ide-iops.c revision d30a426dc5fd8801dbd05485788a001de623d487
1/*
2 *  Copyright (C) 2000-2002	Andre Hedrick <andre@linux-ide.org>
3 *  Copyright (C) 2003		Red Hat <alan@redhat.com>
4 *
5 */
6
7#include <linux/module.h>
8#include <linux/types.h>
9#include <linux/string.h>
10#include <linux/kernel.h>
11#include <linux/timer.h>
12#include <linux/mm.h>
13#include <linux/interrupt.h>
14#include <linux/major.h>
15#include <linux/errno.h>
16#include <linux/genhd.h>
17#include <linux/blkpg.h>
18#include <linux/slab.h>
19#include <linux/pci.h>
20#include <linux/delay.h>
21#include <linux/hdreg.h>
22#include <linux/ide.h>
23#include <linux/bitops.h>
24#include <linux/nmi.h>
25
26#include <asm/byteorder.h>
27#include <asm/irq.h>
28#include <asm/uaccess.h>
29#include <asm/io.h>
30
31/*
32 *	Conventional PIO operations for ATA devices
33 */
34
35static u8 ide_inb (unsigned long port)
36{
37	return (u8) inb(port);
38}
39
40static u16 ide_inw (unsigned long port)
41{
42	return (u16) inw(port);
43}
44
45static void ide_insw (unsigned long port, void *addr, u32 count)
46{
47	insw(port, addr, count);
48}
49
50static void ide_insl (unsigned long port, void *addr, u32 count)
51{
52	insl(port, addr, count);
53}
54
55static void ide_outb (u8 val, unsigned long port)
56{
57	outb(val, port);
58}
59
60static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
61{
62	outb(addr, port);
63}
64
65static void ide_outw (u16 val, unsigned long port)
66{
67	outw(val, port);
68}
69
70static void ide_outsw (unsigned long port, void *addr, u32 count)
71{
72	outsw(port, addr, count);
73}
74
75static void ide_outsl (unsigned long port, void *addr, u32 count)
76{
77	outsl(port, addr, count);
78}
79
80void default_hwif_iops (ide_hwif_t *hwif)
81{
82	hwif->OUTB	= ide_outb;
83	hwif->OUTBSYNC	= ide_outbsync;
84	hwif->OUTW	= ide_outw;
85	hwif->OUTSW	= ide_outsw;
86	hwif->OUTSL	= ide_outsl;
87	hwif->INB	= ide_inb;
88	hwif->INW	= ide_inw;
89	hwif->INSW	= ide_insw;
90	hwif->INSL	= ide_insl;
91}
92
93/*
94 *	MMIO operations, typically used for SATA controllers
95 */
96
97static u8 ide_mm_inb (unsigned long port)
98{
99	return (u8) readb((void __iomem *) port);
100}
101
102static u16 ide_mm_inw (unsigned long port)
103{
104	return (u16) readw((void __iomem *) port);
105}
106
107static void ide_mm_insw (unsigned long port, void *addr, u32 count)
108{
109	__ide_mm_insw((void __iomem *) port, addr, count);
110}
111
112static void ide_mm_insl (unsigned long port, void *addr, u32 count)
113{
114	__ide_mm_insl((void __iomem *) port, addr, count);
115}
116
117static void ide_mm_outb (u8 value, unsigned long port)
118{
119	writeb(value, (void __iomem *) port);
120}
121
122static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
123{
124	writeb(value, (void __iomem *) port);
125}
126
127static void ide_mm_outw (u16 value, unsigned long port)
128{
129	writew(value, (void __iomem *) port);
130}
131
132static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
133{
134	__ide_mm_outsw((void __iomem *) port, addr, count);
135}
136
137static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
138{
139	__ide_mm_outsl((void __iomem *) port, addr, count);
140}
141
142void default_hwif_mmiops (ide_hwif_t *hwif)
143{
144	hwif->OUTB	= ide_mm_outb;
145	/* Most systems will need to override OUTBSYNC, alas however
146	   this one is controller specific! */
147	hwif->OUTBSYNC	= ide_mm_outbsync;
148	hwif->OUTW	= ide_mm_outw;
149	hwif->OUTSW	= ide_mm_outsw;
150	hwif->OUTSL	= ide_mm_outsl;
151	hwif->INB	= ide_mm_inb;
152	hwif->INW	= ide_mm_inw;
153	hwif->INSW	= ide_mm_insw;
154	hwif->INSL	= ide_mm_insl;
155}
156
157EXPORT_SYMBOL(default_hwif_mmiops);
158
159void SELECT_DRIVE (ide_drive_t *drive)
160{
161	if (HWIF(drive)->selectproc)
162		HWIF(drive)->selectproc(drive);
163	HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
164}
165
166void SELECT_MASK (ide_drive_t *drive, int mask)
167{
168	if (HWIF(drive)->maskproc)
169		HWIF(drive)->maskproc(drive, mask);
170}
171
172/*
173 * Some localbus EIDE interfaces require a special access sequence
174 * when using 32-bit I/O instructions to transfer data.  We call this
175 * the "vlb_sync" sequence, which consists of three successive reads
176 * of the sector count register location, with interrupts disabled
177 * to ensure that the reads all happen together.
