ide-iops.c revision 88b2b32babd46cd54d2de4d17eb869aea3383e11
1/*
2 * linux/drivers/ide/ide-iops.c	Version 0.37	Mar 05, 2003
3 *
4 *  Copyright (C) 2000-2002	Andre Hedrick <andre@linux-ide.org>
5 *  Copyright (C) 2003		Red Hat <alan@redhat.com>
6 *
7 */
8
9#include <linux/module.h>
10#include <linux/types.h>
11#include <linux/string.h>
12#include <linux/kernel.h>
13#include <linux/timer.h>
14#include <linux/mm.h>
15#include <linux/interrupt.h>
16#include <linux/major.h>
17#include <linux/errno.h>
18#include <linux/genhd.h>
19#include <linux/blkpg.h>
20#include <linux/slab.h>
21#include <linux/pci.h>
22#include <linux/delay.h>
23#include <linux/hdreg.h>
24#include <linux/ide.h>
25#include <linux/bitops.h>
26#include <linux/nmi.h>
27
28#include <asm/byteorder.h>
29#include <asm/irq.h>
30#include <asm/uaccess.h>
31#include <asm/io.h>
32
33/*
34 *	Conventional PIO operations for ATA devices
35 */
36
37static u8 ide_inb (unsigned long port)
38{
39	return (u8) inb(port);
40}
41
42static u16 ide_inw (unsigned long port)
43{
44	return (u16) inw(port);
45}
46
47static void ide_insw (unsigned long port, void *addr, u32 count)
48{
49	insw(port, addr, count);
50}
51
52static void ide_insl (unsigned long port, void *addr, u32 count)
53{
54	insl(port, addr, count);
55}
56
57static void ide_outb (u8 val, unsigned long port)
58{
59	outb(val, port);
60}
61
62static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
63{
64	outb(addr, port);
65}
66
67static void ide_outw (u16 val, unsigned long port)
68{
69	outw(val, port);
70}
71
72static void ide_outsw (unsigned long port, void *addr, u32 count)
73{
74	outsw(port, addr, count);
75}
76
77static void ide_outsl (unsigned long port, void *addr, u32 count)
78{
79	outsl(port, addr, count);
80}
81
82void default_hwif_iops (ide_hwif_t *hwif)
83{
84	hwif->OUTB	= ide_outb;
85	hwif->OUTBSYNC	= ide_outbsync;
86	hwif->OUTW	= ide_outw;
87	hwif->OUTSW	= ide_outsw;
88	hwif->OUTSL	= ide_outsl;
89	hwif->INB	= ide_inb;
90	hwif->INW	= ide_inw;
91	hwif->INSW	= ide_insw;
92	hwif->INSL	= ide_insl;
93}
94
95/*
96 *	MMIO operations, typically used for SATA controllers
97 */
98
99static u8 ide_mm_inb (unsigned long port)
100{
101	return (u8) readb((void __iomem *) port);
102}
103
104static u16 ide_mm_inw (unsigned long port)
105{
106	return (u16) readw((void __iomem *) port);
107}
108
109static void ide_mm_insw (unsigned long port, void *addr, u32 count)
110{
111	__ide_mm_insw((void __iomem *) port, addr, count);
112}
113
114static void ide_mm_insl (unsigned long port, void *addr, u32 count)
115{
116	__ide_mm_insl((void __iomem *) port, addr, count);
117}
118
119static void ide_mm_outb (u8 value, unsigned long port)
120{
121	writeb(value, (void __iomem *) port);
122}
123
124static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
125{
126	writeb(value, (void __iomem *) port);
127}
128
129static void ide_mm_outw (u16 value, unsigned long port)
130{
131	writew(value, (void __iomem *) port);
132}
133
134static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
135{
136	__ide_mm_outsw((void __iomem *) port, addr, count);
137}
138
139static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
140{
141	__ide_mm_outsl((void __iomem *) port, addr, count);
142}
143
144void default_hwif_mmiops (ide_hwif_t *hwif)
145{
146	hwif->OUTB	= ide_mm_outb;
147	/* Most systems will need to override OUTBSYNC, alas however
148	   this one is controller specific! */
149	hwif->OUTBSYNC	= ide_mm_outbsync;
150	hwif->OUTW	= ide_mm_outw;
151	hwif->OUTSW	= ide_mm_outsw;
152	hwif->OUTSL	= ide_mm_outsl;
153	hwif->INB	= ide_mm_inb;
154	hwif->INW	= ide_mm_inw;
155	hwif->INSW	= ide_mm_insw;
156	hwif->INSL	= ide_mm_insl;
157}
158
159EXPORT_SYMBOL(default_hwif_mmiops);
160
161u32 ide_read_24 (ide_drive_t *drive)
162{
163	u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG);
164	u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG);
165	u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG);
166	return (hcyl<<16)|(lcyl<<8)|sect;
167}
168
169void SELECT_DRIVE (ide_drive_t *drive)
170{
171	if (HWIF(drive)->selectproc)
172		HWIF(drive)->selectproc(drive);
173	HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
174}
175
176EXPORT_SYMBOL(SELECT_DRIVE);
177
178void SELECT_INTERRUPT (ide_drive_t *drive)
179{
180	if (HWIF(drive)->intrproc)
181		HWIF(drive)->intrproc(drive);
182	else
183		HWIF(drive)->OUTB(drive->ctl|2, IDE_CONTROL_REG);
184}
185
186void SELECT_MASK (ide_drive_t *drive, int mask)
187{
188	if (HWIF(drive)->maskproc)
189		HWIF(drive)->maskproc(drive, mask);
190}
191
192void QUIRK_LIST (ide_drive_t *drive)
193{
194	if (HWIF(drive)->quirkproc)
195		drive->quirk_list = HWIF(drive)->quirkproc(drive);
196}
197
198/*
199 * Some localbus EIDE interfaces require a special access sequence
200 * when using 32-bit I/O instructions to transfer data.  We call this
201 * the "vlb_sync" sequence, which consists of three successive reads
202 * of the sector count register location, with interrupts disabled
203 * to ensure that the reads all happen together.
