ide-iops.c revision cab7f8eda40d3e3e16b137c67cdddc2cf893c5d7
1/*
2 *  Copyright (C) 2000-2002	Andre Hedrick <andre@linux-ide.org>
3 *  Copyright (C) 2003		Red Hat <alan@redhat.com>
4 *
5 */
6
7#include <linux/module.h>
8#include <linux/types.h>
9#include <linux/string.h>
10#include <linux/kernel.h>
11#include <linux/timer.h>
12#include <linux/mm.h>
13#include <linux/interrupt.h>
14#include <linux/major.h>
15#include <linux/errno.h>
16#include <linux/genhd.h>
17#include <linux/blkpg.h>
18#include <linux/slab.h>
19#include <linux/pci.h>
20#include <linux/delay.h>
21#include <linux/hdreg.h>
22#include <linux/ide.h>
23#include <linux/bitops.h>
24#include <linux/nmi.h>
25
26#include <asm/byteorder.h>
27#include <asm/irq.h>
28#include <asm/uaccess.h>
29#include <asm/io.h>
30
31/*
32 *	Conventional PIO operations for ATA devices
33 */
34
35static u8 ide_inb (unsigned long port)
36{
37	return (u8) inb(port);
38}
39
40static void ide_outb (u8 val, unsigned long port)
41{
42	outb(val, port);
43}
44
45static void ide_outbsync(ide_hwif_t *hwif, u8 addr, unsigned long port)
46{
47	outb(addr, port);
48}
49
50void default_hwif_iops (ide_hwif_t *hwif)
51{
52	hwif->OUTB	= ide_outb;
53	hwif->OUTBSYNC	= ide_outbsync;
54	hwif->INB	= ide_inb;
55}
56
57/*
58 *	MMIO operations, typically used for SATA controllers
59 */
60
61static u8 ide_mm_inb (unsigned long port)
62{
63	return (u8) readb((void __iomem *) port);
64}
65
66static void ide_mm_outb (u8 value, unsigned long port)
67{
68	writeb(value, (void __iomem *) port);
69}
70
71static void ide_mm_outbsync(ide_hwif_t *hwif, u8 value, unsigned long port)
72{
73	writeb(value, (void __iomem *) port);
74}
75
76void default_hwif_mmiops (ide_hwif_t *hwif)
77{
78	hwif->OUTB	= ide_mm_outb;
79	/* Most systems will need to override OUTBSYNC, alas however
80	   this one is controller specific! */
81	hwif->OUTBSYNC	= ide_mm_outbsync;
82	hwif->INB	= ide_mm_inb;
83}
84
85EXPORT_SYMBOL(default_hwif_mmiops);
86
87void SELECT_DRIVE (ide_drive_t *drive)
88{
89	ide_hwif_t *hwif = drive->hwif;
90	const struct ide_port_ops *port_ops = hwif->port_ops;
91
92	if (port_ops && port_ops->selectproc)
93		port_ops->selectproc(drive);
94
95	hwif->OUTB(drive->select.all, hwif->io_ports.device_addr);
96}
97
98void SELECT_MASK(ide_drive_t *drive, int mask)
99{
100	const struct ide_port_ops *port_ops = drive->hwif->port_ops;
101
102	if (port_ops && port_ops->maskproc)
103		port_ops->maskproc(drive, mask);
104}
105
106static u8 ide_read_sff_dma_status(ide_hwif_t *hwif)
107{
108	if (hwif->host_flags & IDE_HFLAG_MMIO)
109		return readb((void __iomem *)(hwif->dma_base + ATA_DMA_STATUS));
110	else
111		return inb(hwif->dma_base + ATA_DMA_STATUS);
112}
113
114static void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
115{
116	ide_hwif_t *hwif = drive->hwif;
117	struct ide_io_ports *io_ports = &hwif->io_ports;
118	struct ide_taskfile *tf = &task->tf;
119	void (*tf_outb)(u8 addr, unsigned long port);
120	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
121	u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
122
123	if (mmio)
124		tf_outb = ide_mm_outb;
125	else
126		tf_outb = ide_outb;
127
128	if (task->tf_flags & IDE_TFLAG_FLAGGED)
129		HIHI = 0xFF;
130
131	if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
132		u16 data = (tf->hob_data << 8) | tf->data;
133
134		if (mmio)
135			writew(data, (void __iomem *)io_ports->data_addr);
136		else
137			outw(data, io_ports->data_addr);
138	}
139
140	if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
141		tf_outb(tf->hob_feature, io_ports->feature_addr);
142	if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
143		tf_outb(tf->hob_nsect, io_ports->nsect_addr);
144	if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
145		tf_outb(tf->hob_lbal, io_ports->lbal_addr);
146	if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
147		tf_outb(tf->hob_lbam, io_ports->lbam_addr);
148	if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
149		tf_outb(tf->hob_lbah, io_ports->lbah_addr);
150
151	if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
152		tf_outb(tf->feature, io_ports->feature_addr);
153	if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
154		tf_outb(tf->nsect, io_ports->nsect_addr);
155	if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
156		tf_outb(tf->lbal, io_ports->lbal_addr);
157	if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
158		tf_outb(tf->lbam, io_ports->lbam_addr);
159	if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
160		tf_outb(tf->lbah, io_ports->lbah_addr);
161
162	if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
163		tf_outb((tf->device & HIHI) | drive->select.all,
164			 io_ports->device_addr);
165}
166
167static void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
168{
169	ide_hwif_t *hwif = drive->hwif;
170	struct ide_io_ports *io_ports = &hwif->io_ports;
171	struct ide_taskfile *tf = &task->tf;
