ide-iops.c revision ca545c1e75cd017bfd9a9b6c4f81f9b82ba20947
1/*
2 *  Copyright (C) 2000-2002	Andre Hedrick <andre@linux-ide.org>
3 *  Copyright (C) 2003		Red Hat <alan@redhat.com>
4 *
5 */
6
7#include <linux/module.h>
8#include <linux/types.h>
9#include <linux/string.h>
10#include <linux/kernel.h>
11#include <linux/timer.h>
12#include <linux/mm.h>
13#include <linux/interrupt.h>
14#include <linux/major.h>
15#include <linux/errno.h>
16#include <linux/genhd.h>
17#include <linux/blkpg.h>
18#include <linux/slab.h>
19#include <linux/pci.h>
20#include <linux/delay.h>
21#include <linux/hdreg.h>
22#include <linux/ide.h>
23#include <linux/bitops.h>
24#include <linux/nmi.h>
25
26#include <asm/byteorder.h>
27#include <asm/irq.h>
28#include <asm/uaccess.h>
29#include <asm/io.h>
30
31/*
32 *	Conventional PIO operations for ATA devices
33 */
34
35static u8 ide_inb (unsigned long port)
36{
37	return (u8) inb(port);
38}
39
40static u16 ide_inw (unsigned long port)
41{
42	return (u16) inw(port);
43}
44
45static void ide_outb (u8 val, unsigned long port)
46{
47	outb(val, port);
48}
49
50static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
51{
52	outb(addr, port);
53}
54
55static void ide_outw (u16 val, unsigned long port)
56{
57	outw(val, port);
58}
59
60void default_hwif_iops (ide_hwif_t *hwif)
61{
62	hwif->OUTB	= ide_outb;
63	hwif->OUTBSYNC	= ide_outbsync;
64	hwif->OUTW	= ide_outw;
65	hwif->INB	= ide_inb;
66	hwif->INW	= ide_inw;
67}
68
69/*
70 *	MMIO operations, typically used for SATA controllers
71 */
72
73static u8 ide_mm_inb (unsigned long port)
74{
75	return (u8) readb((void __iomem *) port);
76}
77
78static u16 ide_mm_inw (unsigned long port)
79{
80	return (u16) readw((void __iomem *) port);
81}
82
83static void ide_mm_outb (u8 value, unsigned long port)
84{
85	writeb(value, (void __iomem *) port);
86}
87
88static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
89{
90	writeb(value, (void __iomem *) port);
91}
92
93static void ide_mm_outw (u16 value, unsigned long port)
94{
95	writew(value, (void __iomem *) port);
96}
97
98void default_hwif_mmiops (ide_hwif_t *hwif)
99{
100	hwif->OUTB	= ide_mm_outb;
101	/* Most systems will need to override OUTBSYNC, alas however
102	   this one is controller specific! */
103	hwif->OUTBSYNC	= ide_mm_outbsync;
104	hwif->OUTW	= ide_mm_outw;
105	hwif->INB	= ide_mm_inb;
106	hwif->INW	= ide_mm_inw;
107}
108
109EXPORT_SYMBOL(default_hwif_mmiops);
110
111void SELECT_DRIVE (ide_drive_t *drive)
112{
113	ide_hwif_t *hwif = drive->hwif;
114	const struct ide_port_ops *port_ops = hwif->port_ops;
115
116	if (port_ops && port_ops->selectproc)
117		port_ops->selectproc(drive);
118
119	hwif->OUTB(drive->select.all, hwif->io_ports.device_addr);
120}
121
122void SELECT_MASK (ide_drive_t *drive, int mask)
123{
124	const struct ide_port_ops *port_ops = drive->hwif->port_ops;
125
126	if (port_ops && port_ops->maskproc)
127		port_ops->maskproc(drive, mask);
128}
129
130static void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
131{
132	ide_hwif_t *hwif = drive->hwif;
133	struct ide_io_ports *io_ports = &hwif->io_ports;
134	struct ide_taskfile *tf = &task->tf;
135	void (*tf_outb)(u8 addr, unsigned long port);
136	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
137	u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
138
139	if (mmio)
140		tf_outb = ide_mm_outb;
141	else
142		tf_outb = ide_outb;
143
144	if (task->tf_flags & IDE_TFLAG_FLAGGED)
145		HIHI = 0xFF;
146
147	ide_set_irq(drive, 1);
148
149	if ((task->tf_flags & IDE_TFLAG_NO_SELECT_MASK) == 0)
150		SELECT_MASK(drive, 0);
151
152	if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
153		u16 data = (tf->hob_data << 8) | tf->data;
154
155		if (mmio)
156			writew(data, (void __iomem *)io_ports->data_addr);
157		else
158			outw(data, io_ports->data_addr);
159	}
160
161	if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
162		tf_outb(tf->hob_feature, io_ports->feature_addr);