178 */
179static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
180{
181	(void) HWIF(drive)->INB(port);
182	(void) HWIF(drive)->INB(port);
183	(void) HWIF(drive)->INB(port);
184}
185
186/*
187 * This is used for most PIO data transfers *from* the IDE interface
188 */
189static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
190{
191	ide_hwif_t *hwif	= HWIF(drive);
192	u8 io_32bit		= drive->io_32bit;
193
194	if (io_32bit) {
195		if (io_32bit & 2) {
196			unsigned long flags;
197			local_irq_save(flags);
198			ata_vlb_sync(drive, IDE_NSECTOR_REG);
199			hwif->INSL(IDE_DATA_REG, buffer, wcount);
200			local_irq_restore(flags);
201		} else
202			hwif->INSL(IDE_DATA_REG, buffer, wcount);
203	} else {
204		hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
205	}
206}
207
208/*
209 * This is used for most PIO data transfers *to* the IDE interface
210 */
211static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
212{
213	ide_hwif_t *hwif	= HWIF(drive);
214	u8 io_32bit		= drive->io_32bit;
215
216	if (io_32bit) {
217		if (io_32bit & 2) {
218			unsigned long flags;
219			local_irq_save(flags);
220			ata_vlb_sync(drive, IDE_NSECTOR_REG);
221			hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
222			local_irq_restore(flags);
223		} else
224			hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
225	} else {
226		hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
227	}
228}
229
230/*
231 * The following routines are mainly used by the ATAPI drivers.
232 *
233 * These routines will round up any request for an odd number of bytes,
234 * so if an odd bytecount is specified, be sure that there's at least one
235 * extra byte allocated for the buffer.
236 */
237
238static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
239{
240	ide_hwif_t *hwif = HWIF(drive);
241
242	++bytecount;
243#if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
244	if (MACH_IS_ATARI || MACH_IS_Q40) {
245		/* Atari has a byte-swapped IDE interface */
246		insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
247		return;
248	}
249#endif /* CONFIG_ATARI || CONFIG_Q40 */
250	hwif->ata_input_data(drive, buffer, bytecount / 4);
251	if ((bytecount & 0x03) >= 2)
252		hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
253}
254
255static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
256{
257	ide_hwif_t *hwif = HWIF(drive);
258
259	++bytecount;
260#if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
261	if (MACH_IS_ATARI || MACH_IS_Q40) {
262		/* Atari has a byte-swapped IDE interface */
263		outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
264		return;
265	}
266#endif /* CONFIG_ATARI || CONFIG_Q40 */
267	hwif->ata_output_data(drive, buffer, bytecount / 4);
268	if ((bytecount & 0x03) >= 2)
269		hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
270}
271
272void default_hwif_transport(ide_hwif_t *hwif)
273{
274	hwif->ata_input_data		= ata_input_data;
275	hwif->ata_output_data		= ata_output_data;
276	hwif->atapi_input_bytes		= atapi_input_bytes;
277	hwif->atapi_output_bytes	= atapi_output_bytes;
278}
279
280void ide_fix_driveid (struct hd_driveid *id)
281{
282#ifndef __LITTLE_ENDIAN
283# ifdef __BIG_ENDIAN
284	int i;
285	u16 *stringcast;
286
287	id->config         = __le16_to_cpu(id->config);
288	id->cyls           = __le16_to_cpu(id->cyls);
289	id->reserved2      = __le16_to_cpu(id->reserved2);
290	id->heads          = __le16_to_cpu(id->heads);
291	id->track_bytes    = __le16_to_cpu(id->track_bytes);
292	id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
293	id->sectors        = __le16_to_cpu(id->sectors);
294	id->vendor0        = __le16_to_cpu(id->vendor0);
295	id->vendor1        = __le16_to_cpu(id->vendor1);
296	id->vendor2        = __le16_to_cpu(id->vendor2);
297	stringcast = (u16 *)&id->serial_no[0];
298	for (i = 0; i < (20/2); i++)
299		stringcast[i] = __le16_to_cpu(stringcast[i]);
300	id->buf_type       = __le16_to_cpu(id->buf_type);