172	void (*tf_outb)(u8 addr, unsigned long port);
173	u8 (*tf_inb)(unsigned long port);
174	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
175
176	if (mmio) {
177		tf_outb = ide_mm_outb;
178		tf_inb  = ide_mm_inb;
179	} else {
180		tf_outb = ide_outb;
181		tf_inb  = ide_inb;
182	}
183
184	if (task->tf_flags & IDE_TFLAG_IN_DATA) {
185		u16 data;
186
187		if (mmio)
188			data = readw((void __iomem *)io_ports->data_addr);
189		else
190			data = inw(io_ports->data_addr);
191
192		tf->data = data & 0xff;
193		tf->hob_data = (data >> 8) & 0xff;
194	}
195
196	/* be sure we're looking at the low order bits */
197	tf_outb(ATA_DEVCTL_OBS & ~0x80, io_ports->ctl_addr);
198
199	if (task->tf_flags & IDE_TFLAG_IN_NSECT)
200		tf->nsect  = tf_inb(io_ports->nsect_addr);
201	if (task->tf_flags & IDE_TFLAG_IN_LBAL)
202		tf->lbal   = tf_inb(io_ports->lbal_addr);
203	if (task->tf_flags & IDE_TFLAG_IN_LBAM)
204		tf->lbam   = tf_inb(io_ports->lbam_addr);
205	if (task->tf_flags & IDE_TFLAG_IN_LBAH)
206		tf->lbah   = tf_inb(io_ports->lbah_addr);
207	if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
208		tf->device = tf_inb(io_ports->device_addr);
209
210	if (task->tf_flags & IDE_TFLAG_LBA48) {
211		tf_outb(ATA_DEVCTL_OBS | 0x80, io_ports->ctl_addr);
212
213		if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
214			tf->hob_feature = tf_inb(io_ports->feature_addr);
215		if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
216			tf->hob_nsect   = tf_inb(io_ports->nsect_addr);
217		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
218			tf->hob_lbal    = tf_inb(io_ports->lbal_addr);
219		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
220			tf->hob_lbam    = tf_inb(io_ports->lbam_addr);
221		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
222			tf->hob_lbah    = tf_inb(io_ports->lbah_addr);
223	}
224}
225
226/*
227 * Some localbus EIDE interfaces require a special access sequence
228 * when using 32-bit I/O instructions to transfer data.  We call this
229 * the "vlb_sync" sequence, which consists of three successive reads
230 * of the sector count register location, with interrupts disabled
231 * to ensure that the reads all happen together.
232 */
233static void ata_vlb_sync(unsigned long port)
234{
235	(void)inb(port);
236	(void)inb(port);
237	(void)inb(port);
238}
239
240/*
241 * This is used for most PIO data transfers *from* the IDE interface
242 *
243 * These routines will round up any request for an odd number of bytes,
244 * so if an odd len is specified, be sure that there's at least one
245 * extra byte allocated for the buffer.
246 */
247static void ata_input_data(ide_drive_t *drive, struct request *rq,
248			   void *buf, unsigned int len)
249{
250	ide_hwif_t *hwif = drive->hwif;
251	struct ide_io_ports *io_ports = &hwif->io_ports;
252	unsigned long data_addr = io_ports->data_addr;
253	u8 io_32bit = drive->io_32bit;
254	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
255
256	len++;
257
258	if (io_32bit) {
259		unsigned long uninitialized_var(flags);
260
261		if ((io_32bit & 2) && !mmio) {
262			local_irq_save(flags);
263			ata_vlb_sync(io_ports->nsect_addr);
264		}
265
266		if (mmio)
267			__ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
268		else
269			insl(data_addr, buf, len / 4);
270
271		if ((io_32bit & 2) && !mmio)
272			local_irq_restore(flags);
273
274		if ((len & 3) >= 2) {
275			if (mmio)
276				__ide_mm_insw((void __iomem *)data_addr,
277						(u8 *)buf + (len & ~3), 1);
278			else
279				insw(data_addr, (u8 *)buf + (len & ~3), 1);
280		}
281	} else {
282		if (mmio)
283			__ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
284		else
285			insw(data_addr, buf, len / 2);
286	}
287}
288
289/*
290 * This is used for most PIO data transfers *to* the IDE interface
291 */
292static void ata_output_data(ide_drive_t *drive, struct request *rq,
293			    void *buf, unsigned int len)
294{
295	ide_hwif_t *hwif = drive->hwif;
296	struct ide_io_ports *io_ports = &hwif->io_ports;
297	unsigned long data_addr = io_ports->data_addr;
298	u8 io_32bit = drive->io_32bit;
299	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
300
301	if (io_32bit) {
302		unsigned long uninitialized_var(flags);
303
304		if ((io_32bit & 2) && !mmio) {
305			local_irq_save(flags);
306			ata_vlb_sync(io_ports->nsect_addr);
307		}
308
309		if (mmio)
310			__ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
311		else
312			outsl(data_addr, buf, len / 4);
313
314		if ((io_32bit & 2) && !mmio)
315			local_irq_restore(flags);
316
317		if ((len & 3) >= 2) {
318			if (mmio)
319				__ide_mm_outsw((void __iomem *)data_addr,
320						 (u8 *)buf + (len & ~3), 1);
321			else
322				outsw(data_addr, (u8 *)buf + (len & ~3), 1);
323		}
324	} else {
325		if (mmio)
326			__ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
327		else
328			outsw(data_addr, buf, len / 2);
329	}
330}
331
332void default_hwif_transport(ide_hwif_t *hwif)
333{