204 */
205static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
206{
207	(void) HWIF(drive)->INB(port);
208	(void) HWIF(drive)->INB(port);
209	(void) HWIF(drive)->INB(port);
210}
211
212/*
213 * This is used for most PIO data transfers *from* the IDE interface
214 */
215static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
216{
217	ide_hwif_t *hwif	= HWIF(drive);
218	u8 io_32bit		= drive->io_32bit;
219
220	if (io_32bit) {
221		if (io_32bit & 2) {
222			unsigned long flags;
223			local_irq_save(flags);
224			ata_vlb_sync(drive, IDE_NSECTOR_REG);
225			hwif->INSL(IDE_DATA_REG, buffer, wcount);
226			local_irq_restore(flags);
227		} else
228			hwif->INSL(IDE_DATA_REG, buffer, wcount);
229	} else {
230		hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
231	}
232}
233
234/*
235 * This is used for most PIO data transfers *to* the IDE interface
236 */
237static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
238{
239	ide_hwif_t *hwif	= HWIF(drive);
240	u8 io_32bit		= drive->io_32bit;
241
242	if (io_32bit) {
243		if (io_32bit & 2) {
244			unsigned long flags;
245			local_irq_save(flags);
246			ata_vlb_sync(drive, IDE_NSECTOR_REG);
247			hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
248			local_irq_restore(flags);
249		} else
250			hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
251	} else {
252		hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
253	}
254}
255
256/*
257 * The following routines are mainly used by the ATAPI drivers.
258 *
259 * These routines will round up any request for an odd number of bytes,
260 * so if an odd bytecount is specified, be sure that there's at least one
261 * extra byte allocated for the buffer.
262 */
263
264static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
265{
266	ide_hwif_t *hwif = HWIF(drive);
267
268	++bytecount;
269#if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
270	if (MACH_IS_ATARI || MACH_IS_Q40) {
271		/* Atari has a byte-swapped IDE interface */
272		insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
273		return;
274	}
275#endif /* CONFIG_ATARI || CONFIG_Q40 */
276	hwif->ata_input_data(drive, buffer, bytecount / 4);
277	if ((bytecount & 0x03) >= 2)
278		hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
279}
280
281static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
282{
283	ide_hwif_t *hwif = HWIF(drive);
284
285	++bytecount;
286#if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
287	if (MACH_IS_ATARI || MACH_IS_Q40) {
288		/* Atari has a byte-swapped IDE interface */
289		outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
290		return;
291	}
292#endif /* CONFIG_ATARI || CONFIG_Q40 */
293	hwif->ata_output_data(drive, buffer, bytecount / 4);
294	if ((bytecount & 0x03) >= 2)
295		hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
296}
297
298void default_hwif_transport(ide_hwif_t *hwif)
299{
300	hwif->ata_input_data		= ata_input_data;
301	hwif->ata_output_data		= ata_output_data;
302	hwif->atapi_input_bytes		= atapi_input_bytes;
303	hwif->atapi_output_bytes	= atapi_output_bytes;
304}
305
306/*
307 * Beginning of Taskfile OPCODE Library and feature sets.