163	if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
164		tf_outb(tf->hob_nsect, io_ports->nsect_addr);
165	if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
166		tf_outb(tf->hob_lbal, io_ports->lbal_addr);
167	if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
168		tf_outb(tf->hob_lbam, io_ports->lbam_addr);
169	if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
170		tf_outb(tf->hob_lbah, io_ports->lbah_addr);
171
172	if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
173		tf_outb(tf->feature, io_ports->feature_addr);
174	if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
175		tf_outb(tf->nsect, io_ports->nsect_addr);
176	if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
177		tf_outb(tf->lbal, io_ports->lbal_addr);
178	if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
179		tf_outb(tf->lbam, io_ports->lbam_addr);
180	if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
181		tf_outb(tf->lbah, io_ports->lbah_addr);
182
183	if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
184		tf_outb((tf->device & HIHI) | drive->select.all,
185			 io_ports->device_addr);
186}
187
188static void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
189{
190	ide_hwif_t *hwif = drive->hwif;
191	struct ide_io_ports *io_ports = &hwif->io_ports;
192	struct ide_taskfile *tf = &task->tf;
193	void (*tf_outb)(u8 addr, unsigned long port);
194	u8 (*tf_inb)(unsigned long port);
195	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
196
197	if (mmio) {
198		tf_outb = ide_mm_outb;
199		tf_inb  = ide_mm_inb;
200	} else {
201		tf_outb = ide_outb;
202		tf_inb  = ide_inb;
203	}
204
205	if (task->tf_flags & IDE_TFLAG_IN_DATA) {
206		u16 data;
207
208		if (mmio)
209			data = readw((void __iomem *)io_ports->data_addr);
210		else
211			data = inw(io_ports->data_addr);
212
213		tf->data = data & 0xff;
214		tf->hob_data = (data >> 8) & 0xff;
215	}
216
217	/* be sure we're looking at the low order bits */
218	tf_outb(drive->ctl & ~0x80, io_ports->ctl_addr);
219
220	if (task->tf_flags & IDE_TFLAG_IN_NSECT)
221		tf->nsect  = tf_inb(io_ports->nsect_addr);
222	if (task->tf_flags & IDE_TFLAG_IN_LBAL)
223		tf->lbal   = tf_inb(io_ports->lbal_addr);
224	if (task->tf_flags & IDE_TFLAG_IN_LBAM)
225		tf->lbam   = tf_inb(io_ports->lbam_addr);
226	if (task->tf_flags & IDE_TFLAG_IN_LBAH)
227		tf->lbah   = tf_inb(io_ports->lbah_addr);
228	if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
229		tf->device = tf_inb(io_ports->device_addr);
230
231	if (task->tf_flags & IDE_TFLAG_LBA48) {
232		tf_outb(drive->ctl | 0x80, io_ports->ctl_addr);
233
234		if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
235			tf->hob_feature = tf_inb(io_ports->feature_addr);
236		if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
237			tf->hob_nsect   = tf_inb(io_ports->nsect_addr);
238		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
239			tf->hob_lbal    = tf_inb(io_ports->lbal_addr);
240		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
241			tf->hob_lbam    = tf_inb(io_ports->lbam_addr);
242		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
243			tf->hob_lbah    = tf_inb(io_ports->lbah_addr);
244	}
245}
246
247/*
248 * Some localbus EIDE interfaces require a special access sequence
249 * when using 32-bit I/O instructions to transfer data.  We call this
250 * the "vlb_sync" sequence, which consists of three successive reads
251 * of the sector count register location, with interrupts disabled
252 * to ensure that the reads all happen together.
253 */
254static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
255{
256	(void) HWIF(drive)->INB(port);
257	(void) HWIF(drive)->INB(port);
258	(void) HWIF(drive)->INB(port);
259}
260
261/*
262 * This is used for most PIO data transfers *from* the IDE interface
263 *
264 * These routines will round up any request for an odd number of bytes,
265 * so if an odd len is specified, be sure that there's at least one
266 * extra byte allocated for the buffer.
