#endif /* CONFIG_IDEPCI_SHARE_IRQ */
462		/* Note: this may clear a pending IRQ!! */
463		stat = hwif->INB(IDE_STATUS_REG);
464
465	if (stat & BUSY_STAT)
466		/* drive busy:  definitely not interrupting */
467		return 0;
468
469	/* drive ready: *might* be interrupting */
470	return 1;
471}
472
473EXPORT_SYMBOL(drive_is_ready);
474
475/*
476 * This routine busy-waits for the drive status to be not "busy".
477 * It then checks the status for all of the "good" bits and none
478 * of the "bad" bits, and if all is okay it returns 0.  All other
479 * cases return error -- caller may then invoke ide_error().
480 *
481 * This routine should get fixed to not hog the cpu during extra long waits..
482 * That could be done by busy-waiting for the first jiffy or two, and then
483 * setting a timer to wake up at half second intervals thereafter,
484 * until timeout is achieved, before timing out.
485 */
486static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
487{
488	ide_hwif_t *hwif = drive->hwif;
489	unsigned long flags;
490	int i;
491	u8 stat;
492
493	udelay(1);	/* spec allows drive 400ns to assert "BUSY" */
494	if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
495		local_irq_set(flags);
496		timeout += jiffies;
497		while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
498			if (time_after(jiffies, timeout)) {
499				/*
500				 * One last read after the timeout in case
501				 * heavy interrupt load made us not make any
502				 * progress during the timeout..
503				 */
504				stat = hwif->INB(IDE_STATUS_REG);
505				if (!(stat & BUSY_STAT))
506					break;
507
508				local_irq_restore(flags);
509				*rstat = stat;
510				return -EBUSY;
511			}
512		}
513		local_irq_restore(flags);
514	}
515	/*
516	 * Allow status to settle, then read it again.
517	 * A few rare drives vastly violate the 400ns spec here,
518	 * so we'll wait up to 10usec for a "good" status
519	 * rather than expensively fail things immediately.
520	 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
521	 */
522	for (i = 0; i < 10; i++) {
523		udelay(1);
524		if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad)) {
525			*rstat = stat;
526			return 0;
527		}
528	}
529	*rstat = stat;
530	return -EFAULT;
531}
532
533/*
534 * In case of error returns error value after doing "*startstop = ide_error()".
535 * The caller should return the updated value of "startstop" in this case,
536 * "startstop" is unchanged when the function returns 0.
537 */
538int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
539{
540	int err;
541	u8 stat;
542
543	/* bail early if we've exceeded max_failures */
544	if (drive->max_failures && (drive->failures > drive->max_failures)) {
545		*startstop = ide_stopped;
546		return 1;
547	}
548
549	err = __ide_wait_stat(drive, good, bad, timeout, &stat);
550
551	if (err) {
552		char *s = (err == -EBUSY) ? "status timeout" : "status error";
553		*startstop = ide_error(drive, s, stat);
554	}
555
556	return err;
557}
558
559EXPORT_SYMBOL(ide_wait_stat);
560
561/**
562 *	ide_in_drive_list	-	look for drive in black/white list
563 *	@id: drive identifier
564 *	@drive_table: list to inspect
565 *
566 *	Look for a drive in the blacklist and the whitelist tables
567 *	Returns 1 if the drive is found in the table.
568 */
569
570int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
571{
572	for ( ; drive_table->id_model; drive_table++)
573		if ((!strcmp(drive_table->id_model, id->model)) &&
574		    (!drive_table->id_firmware ||
575		     strstr(id->fw_rev, drive_table->id_firmware)))
576			return 1;
577	return 0;
578}
579
580EXPORT_SYMBOL_GPL(ide_in_drive_list);
581
582/*
583 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
584 * We list them here and depend on the device side cable detection for them.
585 *
586 * Some optical devices with the buggy firmwares have the same problem.
587 */
588static const struct drive_list_entry ivb_list[] = {
589	{ "QUANTUM FIREBALLlct10 05"	, "A03.0900"	},
590	{ "TSSTcorp CDDVDW SH-S202J"	, "SB00"	},
591	{ NULL				, NULL		}
592};
593
594/*
595 *  All hosts that use the 80c ribbon must use!
