ide-iops.c revision ed4af48fd660176680da905817f6e40d51436e4c
1/*
2 *  Copyright (C) 2000-2002	Andre Hedrick <andre@linux-ide.org>
3 *  Copyright (C) 2003		Red Hat <alan@redhat.com>
4 *
5 */
6
7#include <linux/module.h>
8#include <linux/types.h>
9#include <linux/string.h>
10#include <linux/kernel.h>
11#include <linux/timer.h>
12#include <linux/mm.h>
13#include <linux/interrupt.h>
14#include <linux/major.h>
15#include <linux/errno.h>
16#include <linux/genhd.h>
17#include <linux/blkpg.h>
18#include <linux/slab.h>
19#include <linux/pci.h>
20#include <linux/delay.h>
21#include <linux/hdreg.h>
22#include <linux/ide.h>
23#include <linux/bitops.h>
24#include <linux/nmi.h>
25
26#include <asm/byteorder.h>
27#include <asm/irq.h>
28#include <asm/uaccess.h>
29#include <asm/io.h>
30
31/*
32 *	Conventional PIO operations for ATA devices
33 */
34
35static u8 ide_inb (unsigned long port)
36{
37	return (u8) inb(port);
38}
39
40static void ide_outb (u8 val, unsigned long port)
41{
42	outb(val, port);
43}
44
45static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
46{
47	outb(addr, port);
48}
49
50void default_hwif_iops (ide_hwif_t *hwif)
51{
52	hwif->OUTB	= ide_outb;
53	hwif->OUTBSYNC	= ide_outbsync;
54	hwif->INB	= ide_inb;
55}
56
57/*
58 *	MMIO operations, typically used for SATA controllers
59 */
60
61static u8 ide_mm_inb (unsigned long port)
62{
63	return (u8) readb((void __iomem *) port);
64}
65
66static void ide_mm_outb (u8 value, unsigned long port)
67{
68	writeb(value, (void __iomem *) port);
69}
70
71static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
72{
73	writeb(value, (void __iomem *) port);
74}
75
76void default_hwif_mmiops (ide_hwif_t *hwif)
77{
78	hwif->OUTB	= ide_mm_outb;
79	/* Most systems will need to override OUTBSYNC, alas however
80	   this one is controller specific! */
81	hwif->OUTBSYNC	= ide_mm_outbsync;
82	hwif->INB	= ide_mm_inb;
83}
84
85EXPORT_SYMBOL(default_hwif_mmiops);
86
87void SELECT_DRIVE (ide_drive_t *drive)
88{
89	ide_hwif_t *hwif = drive->hwif;
90	const struct ide_port_ops *port_ops = hwif->port_ops;
91
92	if (port_ops && port_ops->selectproc)
93		port_ops->selectproc(drive);
94
95	hwif->OUTB(drive->select.all, hwif->io_ports.device_addr);
96}
97
98void SELECT_MASK(ide_drive_t *drive, int mask)
99{
100	const struct ide_port_ops *port_ops = drive->hwif->port_ops;
101
102	if (port_ops && port_ops->maskproc)
103		port_ops->maskproc(drive, mask);
104}
105
106static void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
107{
108	ide_hwif_t *hwif = drive->hwif;
109	struct ide_io_ports *io_ports = &hwif->io_ports;
110	struct ide_taskfile *tf = &task->tf;
111	void (*tf_outb)(u8 addr, unsigned long port);
112	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
113	u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
114
115	if (mmio)
116		tf_outb = ide_mm_outb;
117	else
118		tf_outb = ide_outb;
119
120	if (task->tf_flags & IDE_TFLAG_FLAGGED)
121		HIHI = 0xFF;
122
123	if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
124		u16 data = (tf->hob_data << 8) | tf->data;
125
126		if (mmio)
127			writew(data, (void __iomem *)io_ports->data_addr);
128		else
129			outw(data, io_ports->data_addr);
130	}
131
132	if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
133		tf_outb(tf->hob_feature, io_ports->feature_addr);
134	if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
135		tf_outb(tf->hob_nsect, io_ports->nsect_addr);
136	if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
137		tf_outb(tf->hob_lbal, io_ports->lbal_addr);
138	if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
139		tf_outb(tf->hob_lbam, io_ports->lbam_addr);