301	id->buf_size       = __le16_to_cpu(id->buf_size);
302	id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
303	stringcast = (u16 *)&id->fw_rev[0];
304	for (i = 0; i < (8/2); i++)
305		stringcast[i] = __le16_to_cpu(stringcast[i]);
306	stringcast = (u16 *)&id->model[0];
307	for (i = 0; i < (40/2); i++)
308		stringcast[i] = __le16_to_cpu(stringcast[i]);
309	id->dword_io       = __le16_to_cpu(id->dword_io);
310	id->reserved50     = __le16_to_cpu(id->reserved50);
311	id->field_valid    = __le16_to_cpu(id->field_valid);
312	id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
313	id->cur_heads      = __le16_to_cpu(id->cur_heads);
314	id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
315	id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
316	id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
317	id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
318	id->dma_1word      = __le16_to_cpu(id->dma_1word);
319	id->dma_mword      = __le16_to_cpu(id->dma_mword);
320	id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
321	id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
322	id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
323	id->eide_pio       = __le16_to_cpu(id->eide_pio);
324	id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
325	for (i = 0; i < 2; ++i)
326		id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
327	for (i = 0; i < 4; ++i)
328		id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
329	id->queue_depth    = __le16_to_cpu(id->queue_depth);
330	for (i = 0; i < 4; ++i)
331		id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
332	id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
333	id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
334	id->command_set_1  = __le16_to_cpu(id->command_set_1);
335	id->command_set_2  = __le16_to_cpu(id->command_set_2);
336	id->cfsse          = __le16_to_cpu(id->cfsse);
337	id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
338	id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
339	id->csf_default    = __le16_to_cpu(id->csf_default);
340	id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
341	id->trseuc         = __le16_to_cpu(id->trseuc);
342	id->trsEuc         = __le16_to_cpu(id->trsEuc);
343	id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
344	id->mprc           = __le16_to_cpu(id->mprc);
345	id->hw_config      = __le16_to_cpu(id->hw_config);
346	id->acoustic       = __le16_to_cpu(id->acoustic);
347	id->msrqs          = __le16_to_cpu(id->msrqs);
348	id->sxfert         = __le16_to_cpu(id->sxfert);
349	id->sal            = __le16_to_cpu(id->sal);
350	id->spg            = __le32_to_cpu(id->spg);
351	id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
352	for (i = 0; i < 22; i++)
353		id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
354	id->last_lun       = __le16_to_cpu(id->last_lun);
355	id->word127        = __le16_to_cpu(id->word127);
356	id->dlf            = __le16_to_cpu(id->dlf);
357	id->csfo           = __le16_to_cpu(id->csfo);
358	for (i = 0; i < 26; i++)
359		id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
360	id->word156        = __le16_to_cpu(id->word156);
361	for (i = 0; i < 3; i++)
362		id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
363	id->cfa_power      = __le16_to_cpu(id->cfa_power);
364	for (i = 0; i < 14; i++)
365		id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
366	for (i = 0; i < 31; i++)
367		id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
368	for (i = 0; i < 48; i++)
369		id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
370	id->integrity_word  = __le16_to_cpu(id->integrity_word);
371# else
372#  error "Please fix <asm/byteorder.h>"
373# endif
374#endif
375}
376
377/*
378 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
379 * removing leading/trailing blanks and compressing internal blanks.
380 * It is primarily used to tidy up the model name/number fields as
381 * returned by the WIN_[P]IDENTIFY commands.