308 */
309void ide_fix_driveid (struct hd_driveid *id)
310{
311#ifndef __LITTLE_ENDIAN
312# ifdef __BIG_ENDIAN
313	int i;
314	u16 *stringcast;
315
316	id->config         = __le16_to_cpu(id->config);
317	id->cyls           = __le16_to_cpu(id->cyls);
318	id->reserved2      = __le16_to_cpu(id->reserved2);
319	id->heads          = __le16_to_cpu(id->heads);
320	id->track_bytes    = __le16_to_cpu(id->track_bytes);
321	id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
322	id->sectors        = __le16_to_cpu(id->sectors);
323	id->vendor0        = __le16_to_cpu(id->vendor0);
324	id->vendor1        = __le16_to_cpu(id->vendor1);
325	id->vendor2        = __le16_to_cpu(id->vendor2);
326	stringcast = (u16 *)&id->serial_no[0];
327	for (i = 0; i < (20/2); i++)
328		stringcast[i] = __le16_to_cpu(stringcast[i]);
329	id->buf_type       = __le16_to_cpu(id->buf_type);
330	id->buf_size       = __le16_to_cpu(id->buf_size);
331	id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
332	stringcast = (u16 *)&id->fw_rev[0];
333	for (i = 0; i < (8/2); i++)
334		stringcast[i] = __le16_to_cpu(stringcast[i]);
335	stringcast = (u16 *)&id->model[0];
336	for (i = 0; i < (40/2); i++)
337		stringcast[i] = __le16_to_cpu(stringcast[i]);
338	id->dword_io       = __le16_to_cpu(id->dword_io);
339	id->reserved50     = __le16_to_cpu(id->reserved50);
340	id->field_valid    = __le16_to_cpu(id->field_valid);
341	id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
342	id->cur_heads      = __le16_to_cpu(id->cur_heads);
343	id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
344	id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
345	id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
346	id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
347	id->dma_1word      = __le16_to_cpu(id->dma_1word);
348	id->dma_mword      = __le16_to_cpu(id->dma_mword);
349	id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
350	id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
351	id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
352	id->eide_pio       = __le16_to_cpu(id->eide_pio);
353	id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
354	for (i = 0; i < 2; ++i)
355		id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
356	for (i = 0; i < 4; ++i)
357		id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
358	id->queue_depth    = __le16_to_cpu(id->queue_depth);
359	for (i = 0; i < 4; ++i)
360		id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
361	id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
362	id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
363	id->command_set_1  = __le16_to_cpu(id->command_set_1);
364	id->command_set_2  = __le16_to_cpu(id->command_set_2);
365	id->cfsse          = __le16_to_cpu(id->cfsse);
366	id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
367	id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
368	id->csf_default    = __le16_to_cpu(id->csf_default);
369	id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
370	id->trseuc         = __le16_to_cpu(id->trseuc);
371	id->trsEuc         = __le16_to_cpu(id->trsEuc);
372	id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
373	id->mprc           = __le16_to_cpu(id->mprc);
374	id->hw_config      = __le16_to_cpu(id->hw_config);
375	id->acoustic       = __le16_to_cpu(id->acoustic);
376	id->msrqs          = __le16_to_cpu(id->msrqs);
377	id->sxfert         = __le16_to_cpu(id->sxfert);
378	id->sal            = __le16_to_cpu(id->sal);
379	id->spg            = __le32_to_cpu(id->spg);
380	id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
381	for (i = 0; i < 22; i++)
382		id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
383	id->last_lun       = __le16_to_cpu(id->last_lun);
384	id->word127        = __le16_to_cpu(id->word127);
385	id->dlf            = __le16_to_cpu(id->dlf);
386	id->csfo           = __le16_to_cpu(id->csfo);
387	for (i = 0; i < 26; i++)
388		id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
389	id->word156        = __le16_to_cpu(id->word156);
390	for (i = 0; i < 3; i++)
391		id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
392	id->cfa_power      = __le16_to_cpu(id->cfa_power);
393	for (i = 0; i < 14; i++)
394		id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
395	for (i = 0; i < 31; i++)
396		id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
397	for (i = 0; i < 48; i++)
398		id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
399	id->integrity_word  = __le16_to_cpu(id->integrity_word);
400# else
401#  error "Please fix <asm/byteorder.h>"
402# endif
403#endif
404}
405
406/* FIXME: exported for use by the USB storage (isd200.c) code only */
407EXPORT_SYMBOL(ide_fix_driveid);
408
409void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
410{
411	u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
412
413	if (byteswap) {
414		/* convert from big-endian to host byte order */
415		for (p = end ; p != s;) {
416			unsigned short *pp = (unsigned short *) (p -= 2);
417			*pp = ntohs(*pp);
418		}
419	}
420	/* strip leading blanks */
421	while (s != end && *s == ' ')
422		++s;
423	/* compress internal blanks and strip trailing blanks */
424	while (s != end && *s) {
425		if (*s++ != ' ' || (s != end && *s && *s != ' '))
426			*p++ = *(s-1);
427	}
428	/* wipe out trailing garbage */
429	while (p != end)
430		*p++ = '\0';
431}
432
433EXPORT_SYMBOL(ide_fixstring);
434
435/*
436 * Needed for PCI irq sharing
437 */
438int drive_is_ready (ide_drive_t *drive)
439{
440	ide_hwif_t *hwif	= HWIF(drive);
441	u8 stat			= 0;
442
443	if (drive->waiting_for_dma)
444		return hwif->ide_dma_test_irq(drive);
445
446#if 0
447	/* need to guarantee 400ns since last command was issued */
448	udelay(1);
449#endif
450
451#ifdef CONFIG_IDEPCI_SHARE_IRQ
452	/*
453	 * We do a passive status test under shared PCI interrupts on
454	 * cards that truly share the ATA side interrupt, but may also share
455	 * an interrupt with another pci card/device.  We make no assumptions
456	 * about possible isa-pnp and pci-pnp issues yet.