334	hwif->read_sff_dma_status = ide_read_sff_dma_status;
335
336	hwif->tf_load	  = ide_tf_load;
337	hwif->tf_read	  = ide_tf_read;
338
339	hwif->input_data  = ata_input_data;
340	hwif->output_data = ata_output_data;
341}
342
343void ide_fix_driveid (struct hd_driveid *id)
344{
345#ifndef __LITTLE_ENDIAN
346# ifdef __BIG_ENDIAN
347	int i;
348	u16 *stringcast;
349
350	id->config         = __le16_to_cpu(id->config);
351	id->cyls           = __le16_to_cpu(id->cyls);
352	id->reserved2      = __le16_to_cpu(id->reserved2);
353	id->heads          = __le16_to_cpu(id->heads);
354	id->track_bytes    = __le16_to_cpu(id->track_bytes);
355	id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
356	id->sectors        = __le16_to_cpu(id->sectors);
357	id->vendor0        = __le16_to_cpu(id->vendor0);
358	id->vendor1        = __le16_to_cpu(id->vendor1);
359	id->vendor2        = __le16_to_cpu(id->vendor2);
360	stringcast = (u16 *)&id->serial_no[0];
361	for (i = 0; i < (20/2); i++)
362		stringcast[i] = __le16_to_cpu(stringcast[i]);
363	id->buf_type       = __le16_to_cpu(id->buf_type);
364	id->buf_size       = __le16_to_cpu(id->buf_size);
365	id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
366	stringcast = (u16 *)&id->fw_rev[0];
367	for (i = 0; i < (8/2); i++)
368		stringcast[i] = __le16_to_cpu(stringcast[i]);
369	stringcast = (u16 *)&id->model[0];
370	for (i = 0; i < (40/2); i++)
371		stringcast[i] = __le16_to_cpu(stringcast[i]);
372	id->dword_io       = __le16_to_cpu(id->dword_io);
373	id->reserved50     = __le16_to_cpu(id->reserved50);
374	id->field_valid    = __le16_to_cpu(id->field_valid);
375	id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
376	id->cur_heads      = __le16_to_cpu(id->cur_heads);
377	id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
378	id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
379	id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
380	id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
381	id->dma_1word      = __le16_to_cpu(id->dma_1word);
382	id->dma_mword      = __le16_to_cpu(id->dma_mword);
383	id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
384	id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
385	id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
386	id->eide_pio       = __le16_to_cpu(id->eide_pio);
387	id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
388	for (i = 0; i < 2; ++i)
389		id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
390	for (i = 0; i < 4; ++i)
391		id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
392	id->queue_depth    = __le16_to_cpu(id->queue_depth);
393	for (i = 0; i < 4; ++i)
394		id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
395	id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
396	id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
397	id->command_set_1  = __le16_to_cpu(id->command_set_1);
398	id->command_set_2  = __le16_to_cpu(id->command_set_2);
399	id->cfsse          = __le16_to_cpu(id->cfsse);
400	id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
401	id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
402	id->csf_default    = __le16_to_cpu(id->csf_default);
403	id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
404	id->trseuc         = __le16_to_cpu(id->trseuc);
405	id->trsEuc         = __le16_to_cpu(id->trsEuc);
406	id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
407	id->mprc           = __le16_to_cpu(id->mprc);
408	id->hw_config      = __le16_to_cpu(id->hw_config);
409	id->acoustic       = __le16_to_cpu(id->acoustic);
410	id->msrqs          = __le16_to_cpu(id->msrqs);
411	id->sxfert         = __le16_to_cpu(id->sxfert);
412	id->sal            = __le16_to_cpu(id->sal);
413	id->spg            = __le32_to_cpu(id->spg);
414	id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
415	for (i = 0; i < 22; i++)
416		id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
417	id->last_lun       = __le16_to_cpu(id->last_lun);
418	id->word127        = __le16_to_cpu(id->word127);
419	id->dlf            = __le16_to_cpu(id->dlf);
420	id->csfo           = __le16_to_cpu(id->csfo);
421	for (i = 0; i < 26; i++)
422		id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
423	id->word156        = __le16_to_cpu(id->word156);
424	for (i = 0; i < 3; i++)
425		id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
426	id->cfa_power      = __le16_to_cpu(id->cfa_power);
427	for (i = 0; i < 14; i++)
428		id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
429	for (i = 0; i < 31; i++)
430		id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
431	for (i = 0; i < 48; i++)
432		id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
433	id->integrity_word  = __le16_to_cpu(id->integrity_word);
434# else
435#  error "Please fix <asm/byteorder.h>"
436# endif
437#endif
438}
439
440/*
441 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
442 * removing leading/trailing blanks and compressing internal blanks.