140	if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
141		tf_outb(tf->hob_lbah, io_ports->lbah_addr);
142
143	if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
144		tf_outb(tf->feature, io_ports->feature_addr);
145	if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
146		tf_outb(tf->nsect, io_ports->nsect_addr);
147	if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
148		tf_outb(tf->lbal, io_ports->lbal_addr);
149	if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
150		tf_outb(tf->lbam, io_ports->lbam_addr);
151	if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
152		tf_outb(tf->lbah, io_ports->lbah_addr);
153
154	if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
155		tf_outb((tf->device & HIHI) | drive->select.all,
156			 io_ports->device_addr);
157}
158
159static void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
160{
161	ide_hwif_t *hwif = drive->hwif;
162	struct ide_io_ports *io_ports = &hwif->io_ports;
163	struct ide_taskfile *tf = &task->tf;
164	void (*tf_outb)(u8 addr, unsigned long port);
165	u8 (*tf_inb)(unsigned long port);
166	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
167
168	if (mmio) {
169		tf_outb = ide_mm_outb;
170		tf_inb  = ide_mm_inb;
171	} else {
172		tf_outb = ide_outb;
173		tf_inb  = ide_inb;
174	}
175
176	if (task->tf_flags & IDE_TFLAG_IN_DATA) {
177		u16 data;
178
179		if (mmio)
180			data = readw((void __iomem *)io_ports->data_addr);
181		else
182			data = inw(io_ports->data_addr);
183
184		tf->data = data & 0xff;
185		tf->hob_data = (data >> 8) & 0xff;
186	}
187
188	/* be sure we're looking at the low order bits */
189	tf_outb(drive->ctl & ~0x80, io_ports->ctl_addr);
190
191	if (task->tf_flags & IDE_TFLAG_IN_NSECT)
192		tf->nsect  = tf_inb(io_ports->nsect_addr);
193	if (task->tf_flags & IDE_TFLAG_IN_LBAL)
194		tf->lbal   = tf_inb(io_ports->lbal_addr);
195	if (task->tf_flags & IDE_TFLAG_IN_LBAM)
196		tf->lbam   = tf_inb(io_ports->lbam_addr);
197	if (task->tf_flags & IDE_TFLAG_IN_LBAH)
198		tf->lbah   = tf_inb(io_ports->lbah_addr);
199	if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
200		tf->device = tf_inb(io_ports->device_addr);
201
202	if (task->tf_flags & IDE_TFLAG_LBA48) {
203		tf_outb(drive->ctl | 0x80, io_ports->ctl_addr);
204
205		if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
206			tf->hob_feature = tf_inb(io_ports->feature_addr);
207		if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
208			tf->hob_nsect   = tf_inb(io_ports->nsect_addr);
209		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
210			tf->hob_lbal    = tf_inb(io_ports->lbal_addr);
211		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
212			tf->hob_lbam    = tf_inb(io_ports->lbam_addr);
213		if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
214			tf->hob_lbah    = tf_inb(io_ports->lbah_addr);
215	}
216}
217
218/*
219 * Some localbus EIDE interfaces require a special access sequence
220 * when using 32-bit I/O instructions to transfer data.  We call this
221 * the "vlb_sync" sequence, which consists of three successive reads
222 * of the sector count register location, with interrupts disabled
223 * to ensure that the reads all happen together.
224 */
225static void ata_vlb_sync(unsigned long port)
226{
227	(void)inb(port);
228	(void)inb(port);
229	(void)inb(port);
230}
231
232/*
233 * This is used for most PIO data transfers *from* the IDE interface
234 *
235 * These routines will round up any request for an odd number of bytes,
236 * so if an odd len is specified, be sure that there's at least one
237 * extra byte allocated for the buffer.