382 */
383
384void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
385{
386	u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
387
388	if (byteswap) {
389		/* convert from big-endian to host byte order */
390		for (p = end ; p != s;) {
391			unsigned short *pp = (unsigned short *) (p -= 2);
392			*pp = ntohs(*pp);
393		}
394	}
395	/* strip leading blanks */
396	while (s != end && *s == ' ')
397		++s;
398	/* compress internal blanks and strip trailing blanks */
399	while (s != end && *s) {
400		if (*s++ != ' ' || (s != end && *s && *s != ' '))
401			*p++ = *(s-1);
402	}
403	/* wipe out trailing garbage */
404	while (p != end)
405		*p++ = '\0';
406}
407
408EXPORT_SYMBOL(ide_fixstring);
409
410/*
411 * Needed for PCI irq sharing
412 */
413int drive_is_ready (ide_drive_t *drive)
414{
415	ide_hwif_t *hwif	= HWIF(drive);
416	u8 stat			= 0;
417
418	if (drive->waiting_for_dma)
419		return hwif->ide_dma_test_irq(drive);
420
421#if 0
422	/* need to guarantee 400ns since last command was issued */
423	udelay(1);
424#endif
425
426	/*
427	 * We do a passive status test under shared PCI interrupts on
428	 * cards that truly share the ATA side interrupt, but may also share
429	 * an interrupt with another pci card/device.  We make no assumptions
430	 * about possible isa-pnp and pci-pnp issues yet.
431	 */
432	if (IDE_CONTROL_REG)
433		stat = ide_read_altstatus(drive);
434	else
435		/* Note: this may clear a pending IRQ!! */
436		stat = ide_read_status(drive);
437
438	if (stat & BUSY_STAT)
439		/* drive busy:  definitely not interrupting */
440		return 0;
441
442	/* drive ready: *might* be interrupting */
443	return 1;
444}
445
446EXPORT_SYMBOL(drive_is_ready);
447
448/*
449 * This routine busy-waits for the drive status to be not "busy".
450 * It then checks the status for all of the "good" bits and none
451 * of the "bad" bits, and if all is okay it returns 0.  All other
452 * cases return error -- caller may then invoke ide_error().
453 *
454 * This routine should get fixed to not hog the cpu during extra long waits..
455 * That could be done by busy-waiting for the first jiffy or two, and then
456 * setting a timer to wake up at half second intervals thereafter,
457 * until timeout is achieved, before timing out.
458 */
459static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
460{
461	unsigned long flags;
462	int i;
463	u8 stat;
464
465	udelay(1);	/* spec allows drive 400ns to assert "BUSY" */
466	stat = ide_read_status(drive);
467
468	if (stat & BUSY_STAT) {
469		local_irq_set(flags);
470		timeout += jiffies;
471		while ((stat = ide_read_status(drive)) & BUSY_STAT) {
472			if (time_after(jiffies, timeout)) {
473				/*
474				 * One last read after the timeout in case
475				 * heavy interrupt load made us not make any
476				 * progress during the timeout..
477				 */
478				stat = ide_read_status(drive);
479				if (!(stat & BUSY_STAT))
480					break;
481
482				local_irq_restore(flags);
483				*rstat = stat;
484				return -EBUSY;
485			}
486		}
487		local_irq_restore(flags);
488	}
489	/*
490	 * Allow status to settle, then read it again.
491	 * A few rare drives vastly violate the 400ns spec here,
492	 * so we'll wait up to 10usec for a "good" status
493	 * rather than expensively fail things immediately.
494	 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
495	 */
496	for (i = 0; i < 10; i++) {
497		udelay(1);
498		stat = ide_read_status(drive);
499
500		if (OK_STAT(stat, good, bad)) {
501			*rstat = stat;
502			return 0;
503		}
504	}
505	*rstat = stat;
506	return -EFAULT;
507}
508
509/*
510 * In case of error returns error value after doing "*startstop = ide_error()".
511 * The caller should return the updated value of "startstop" in this case,
512 * "startstop" is unchanged when the function returns 0.
513 */
514int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
515{
516	int err;
517	u8 stat;
518
519	/* bail early if we've exceeded max_failures */
520	if (drive->max_failures && (drive->failures > drive->max_failures)) {
521		*startstop = ide_stopped;
522		return 1;
523	}
524
525	err = __ide_wait_stat(drive, good, bad, timeout, &stat);
526
527	if (err) {
528		char *s = (err == -EBUSY) ? "status timeout" : "status error";
529		*startstop = ide_error(drive, s, stat);
530	}
531
532	return err;
533}
534
535EXPORT_SYMBOL(ide_wait_stat);
536
537/**
538 *	ide_in_drive_list	-	look for drive in black/white list
539 *	@id: drive identifier
540 *	@drive_table: list to inspect
541 *
542 *	Look for a drive in the blacklist and the whitelist tables
543 *	Returns 1 if the drive is found in the table.