443 * It is primarily used to tidy up the model name/number fields as
444 * returned by the WIN_[P]IDENTIFY commands.
445 */
446
447void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
448{
449	u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
450
451	if (byteswap) {
452		/* convert from big-endian to host byte order */
453		for (p = end ; p != s;) {
454			unsigned short *pp = (unsigned short *) (p -= 2);
455			*pp = ntohs(*pp);
456		}
457	}
458	/* strip leading blanks */
459	while (s != end && *s == ' ')
460		++s;
461	/* compress internal blanks and strip trailing blanks */
462	while (s != end && *s) {
463		if (*s++ != ' ' || (s != end && *s && *s != ' '))
464			*p++ = *(s-1);
465	}
466	/* wipe out trailing garbage */
467	while (p != end)
468		*p++ = '\0';
469}
470
471EXPORT_SYMBOL(ide_fixstring);
472
473/*
474 * Needed for PCI irq sharing
475 */
476int drive_is_ready (ide_drive_t *drive)
477{
478	ide_hwif_t *hwif	= HWIF(drive);
479	u8 stat			= 0;
480
481	if (drive->waiting_for_dma)
482		return hwif->dma_ops->dma_test_irq(drive);
483
484#if 0
485	/* need to guarantee 400ns since last command was issued */
486	udelay(1);
487#endif
488
489	/*
490	 * We do a passive status test under shared PCI interrupts on
491	 * cards that truly share the ATA side interrupt, but may also share
492	 * an interrupt with another pci card/device.  We make no assumptions
493	 * about possible isa-pnp and pci-pnp issues yet.
494	 */
495	if (hwif->io_ports.ctl_addr)
496		stat = ide_read_altstatus(drive);
497	else
498		/* Note: this may clear a pending IRQ!! */
499		stat = ide_read_status(drive);
500
501	if (stat & BUSY_STAT)
502		/* drive busy:  definitely not interrupting */
503		return 0;
504
505	/* drive ready: *might* be interrupting */
506	return 1;
507}
508
509EXPORT_SYMBOL(drive_is_ready);
510
511/*
512 * This routine busy-waits for the drive status to be not "busy".
513 * It then checks the status for all of the "good" bits and none
514 * of the "bad" bits, and if all is okay it returns 0.  All other
515 * cases return error -- caller may then invoke ide_error().
516 *
517 * This routine should get fixed to not hog the cpu during extra long waits..
518 * That could be done by busy-waiting for the first jiffy or two, and then
519 * setting a timer to wake up at half second intervals thereafter,
520 * until timeout is achieved, before timing out.
521 */
522static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
523{
524	unsigned long flags;
525	int i;
526	u8 stat;
527
528	udelay(1);	/* spec allows drive 400ns to assert "BUSY" */
529	stat = ide_read_status(drive);
530
531	if (stat & BUSY_STAT) {
532		local_irq_set(flags);
533		timeout += jiffies;
534		while ((stat = ide_read_status(drive)) & BUSY_STAT) {
535			if (time_after(jiffies, timeout)) {
536				/*
537				 * One last read after the timeout in case
538				 * heavy interrupt load made us not make any
539				 * progress during the timeout..
540				 */
541				stat = ide_read_status(drive);
542				if (!(stat & BUSY_STAT))
543					break;
544
545				local_irq_restore(flags);
546				*rstat = stat;
547				return -EBUSY;
548			}
549		}
550		local_irq_restore(flags);
551	}
552	/*
553	 * Allow status to settle, then read it again.
554	 * A few rare drives vastly violate the 400ns spec here,
555	 * so we'll wait up to 10usec for a "good" status
556	 * rather than expensively fail things immediately.
557	 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
558	 */
559	for (i = 0; i < 10; i++) {
560		udelay(1);
561		stat = ide_read_status(drive);
562
563		if (OK_STAT(stat, good, bad)) {
564			*rstat = stat;
565			return 0;
566		}
567	}
568	*rstat = stat;
569	return -EFAULT;
570}
571
572/*
573 * In case of error returns error value after doing "*startstop = ide_error()".
574 * The caller should return the updated value of "startstop" in this case,
575 * "startstop" is unchanged when the function returns 0.
576 */
577int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
578{
579	int err;
580	u8 stat;
581
582	/* bail early if we've exceeded max_failures */
583	if (drive->max_failures && (drive->failures > drive->max_failures)) {
584		*startstop = ide_stopped;
585		return 1;
586	}
587
588	err = __ide_wait_stat(drive, good, bad, timeout, &stat);
589
590	if (err) {
591		char *s = (err == -EBUSY) ? "status timeout" : "status error";
592		*startstop = ide_error(drive, s, stat);
593	}
594
595	return err;
596}
597
598EXPORT_SYMBOL(ide_wait_stat);
599
600/**
601 *	ide_in_drive_list	-	look for drive in black/white list
602 *	@id: drive identifier
603 *	@drive_table: list to inspect
604 *
605 *	Look for a drive in the blacklist and the whitelist tables
606 *	Returns 1 if the drive is found in the table.