457	 */
458	if (IDE_CONTROL_REG)
459		stat = hwif->INB(IDE_ALTSTATUS_REG);
460	else
461#endif /* CONFIG_IDEPCI_SHARE_IRQ */
462		/* Note: this may clear a pending IRQ!! */
463		stat = hwif->INB(IDE_STATUS_REG);
464
465	if (stat & BUSY_STAT)
466		/* drive busy:  definitely not interrupting */
467		return 0;
468
469	/* drive ready: *might* be interrupting */
470	return 1;
471}
472
473EXPORT_SYMBOL(drive_is_ready);
474
475/*
476 * This routine busy-waits for the drive status to be not "busy".
477 * It then checks the status for all of the "good" bits and none
478 * of the "bad" bits, and if all is okay it returns 0.  All other
479 * cases return error -- caller may then invoke ide_error().
480 *
481 * This routine should get fixed to not hog the cpu during extra long waits..
482 * That could be done by busy-waiting for the first jiffy or two, and then
483 * setting a timer to wake up at half second intervals thereafter,
484 * until timeout is achieved, before timing out.
485 */
486static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
487{
488	ide_hwif_t *hwif = drive->hwif;
489	unsigned long flags;
490	int i;
491	u8 stat;
492
493	udelay(1);	/* spec allows drive 400ns to assert "BUSY" */
494	if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
495		local_irq_set(flags);
496		timeout += jiffies;
497		while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
498			if (time_after(jiffies, timeout)) {
499				/*
500				 * One last read after the timeout in case
501				 * heavy interrupt load made us not make any
502				 * progress during the timeout..
503				 */
504				stat = hwif->INB(IDE_STATUS_REG);
505				if (!(stat & BUSY_STAT))
506					break;
507
508				local_irq_restore(flags);
509				*rstat = stat;
510				return -EBUSY;
511			}
512		}
513		local_irq_restore(flags);
514	}
515	/*
516	 * Allow status to settle, then read it again.
517	 * A few rare drives vastly violate the 400ns spec here,
518	 * so we'll wait up to 10usec for a "good" status
519	 * rather than expensively fail things immediately.
520	 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
521	 */
522	for (i = 0; i < 10; i++) {
523		udelay(1);
524		if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad)) {
525			*rstat = stat;
526			return 0;
527		}
528	}
529	*rstat = stat;
530	return -EFAULT;
531}
532
533/*
534 * In case of error returns error value after doing "*startstop = ide_error()".
535 * The caller should return the updated value of "startstop" in this case,
536 * "startstop" is unchanged when the function returns 0.
537 */
538int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
539{
540	int err;
541	u8 stat;
542
543	/* bail early if we've exceeded max_failures */
544	if (drive->max_failures && (drive->failures > drive->max_failures)) {
545		*startstop = ide_stopped;
546		return 1;
547	}
548
549	err = __ide_wait_stat(drive, good, bad, timeout, &stat);
550
551	if (err) {
552		char *s = (err == -EBUSY) ? "status timeout" : "status error";
553		*startstop = ide_error(drive, s, stat);
554	}
555
556	return err;
557}
558
559EXPORT_SYMBOL(ide_wait_stat);
560
561/**
562 *	ide_in_drive_list	-	look for drive in black/white list
563 *	@id: drive identifier
564 *	@drive_table: list to inspect
565 *
566 *	Look for a drive in the blacklist and the whitelist tables
567 *	Returns 1 if the drive is found in the table.
568 */
569
570int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
571{
572	for ( ; drive_table->id_model; drive_table++)
573		if ((!strcmp(drive_table->id_model, id->model)) &&
574		    (!drive_table->id_firmware ||
575		     strstr(id->fw_rev, drive_table->id_firmware)))
576			return 1;
577	return 0;
578}
579
580EXPORT_SYMBOL_GPL(ide_in_drive_list);
581
582/*
583 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
584 * We list them here and depend on the device side cable detection for them.
585 */
586static const struct drive_list_entry ivb_list[] = {
587	{ "QUANTUM FIREBALLlct10 05"	, "A03.0900"	},
588	{ NULL				, NULL		}
589};
590
591/*
592 *  All hosts that use the 80c ribbon must use!
593 *  The name is derived from upper byte of word 93 and the 80c ribbon.