544 */
545
546int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
547{
548	for ( ; drive_table->id_model; drive_table++)
549		if ((!strcmp(drive_table->id_model, id->model)) &&
550		    (!drive_table->id_firmware ||
551		     strstr(id->fw_rev, drive_table->id_firmware)))
552			return 1;
553	return 0;
554}
555
556EXPORT_SYMBOL_GPL(ide_in_drive_list);
557
558/*
559 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
560 * We list them here and depend on the device side cable detection for them.
561 *
562 * Some optical devices with the buggy firmwares have the same problem.
563 */
564static const struct drive_list_entry ivb_list[] = {
565	{ "QUANTUM FIREBALLlct10 05"	, "A03.0900"	},
566	{ "TSSTcorp CDDVDW SH-S202J"	, "SB00"	},
567	{ "TSSTcorp CDDVDW SH-S202J"	, "SB01"	},
568	{ "TSSTcorp CDDVDW SH-S202N"	, "SB00"	},
569	{ "TSSTcorp CDDVDW SH-S202N"	, "SB01"	},
570	{ NULL				, NULL		}
571};
572
573/*
574 *  All hosts that use the 80c ribbon must use!
575 *  The name is derived from upper byte of word 93 and the 80c ribbon.
576 */
577u8 eighty_ninty_three (ide_drive_t *drive)
578{
579	ide_hwif_t *hwif = drive->hwif;
580	struct hd_driveid *id = drive->id;
581	int ivb = ide_in_drive_list(id, ivb_list);
582
583	if (hwif->cbl == ATA_CBL_PATA40_SHORT)
584		return 1;
585
586	if (ivb)
587		printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
588				  drive->name);
589
590	if (ide_dev_is_sata(id) && !ivb)
591		return 1;
592
593	if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
594		goto no_80w;
595
596	/*
597	 * FIXME:
598	 * - force bit13 (80c cable present) check also for !ivb devices
599	 *   (unless the slave device is pre-ATA3)
600	 */
601	if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
602		return 1;
603
604no_80w:
605	if (drive->udma33_warned == 1)
606		return 0;
607
608	printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
609			    "limiting max speed to UDMA33\n",
610			    drive->name,
611			    hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
612
613	drive->udma33_warned = 1;
614
615	return 0;
616}
617
618int ide_driveid_update(ide_drive_t *drive)
619{
620	ide_hwif_t *hwif = drive->hwif;
621	struct hd_driveid *id;
622	unsigned long timeout, flags;
623	u8 stat;
624
625	/*
626	 * Re-read drive->id for possible DMA mode
627	 * change (copied from ide-probe.c)
628	 */
629
630	SELECT_MASK(drive, 1);
631	ide_set_irq(drive, 1);
632	msleep(50);
633	hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
634	timeout = jiffies + WAIT_WORSTCASE;
635	do {
636		if (time_after(jiffies, timeout)) {
637			SELECT_MASK(drive, 0);
638			return 0;	/* drive timed-out */
639		}
640
641		msleep(50);	/* give drive a breather */
642		stat = ide_read_altstatus(drive);
643	} while (stat & BUSY_STAT);
644
645	msleep(50);	/* wait for IRQ and DRQ_STAT */
646	stat = ide_read_status(drive);
647
648	if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
649		SELECT_MASK(drive, 0);
650		printk("%s: CHECK for good STATUS\n", drive->name);
651		return 0;
652	}
653	local_irq_save(flags);
654	SELECT_MASK(drive, 0);
655	id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
656	if (!id) {
657		local_irq_restore(flags);
658		return 0;
659	}
660	ata_input_data(drive, id, SECTOR_WORDS);
661	(void)ide_read_status(drive);	/* clear drive IRQ */
662	local_irq_enable();
663	local_irq_restore(flags);
664	ide_fix_driveid(id);
665	if (id) {
666		drive->id->dma_ultra = id->dma_ultra;
667		drive->id->dma_mword = id->dma_mword;
668		drive->id->dma_1word = id->dma_1word;
669		/* anything more ? */
670		kfree(id);
671
672		if (drive->using_dma && ide_id_dma_bug(drive))
673			ide_dma_off(drive);
674	}
675
676	return 1;
677}
678
679int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
680{
681	ide_hwif_t *hwif = drive->hwif;
682	int error = 0;
683	u8 stat;
684
685//	while (HWGROUP(drive)->busy)
686//		msleep(50);
687
688#ifdef CONFIG_BLK_DEV_IDEDMA
689	if (hwif->dma_host_set)	/* check if host supports DMA */
690		hwif->dma_host_set(drive, 0);
691#endif
692
693	/* Skip setting PIO flow-control modes on pre-EIDE drives */
694	if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
695		goto skip;
696
697	/*
698	 * Don't use ide_wait_cmd here - it will
699	 * attempt to set_geometry and recalibrate,
700	 * but for some reason these don't work at
701	 * this point (lost interrupt).