607 */
608
609int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
610{
611	for ( ; drive_table->id_model; drive_table++)
612		if ((!strcmp(drive_table->id_model, id->model)) &&
613		    (!drive_table->id_firmware ||
614		     strstr(id->fw_rev, drive_table->id_firmware)))
615			return 1;
616	return 0;
617}
618
619EXPORT_SYMBOL_GPL(ide_in_drive_list);
620
621/*
622 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
623 * We list them here and depend on the device side cable detection for them.
624 *
625 * Some optical devices with the buggy firmwares have the same problem.
626 */
627static const struct drive_list_entry ivb_list[] = {
628	{ "QUANTUM FIREBALLlct10 05"	, "A03.0900"	},
629	{ "TSSTcorp CDDVDW SH-S202J"	, "SB00"	},
630	{ "TSSTcorp CDDVDW SH-S202J"	, "SB01"	},
631	{ "TSSTcorp CDDVDW SH-S202N"	, "SB00"	},
632	{ "TSSTcorp CDDVDW SH-S202N"	, "SB01"	},
633	{ "TSSTcorp CDDVDW SH-S202H"	, "SB00"	},
634	{ "TSSTcorp CDDVDW SH-S202H"	, "SB01"	},
635	{ NULL				, NULL		}
636};
637
638/*
639 *  All hosts that use the 80c ribbon must use!
640 *  The name is derived from upper byte of word 93 and the 80c ribbon.
641 */
642u8 eighty_ninty_three (ide_drive_t *drive)
643{
644	ide_hwif_t *hwif = drive->hwif;
645	struct hd_driveid *id = drive->id;
646	int ivb = ide_in_drive_list(id, ivb_list);
647
648	if (hwif->cbl == ATA_CBL_PATA40_SHORT)
649		return 1;
650
651	if (ivb)
652		printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
653				  drive->name);
654
655	if (ide_dev_is_sata(id) && !ivb)
656		return 1;
657
658	if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
659		goto no_80w;
660
661	/*
662	 * FIXME:
663	 * - change master/slave IDENTIFY order
664	 * - force bit13 (80c cable present) check also for !ivb devices
665	 *   (unless the slave device is pre-ATA3)
666	 */
667	if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
668		return 1;
669
670no_80w:
671	if (drive->udma33_warned == 1)
672		return 0;
673
674	printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
675			    "limiting max speed to UDMA33\n",
676			    drive->name,
677			    hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
678
679	drive->udma33_warned = 1;
680
681	return 0;
682}
683
684int ide_driveid_update(ide_drive_t *drive)
685{
686	ide_hwif_t *hwif = drive->hwif;
687	struct hd_driveid *id;
688	unsigned long timeout, flags;
689	u8 stat;
690
691	/*
692	 * Re-read drive->id for possible DMA mode
693	 * change (copied from ide-probe.c)
694	 */
695
696	SELECT_MASK(drive, 1);
697	ide_set_irq(drive, 0);
698	msleep(50);
699	hwif->OUTBSYNC(hwif, WIN_IDENTIFY, hwif->io_ports.command_addr);
700	timeout = jiffies + WAIT_WORSTCASE;
701	do {
702		if (time_after(jiffies, timeout)) {
703			SELECT_MASK(drive, 0);
704			return 0;	/* drive timed-out */
705		}
706
707		msleep(50);	/* give drive a breather */
708		stat = ide_read_altstatus(drive);
709	} while (stat & BUSY_STAT);
710
711	msleep(50);	/* wait for IRQ and DRQ_STAT */
712	stat = ide_read_status(drive);
713
714	if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
715		SELECT_MASK(drive, 0);
716		printk("%s: CHECK for good STATUS\n", drive->name);
717		return 0;
718	}
719	local_irq_save(flags);
720	SELECT_MASK(drive, 0);
721	id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
722	if (!id) {
723		local_irq_restore(flags);
724		return 0;
725	}
726	hwif->input_data(drive, NULL, id, SECTOR_SIZE);
727	(void)ide_read_status(drive);	/* clear drive IRQ */
728	local_irq_enable();
729	local_irq_restore(flags);
730	ide_fix_driveid(id);
731	if (id) {
732		drive->id->dma_ultra = id->dma_ultra;
733		drive->id->dma_mword = id->dma_mword;
734		drive->id->dma_1word = id->dma_1word;
735		/* anything more ? */
736		kfree(id);
737
738		if (drive->using_dma && ide_id_dma_bug(drive))
739			ide_dma_off(drive);
740	}
741
742	return 1;
743}
744
745int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
746{
747	ide_hwif_t *hwif = drive->hwif;
748	struct ide_io_ports *io_ports = &hwif->io_ports;
749	int error = 0;
750	u8 stat;
751
752#ifdef CONFIG_BLK_DEV_IDEDMA
753	if (hwif->dma_ops)	/* check if host supports DMA */
754		hwif->dma_ops->dma_host_set(drive, 0);
755#endif
756
757	/* Skip setting PIO flow-control modes on pre-EIDE drives */
758	if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
759		goto skip;
760
761	/*
762	 * Don't use ide_wait_cmd here - it will
763	 * attempt to set_geometry and recalibrate,
764	 * but for some reason these don't work at
765	 * this point (lost interrupt).