238 */
239static void ata_input_data(ide_drive_t *drive, struct request *rq,
240			   void *buf, unsigned int len)
241{
242	ide_hwif_t *hwif = drive->hwif;
243	struct ide_io_ports *io_ports = &hwif->io_ports;
244	unsigned long data_addr = io_ports->data_addr;
245	u8 io_32bit = drive->io_32bit;
246	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
247
248	len++;
249
250	if (io_32bit) {
251		unsigned long uninitialized_var(flags);
252
253		if ((io_32bit & 2) && !mmio) {
254			local_irq_save(flags);
255			ata_vlb_sync(io_ports->nsect_addr);
256		}
257
258		if (mmio)
259			__ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
260		else
261			insl(data_addr, buf, len / 4);
262
263		if ((io_32bit & 2) && !mmio)
264			local_irq_restore(flags);
265
266		if ((len & 3) >= 2) {
267			if (mmio)
268				__ide_mm_insw((void __iomem *)data_addr,
269						(u8 *)buf + (len & ~3), 1);
270			else
271				insw(data_addr, (u8 *)buf + (len & ~3), 1);
272		}
273	} else {
274		if (mmio)
275			__ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
276		else
277			insw(data_addr, buf, len / 2);
278	}
279}
280
281/*
282 * This is used for most PIO data transfers *to* the IDE interface
283 */
284static void ata_output_data(ide_drive_t *drive, struct request *rq,
285			    void *buf, unsigned int len)
286{
287	ide_hwif_t *hwif = drive->hwif;
288	struct ide_io_ports *io_ports = &hwif->io_ports;
289	unsigned long data_addr = io_ports->data_addr;
290	u8 io_32bit = drive->io_32bit;
291	u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
292
293	if (io_32bit) {
294		unsigned long uninitialized_var(flags);
295
296		if ((io_32bit & 2) && !mmio) {
297			local_irq_save(flags);
298			ata_vlb_sync(io_ports->nsect_addr);
299		}
300
301		if (mmio)
302			__ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
303		else
304			outsl(data_addr, buf, len / 4);
305
306		if ((io_32bit & 2) && !mmio)
307			local_irq_restore(flags);
308
309		if ((len & 3) >= 2) {
310			if (mmio)
311				__ide_mm_outsw((void __iomem *)data_addr,
312						 (u8 *)buf + (len & ~3), 1);
313			else
314				outsw(data_addr, (u8 *)buf + (len & ~3), 1);
315		}
316	} else {
317		if (mmio)
318			__ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
319		else
320			outsw(data_addr, buf, len / 2);
321	}
322}
323
324void default_hwif_transport(ide_hwif_t *hwif)
325{
326	hwif->tf_load	  = ide_tf_load;
327	hwif->tf_read	  = ide_tf_read;
328
329	hwif->input_data  = ata_input_data;
330	hwif->output_data = ata_output_data;
331}
332
333void ide_fix_driveid (struct hd_driveid *id)
334{
335#ifndef __LITTLE_ENDIAN
336# ifdef __BIG_ENDIAN
337	int i;
338	u16 *stringcast;
339
340	id->config         = __le16_to_cpu(id->config);
341	id->cyls           = __le16_to_cpu(id->cyls);
342	id->reserved2      = __le16_to_cpu(id->reserved2);
343	id->heads          = __le16_to_cpu(id->heads);
344	id->track_bytes    = __le16_to_cpu(id->track_bytes);
345	id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
346	id->sectors        = __le16_to_cpu(id->sectors);
347	id->vendor0        = __le16_to_cpu(id->vendor0);
348	id->vendor1        = __le16_to_cpu(id->vendor1);
349	id->vendor2        = __le16_to_cpu(id->vendor2);
350	stringcast = (u16 *)&id->serial_no[0];
351	for (i = 0; i < (20/2); i++)
352		stringcast[i] = __le16_to_cpu(stringcast[i]);
353	id->buf_type       = __le16_to_cpu(id->buf_type);
354	id->buf_size       = __le16_to_cpu(id->buf_size);
355	id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
356	stringcast = (u16 *)&id->fw_rev[0];
357	for (i = 0; i < (8/2); i++)
358		stringcast[i] = __le16_to_cpu(stringcast[i]);
359	stringcast = (u16 *)&id->model[0];
360	for (i = 0; i < (40/2); i++)
361		stringcast[i] = __le16_to_cpu(stringcast[i]);
362	id->dword_io       = __le16_to_cpu(id->dword_io);
363	id->reserved50     = __le16_to_cpu(id->reserved50);
364	id->field_valid    = __le16_to_cpu(id->field_valid);
365	id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
366	id->cur_heads      = __le16_to_cpu(id->cur_heads);
367	id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
368	id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
369	id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
370	id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
371	id->dma_1word      = __le16_to_cpu(id->dma_1word);
372	id->dma_mword      = __le16_to_cpu(id->dma_mword);