596 *  The name is derived from upper byte of word 93 and the 80c ribbon.
597 */
598u8 eighty_ninty_three (ide_drive_t *drive)
599{
600	ide_hwif_t *hwif = drive->hwif;
601	struct hd_driveid *id = drive->id;
602	int ivb = ide_in_drive_list(id, ivb_list);
603
604	if (hwif->cbl == ATA_CBL_PATA40_SHORT)
605		return 1;
606
607	if (ivb)
608		printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
609				  drive->name);
610
611	if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
612		goto no_80w;
613
614	if (ide_dev_is_sata(id))
615		return 1;
616
617	/*
618	 * FIXME:
619	 * - force bit13 (80c cable present) check also for !ivb devices
620	 *   (unless the slave device is pre-ATA3)
621	 */
622	if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
623		return 1;
624
625no_80w:
626	if (drive->udma33_warned == 1)
627		return 0;
628
629	printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
630			    "limiting max speed to UDMA33\n",
631			    drive->name,
632			    hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
633
634	drive->udma33_warned = 1;
635
636	return 0;
637}
638
639int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
640{
641	if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
642	    (args->tfRegister[IDE_SECTOR_OFFSET] > XFER_UDMA_2) &&
643	    (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER)) {
644		if (eighty_ninty_three(drive) == 0) {
645			printk(KERN_WARNING "%s: UDMA speeds >UDMA33 cannot "
646					    "be set\n", drive->name);
647			return 1;
648		}
649	}
650
651	return 0;
652}
653
654/*
655 * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
656 * 1 : Safe to update drive->id DMA registers.
657 * 0 : OOPs not allowed.
658 */
659int set_transfer (ide_drive_t *drive, ide_task_t *args)
660{
661	if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
662	    (args->tfRegister[IDE_SECTOR_OFFSET] >= XFER_SW_DMA_0) &&
663	    (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER) &&
664	    (drive->id->dma_ultra ||
665	     drive->id->dma_mword ||
666	     drive->id->dma_1word))
667		return 1;
668
669	return 0;
670}
671
672#ifdef CONFIG_BLK_DEV_IDEDMA
673static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
674{
675	if (!drive->crc_count)
676		return drive->current_speed;
677	drive->crc_count = 0;
678
679	switch(drive->current_speed) {
680		case XFER_UDMA_7:	return XFER_UDMA_6;
681		case XFER_UDMA_6:	return XFER_UDMA_5;
682		case XFER_UDMA_5:	return XFER_UDMA_4;
683		case XFER_UDMA_4:	return XFER_UDMA_3;
684		case XFER_UDMA_3:	return XFER_UDMA_2;
685		case XFER_UDMA_2:	return XFER_UDMA_1;
686		case XFER_UDMA_1:	return XFER_UDMA_0;
687			/*
688			 * OOPS we do not goto non Ultra DMA modes
689			 * without iCRC's available we force
690			 * the system to PIO and make the user
691			 * invoke the ATA-1 ATA-2 DMA modes.