766	 */
767        /*
768         * Select the drive, and issue the SETFEATURES command
769         */
770	disable_irq_nosync(hwif->irq);
771
772	/*
773	 *	FIXME: we race against the running IRQ here if
774	 *	this is called from non IRQ context. If we use
775	 *	disable_irq() we hang on the error path. Work
776	 *	is needed.
777	 */
778
779	udelay(1);
780	SELECT_DRIVE(drive);
781	SELECT_MASK(drive, 0);
782	udelay(1);
783	ide_set_irq(drive, 0);
784	hwif->OUTB(speed, io_ports->nsect_addr);
785	hwif->OUTB(SETFEATURES_XFER, io_ports->feature_addr);
786	hwif->OUTBSYNC(hwif, WIN_SETFEATURES, io_ports->command_addr);
787	if (drive->quirk_list == 2)
788		ide_set_irq(drive, 1);
789
790	error = __ide_wait_stat(drive, drive->ready_stat,
791				BUSY_STAT|DRQ_STAT|ERR_STAT,
792				WAIT_CMD, &stat);
793
794	SELECT_MASK(drive, 0);
795
796	enable_irq(hwif->irq);
797
798	if (error) {
799		(void) ide_dump_status(drive, "set_drive_speed_status", stat);
800		return error;
801	}
802
803	drive->id->dma_ultra &= ~0xFF00;
804	drive->id->dma_mword &= ~0x0F00;
805	drive->id->dma_1word &= ~0x0F00;
806
807 skip:
808#ifdef CONFIG_BLK_DEV_IDEDMA
809	if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
810	    drive->using_dma)
811		hwif->dma_ops->dma_host_set(drive, 1);
812	else if (hwif->dma_ops)	/* check if host supports DMA */
813		ide_dma_off_quietly(drive);
814#endif
815
816	switch(speed) {
817		case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
818		case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
819		case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
820		case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
821		case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
822		case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
823		case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
824		case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
825		case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
826		case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
827		case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
828		case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
829		case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
830		case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
831		default: break;
832	}
833	if (!drive->init_speed)
834		drive->init_speed = speed;
835	drive->current_speed = speed;
836	return error;
837}
838
839/*
840 * This should get invoked any time we exit the driver to
841 * wait for an interrupt response from a drive.  handler() points
842 * at the appropriate code to handle the next interrupt, and a
843 * timer is started to prevent us from waiting forever in case
844 * something goes wrong (see the ide_timer_expiry() handler later on).
845 *
846 * See also ide_execute_command
847 */
848static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
849		      unsigned int timeout, ide_expiry_t *expiry)
850{
851	ide_hwgroup_t *hwgroup = HWGROUP(drive);
852
853	BUG_ON(hwgroup->handler);
854	hwgroup->handler	= handler;
855	hwgroup->expiry		= expiry;
856	hwgroup->timer.expires	= jiffies + timeout;
857	hwgroup->req_gen_timer	= hwgroup->req_gen;
858	add_timer(&hwgroup->timer);
859}
860
861void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
862		      unsigned int timeout, ide_expiry_t *expiry)
863{
864	unsigned long flags;
865	spin_lock_irqsave(&ide_lock, flags);
866	__ide_set_handler(drive, handler, timeout, expiry);
867	spin_unlock_irqrestore(&ide_lock, flags);
868}
869
870EXPORT_SYMBOL(ide_set_handler);
871
872/**
873 *	ide_execute_command	-	execute an IDE command
874 *	@drive: IDE drive to issue the command against
875 *	@command: command byte to write
876 *	@handler: handler for next phase
877 *	@timeout: timeout for command
878 *	@expiry:  handler to run on timeout
879 *
880 *	Helper function to issue an IDE command. This handles the
881 *	atomicity requirements, command timing and ensures that the
882 *	handler and IRQ setup do not race. All IDE command kick off
883 *	should go via this function or do equivalent locking.
884 */
885
886void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
887			 unsigned timeout, ide_expiry_t *expiry)
888{
889	unsigned long flags;
890	ide_hwif_t *hwif = HWIF(drive);
891
892	spin_lock_irqsave(&ide_lock, flags);
893	__ide_set_handler(drive, handler, timeout, expiry);
894	hwif->OUTBSYNC(hwif, cmd, hwif->io_ports.command_addr);
895	/*
896	 * Drive takes 400nS to respond, we must avoid the IRQ being
897	 * serviced before that.