594 */
595u8 eighty_ninty_three (ide_drive_t *drive)
596{
597	ide_hwif_t *hwif = drive->hwif;
598	struct hd_driveid *id = drive->id;
599	int ivb = ide_in_drive_list(id, ivb_list);
600
601	if (hwif->cbl == ATA_CBL_PATA40_SHORT)
602		return 1;
603
604	if (ivb)
605		printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
606				  drive->name);
607
608	if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
609		goto no_80w;
610
611	if (ide_dev_is_sata(id))
612		return 1;
613
614	/*
615	 * FIXME:
616	 * - change master/slave IDENTIFY order
617	 * - force bit13 (80c cable present) check also for !ivb devices
618	 *   (unless the slave device is pre-ATA3)
619	 */
620#ifndef CONFIG_IDEDMA_IVB
621	if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
622#else
623	if (id->hw_config & 0x6000)
624#endif
625		return 1;
626
627no_80w:
628	if (drive->udma33_warned == 1)
629		return 0;
630
631	printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
632			    "limiting max speed to UDMA33\n",
633			    drive->name,
634			    hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
635
636	drive->udma33_warned = 1;
637
638	return 0;
639}
640
641int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
642{
643	if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
644	    (args->tfRegister[IDE_SECTOR_OFFSET] > XFER_UDMA_2) &&
645	    (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER)) {
646		if (eighty_ninty_three(drive) == 0) {
647			printk(KERN_WARNING "%s: UDMA speeds >UDMA33 cannot "
648					    "be set\n", drive->name);
649			return 1;
650		}
651	}
652
653	return 0;
654}
655
656/*
657 * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
658 * 1 : Safe to update drive->id DMA registers.
659 * 0 : OOPs not allowed.
660 */
661int set_transfer (ide_drive_t *drive, ide_task_t *args)
662{
663	if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
664	    (args->tfRegister[IDE_SECTOR_OFFSET] >= XFER_SW_DMA_0) &&
665	    (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER) &&
666	    (drive->id->dma_ultra ||
667	     drive->id->dma_mword ||
668	     drive->id->dma_1word))
669		return 1;
670
671	return 0;
672}
673
674#ifdef CONFIG_BLK_DEV_IDEDMA
675static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
676{
677	if (!drive->crc_count)
678		return drive->current_speed;
679	drive->crc_count = 0;
680
681	switch(drive->current_speed) {
682		case XFER_UDMA_7:	return XFER_UDMA_6;
683		case XFER_UDMA_6:	return XFER_UDMA_5;
684		case XFER_UDMA_5:	return XFER_UDMA_4;
685		case XFER_UDMA_4:	return XFER_UDMA_3;
686		case XFER_UDMA_3:	return XFER_UDMA_2;
687		case XFER_UDMA_2:	return XFER_UDMA_1;
688		case XFER_UDMA_1:	return XFER_UDMA_0;
689			/*
690			 * OOPS we do not goto non Ultra DMA modes
691			 * without iCRC's available we force
692			 * the system to PIO and make the user
693			 * invoke the ATA-1 ATA-2 DMA modes.
694			 */
695		case XFER_UDMA_0:
696		default:		return XFER_PIO_4;
697	}
698}
699#endif /* CONFIG_BLK_DEV_IDEDMA */
700
701/*
702 * Update the
703 */
704int ide_driveid_update (ide_drive_t *drive)
705{
706	ide_hwif_t *hwif	= HWIF(drive);
707	struct hd_driveid *id;
708#if 0
709	id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
710	if (!id)
711		return 0;
712
713	taskfile_lib_get_identify(drive, (char *)&id);
714
715	ide_fix_driveid(id);
716	if (id) {
717		drive->id->dma_ultra = id->dma_ultra;
718		drive->id->dma_mword = id->dma_mword;
719		drive->id->dma_1word = id->dma_1word;
720		/* anything more ? */
721		kfree(id);
722	}
723	return 1;
724#else
725	/*
726	 * Re-read drive->id for possible DMA mode
727	 * change (copied from ide-probe.c)
728	 */
729	unsigned long timeout, flags;
730
731	SELECT_MASK(drive, 1);
732	if (IDE_CONTROL_REG)
733		hwif->OUTB(drive->ctl,IDE_CONTROL_REG);
734	msleep(50);
735	hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
736	timeout = jiffies + WAIT_WORSTCASE;
737	do {
738		if (time_after(jiffies, timeout)) {
739			SELECT_MASK(drive, 0);
740			return 0;	/* drive timed-out */
741		}
742		msleep(50);	/* give drive a breather */
743	} while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
744	msleep(50);	/* wait for IRQ and DRQ_STAT */
745	if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
746		SELECT_MASK(drive, 0);
747		printk("%s: CHECK for good STATUS\n", drive->name);
748		return 0;
749	}
750	local_irq_save(flags);
751	SELECT_MASK(drive, 0);
752	id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
753	if (!id) {
754		local_irq_restore(flags);
755		return 0;
756	}
757	ata_input_data(drive, id, SECTOR_WORDS);
758	(void) hwif->INB(IDE_STATUS_REG);	/* clear drive IRQ */
759	local_irq_enable();
760	local_irq_restore(flags);
761	ide_fix_driveid(id);
762	if (id) {
763		drive->id->dma_ultra = id->dma_ultra;
764		drive->id->dma_mword = id->dma_mword;
765		drive->id->dma_1word = id->dma_1word;
766		/* anything more ? */
767		kfree(id);
768	}
769
770	return 1;
771#endif
772}
773
774int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
775{
776	ide_hwif_t *hwif = drive->hwif;
777	int error;
778	u8 stat;
779
780//	while (HWGROUP(drive)->busy)
781//		msleep(50);
782
783#ifdef CONFIG_BLK_DEV_IDEDMA
784	if (hwif->ide_dma_check)	 /* check if host supports DMA */
785		hwif->dma_host_off(drive);
786#endif
787
788	/*
789	 * Don't use ide_wait_cmd here - it will
790	 * attempt to set_geometry and recalibrate,
791	 * but for some reason these don't work at
792	 * this point (lost interrupt).