267 */
268static void ata_input_data(ide_drive_t *drive, struct request *rq,
269			   void *buf, unsigned int len)
270{
271	ide_hwif_t *hwif = drive->hwif;
272	struct ide_io_ports *io_ports = &hwif->io_ports;
273	unsigned long data_addr = io_ports->data_addr;
274	u8 io_32bit = drive->io_32bit;
275	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
276
277	len++;
278
279	if (io_32bit) {
280		unsigned long uninitialized_var(flags);
281
282		if (io_32bit & 2) {
283			local_irq_save(flags);
284			ata_vlb_sync(drive, io_ports->nsect_addr);
285		}
286
287		if (mmio)
288			__ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
289		else
290			insl(data_addr, buf, len / 4);
291
292		if (io_32bit & 2)
293			local_irq_restore(flags);
294
295		if ((len & 3) >= 2) {
296			if (mmio)
297				__ide_mm_insw((void __iomem *)data_addr,
298						(u8 *)buf + (len & ~3), 1);
299			else
300				insw(data_addr, (u8 *)buf + (len & ~3), 1);
301		}
302	} else {
303		if (mmio)
304			__ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
305		else
306			insw(data_addr, buf, len / 2);
307	}
308}
309
310/*
311 * This is used for most PIO data transfers *to* the IDE interface
312 */
313static void ata_output_data(ide_drive_t *drive, struct request *rq,
314			    void *buf, unsigned int len)
315{
316	ide_hwif_t *hwif = drive->hwif;
317	struct ide_io_ports *io_ports = &hwif->io_ports;
318	unsigned long data_addr = io_ports->data_addr;
319	u8 io_32bit = drive->io_32bit;
320	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
321
322	if (io_32bit) {
323		unsigned long uninitialized_var(flags);
324
325		if (io_32bit & 2) {
326			local_irq_save(flags);
327			ata_vlb_sync(drive, io_ports->nsect_addr);
328		}
329
330		if (mmio)
331			__ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
332		else
333			outsl(data_addr, buf, len / 4);
334
335		if (io_32bit & 2)
336			local_irq_restore(flags);
337
338		if ((len & 3) >= 2) {
339			if (mmio)
340				__ide_mm_outsw((void __iomem *)data_addr,
341						 (u8 *)buf + (len & ~3), 1);
342			else
343				outsw(data_addr, (u8 *)buf + (len & ~3), 1);
344		}
345	} else {
346		if (mmio)
347			__ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
348		else
349			outsw(data_addr, buf, len / 2);
350	}
351}
352
353void default_hwif_transport(ide_hwif_t *hwif)
354{
355	hwif->tf_load	  = ide_tf_load;
356	hwif->tf_read	  = ide_tf_read;
357
358	hwif->input_data  = ata_input_data;
359	hwif->output_data = ata_output_data;
360}
361
362void ide_fix_driveid (struct hd_driveid *id)
363{
364#ifndef __LITTLE_ENDIAN
365# ifdef __BIG_ENDIAN
366	int i;
367	u16 *stringcast;
368
369	id->config         = __le16_to_cpu(id->config);
370	id->cyls           = __le16_to_cpu(id->cyls);
371	id->reserved2      = __le16_to_cpu(id->reserved2);
372	id->heads          = __le16_to_cpu(id->heads);
373	id->track_bytes    = __le16_to_cpu(id->track_bytes);
374	id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
375	id->sectors        = __le16_to_cpu(id->sectors);
376	id->vendor0        = __le16_to_cpu(id->vendor0);
377	id->vendor1        = __le16_to_cpu(id->vendor1);
378	id->vendor2        = __le16_to_cpu(id->vendor2);
379	stringcast = (u16 *)&id->serial_no[0];
380	for (i = 0; i < (20/2); i++)
381		stringcast[i] = __le16_to_cpu(stringcast[i]);
382	id->buf_type       = __le16_to_cpu(id->buf_type);
383	id->buf_size       = __le16_to_cpu(id->buf_size);
384	id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
385	stringcast = (u16 *)&id->fw_rev[0];
386	for (i = 0; i < (8/2); i++)
387		stringcast[i] = __le16_to_cpu(stringcast[i]);
388	stringcast = (u16 *)&id->model[0];
389	for (i = 0; i < (40/2); i++)
390		stringcast[i] = __le16_to_cpu(stringcast[i]);
391	id->dword_io       = __le16_to_cpu(id->dword_io);
392	id->reserved50     = __le16_to_cpu(id->reserved50);
393	id->field_valid    = __le16_to_cpu(id->field_valid);
394	id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
395	id->cur_heads      = __le16_to_cpu(id->cur_heads);
396	id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
397	id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
398	id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
399	id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
400	id->dma_1word      = __le16_to_cpu(id->dma_1word);
401	id->dma_mword      = __le16_to_cpu(id->dma_mword);
402	id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
403	id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
404	id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
405	id->eide_pio       = __le16_to_cpu(id->eide_pio);
406	id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
407	for (i = 0; i < 2; ++i)
408		id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
409	for (i = 0; i < 4; ++i)
410		id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
411	id->queue_depth    = __le16_to_cpu(id->queue_depth);
412	for (i = 0; i < 4; ++i)
413		id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
414	id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
415	id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
416	id->command_set_1  = __le16_to_cpu(id->command_set_1);
417	id->command_set_2  = __le16_to_cpu(id->command_set_2);
418	id->cfsse          = __le16_to_cpu(id->cfsse);
419	id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
420	id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
421	id->csf_default    = __le16_to_cpu(id->csf_default);
422	id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
423	id->trseuc         = __le16_to_cpu(id->trseuc);
424	id->trsEuc         = __le16_to_cpu(id->trsEuc);
425	id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
426	id->mprc           = __le16_to_cpu(id->mprc);
427	id->hw_config      = __le16_to_cpu(id->hw_config);
428	id->acoustic       = __le16_to_cpu(id->acoustic);
429	id->msrqs          = __le16_to_cpu(id->msrqs);
430	id->sxfert         = __le16_to_cpu(id->sxfert);
431	id->sal            = __le16_to_cpu(id->sal);
432	id->spg            = __le32_to_cpu(id->spg);
433	id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
434	for (i = 0; i < 22; i++)
435		id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
436	id->last_lun       = __le16_to_cpu(id->last_lun);
437	id->word127        = __le16_to_cpu(id->word127);
438	id->dlf            = __le16_to_cpu(id->dlf);
439	id->csfo           = __le16_to_cpu(id->csfo);
440	for (i = 0; i < 26; i++)
441		id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
442	id->word156        = __le16_to_cpu(id->word156);
443	for (i = 0; i < 3; i++)
444		id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
445	id->cfa_power      = __le16_to_cpu(id->cfa_power);
446	for (i = 0; i < 14; i++)
447		id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
448	for (i = 0; i < 31; i++)
449		id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
450	for (i = 0; i < 48; i++)
451		id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
452	id->integrity_word  = __le16_to_cpu(id->integrity_word);
453# else
454#  error "Please fix <asm/byteorder.h>"
455# endif
456#endif
457}
458
459/*
460 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
461 * removing leading/trailing blanks and compressing internal blanks.