898	 *
899	 * FIXME: we could skip this delay with care on non shared devices
900	 */
901	ndelay(400);
902	spin_unlock_irqrestore(&ide_lock, flags);
903}
904EXPORT_SYMBOL(ide_execute_command);
905
906void ide_execute_pkt_cmd(ide_drive_t *drive)
907{
908	ide_hwif_t *hwif = drive->hwif;
909	unsigned long flags;
910
911	spin_lock_irqsave(&ide_lock, flags);
912	hwif->OUTBSYNC(hwif, WIN_PACKETCMD, hwif->io_ports.command_addr);
913	ndelay(400);
914	spin_unlock_irqrestore(&ide_lock, flags);
915}
916EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
917
918static inline void ide_complete_drive_reset(ide_drive_t *drive, int err)
919{
920	struct request *rq = drive->hwif->hwgroup->rq;
921
922	if (rq && blk_special_request(rq) && rq->cmd[0] == REQ_DRIVE_RESET)
923		ide_end_request(drive, err ? err : 1, 0);
924}
925
926/* needed below */
927static ide_startstop_t do_reset1 (ide_drive_t *, int);
928
929/*
930 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
931 * during an atapi drive reset operation. If the drive has not yet responded,
932 * and we have not yet hit our maximum waiting time, then the timer is restarted
933 * for another 50ms.
934 */
935static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
936{
937	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
938	u8 stat;
939
940	SELECT_DRIVE(drive);
941	udelay (10);
942	stat = ide_read_status(drive);
943
944	if (OK_STAT(stat, 0, BUSY_STAT))
945		printk("%s: ATAPI reset complete\n", drive->name);
946	else {
947		if (time_before(jiffies, hwgroup->poll_timeout)) {
948			ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
949			/* continue polling */
950			return ide_started;
951		}
952		/* end of polling */
953		hwgroup->polling = 0;
954		printk("%s: ATAPI reset timed-out, status=0x%02x\n",
955				drive->name, stat);
956		/* do it the old fashioned way */
957		return do_reset1(drive, 1);
958	}
959	/* done polling */
960	hwgroup->polling = 0;
961	ide_complete_drive_reset(drive, 0);
962	return ide_stopped;
963}
964
965/*
966 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
967 * during an ide reset operation. If the drives have not yet responded,
968 * and we have not yet hit our maximum waiting time, then the timer is restarted
969 * for another 50ms.
970 */
971static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
972{
973	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
974	ide_hwif_t *hwif	= HWIF(drive);
975	const struct ide_port_ops *port_ops = hwif->port_ops;
976	u8 tmp;
977	int err = 0;
978
979	if (port_ops && port_ops->reset_poll) {
980		err = port_ops->reset_poll(drive);
981		if (err) {
982			printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
983				hwif->name, drive->name);
984			goto out;
985		}
986	}
987
988	tmp = ide_read_status(drive);
989
990	if (!OK_STAT(tmp, 0, BUSY_STAT)) {
991		if (time_before(jiffies, hwgroup->poll_timeout)) {
992			ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
993			/* continue polling */
994			return ide_started;
995		}
996		printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
997		drive->failures++;
998		err = -EIO;
999	} else  {
1000		printk("%s: reset: ", hwif->name);
1001		tmp = ide_read_error(drive);
1002
1003		if (tmp == 1) {
1004			printk("success\n");
1005			drive->failures = 0;
1006		} else {
1007			drive->failures++;
1008			printk("master: ");
1009			switch (tmp & 0x7f) {
1010				case 1: printk("passed");
1011					break;
1012				case 2: printk("formatter device error");
1013					break;
1014				case 3: printk("sector buffer error");
1015					break;
1016				case 4: printk("ECC circuitry error");
1017					break;
1018				case 5: printk("controlling MPU error");
1019					break;
1020				default:printk("error (0x%02x?)", tmp);
1021			}
1022			if (tmp & 0x80)
1023				printk("; slave: failed");
1024			printk("\n");
1025			err = -EIO;
1026		}
1027	}
1028out:
1029	hwgroup->polling = 0;	/* done polling */
1030	ide_complete_drive_reset(drive, err);
1031	return ide_stopped;
1032}
1033
1034static void ide_disk_pre_reset(ide_drive_t *drive)
1035{
1036	int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1037
1038	drive->special.all = 0;
1039	drive->special.b.set_geometry = legacy;
1040	drive->special.b.recalibrate  = legacy;
1041	drive->mult_count = 0;
1042	if (!drive->keep_settings && !drive->using_dma)
1043		drive->mult_req = 0;
1044	if (drive->mult_req != drive->mult_count)
1045		drive->special.b.set_multmode = 1;
1046}
1047
1048static void pre_reset(ide_drive_t *drive)
1049{
1050	const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1051
1052	if (drive->media == ide_disk)
1053		ide_disk_pre_reset(drive);
1054	else
1055		drive->post_reset = 1;
1056
1057	if (drive->using_dma) {
1058		if (drive->crc_count)
1059			ide_check_dma_crc(drive);
1060		else
1061			ide_dma_off(drive);
1062	}
1063
1064	if (!drive->keep_settings) {
1065		if (!drive->using_dma) {
1066			drive->unmask = 0;
1067			drive->io_32bit = 0;
1068		}
1069		return;
1070	}
1071
1072	if (port_ops && port_ops->pre_reset)
1073		port_ops->pre_reset(drive);
1074
1075	if (drive->current_speed != 0xff)
1076		drive->desired_speed = drive->current_speed;
1077	drive->current_speed = 0xff;
1078}
1079
1080/*
1081 * do_reset1() attempts to recover a confused drive by resetting it.