793	 */
794        /*
795         * Select the drive, and issue the SETFEATURES command
796         */
797	disable_irq_nosync(hwif->irq);
798
799	/*
800	 *	FIXME: we race against the running IRQ here if
801	 *	this is called from non IRQ context. If we use
802	 *	disable_irq() we hang on the error path. Work
803	 *	is needed.
804	 */
805
806	udelay(1);
807	SELECT_DRIVE(drive);
808	SELECT_MASK(drive, 0);
809	udelay(1);
810	if (IDE_CONTROL_REG)
811		hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
812	hwif->OUTB(speed, IDE_NSECTOR_REG);
813	hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
814	hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
815	if ((IDE_CONTROL_REG) && (drive->quirk_list == 2))
816		hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
817
818	error = __ide_wait_stat(drive, drive->ready_stat,
819				BUSY_STAT|DRQ_STAT|ERR_STAT,
820				WAIT_CMD, &stat);
821
822	SELECT_MASK(drive, 0);
823
824	enable_irq(hwif->irq);
825
826	if (error) {
827		(void) ide_dump_status(drive, "set_drive_speed_status", stat);
828		return error;
829	}
830
831	drive->id->dma_ultra &= ~0xFF00;
832	drive->id->dma_mword &= ~0x0F00;
833	drive->id->dma_1word &= ~0x0F00;
834
835#ifdef CONFIG_BLK_DEV_IDEDMA
836	if (speed >= XFER_SW_DMA_0)
837		hwif->dma_host_on(drive);
838	else if (hwif->ide_dma_check)	/* check if host supports DMA */
839		hwif->dma_off_quietly(drive);
840#endif
841
842	switch(speed) {
843		case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
844		case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
845		case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
846		case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
847		case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
848		case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
849		case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
850		case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
851		case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
852		case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
853		case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
854		case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
855		case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
856		case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
857		default: break;
858	}
859	if (!drive->init_speed)
860		drive->init_speed = speed;
861	drive->current_speed = speed;
862	return error;
863}
864
865/*
866 * This should get invoked any time we exit the driver to
867 * wait for an interrupt response from a drive.  handler() points
868 * at the appropriate code to handle the next interrupt, and a
869 * timer is started to prevent us from waiting forever in case
870 * something goes wrong (see the ide_timer_expiry() handler later on).
871 *
872 * See also ide_execute_command
873 */
874static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
875		      unsigned int timeout, ide_expiry_t *expiry)
876{
877	ide_hwgroup_t *hwgroup = HWGROUP(drive);
878
879	if (hwgroup->handler != NULL) {
880		printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
881			"old=%p, new=%p\n",
882			drive->name, hwgroup->handler, handler);
883	}
884	hwgroup->handler	= handler;
885	hwgroup->expiry		= expiry;
886	hwgroup->timer.expires	= jiffies + timeout;
887	hwgroup->req_gen_timer = hwgroup->req_gen;
888	add_timer(&hwgroup->timer);
889}
890
891void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
892		      unsigned int timeout, ide_expiry_t *expiry)
893{
894	unsigned long flags;
895	spin_lock_irqsave(&ide_lock, flags);
896	__ide_set_handler(drive, handler, timeout, expiry);
897	spin_unlock_irqrestore(&ide_lock, flags);
898}
899
900EXPORT_SYMBOL(ide_set_handler);
901
902/**
903 *	ide_execute_command	-	execute an IDE command
904 *	@drive: IDE drive to issue the command against
905 *	@command: command byte to write
906 *	@handler: handler for next phase
907 *	@timeout: timeout for command
908 *	@expiry:  handler to run on timeout
909 *
910 *	Helper function to issue an IDE command. This handles the
911 *	atomicity requirements, command timing and ensures that the
912 *	handler and IRQ setup do not race. All IDE command kick off
913 *	should go via this function or do equivalent locking.
914 */
915
916void ide_execute_command(ide_drive_t *drive, task_ioreg_t cmd, ide_handler_t *handler, unsigned timeout, ide_expiry_t *expiry)
917{
918	unsigned long flags;
919	ide_hwgroup_t *hwgroup = HWGROUP(drive);
920	ide_hwif_t *hwif = HWIF(drive);
921
922	spin_lock_irqsave(&ide_lock, flags);
923
924	BUG_ON(hwgroup->handler);
925	hwgroup->handler	= handler;
926	hwgroup->expiry		= expiry;
927	hwgroup->timer.expires	= jiffies + timeout;
928	hwgroup->req_gen_timer = hwgroup->req_gen;
929	add_timer(&hwgroup->timer);
930	hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
931	/* Drive takes 400nS to respond, we must avoid the IRQ being
932	   serviced before that.