692			 */
693		case XFER_UDMA_0:
694		default:		return XFER_PIO_4;
695	}
696}
697#endif /* CONFIG_BLK_DEV_IDEDMA */
698
699int ide_driveid_update(ide_drive_t *drive)
700{
701	ide_hwif_t *hwif = drive->hwif;
702	struct hd_driveid *id;
703	unsigned long timeout, flags;
704
705	/*
706	 * Re-read drive->id for possible DMA mode
707	 * change (copied from ide-probe.c)
708	 */
709
710	SELECT_MASK(drive, 1);
711	if (IDE_CONTROL_REG)
712		hwif->OUTB(drive->ctl,IDE_CONTROL_REG);
713	msleep(50);
714	hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
715	timeout = jiffies + WAIT_WORSTCASE;
716	do {
717		if (time_after(jiffies, timeout)) {
718			SELECT_MASK(drive, 0);
719			return 0;	/* drive timed-out */
720		}
721		msleep(50);	/* give drive a breather */
722	} while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
723	msleep(50);	/* wait for IRQ and DRQ_STAT */
724	if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
725		SELECT_MASK(drive, 0);
726		printk("%s: CHECK for good STATUS\n", drive->name);
727		return 0;
728	}
729	local_irq_save(flags);
730	SELECT_MASK(drive, 0);
731	id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
732	if (!id) {
733		local_irq_restore(flags);
734		return 0;
735	}
736	ata_input_data(drive, id, SECTOR_WORDS);
737	(void) hwif->INB(IDE_STATUS_REG);	/* clear drive IRQ */
738	local_irq_enable();
739	local_irq_restore(flags);
740	ide_fix_driveid(id);
741	if (id) {
742		drive->id->dma_ultra = id->dma_ultra;
743		drive->id->dma_mword = id->dma_mword;
744		drive->id->dma_1word = id->dma_1word;
745		/* anything more ? */
746		kfree(id);
747	}
748
749	return 1;
750}
751
752int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
753{
754	ide_hwif_t *hwif = drive->hwif;
755	int error;
756	u8 stat;
757
758//	while (HWGROUP(drive)->busy)
759//		msleep(50);
760
761#ifdef CONFIG_BLK_DEV_IDEDMA
762	if (hwif->ide_dma_on)	/* check if host supports DMA */
763		hwif->dma_host_off(drive);
764#endif
765
766	/*
767	 * Don't use ide_wait_cmd here - it will
768	 * attempt to set_geometry and recalibrate,
769	 * but for some reason these don't work at
770	 * this point (lost interrupt).
771	 */
772        /*
773         * Select the drive, and issue the SETFEATURES command
774         */
775	disable_irq_nosync(hwif->irq);
776
777	/*
778	 *	FIXME: we race against the running IRQ here if
779	 *	this is called from non IRQ context. If we use
780	 *	disable_irq() we hang on the error path. Work
781	 *	is needed.
782	 */
783
784	udelay(1);
785	SELECT_DRIVE(drive);
786	SELECT_MASK(drive, 0);
787	udelay(1);
788	if (IDE_CONTROL_REG)
789		hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
790	hwif->OUTB(speed, IDE_NSECTOR_REG);
791	hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
792	hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
793	if ((IDE_CONTROL_REG) && (drive->quirk_list == 2))
794		hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
795
796	error = __ide_wait_stat(drive, drive->ready_stat,
797				BUSY_STAT|DRQ_STAT|ERR_STAT,
798				WAIT_CMD, &stat);
799
800	SELECT_MASK(drive, 0);
801
802	enable_irq(hwif->irq);
803
804	if (error) {
805		(void) ide_dump_status(drive, "set_drive_speed_status", stat);
806		return error;
807	}
808
809	drive->id->dma_ultra &= ~0xFF00;
810	drive->id->dma_mword &= ~0x0F00;
811	drive->id->dma_1word &= ~0x0F00;
812
813#ifdef CONFIG_BLK_DEV_IDEDMA
814	if (speed >= XFER_SW_DMA_0)
815		hwif->dma_host_on(drive);
816	else if (hwif->ide_dma_on)	/* check if host supports DMA */
817		hwif->dma_off_quietly(drive);
818#endif
819
820	switch(speed) {
821		case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
822		case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
823		case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
824		case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
825		case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
826		case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
827		case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
828		case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
829		case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
830		case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
831		case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
832		case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
833		case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
834		case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
835		default: break;
836	}
837	if (!drive->init_speed)
838		drive->init_speed = speed;
839	drive->current_speed = speed;
840	return error;
841}
842
843/*
844 * This should get invoked any time we exit the driver to
845 * wait for an interrupt response from a drive.  handler() points
846 * at the appropriate code to handle the next interrupt, and a
847 * timer is started to prevent us from waiting forever in case
848 * something goes wrong (see the ide_timer_expiry() handler later on).