1082 * Unfortunately, resetting a disk drive actually resets all devices on
1083 * the same interface, so it can really be thought of as resetting the
1084 * interface rather than resetting the drive.
1085 *
1086 * ATAPI devices have their own reset mechanism which allows them to be
1087 * individually reset without clobbering other devices on the same interface.
1088 *
1089 * Unfortunately, the IDE interface does not generate an interrupt to let
1090 * us know when the reset operation has finished, so we must poll for this.
1091 * Equally poor, though, is the fact that this may a very long time to complete,
1092 * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1093 * we set a timer to poll at 50ms intervals.
1094 */
1095static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1096{
1097	unsigned int unit;
1098	unsigned long flags;
1099	ide_hwif_t *hwif;
1100	ide_hwgroup_t *hwgroup;
1101	struct ide_io_ports *io_ports;
1102	const struct ide_port_ops *port_ops;
1103	u8 ctl;
1104
1105	spin_lock_irqsave(&ide_lock, flags);
1106	hwif = HWIF(drive);
1107	hwgroup = HWGROUP(drive);
1108
1109	io_ports = &hwif->io_ports;
1110
1111	/* We must not reset with running handlers */
1112	BUG_ON(hwgroup->handler != NULL);
1113
1114	/* For an ATAPI device, first try an ATAPI SRST. */
1115	if (drive->media != ide_disk && !do_not_try_atapi) {
1116		pre_reset(drive);
1117		SELECT_DRIVE(drive);
1118		udelay (20);
1119		hwif->OUTBSYNC(hwif, WIN_SRST, io_ports->command_addr);
1120		ndelay(400);
1121		hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1122		hwgroup->polling = 1;
1123		__ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1124		spin_unlock_irqrestore(&ide_lock, flags);
1125		return ide_started;
1126	}
1127
1128	/*
1129	 * First, reset any device state data we were maintaining
1130	 * for any of the drives on this interface.
1131	 */
1132	for (unit = 0; unit < MAX_DRIVES; ++unit)
1133		pre_reset(&hwif->drives[unit]);
1134
1135	if (io_ports->ctl_addr == 0) {
1136		spin_unlock_irqrestore(&ide_lock, flags);
1137		ide_complete_drive_reset(drive, -ENXIO);
1138		return ide_stopped;
1139	}
1140
1141	/*
1142	 * Note that we also set nIEN while resetting the device,
1143	 * to mask unwanted interrupts from the interface during the reset.
1144	 * However, due to the design of PC hardware, this will cause an
1145	 * immediate interrupt due to the edge transition it produces.
1146	 * This single interrupt gives us a "fast poll" for drives that
1147	 * recover from reset very quickly, saving us the first 50ms wait time.
1148	 */
1149	/* set SRST and nIEN */
1150	hwif->OUTBSYNC(hwif, ATA_DEVCTL_OBS | 6, io_ports->ctl_addr);
1151	/* more than enough time */
1152	udelay(10);
1153	if (drive->quirk_list == 2)
1154		ctl = ATA_DEVCTL_OBS;		/* clear SRST and nIEN */
1155	else
1156		ctl = ATA_DEVCTL_OBS | 2;	/* clear SRST, leave nIEN */
1157	hwif->OUTBSYNC(hwif, ctl, io_ports->ctl_addr);
1158	/* more than enough time */
1159	udelay(10);
1160	hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1161	hwgroup->polling = 1;
1162	__ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1163
1164	/*
1165	 * Some weird controller like resetting themselves to a strange
1166	 * state when the disks are reset this way. At least, the Winbond
1167	 * 553 documentation says that
1168	 */
1169	port_ops = hwif->port_ops;
1170	if (port_ops && port_ops->resetproc)
1171		port_ops->resetproc(drive);
1172
1173	spin_unlock_irqrestore(&ide_lock, flags);
1174	return ide_started;
1175}
1176
1177/*
1178 * ide_do_reset() is the entry point to the drive/interface reset code.
1179 */
1180
1181ide_startstop_t ide_do_reset (ide_drive_t *drive)
1182{
1183	return do_reset1(drive, 0);
1184}
1185
1186EXPORT_SYMBOL(ide_do_reset);
1187
1188/*
1189 * ide_wait_not_busy() waits for the currently selected device on the hwif
1190 * to report a non-busy status, see comments in ide_probe_port().
1191 */
1192int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1193{
1194	u8 stat = 0;
1195
1196	while(timeout--) {
1197		/*
1198		 * Turn this into a schedule() sleep once I'm sure
1199		 * about locking issues (2.5 work ?).
1200		 */
1201		mdelay(1);
1202		stat = hwif->INB(hwif->io_ports.status_addr);
1203		if ((stat & BUSY_STAT) == 0)
1204			return 0;
1205		/*
1206		 * Assume a value of 0xff means nothing is connected to
1207		 * the interface and it doesn't implement the pull-down
1208		 * resistor on D7.
1209		 */
1210		if (stat == 0xff)
1211			return -ENODEV;
1212		touch_softlockup_watchdog();
1213		touch_nmi_watchdog();
1214	}
1215	return -EBUSY;
1216}
1217
1218EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1219
1220