462 * It is primarily used to tidy up the model name/number fields as
463 * returned by the WIN_[P]IDENTIFY commands.
464 */
465
466void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
467{
468	u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
469
470	if (byteswap) {
471		/* convert from big-endian to host byte order */
472		for (p = end ; p != s;) {
473			unsigned short *pp = (unsigned short *) (p -= 2);
474			*pp = ntohs(*pp);
475		}
476	}
477	/* strip leading blanks */
478	while (s != end && *s == ' ')
479		++s;
480	/* compress internal blanks and strip trailing blanks */
481	while (s != end && *s) {
482		if (*s++ != ' ' || (s != end && *s && *s != ' '))
483			*p++ = *(s-1);
484	}
485	/* wipe out trailing garbage */
486	while (p != end)
487		*p++ = '\0';
488}
489
490EXPORT_SYMBOL(ide_fixstring);
491
492/*
493 * Needed for PCI irq sharing
494 */
495int drive_is_ready (ide_drive_t *drive)
496{
497	ide_hwif_t *hwif	= HWIF(drive);
498	u8 stat			= 0;
499
500	if (drive->waiting_for_dma)
501		return hwif->dma_ops->dma_test_irq(drive);
502
503#if 0
504	/* need to guarantee 400ns since last command was issued */
505	udelay(1);
506#endif
507
508	/*
509	 * We do a passive status test under shared PCI interrupts on
510	 * cards that truly share the ATA side interrupt, but may also share
511	 * an interrupt with another pci card/device.  We make no assumptions
512	 * about possible isa-pnp and pci-pnp issues yet.
513	 */
514	if (hwif->io_ports.ctl_addr)
515		stat = ide_read_altstatus(drive);
516	else
517		/* Note: this may clear a pending IRQ!! */
518		stat = ide_read_status(drive);
519
520	if (stat & BUSY_STAT)
521		/* drive busy:  definitely not interrupting */
522		return 0;
523
524	/* drive ready: *might* be interrupting */
525	return 1;
526}
527
528EXPORT_SYMBOL(drive_is_ready);
529
530/*
531 * This routine busy-waits for the drive status to be not "busy".
532 * It then checks the status for all of the "good" bits and none
533 * of the "bad" bits, and if all is okay it returns 0.  All other
534 * cases return error -- caller may then invoke ide_error().
535 *
536 * This routine should get fixed to not hog the cpu during extra long waits..
537 * That could be done by busy-waiting for the first jiffy or two, and then
538 * setting a timer to wake up at half second intervals thereafter,
539 * until timeout is achieved, before timing out.
540 */
541static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
542{
543	unsigned long flags;
544	int i;
545	u8 stat;
546
547	udelay(1);	/* spec allows drive 400ns to assert "BUSY" */
548	stat = ide_read_status(drive);
549
550	if (stat & BUSY_STAT) {
551		local_irq_set(flags);
552		timeout += jiffies;
553		while ((stat = ide_read_status(drive)) & BUSY_STAT) {
554			if (time_after(jiffies, timeout)) {
555				/*
556				 * One last read after the timeout in case
557				 * heavy interrupt load made us not make any
558				 * progress during the timeout..
559				 */
560				stat = ide_read_status(drive);
561				if (!(stat & BUSY_STAT))
562					break;
563
564				local_irq_restore(flags);
565				*rstat = stat;
566				return -EBUSY;
567			}
568		}
569		local_irq_restore(flags);
570	}
571	/*
572	 * Allow status to settle, then read it again.
573	 * A few rare drives vastly violate the 400ns spec here,
574	 * so we'll wait up to 10usec for a "good" status
575	 * rather than expensively fail things immediately.
576	 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
577	 */
578	for (i = 0; i < 10; i++) {
579		udelay(1);
580		stat = ide_read_status(drive);
581
582		if (OK_STAT(stat, good, bad)) {
583			*rstat = stat;
584			return 0;
585		}
586	}
587	*rstat = stat;
588	return -EFAULT;
589}
590
591/*
592 * In case of error returns error value after doing "*startstop = ide_error()".
593 * The caller should return the updated value of "startstop" in this case,
594 * "startstop" is unchanged when the function returns 0.