933
934	   FIXME: we could skip this delay with care on non shared
935	   devices
936	*/
937	ndelay(400);
938	spin_unlock_irqrestore(&ide_lock, flags);
939}
940
941EXPORT_SYMBOL(ide_execute_command);
942
943
944/* needed below */
945static ide_startstop_t do_reset1 (ide_drive_t *, int);
946
947/*
948 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
949 * during an atapi drive reset operation. If the drive has not yet responded,
950 * and we have not yet hit our maximum waiting time, then the timer is restarted
951 * for another 50ms.
952 */
953static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
954{
955	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
956	ide_hwif_t *hwif	= HWIF(drive);
957	u8 stat;
958
959	SELECT_DRIVE(drive);
960	udelay (10);
961
962	if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
963		printk("%s: ATAPI reset complete\n", drive->name);
964	} else {
965		if (time_before(jiffies, hwgroup->poll_timeout)) {
966			BUG_ON(HWGROUP(drive)->handler != NULL);
967			ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
968			/* continue polling */
969			return ide_started;
970		}
971		/* end of polling */
972		hwgroup->polling = 0;
973		printk("%s: ATAPI reset timed-out, status=0x%02x\n",
974				drive->name, stat);
975		/* do it the old fashioned way */
976		return do_reset1(drive, 1);
977	}
978	/* done polling */
979	hwgroup->polling = 0;
980	hwgroup->resetting = 0;
981	return ide_stopped;
982}
983
984/*
985 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
986 * during an ide reset operation. If the drives have not yet responded,
987 * and we have not yet hit our maximum waiting time, then the timer is restarted
988 * for another 50ms.
989 */
990static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
991{
992	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
993	ide_hwif_t *hwif	= HWIF(drive);
994	u8 tmp;
995
996	if (hwif->reset_poll != NULL) {
997		if (hwif->reset_poll(drive)) {
998			printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
999				hwif->name, drive->name);
1000			return ide_stopped;
1001		}
1002	}
1003
1004	if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
1005		if (time_before(jiffies, hwgroup->poll_timeout)) {
1006			BUG_ON(HWGROUP(drive)->handler != NULL);
1007			ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1008			/* continue polling */
1009			return ide_started;
1010		}
1011		printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
1012		drive->failures++;
1013	} else  {
1014		printk("%s: reset: ", hwif->name);
1015		if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
1016			printk("success\n");
1017			drive->failures = 0;
1018		} else {
1019			drive->failures++;
1020			printk("master: ");
1021			switch (tmp & 0x7f) {
1022				case 1: printk("passed");
1023					break;
1024				case 2: printk("formatter device error");
1025					break;
1026				case 3: printk("sector buffer error");
1027					break;
1028				case 4: printk("ECC circuitry error");
1029					break;
1030				case 5: printk("controlling MPU error");
1031					break;
1032				default:printk("error (0x%02x?)", tmp);
1033			}
1034			if (tmp & 0x80)
1035				printk("; slave: failed");
1036			printk("\n");
1037		}
1038	}
1039	hwgroup->polling = 0;	/* done polling */
1040	hwgroup->resetting = 0; /* done reset attempt */
1041	return ide_stopped;
1042}
1043
1044static void check_dma_crc(ide_drive_t *drive)
1045{
1046#ifdef CONFIG_BLK_DEV_IDEDMA
1047	if (drive->crc_count) {
1048		drive->hwif->dma_off_quietly(drive);
1049		ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
1050		if (drive->current_speed >= XFER_SW_DMA_0)
1051			(void) HWIF(drive)->ide_dma_on(drive);
1052	} else
1053		ide_dma_off(drive);
1054#endif
1055}
1056
1057static void ide_disk_pre_reset(ide_drive_t *drive)
1058{
1059	int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1060
1061	drive->special.all = 0;
1062	drive->special.b.set_geometry = legacy;
1063	drive->special.b.recalibrate  = legacy;
1064	if (OK_TO_RESET_CONTROLLER)
1065		drive->mult_count = 0;
1066	if (!drive->keep_settings && !drive->using_dma)
1067		drive->mult_req = 0;
1068	if (drive->mult_req != drive->mult_count)
1069		drive->special.b.set_multmode = 1;
1070}
1071
1072static void pre_reset(ide_drive_t *drive)
1073{
1074	if (drive->media == ide_disk)
1075		ide_disk_pre_reset(drive);
1076	else
1077		drive->post_reset = 1;
1078
1079	if (!drive->keep_settings) {
1080		if (drive->using_dma) {
1081			check_dma_crc(drive);
1082		} else {
1083			drive->unmask = 0;
1084			drive->io_32bit = 0;
1085		}
1086		return;
1087	}
1088	if (drive->using_dma)
1089		check_dma_crc(drive);
1090
1091	if (HWIF(drive)->pre_reset != NULL)
1092		HWIF(drive)->pre_reset(drive);
1093
1094	if (drive->current_speed != 0xff)
1095		drive->desired_speed = drive->current_speed;
1096	drive->current_speed = 0xff;
1097}
1098
1099/*
1100 * do_reset1() attempts to recover a confused drive by resetting it.