373	id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
374	id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
375	id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
376	id->eide_pio       = __le16_to_cpu(id->eide_pio);
377	id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
378	for (i = 0; i < 2; ++i)
379		id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
380	for (i = 0; i < 4; ++i)
381		id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
382	id->queue_depth    = __le16_to_cpu(id->queue_depth);
383	for (i = 0; i < 4; ++i)
384		id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
385	id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
386	id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
387	id->command_set_1  = __le16_to_cpu(id->command_set_1);
388	id->command_set_2  = __le16_to_cpu(id->command_set_2);
389	id->cfsse          = __le16_to_cpu(id->cfsse);
390	id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
391	id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
392	id->csf_default    = __le16_to_cpu(id->csf_default);
393	id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
394	id->trseuc         = __le16_to_cpu(id->trseuc);
395	id->trsEuc         = __le16_to_cpu(id->trsEuc);
396	id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
397	id->mprc           = __le16_to_cpu(id->mprc);
398	id->hw_config      = __le16_to_cpu(id->hw_config);
399	id->acoustic       = __le16_to_cpu(id->acoustic);
400	id->msrqs          = __le16_to_cpu(id->msrqs);
401	id->sxfert         = __le16_to_cpu(id->sxfert);
402	id->sal            = __le16_to_cpu(id->sal);
403	id->spg            = __le32_to_cpu(id->spg);
404	id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
405	for (i = 0; i < 22; i++)
406		id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
407	id->last_lun       = __le16_to_cpu(id->last_lun);
408	id->word127        = __le16_to_cpu(id->word127);
409	id->dlf            = __le16_to_cpu(id->dlf);
410	id->csfo           = __le16_to_cpu(id->csfo);
411	for (i = 0; i < 26; i++)
412		id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
413	id->word156        = __le16_to_cpu(id->word156);
414	for (i = 0; i < 3; i++)
415		id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
416	id->cfa_power      = __le16_to_cpu(id->cfa_power);
417	for (i = 0; i < 14; i++)
418		id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
419	for (i = 0; i < 31; i++)
420		id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
421	for (i = 0; i < 48; i++)
422		id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
423	id->integrity_word  = __le16_to_cpu(id->integrity_word);
424# else
425#  error "Please fix <asm/byteorder.h>"
426# endif
427#endif
428}
429
430/*
431 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
432 * removing leading/trailing blanks and compressing internal blanks.
433 * It is primarily used to tidy up the model name/number fields as
434 * returned by the WIN_[P]IDENTIFY commands.
435 */
436
437void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
438{
439	u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
440
441	if (byteswap) {
442		/* convert from big-endian to host byte order */
443		for (p = end ; p != s;) {
444			unsigned short *pp = (unsigned short *) (p -= 2);
445			*pp = ntohs(*pp);
446		}
447	}
448	/* strip leading blanks */
449	while (s != end && *s == ' ')
450		++s;
451	/* compress internal blanks and strip trailing blanks */
452	while (s != end && *s) {
453		if (*s++ != ' ' || (s != end && *s && *s != ' '))
454			*p++ = *(s-1);
455	}
456	/* wipe out trailing garbage */
457	while (p != end)
458		*p++ = '\0';
459}
460
461EXPORT_SYMBOL(ide_fixstring);
462
463/*
464 * Needed for PCI irq sharing
465 */
466int drive_is_ready (ide_drive_t *drive)
467{
468	ide_hwif_t *hwif	= HWIF(drive);
469	u8 stat			= 0;
470
471	if (drive->waiting_for_dma)
472		return hwif->dma_ops->dma_test_irq(drive);
473
474#if 0
475	/* need to guarantee 400ns since last command was issued */
476	udelay(1);
477#endif
478
479	/*
480	 * We do a passive status test under shared PCI interrupts on
481	 * cards that truly share the ATA side interrupt, but may also share
482	 * an interrupt with another pci card/device.  We make no assumptions
483	 * about possible isa-pnp and pci-pnp issues yet.