702	 */
703        /*
704         * Select the drive, and issue the SETFEATURES command
705         */
706	disable_irq_nosync(hwif->irq);
707
708	/*
709	 *	FIXME: we race against the running IRQ here if
710	 *	this is called from non IRQ context. If we use
711	 *	disable_irq() we hang on the error path. Work
712	 *	is needed.
713	 */
714
715	udelay(1);
716	SELECT_DRIVE(drive);
717	SELECT_MASK(drive, 0);
718	udelay(1);
719	ide_set_irq(drive, 0);
720	hwif->OUTB(speed, IDE_NSECTOR_REG);
721	hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
722	hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
723	if (drive->quirk_list == 2)
724		ide_set_irq(drive, 1);
725
726	error = __ide_wait_stat(drive, drive->ready_stat,
727				BUSY_STAT|DRQ_STAT|ERR_STAT,
728				WAIT_CMD, &stat);
729
730	SELECT_MASK(drive, 0);
731
732	enable_irq(hwif->irq);
733
734	if (error) {
735		(void) ide_dump_status(drive, "set_drive_speed_status", stat);
736		return error;
737	}
738
739	drive->id->dma_ultra &= ~0xFF00;
740	drive->id->dma_mword &= ~0x0F00;
741	drive->id->dma_1word &= ~0x0F00;
742
743 skip:
744#ifdef CONFIG_BLK_DEV_IDEDMA
745	if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
746	    drive->using_dma)
747		hwif->dma_host_set(drive, 1);
748	else if (hwif->dma_host_set)	/* check if host supports DMA */
749		ide_dma_off_quietly(drive);
750#endif
751
752	switch(speed) {
753		case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
754		case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
755		case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
756		case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
757		case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
758		case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
759		case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
760		case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
761		case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
762		case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
763		case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
764		case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
765		case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
766		case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
767		default: break;
768	}
769	if (!drive->init_speed)
770		drive->init_speed = speed;
771	drive->current_speed = speed;
772	return error;
773}
774
775/*
776 * This should get invoked any time we exit the driver to
777 * wait for an interrupt response from a drive.  handler() points
778 * at the appropriate code to handle the next interrupt, and a
779 * timer is started to prevent us from waiting forever in case
780 * something goes wrong (see the ide_timer_expiry() handler later on).
781 *
782 * See also ide_execute_command
783 */
784static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
785		      unsigned int timeout, ide_expiry_t *expiry)
786{
787	ide_hwgroup_t *hwgroup = HWGROUP(drive);
788
789	BUG_ON(hwgroup->handler);
790	hwgroup->handler	= handler;
791	hwgroup->expiry		= expiry;
792	hwgroup->timer.expires	= jiffies + timeout;
793	hwgroup->req_gen_timer	= hwgroup->req_gen;
794	add_timer(&hwgroup->timer);
795}
796
797void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
798		      unsigned int timeout, ide_expiry_t *expiry)
799{
800	unsigned long flags;
801	spin_lock_irqsave(&ide_lock, flags);
802	__ide_set_handler(drive, handler, timeout, expiry);
803	spin_unlock_irqrestore(&ide_lock, flags);
804}
805
806EXPORT_SYMBOL(ide_set_handler);
807
808/**
809 *	ide_execute_command	-	execute an IDE command
810 *	@drive: IDE drive to issue the command against
811 *	@command: command byte to write
812 *	@handler: handler for next phase
813 *	@timeout: timeout for command
814 *	@expiry:  handler to run on timeout
815 *
816 *	Helper function to issue an IDE command. This handles the
817 *	atomicity requirements, command timing and ensures that the
818 *	handler and IRQ setup do not race. All IDE command kick off
819 *	should go via this function or do equivalent locking.
820 */
821
822void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
823			 unsigned timeout, ide_expiry_t *expiry)
824{
825	unsigned long flags;
826	ide_hwif_t *hwif = HWIF(drive);
827
828	spin_lock_irqsave(&ide_lock, flags);
829	__ide_set_handler(drive, handler, timeout, expiry);
830	hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
831	/*
832	 * Drive takes 400nS to respond, we must avoid the IRQ being
833	 * serviced before that.