595 */
596int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
597{
598	int err;
599	u8 stat;
600
601	/* bail early if we've exceeded max_failures */
602	if (drive->max_failures && (drive->failures > drive->max_failures)) {
603		*startstop = ide_stopped;
604		return 1;
605	}
606
607	err = __ide_wait_stat(drive, good, bad, timeout, &stat);
608
609	if (err) {
610		char *s = (err == -EBUSY) ? "status timeout" : "status error";
611		*startstop = ide_error(drive, s, stat);
612	}
613
614	return err;
615}
616
617EXPORT_SYMBOL(ide_wait_stat);
618
619/**
620 *	ide_in_drive_list	-	look for drive in black/white list
621 *	@id: drive identifier
622 *	@drive_table: list to inspect
623 *
624 *	Look for a drive in the blacklist and the whitelist tables
625 *	Returns 1 if the drive is found in the table.
626 */
627
628int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
629{
630	for ( ; drive_table->id_model; drive_table++)
631		if ((!strcmp(drive_table->id_model, id->model)) &&
632		    (!drive_table->id_firmware ||
633		     strstr(id->fw_rev, drive_table->id_firmware)))
634			return 1;
635	return 0;
636}
637
638EXPORT_SYMBOL_GPL(ide_in_drive_list);
639
640/*
641 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
642 * We list them here and depend on the device side cable detection for them.
643 *
644 * Some optical devices with the buggy firmwares have the same problem.
645 */
646static const struct drive_list_entry ivb_list[] = {
647	{ "QUANTUM FIREBALLlct10 05"	, "A03.0900"	},
648	{ "TSSTcorp CDDVDW SH-S202J"	, "SB00"	},
649	{ "TSSTcorp CDDVDW SH-S202J"	, "SB01"	},
650	{ "TSSTcorp CDDVDW SH-S202N"	, "SB00"	},
651	{ "TSSTcorp CDDVDW SH-S202N"	, "SB01"	},
652	{ NULL				, NULL		}
653};
654
655/*
656 *  All hosts that use the 80c ribbon must use!
657 *  The name is derived from upper byte of word 93 and the 80c ribbon.
658 */
659u8 eighty_ninty_three (ide_drive_t *drive)
660{
661	ide_hwif_t *hwif = drive->hwif;
662	struct hd_driveid *id = drive->id;
663	int ivb = ide_in_drive_list(id, ivb_list);
664
665	if (hwif->cbl == ATA_CBL_PATA40_SHORT)
666		return 1;
667
668	if (ivb)
669		printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
670				  drive->name);
671
672	if (ide_dev_is_sata(id) && !ivb)
673		return 1;
674
675	if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
676		goto no_80w;
677
678	/*
679	 * FIXME:
680	 * - change master/slave IDENTIFY order
681	 * - force bit13 (80c cable present) check also for !ivb devices
682	 *   (unless the slave device is pre-ATA3)
683	 */
684	if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
685		return 1;
686
687no_80w:
688	if (drive->udma33_warned == 1)
689		return 0;
690
691	printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
692			    "limiting max speed to UDMA33\n",
693			    drive->name,
694			    hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
695
696	drive->udma33_warned = 1;
697
698	return 0;
699}
700
701int ide_driveid_update(ide_drive_t *drive)
702{
703	ide_hwif_t *hwif = drive->hwif;
704	struct hd_driveid *id;
705	unsigned long timeout, flags;
706	u8 stat;
707
708	/*
709	 * Re-read drive->id for possible DMA mode
710	 * change (copied from ide-probe.c)
711	 */
712
713	SELECT_MASK(drive, 1);
714	ide_set_irq(drive, 1);
715	msleep(50);
716	hwif->OUTBSYNC(drive, WIN_IDENTIFY, hwif->io_ports.command_addr);
717	timeout = jiffies + WAIT_WORSTCASE;
718	do {
719		if (time_after(jiffies, timeout)) {
720			SELECT_MASK(drive, 0);
721			return 0;	/* drive timed-out */
722		}
723
724		msleep(50);	/* give drive a breather */
725		stat = ide_read_altstatus(drive);
726	} while (stat & BUSY_STAT);
727
728	msleep(50);	/* wait for IRQ and DRQ_STAT */
729	stat = ide_read_status(drive);
730
731	if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
732		SELECT_MASK(drive, 0);
733		printk("%s: CHECK for good STATUS\n", drive->name);
734		return 0;
735	}
736	local_irq_save(flags);
737	SELECT_MASK(drive, 0);
738	id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
739	if (!id) {
740		local_irq_restore(flags);
741		return 0;
742	}
743	hwif->input_data(drive, NULL, id, SECTOR_SIZE);
744	(void)ide_read_status(drive);	/* clear drive IRQ */
745	local_irq_enable();
746	local_irq_restore(flags);
747	ide_fix_driveid(id);
748	if (id) {
749		drive->id->dma_ultra = id->dma_ultra;
750		drive->id->dma_mword = id->dma_mword;
751		drive->id->dma_1word = id->dma_1word;
752		/* anything more ? */
753		kfree(id);
754
755		if (drive->using_dma && ide_id_dma_bug(drive))
756			ide_dma_off(drive);
757	}
758
759	return 1;
760}
761
762int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
763{
764	ide_hwif_t *hwif = drive->hwif;
765	struct ide_io_ports *io_ports = &hwif->io_ports;
766	int error = 0;
767	u8 stat;
768
769//	while (HWGROUP(drive)->busy)
770//		msleep(50);
771
772#ifdef CONFIG_BLK_DEV_IDEDMA
773	if (hwif->dma_ops)	/* check if host supports DMA */
774		hwif->dma_ops->dma_host_set(drive, 0);
775#endif
776
777	/* Skip setting PIO flow-control modes on pre-EIDE drives */
778	if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
779		goto skip;
780
781	/*
782	 * Don't use ide_wait_cmd here - it will
783	 * attempt to set_geometry and recalibrate,
784	 * but for some reason these don't work at
785	 * this point (lost interrupt).