484	 */
485	if (hwif->io_ports.ctl_addr)
486		stat = ide_read_altstatus(drive);
487	else
488		/* Note: this may clear a pending IRQ!! */
489		stat = ide_read_status(drive);
490
491	if (stat & BUSY_STAT)
492		/* drive busy:  definitely not interrupting */
493		return 0;
494
495	/* drive ready: *might* be interrupting */
496	return 1;
497}
498
499EXPORT_SYMBOL(drive_is_ready);
500
501/*
502 * This routine busy-waits for the drive status to be not "busy".
503 * It then checks the status for all of the "good" bits and none
504 * of the "bad" bits, and if all is okay it returns 0.  All other
505 * cases return error -- caller may then invoke ide_error().
506 *
507 * This routine should get fixed to not hog the cpu during extra long waits..
508 * That could be done by busy-waiting for the first jiffy or two, and then
509 * setting a timer to wake up at half second intervals thereafter,
510 * until timeout is achieved, before timing out.
511 */
512static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
513{
514	unsigned long flags;
515	int i;
516	u8 stat;
517
518	udelay(1);	/* spec allows drive 400ns to assert "BUSY" */
519	stat = ide_read_status(drive);
520
521	if (stat & BUSY_STAT) {
522		local_irq_set(flags);
523		timeout += jiffies;
524		while ((stat = ide_read_status(drive)) & BUSY_STAT) {
525			if (time_after(jiffies, timeout)) {
526				/*
527				 * One last read after the timeout in case
528				 * heavy interrupt load made us not make any
529				 * progress during the timeout..
530				 */
531				stat = ide_read_status(drive);
532				if (!(stat & BUSY_STAT))
533					break;
534
535				local_irq_restore(flags);
536				*rstat = stat;
537				return -EBUSY;
538			}
539		}
540		local_irq_restore(flags);
541	}
542	/*
543	 * Allow status to settle, then read it again.
544	 * A few rare drives vastly violate the 400ns spec here,
545	 * so we'll wait up to 10usec for a "good" status
546	 * rather than expensively fail things immediately.
547	 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
548	 */
549	for (i = 0; i < 10; i++) {
550		udelay(1);
551		stat = ide_read_status(drive);
552
553		if (OK_STAT(stat, good, bad)) {
554			*rstat = stat;
555			return 0;
556		}
557	}
558	*rstat = stat;
559	return -EFAULT;
560}
561
562/*
563 * In case of error returns error value after doing "*startstop = ide_error()".
564 * The caller should return the updated value of "startstop" in this case,
565 * "startstop" is unchanged when the function returns 0.
566 */
567int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
568{
569	int err;
570	u8 stat;
571
572	/* bail early if we've exceeded max_failures */
573	if (drive->max_failures && (drive->failures > drive->max_failures)) {
574		*startstop = ide_stopped;
575		return 1;
576	}
577
578	err = __ide_wait_stat(drive, good, bad, timeout, &stat);
579
580	if (err) {
581		char *s = (err == -EBUSY) ? "status timeout" : "status error";
582		*startstop = ide_error(drive, s, stat);
583	}
584
585	return err;
586}
587
588EXPORT_SYMBOL(ide_wait_stat);
589
590/**
591 *	ide_in_drive_list	-	look for drive in black/white list
592 *	@id: drive identifier
593 *	@drive_table: list to inspect
594 *
595 *	Look for a drive in the blacklist and the whitelist tables
596 *	Returns 1 if the drive is found in the table.
597 */
598
599int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
600{
601	for ( ; drive_table->id_model; drive_table++)
602		if ((!strcmp(drive_table->id_model, id->model)) &&
603		    (!drive_table->id_firmware ||
604		     strstr(id->fw_rev, drive_table->id_firmware)))
605			return 1;
606	return 0;
607}
608
609EXPORT_SYMBOL_GPL(ide_in_drive_list);
610
611/*
612 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
613 * We list them here and depend on the device side cable detection for them.
614 *
615 * Some optical devices with the buggy firmwares have the same problem.
616 */
617static const struct drive_list_entry ivb_list[] = {
618	{ "QUANTUM FIREBALLlct10 05"	, "A03.0900"	},
619	{ "TSSTcorp CDDVDW SH-S202J"	, "SB00"	},
620	{ "TSSTcorp CDDVDW SH-S202J"	, "SB01"	},
621	{ "TSSTcorp CDDVDW SH-S202N"	, "SB00"	},
622	{ "TSSTcorp CDDVDW SH-S202N"	, "SB01"	},
623	{ "TSSTcorp CDDVDW SH-S202H"	, "SB00"	},
624	{ "TSSTcorp CDDVDW SH-S202H"	, "SB01"	},
625	{ NULL				, NULL		}
626};
627
628/*
629 *  All hosts that use the 80c ribbon must use!