834	 *
835	 * FIXME: we could skip this delay with care on non shared devices
836	 */
837	ndelay(400);
838	spin_unlock_irqrestore(&ide_lock, flags);
839}
840
841EXPORT_SYMBOL(ide_execute_command);
842
843
844/* needed below */
845static ide_startstop_t do_reset1 (ide_drive_t *, int);
846
847/*
848 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
849 * during an atapi drive reset operation. If the drive has not yet responded,
850 * and we have not yet hit our maximum waiting time, then the timer is restarted
851 * for another 50ms.
852 */
853static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
854{
855	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
856	u8 stat;
857
858	SELECT_DRIVE(drive);
859	udelay (10);
860	stat = ide_read_status(drive);
861
862	if (OK_STAT(stat, 0, BUSY_STAT))
863		printk("%s: ATAPI reset complete\n", drive->name);
864	else {
865		if (time_before(jiffies, hwgroup->poll_timeout)) {
866			ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
867			/* continue polling */
868			return ide_started;
869		}
870		/* end of polling */
871		hwgroup->polling = 0;
872		printk("%s: ATAPI reset timed-out, status=0x%02x\n",
873				drive->name, stat);
874		/* do it the old fashioned way */
875		return do_reset1(drive, 1);
876	}
877	/* done polling */
878	hwgroup->polling = 0;
879	hwgroup->resetting = 0;
880	return ide_stopped;
881}
882
883/*
884 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
885 * during an ide reset operation. If the drives have not yet responded,
886 * and we have not yet hit our maximum waiting time, then the timer is restarted
887 * for another 50ms.
888 */
889static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
890{
891	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
892	ide_hwif_t *hwif	= HWIF(drive);
893	u8 tmp;
894
895	if (hwif->reset_poll != NULL) {
896		if (hwif->reset_poll(drive)) {
897			printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
898				hwif->name, drive->name);
899			return ide_stopped;
900		}
901	}
902
903	tmp = ide_read_status(drive);
904
905	if (!OK_STAT(tmp, 0, BUSY_STAT)) {
906		if (time_before(jiffies, hwgroup->poll_timeout)) {
907			ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
908			/* continue polling */
909			return ide_started;
910		}
911		printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
912		drive->failures++;
913	} else  {
914		printk("%s: reset: ", hwif->name);
915		tmp = ide_read_error(drive);
916
917		if (tmp == 1) {
918			printk("success\n");
919			drive->failures = 0;
920		} else {
921			drive->failures++;
922			printk("master: ");
923			switch (tmp & 0x7f) {
924				case 1: printk("passed");
925					break;
926				case 2: printk("formatter device error");
927					break;
928				case 3: printk("sector buffer error");
929					break;
930				case 4: printk("ECC circuitry error");
931					break;
932				case 5: printk("controlling MPU error");
933					break;
934				default:printk("error (0x%02x?)", tmp);
935			}
936			if (tmp & 0x80)
937				printk("; slave: failed");
938			printk("\n");
939		}
940	}
941	hwgroup->polling = 0;	/* done polling */
942	hwgroup->resetting = 0; /* done reset attempt */
943	return ide_stopped;
944}
945
946static void ide_disk_pre_reset(ide_drive_t *drive)
947{
948	int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
949
950	drive->special.all = 0;
951	drive->special.b.set_geometry = legacy;
952	drive->special.b.recalibrate  = legacy;
953	drive->mult_count = 0;
954	if (!drive->keep_settings && !drive->using_dma)
955		drive->mult_req = 0;
956	if (drive->mult_req != drive->mult_count)
957		drive->special.b.set_multmode = 1;
958}
959
960static void pre_reset(ide_drive_t *drive)
961{
962	if (drive->media == ide_disk)
963		ide_disk_pre_reset(drive);
964	else
965		drive->post_reset = 1;
966
967	if (drive->using_dma) {
968		if (drive->crc_count)
969			ide_check_dma_crc(drive);
970		else
971			ide_dma_off(drive);
972	}
973
974	if (!drive->keep_settings) {
975		if (!drive->using_dma) {
976			drive->unmask = 0;
977			drive->io_32bit = 0;
978		}
979		return;
980	}
981
982	if (HWIF(drive)->pre_reset != NULL)
983		HWIF(drive)->pre_reset(drive);
984
985	if (drive->current_speed != 0xff)
986		drive->desired_speed = drive->current_speed;
987	drive->current_speed = 0xff;
988}
989
990/*
991 * do_reset1() attempts to recover a confused drive by resetting it.