849 *
850 * See also ide_execute_command
851 */
852static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
853		      unsigned int timeout, ide_expiry_t *expiry)
854{
855	ide_hwgroup_t *hwgroup = HWGROUP(drive);
856
857	if (hwgroup->handler != NULL) {
858		printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
859			"old=%p, new=%p\n",
860			drive->name, hwgroup->handler, handler);
861	}
862	hwgroup->handler	= handler;
863	hwgroup->expiry		= expiry;
864	hwgroup->timer.expires	= jiffies + timeout;
865	hwgroup->req_gen_timer = hwgroup->req_gen;
866	add_timer(&hwgroup->timer);
867}
868
869void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
870		      unsigned int timeout, ide_expiry_t *expiry)
871{
872	unsigned long flags;
873	spin_lock_irqsave(&ide_lock, flags);
874	__ide_set_handler(drive, handler, timeout, expiry);
875	spin_unlock_irqrestore(&ide_lock, flags);
876}
877
878EXPORT_SYMBOL(ide_set_handler);
879
880/**
881 *	ide_execute_command	-	execute an IDE command
882 *	@drive: IDE drive to issue the command against
883 *	@command: command byte to write
884 *	@handler: handler for next phase
885 *	@timeout: timeout for command
886 *	@expiry:  handler to run on timeout
887 *
888 *	Helper function to issue an IDE command. This handles the
889 *	atomicity requirements, command timing and ensures that the
890 *	handler and IRQ setup do not race. All IDE command kick off
891 *	should go via this function or do equivalent locking.
892 */
893
894void ide_execute_command(ide_drive_t *drive, task_ioreg_t cmd, ide_handler_t *handler, unsigned timeout, ide_expiry_t *expiry)
895{
896	unsigned long flags;
897	ide_hwgroup_t *hwgroup = HWGROUP(drive);
898	ide_hwif_t *hwif = HWIF(drive);
899
900	spin_lock_irqsave(&ide_lock, flags);
901
902	BUG_ON(hwgroup->handler);
903	hwgroup->handler	= handler;
904	hwgroup->expiry		= expiry;
905	hwgroup->timer.expires	= jiffies + timeout;
906	hwgroup->req_gen_timer = hwgroup->req_gen;
907	add_timer(&hwgroup->timer);
908	hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
909	/* Drive takes 400nS to respond, we must avoid the IRQ being
910	   serviced before that.
911
912	   FIXME: we could skip this delay with care on non shared
913	   devices
914	*/
915	ndelay(400);
916	spin_unlock_irqrestore(&ide_lock, flags);
917}
918
919EXPORT_SYMBOL(ide_execute_command);
920
921
922/* needed below */
923static ide_startstop_t do_reset1 (ide_drive_t *, int);
924
925/*
926 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
927 * during an atapi drive reset operation. If the drive has not yet responded,
928 * and we have not yet hit our maximum waiting time, then the timer is restarted
929 * for another 50ms.
930 */
931static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
932{
933	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
934	ide_hwif_t *hwif	= HWIF(drive);
935	u8 stat;
936
937	SELECT_DRIVE(drive);
938	udelay (10);
939
940	if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
941		printk("%s: ATAPI reset complete\n", drive->name);
942	} else {
943		if (time_before(jiffies, hwgroup->poll_timeout)) {
944			BUG_ON(HWGROUP(drive)->handler != NULL);
945			ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
946			/* continue polling */
947			return ide_started;
948		}
949		/* end of polling */
950		hwgroup->polling = 0;
951		printk("%s: ATAPI reset timed-out, status=0x%02x\n",
952				drive->name, stat);
953		/* do it the old fashioned way */
954		return do_reset1(drive, 1);
955	}
956	/* done polling */
957	hwgroup->polling = 0;
958	hwgroup->resetting = 0;
959	return ide_stopped;
960}
961
962/*
963 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
964 * during an ide reset operation. If the drives have not yet responded,
965 * and we have not yet hit our maximum waiting time, then the timer is restarted
966 * for another 50ms.