786	 */
787        /*
788         * Select the drive, and issue the SETFEATURES command
789         */
790	disable_irq_nosync(hwif->irq);
791
792	/*
793	 *	FIXME: we race against the running IRQ here if
794	 *	this is called from non IRQ context. If we use
795	 *	disable_irq() we hang on the error path. Work
796	 *	is needed.
797	 */
798
799	udelay(1);
800	SELECT_DRIVE(drive);
801	SELECT_MASK(drive, 0);
802	udelay(1);
803	ide_set_irq(drive, 0);
804	hwif->OUTB(speed, io_ports->nsect_addr);
805	hwif->OUTB(SETFEATURES_XFER, io_ports->feature_addr);
806	hwif->OUTBSYNC(drive, WIN_SETFEATURES, io_ports->command_addr);
807	if (drive->quirk_list == 2)
808		ide_set_irq(drive, 1);
809
810	error = __ide_wait_stat(drive, drive->ready_stat,
811				BUSY_STAT|DRQ_STAT|ERR_STAT,
812				WAIT_CMD, &stat);
813
814	SELECT_MASK(drive, 0);
815
816	enable_irq(hwif->irq);
817
818	if (error) {
819		(void) ide_dump_status(drive, "set_drive_speed_status", stat);
820		return error;
821	}
822
823	drive->id->dma_ultra &= ~0xFF00;
824	drive->id->dma_mword &= ~0x0F00;
825	drive->id->dma_1word &= ~0x0F00;
826
827 skip:
828#ifdef CONFIG_BLK_DEV_IDEDMA
829	if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
830	    drive->using_dma)
831		hwif->dma_ops->dma_host_set(drive, 1);
832	else if (hwif->dma_ops)	/* check if host supports DMA */
833		ide_dma_off_quietly(drive);
834#endif
835
836	switch(speed) {
837		case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
838		case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
839		case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
840		case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
841		case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
842		case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
843		case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
844		case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
845		case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
846		case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
847		case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
848		case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
849		case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
850		case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
851		default: break;
852	}
853	if (!drive->init_speed)
854		drive->init_speed = speed;
855	drive->current_speed = speed;
856	return error;
857}
858
859/*
860 * This should get invoked any time we exit the driver to
861 * wait for an interrupt response from a drive.  handler() points
862 * at the appropriate code to handle the next interrupt, and a
863 * timer is started to prevent us from waiting forever in case
864 * something goes wrong (see the ide_timer_expiry() handler later on).
865 *
866 * See also ide_execute_command
867 */
868static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
869		      unsigned int timeout, ide_expiry_t *expiry)
870{
871	ide_hwgroup_t *hwgroup = HWGROUP(drive);
872
873	BUG_ON(hwgroup->handler);
874	hwgroup->handler	= handler;
875	hwgroup->expiry		= expiry;
876	hwgroup->timer.expires	= jiffies + timeout;
877	hwgroup->req_gen_timer	= hwgroup->req_gen;
878	add_timer(&hwgroup->timer);
879}
880
881void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
882		      unsigned int timeout, ide_expiry_t *expiry)
883{
884	unsigned long flags;
885	spin_lock_irqsave(&ide_lock, flags);
886	__ide_set_handler(drive, handler, timeout, expiry);
887	spin_unlock_irqrestore(&ide_lock, flags);
888}
889
890EXPORT_SYMBOL(ide_set_handler);
891
892/**
893 *	ide_execute_command	-	execute an IDE command
894 *	@drive: IDE drive to issue the command against
895 *	@command: command byte to write
896 *	@handler: handler for next phase
897 *	@timeout: timeout for command
898 *	@expiry:  handler to run on timeout
899 *
900 *	Helper function to issue an IDE command. This handles the
901 *	atomicity requirements, command timing and ensures that the
902 *	handler and IRQ setup do not race. All IDE command kick off
903 *	should go via this function or do equivalent locking.
904 */
905
906void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
907			 unsigned timeout, ide_expiry_t *expiry)
908{
909	unsigned long flags;
910	ide_hwif_t *hwif = HWIF(drive);
911
912	spin_lock_irqsave(&ide_lock, flags);
913	__ide_set_handler(drive, handler, timeout, expiry);
914	hwif->OUTBSYNC(drive, cmd, hwif->io_ports.command_addr);
915	/*
916	 * Drive takes 400nS to respond, we must avoid the IRQ being
917	 * serviced before that.