1101 * Unfortunately, resetting a disk drive actually resets all devices on
1102 * the same interface, so it can really be thought of as resetting the
1103 * interface rather than resetting the drive.
1104 *
1105 * ATAPI devices have their own reset mechanism which allows them to be
1106 * individually reset without clobbering other devices on the same interface.
1107 *
1108 * Unfortunately, the IDE interface does not generate an interrupt to let
1109 * us know when the reset operation has finished, so we must poll for this.
1110 * Equally poor, though, is the fact that this may a very long time to complete,
1111 * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1112 * we set a timer to poll at 50ms intervals.
1113 */
1114static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1115{
1116	unsigned int unit;
1117	unsigned long flags;
1118	ide_hwif_t *hwif;
1119	ide_hwgroup_t *hwgroup;
1120
1121	spin_lock_irqsave(&ide_lock, flags);
1122	hwif = HWIF(drive);
1123	hwgroup = HWGROUP(drive);
1124
1125	/* We must not reset with running handlers */
1126	BUG_ON(hwgroup->handler != NULL);
1127
1128	/* For an ATAPI device, first try an ATAPI SRST. */
1129	if (drive->media != ide_disk && !do_not_try_atapi) {
1130		hwgroup->resetting = 1;
1131		pre_reset(drive);
1132		SELECT_DRIVE(drive);
1133		udelay (20);
1134		hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1135		ndelay(400);
1136		hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1137		hwgroup->polling = 1;
1138		__ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1139		spin_unlock_irqrestore(&ide_lock, flags);
1140		return ide_started;
1141	}
1142
1143	/*
1144	 * First, reset any device state data we were maintaining
1145	 * for any of the drives on this interface.
1146	 */
1147	for (unit = 0; unit < MAX_DRIVES; ++unit)
1148		pre_reset(&hwif->drives[unit]);
1149
1150#if OK_TO_RESET_CONTROLLER
1151	if (!IDE_CONTROL_REG) {
1152		spin_unlock_irqrestore(&ide_lock, flags);
1153		return ide_stopped;
1154	}
1155
1156	hwgroup->resetting = 1;
1157	/*
1158	 * Note that we also set nIEN while resetting the device,
1159	 * to mask unwanted interrupts from the interface during the reset.
1160	 * However, due to the design of PC hardware, this will cause an
1161	 * immediate interrupt due to the edge transition it produces.
1162	 * This single interrupt gives us a "fast poll" for drives that
1163	 * recover from reset very quickly, saving us the first 50ms wait time.
1164	 */
1165	/* set SRST and nIEN */
1166	hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1167	/* more than enough time */
1168	udelay(10);
1169	if (drive->quirk_list == 2) {
1170		/* clear SRST and nIEN */
1171		hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1172	} else {
1173		/* clear SRST, leave nIEN */
1174		hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1175	}
1176	/* more than enough time */
1177	udelay(10);
1178	hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1179	hwgroup->polling = 1;
1180	__ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1181
1182	/*
1183	 * Some weird controller like resetting themselves to a strange
1184	 * state when the disks are reset this way. At least, the Winbond
1185	 * 553 documentation says that
1186	 */
1187	if (hwif->resetproc != NULL) {
1188		hwif->resetproc(drive);
1189	}
1190
1191#endif	/* OK_TO_RESET_CONTROLLER */
1192
1193	spin_unlock_irqrestore(&ide_lock, flags);
1194	return ide_started;
1195}
1196
1197/*
1198 * ide_do_reset() is the entry point to the drive/interface reset code.
1199 */
1200
1201ide_startstop_t ide_do_reset (ide_drive_t *drive)
1202{
1203	return do_reset1(drive, 0);
1204}
1205
1206EXPORT_SYMBOL(ide_do_reset);
1207
1208/*
1209 * ide_wait_not_busy() waits for the currently selected device on the hwif
1210 * to report a non-busy status, see comments in probe_hwif().
1211 */
1212int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1213{
1214	u8 stat = 0;
1215
1216	while(timeout--) {
1217		/*
1218		 * Turn this into a schedule() sleep once I'm sure
1219		 * about locking issues (2.5 work ?).
1220		 */
1221		mdelay(1);
1222		stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1223		if ((stat & BUSY_STAT) == 0)
1224			return 0;
1225		/*
1226		 * Assume a value of 0xff means nothing is connected to
1227		 * the interface and it doesn't implement the pull-down
1228		 * resistor on D7.
1229		 */
1230		if (stat == 0xff)
1231			return -ENODEV;
1232		touch_softlockup_watchdog();
1233		touch_nmi_watchdog();
1234	}
1235	return -EBUSY;
1236}
1237
1238EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1239
1240