967 */
968static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
969{
970	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
971	ide_hwif_t *hwif	= HWIF(drive);
972	u8 tmp;
973
974	if (hwif->reset_poll != NULL) {
975		if (hwif->reset_poll(drive)) {
976			printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
977				hwif->name, drive->name);
978			return ide_stopped;
979		}
980	}
981
982	if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
983		if (time_before(jiffies, hwgroup->poll_timeout)) {
984			BUG_ON(HWGROUP(drive)->handler != NULL);
985			ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
986			/* continue polling */
987			return ide_started;
988		}
989		printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
990		drive->failures++;
991	} else  {
992		printk("%s: reset: ", hwif->name);
993		if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
994			printk("success\n");
995			drive->failures = 0;
996		} else {
997			drive->failures++;
998			printk("master: ");
999			switch (tmp & 0x7f) {
1000				case 1: printk("passed");
1001					break;
1002				case 2: printk("formatter device error");
1003					break;
1004				case 3: printk("sector buffer error");
1005					break;
1006				case 4: printk("ECC circuitry error");
1007					break;
1008				case 5: printk("controlling MPU error");
1009					break;
1010				default:printk("error (0x%02x?)", tmp);
1011			}
1012			if (tmp & 0x80)
1013				printk("; slave: failed");
1014			printk("\n");
1015		}
1016	}
1017	hwgroup->polling = 0;	/* done polling */
1018	hwgroup->resetting = 0; /* done reset attempt */
1019	return ide_stopped;
1020}
1021
1022static void check_dma_crc(ide_drive_t *drive)
1023{
1024#ifdef CONFIG_BLK_DEV_IDEDMA
1025	if (drive->crc_count) {
1026		drive->hwif->dma_off_quietly(drive);
1027		ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
1028		if (drive->current_speed >= XFER_SW_DMA_0)
1029			(void) HWIF(drive)->ide_dma_on(drive);
1030	} else
1031		ide_dma_off(drive);
1032#endif
1033}
1034
1035static void ide_disk_pre_reset(ide_drive_t *drive)
1036{
1037	int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1038
1039	drive->special.all = 0;
1040	drive->special.b.set_geometry = legacy;
1041	drive->special.b.recalibrate  = legacy;
1042	if (OK_TO_RESET_CONTROLLER)
1043		drive->mult_count = 0;
1044	if (!drive->keep_settings && !drive->using_dma)
1045		drive->mult_req = 0;
1046	if (drive->mult_req != drive->mult_count)
1047		drive->special.b.set_multmode = 1;
1048}
1049
1050static void pre_reset(ide_drive_t *drive)
1051{
1052	if (drive->media == ide_disk)
1053		ide_disk_pre_reset(drive);
1054	else
1055		drive->post_reset = 1;
1056
1057	if (!drive->keep_settings) {
1058		if (drive->using_dma) {
1059			check_dma_crc(drive);
1060		} else {
1061			drive->unmask = 0;
1062			drive->io_32bit = 0;
1063		}
1064		return;
1065	}
1066	if (drive->using_dma)
1067		check_dma_crc(drive);
1068
1069	if (HWIF(drive)->pre_reset != NULL)
1070		HWIF(drive)->pre_reset(drive);
1071
1072	if (drive->current_speed != 0xff)
1073		drive->desired_speed = drive->current_speed;
1074	drive->current_speed = 0xff;
1075}
1076
1077/*
1078 * do_reset1() attempts to recover a confused drive by resetting it.
1079 * Unfortunately, resetting a disk drive actually resets all devices on
1080 * the same interface, so it can really be thought of as resetting the
1081 * interface rather than resetting the drive.
1082 *
1083 * ATAPI devices have their own reset mechanism which allows them to be
1084 * individually reset without clobbering other devices on the same interface.
1085 *
1086 * Unfortunately, the IDE interface does not generate an interrupt to let
1087 * us know when the reset operation has finished, so we must poll for this.
1088 * Equally poor, though, is the fact that this may a very long time to complete,
1089 * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1090 * we set a timer to poll at 50ms intervals.