918	 *
919	 * FIXME: we could skip this delay with care on non shared devices
920	 */
921	ndelay(400);
922	spin_unlock_irqrestore(&ide_lock, flags);
923}
924EXPORT_SYMBOL(ide_execute_command);
925
926void ide_execute_pkt_cmd(ide_drive_t *drive)
927{
928	ide_hwif_t *hwif = drive->hwif;
929	unsigned long flags;
930
931	spin_lock_irqsave(&ide_lock, flags);
932	hwif->OUTBSYNC(drive, WIN_PACKETCMD, hwif->io_ports.command_addr);
933	ndelay(400);
934	spin_unlock_irqrestore(&ide_lock, flags);
935}
936EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
937
938/* needed below */
939static ide_startstop_t do_reset1 (ide_drive_t *, int);
940
941/*
942 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
943 * during an atapi drive reset operation. If the drive has not yet responded,
944 * and we have not yet hit our maximum waiting time, then the timer is restarted
945 * for another 50ms.
946 */
947static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
948{
949	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
950	u8 stat;
951
952	SELECT_DRIVE(drive);
953	udelay (10);
954	stat = ide_read_status(drive);
955
956	if (OK_STAT(stat, 0, BUSY_STAT))
957		printk("%s: ATAPI reset complete\n", drive->name);
958	else {
959		if (time_before(jiffies, hwgroup->poll_timeout)) {
960			ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
961			/* continue polling */
962			return ide_started;
963		}
964		/* end of polling */
965		hwgroup->polling = 0;
966		printk("%s: ATAPI reset timed-out, status=0x%02x\n",
967				drive->name, stat);
968		/* do it the old fashioned way */
969		return do_reset1(drive, 1);
970	}
971	/* done polling */
972	hwgroup->polling = 0;
973	hwgroup->resetting = 0;
974	return ide_stopped;
975}
976
977/*
978 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
979 * during an ide reset operation. If the drives have not yet responded,
980 * and we have not yet hit our maximum waiting time, then the timer is restarted
981 * for another 50ms.
982 */
983static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
984{
985	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
986	ide_hwif_t *hwif	= HWIF(drive);
987	const struct ide_port_ops *port_ops = hwif->port_ops;
988	u8 tmp;
989
990	if (port_ops && port_ops->reset_poll) {
991		if (port_ops->reset_poll(drive)) {
992			printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
993				hwif->name, drive->name);
994			return ide_stopped;
995		}
996	}
997
998	tmp = ide_read_status(drive);
999
1000	if (!OK_STAT(tmp, 0, BUSY_STAT)) {
1001		if (time_before(jiffies, hwgroup->poll_timeout)) {
1002			ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1003			/* continue polling */
1004			return ide_started;
1005		}
1006		printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
1007		drive->failures++;
1008	} else  {
1009		printk("%s: reset: ", hwif->name);
1010		tmp = ide_read_error(drive);
1011
1012		if (tmp == 1) {
1013			printk("success\n");
1014			drive->failures = 0;
1015		} else {
1016			drive->failures++;
1017			printk("master: ");
1018			switch (tmp & 0x7f) {
1019				case 1: printk("passed");
1020					break;
1021				case 2: printk("formatter device error");
1022					break;
1023				case 3: printk("sector buffer error");
1024					break;
1025				case 4: printk("ECC circuitry error");
1026					break;
1027				case 5: printk("controlling MPU error");
1028					break;
1029				default:printk("error (0x%02x?)", tmp);
1030			}
1031			if (tmp & 0x80)
1032				printk("; slave: failed");
1033			printk("\n");
1034		}
1035	}
1036	hwgroup->polling = 0;	/* done polling */
1037	hwgroup->resetting = 0; /* done reset attempt */
1038	return ide_stopped;
1039}
1040
1041static void ide_disk_pre_reset(ide_drive_t *drive)
1042{
1043	int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1044
1045	drive->special.all = 0;
1046	drive->special.b.set_geometry = legacy;
1047	drive->special.b.recalibrate  = legacy;
1048	drive->mult_count = 0;
1049	if (!drive->keep_settings && !drive->using_dma)
1050		drive->mult_req = 0;
1051	if (drive->mult_req != drive->mult_count)
1052		drive->special.b.set_multmode = 1;
1053}
1054
1055static void pre_reset(ide_drive_t *drive)
1056{
1057	const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1058
1059	if (drive->media == ide_disk)
1060		ide_disk_pre_reset(drive);
1061	else
1062		drive->post_reset = 1;
1063
1064	if (drive->using_dma) {
1065		if (drive->crc_count)
1066			ide_check_dma_crc(drive);
1067		else
1068			ide_dma_off(drive);
1069	}
1070
1071	if (!drive->keep_settings) {
1072		if (!drive->using_dma) {
1073			drive->unmask = 0;
1074			drive->io_32bit = 0;
1075		}
1076		return;
1077	}
1078
1079	if (port_ops && port_ops->pre_reset)
1080		port_ops->pre_reset(drive);
1081
1082	if (drive->current_speed != 0xff)
1083		drive->desired_speed = drive->current_speed;
1084	drive->current_speed = 0xff;
1085}
1086
1087/*
1088 * do_reset1() attempts to recover a confused drive by resetting it.