992 * Unfortunately, resetting a disk drive actually resets all devices on
993 * the same interface, so it can really be thought of as resetting the
994 * interface rather than resetting the drive.
995 *
996 * ATAPI devices have their own reset mechanism which allows them to be
997 * individually reset without clobbering other devices on the same interface.
998 *
999 * Unfortunately, the IDE interface does not generate an interrupt to let
1000 * us know when the reset operation has finished, so we must poll for this.
1001 * Equally poor, though, is the fact that this may a very long time to complete,
1002 * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1003 * we set a timer to poll at 50ms intervals.
1004 */
1005static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1006{
1007	unsigned int unit;
1008	unsigned long flags;
1009	ide_hwif_t *hwif;
1010	ide_hwgroup_t *hwgroup;
1011
1012	spin_lock_irqsave(&ide_lock, flags);
1013	hwif = HWIF(drive);
1014	hwgroup = HWGROUP(drive);
1015
1016	/* We must not reset with running handlers */
1017	BUG_ON(hwgroup->handler != NULL);
1018
1019	/* For an ATAPI device, first try an ATAPI SRST. */
1020	if (drive->media != ide_disk && !do_not_try_atapi) {
1021		hwgroup->resetting = 1;
1022		pre_reset(drive);
1023		SELECT_DRIVE(drive);
1024		udelay (20);
1025		hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1026		ndelay(400);
1027		hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1028		hwgroup->polling = 1;
1029		__ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1030		spin_unlock_irqrestore(&ide_lock, flags);
1031		return ide_started;
1032	}
1033
1034	/*
1035	 * First, reset any device state data we were maintaining
1036	 * for any of the drives on this interface.
1037	 */
1038	for (unit = 0; unit < MAX_DRIVES; ++unit)
1039		pre_reset(&hwif->drives[unit]);
1040
1041	if (!IDE_CONTROL_REG) {
1042		spin_unlock_irqrestore(&ide_lock, flags);
1043		return ide_stopped;
1044	}
1045
1046	hwgroup->resetting = 1;
1047	/*
1048	 * Note that we also set nIEN while resetting the device,
1049	 * to mask unwanted interrupts from the interface during the reset.
1050	 * However, due to the design of PC hardware, this will cause an
1051	 * immediate interrupt due to the edge transition it produces.
1052	 * This single interrupt gives us a "fast poll" for drives that
1053	 * recover from reset very quickly, saving us the first 50ms wait time.
1054	 */
1055	/* set SRST and nIEN */
1056	hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1057	/* more than enough time */
1058	udelay(10);
1059	if (drive->quirk_list == 2) {
1060		/* clear SRST and nIEN */
1061		hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1062	} else {
1063		/* clear SRST, leave nIEN */
1064		hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1065	}
1066	/* more than enough time */
1067	udelay(10);
1068	hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1069	hwgroup->polling = 1;
1070	__ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1071
1072	/*
1073	 * Some weird controller like resetting themselves to a strange
1074	 * state when the disks are reset this way. At least, the Winbond
1075	 * 553 documentation says that
1076	 */
1077	if (hwif->resetproc)
1078		hwif->resetproc(drive);
1079
1080	spin_unlock_irqrestore(&ide_lock, flags);
1081	return ide_started;
1082}
1083
1084/*
1085 * ide_do_reset() is the entry point to the drive/interface reset code.
1086 */
1087
1088ide_startstop_t ide_do_reset (ide_drive_t *drive)
1089{
1090	return do_reset1(drive, 0);
1091}
1092
1093EXPORT_SYMBOL(ide_do_reset);
1094
1095/*
1096 * ide_wait_not_busy() waits for the currently selected device on the hwif
1097 * to report a non-busy status, see comments in ide_probe_port().
1098 */
1099int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1100{
1101	u8 stat = 0;
1102
1103	while(timeout--) {
1104		/*
1105		 * Turn this into a schedule() sleep once I'm sure
1106		 * about locking issues (2.5 work ?).
1107		 */
1108		mdelay(1);
1109		stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1110		if ((stat & BUSY_STAT) == 0)
1111			return 0;
1112		/*
1113		 * Assume a value of 0xff means nothing is connected to
1114		 * the interface and it doesn't implement the pull-down
1115		 * resistor on D7.
1116		 */
1117		if (stat == 0xff)
1118			return -ENODEV;
1119		touch_softlockup_watchdog();
1120		touch_nmi_watchdog();
1121	}
1122	return -EBUSY;
1123}
1124
1125EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1126
1127