1091 */
1092static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1093{
1094	unsigned int unit;
1095	unsigned long flags;
1096	ide_hwif_t *hwif;
1097	ide_hwgroup_t *hwgroup;
1098
1099	spin_lock_irqsave(&ide_lock, flags);
1100	hwif = HWIF(drive);
1101	hwgroup = HWGROUP(drive);
1102
1103	/* We must not reset with running handlers */
1104	BUG_ON(hwgroup->handler != NULL);
1105
1106	/* For an ATAPI device, first try an ATAPI SRST. */
1107	if (drive->media != ide_disk && !do_not_try_atapi) {
1108		hwgroup->resetting = 1;
1109		pre_reset(drive);
1110		SELECT_DRIVE(drive);
1111		udelay (20);
1112		hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1113		ndelay(400);
1114		hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1115		hwgroup->polling = 1;
1116		__ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1117		spin_unlock_irqrestore(&ide_lock, flags);
1118		return ide_started;
1119	}
1120
1121	/*
1122	 * First, reset any device state data we were maintaining
1123	 * for any of the drives on this interface.
1124	 */
1125	for (unit = 0; unit < MAX_DRIVES; ++unit)
1126		pre_reset(&hwif->drives[unit]);
1127
1128#if OK_TO_RESET_CONTROLLER
1129	if (!IDE_CONTROL_REG) {
1130		spin_unlock_irqrestore(&ide_lock, flags);
1131		return ide_stopped;
1132	}
1133
1134	hwgroup->resetting = 1;
1135	/*
1136	 * Note that we also set nIEN while resetting the device,
1137	 * to mask unwanted interrupts from the interface during the reset.
1138	 * However, due to the design of PC hardware, this will cause an
1139	 * immediate interrupt due to the edge transition it produces.
1140	 * This single interrupt gives us a "fast poll" for drives that
1141	 * recover from reset very quickly, saving us the first 50ms wait time.
1142	 */
1143	/* set SRST and nIEN */
1144	hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1145	/* more than enough time */
1146	udelay(10);
1147	if (drive->quirk_list == 2) {
1148		/* clear SRST and nIEN */
1149		hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1150	} else {
1151		/* clear SRST, leave nIEN */
1152		hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1153	}
1154	/* more than enough time */
1155	udelay(10);
1156	hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1157	hwgroup->polling = 1;
1158	__ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1159
1160	/*
1161	 * Some weird controller like resetting themselves to a strange
1162	 * state when the disks are reset this way. At least, the Winbond
1163	 * 553 documentation says that
1164	 */
1165	if (hwif->resetproc != NULL) {
1166		hwif->resetproc(drive);
1167	}
1168
1169#endif	/* OK_TO_RESET_CONTROLLER */
1170
1171	spin_unlock_irqrestore(&ide_lock, flags);
1172	return ide_started;
1173}
1174
1175/*
1176 * ide_do_reset() is the entry point to the drive/interface reset code.
1177 */
1178
1179ide_startstop_t ide_do_reset (ide_drive_t *drive)
1180{
1181	return do_reset1(drive, 0);
1182}
1183
1184EXPORT_SYMBOL(ide_do_reset);
1185
1186/*
1187 * ide_wait_not_busy() waits for the currently selected device on the hwif
1188 * to report a non-busy status, see comments in probe_hwif().
1189 */
1190int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1191{
1192	u8 stat = 0;
1193
1194	while(timeout--) {
1195		/*
1196		 * Turn this into a schedule() sleep once I'm sure
1197		 * about locking issues (2.5 work ?).
1198		 */
1199		mdelay(1);
1200		stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1201		if ((stat & BUSY_STAT) == 0)
1202			return 0;
1203		/*
1204		 * Assume a value of 0xff means nothing is connected to
1205		 * the interface and it doesn't implement the pull-down
1206		 * resistor on D7.
1207		 */
1208		if (stat == 0xff)
1209			return -ENODEV;
1210		touch_softlockup_watchdog();
1211		touch_nmi_watchdog();
1212	}
1213	return -EBUSY;
1214}
1215
1216EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1217
1218