1089 * Unfortunately, resetting a disk drive actually resets all devices on
1090 * the same interface, so it can really be thought of as resetting the
1091 * interface rather than resetting the drive.
1092 *
1093 * ATAPI devices have their own reset mechanism which allows them to be
1094 * individually reset without clobbering other devices on the same interface.
1095 *
1096 * Unfortunately, the IDE interface does not generate an interrupt to let
1097 * us know when the reset operation has finished, so we must poll for this.
1098 * Equally poor, though, is the fact that this may a very long time to complete,
1099 * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1100 * we set a timer to poll at 50ms intervals.
1101 */
1102static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1103{
1104	unsigned int unit;
1105	unsigned long flags;
1106	ide_hwif_t *hwif;
1107	ide_hwgroup_t *hwgroup;
1108	struct ide_io_ports *io_ports;
1109	const struct ide_port_ops *port_ops;
1110	u8 ctl;
1111
1112	spin_lock_irqsave(&ide_lock, flags);
1113	hwif = HWIF(drive);
1114	hwgroup = HWGROUP(drive);
1115
1116	io_ports = &hwif->io_ports;
1117
1118	/* We must not reset with running handlers */
1119	BUG_ON(hwgroup->handler != NULL);
1120
1121	/* For an ATAPI device, first try an ATAPI SRST. */
1122	if (drive->media != ide_disk && !do_not_try_atapi) {
1123		hwgroup->resetting = 1;
1124		pre_reset(drive);
1125		SELECT_DRIVE(drive);
1126		udelay (20);
1127		hwif->OUTBSYNC(drive, WIN_SRST, io_ports->command_addr);
1128		ndelay(400);
1129		hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1130		hwgroup->polling = 1;
1131		__ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1132		spin_unlock_irqrestore(&ide_lock, flags);
1133		return ide_started;
1134	}
1135
1136	/*
1137	 * First, reset any device state data we were maintaining
1138	 * for any of the drives on this interface.
1139	 */
1140	for (unit = 0; unit < MAX_DRIVES; ++unit)
1141		pre_reset(&hwif->drives[unit]);
1142
1143	if (io_ports->ctl_addr == 0) {
1144		spin_unlock_irqrestore(&ide_lock, flags);
1145		return ide_stopped;
1146	}
1147
1148	hwgroup->resetting = 1;
1149	/*
1150	 * Note that we also set nIEN while resetting the device,
1151	 * to mask unwanted interrupts from the interface during the reset.
1152	 * However, due to the design of PC hardware, this will cause an
1153	 * immediate interrupt due to the edge transition it produces.
1154	 * This single interrupt gives us a "fast poll" for drives that
1155	 * recover from reset very quickly, saving us the first 50ms wait time.
1156	 */
1157	/* set SRST and nIEN */
1158	hwif->OUTBSYNC(drive, drive->ctl|6, io_ports->ctl_addr);
1159	/* more than enough time */
1160	udelay(10);
1161	if (drive->quirk_list == 2)
1162		ctl = drive->ctl;	/* clear SRST and nIEN */
1163	else
1164		ctl = drive->ctl | 2;	/* clear SRST, leave nIEN */
1165	hwif->OUTBSYNC(drive, ctl, io_ports->ctl_addr);
1166	/* more than enough time */
1167	udelay(10);
1168	hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1169	hwgroup->polling = 1;
1170	__ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1171
1172	/*
1173	 * Some weird controller like resetting themselves to a strange
1174	 * state when the disks are reset this way. At least, the Winbond
1175	 * 553 documentation says that
1176	 */
1177	port_ops = hwif->port_ops;
1178	if (port_ops && port_ops->resetproc)
1179		port_ops->resetproc(drive);
1180
1181	spin_unlock_irqrestore(&ide_lock, flags);
1182	return ide_started;
1183}
1184
1185/*
1186 * ide_do_reset() is the entry point to the drive/interface reset code.
1187 */
1188
1189ide_startstop_t ide_do_reset (ide_drive_t *drive)
1190{
1191	return do_reset1(drive, 0);
1192}
1193
1194EXPORT_SYMBOL(ide_do_reset);
1195
1196/*
1197 * ide_wait_not_busy() waits for the currently selected device on the hwif
1198 * to report a non-busy status, see comments in ide_probe_port().
1199 */
1200int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1201{
1202	u8 stat = 0;
1203
1204	while(timeout--) {
1205		/*
1206		 * Turn this into a schedule() sleep once I'm sure
1207		 * about locking issues (2.5 work ?).
1208		 */
1209		mdelay(1);
1210		stat = hwif->INB(hwif->io_ports.status_addr);
1211		if ((stat & BUSY_STAT) == 0)
1212			return 0;
1213		/*
1214		 * Assume a value of 0xff means nothing is connected to
1215		 * the interface and it doesn't implement the pull-down
1216		 * resistor on D7.
1217		 */
1218		if (stat == 0xff)
1219			return -ENODEV;
1220		touch_softlockup_watchdog();
1221		touch_nmi_watchdog();
1222	}
1223	return -EBUSY;
1224}
1225
1226EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1227
1228