630 *  The name is derived from upper byte of word 93 and the 80c ribbon.
631 */
632u8 eighty_ninty_three (ide_drive_t *drive)
633{
634	ide_hwif_t *hwif = drive->hwif;
635	struct hd_driveid *id = drive->id;
636	int ivb = ide_in_drive_list(id, ivb_list);
637
638	if (hwif->cbl == ATA_CBL_PATA40_SHORT)
639		return 1;
640
641	if (ivb)
642		printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
643				  drive->name);
644
645	if (ide_dev_is_sata(id) && !ivb)
646		return 1;
647
648	if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
649		goto no_80w;
650
651	/*
652	 * FIXME:
653	 * - change master/slave IDENTIFY order
654	 * - force bit13 (80c cable present) check also for !ivb devices
655	 *   (unless the slave device is pre-ATA3)
656	 */
657	if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
658		return 1;
659
660no_80w:
661	if (drive->udma33_warned == 1)
662		return 0;
663
664	printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
665			    "limiting max speed to UDMA33\n",
666			    drive->name,
667			    hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
668
669	drive->udma33_warned = 1;
670
671	return 0;
672}
673
674int ide_driveid_update(ide_drive_t *drive)
675{
676	ide_hwif_t *hwif = drive->hwif;
677	struct hd_driveid *id;
678	unsigned long timeout, flags;
679	u8 stat;
680
681	/*
682	 * Re-read drive->id for possible DMA mode
683	 * change (copied from ide-probe.c)
684	 */
685
686	SELECT_MASK(drive, 1);
687	ide_set_irq(drive, 0);
688	msleep(50);
689	hwif->OUTBSYNC(drive, WIN_IDENTIFY, hwif->io_ports.command_addr);
690	timeout = jiffies + WAIT_WORSTCASE;
691	do {
692		if (time_after(jiffies, timeout)) {
693			SELECT_MASK(drive, 0);
694			return 0;	/* drive timed-out */
695		}
696
697		msleep(50);	/* give drive a breather */
698		stat = ide_read_altstatus(drive);
699	} while (stat & BUSY_STAT);
700
701	msleep(50);	/* wait for IRQ and DRQ_STAT */
702	stat = ide_read_status(drive);
703
704	if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
705		SELECT_MASK(drive, 0);
706		printk("%s: CHECK for good STATUS\n", drive->name);
707		return 0;
708	}
709	local_irq_save(flags);
710	SELECT_MASK(drive, 0);
711	id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
712	if (!id) {
713		local_irq_restore(flags);
714		return 0;
715	}
716	hwif->input_data(drive, NULL, id, SECTOR_SIZE);
717	(void)ide_read_status(drive);	/* clear drive IRQ */
718	local_irq_enable();
719	local_irq_restore(flags);
720	ide_fix_driveid(id);
721	if (id) {
722		drive->id->dma_ultra = id->dma_ultra;
723		drive->id->dma_mword = id->dma_mword;
724		drive->id->dma_1word = id->dma_1word;
725		/* anything more ? */
726		kfree(id);
727
728		if (drive->using_dma && ide_id_dma_bug(drive))
729			ide_dma_off(drive);
730	}
731
732	return 1;
733}
734
735int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
736{
737	ide_hwif_t *hwif = drive->hwif;
738	struct ide_io_ports *io_ports = &hwif->io_ports;
739	int error = 0;
740	u8 stat;
741
742#ifdef CONFIG_BLK_DEV_IDEDMA
743	if (hwif->dma_ops)	/* check if host supports DMA */
744		hwif->dma_ops->dma_host_set(drive, 0);
745#endif
746
747	/* Skip setting PIO flow-control modes on pre-EIDE drives */
748	if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
749		goto skip;
750
751	/*
752	 * Don't use ide_wait_cmd here - it will
753	 * attempt to set_geometry and recalibrate,
754	 * but for some reason these don't work at
755	 * this point (lost interrupt).
756	 */
757        /*
758         * Select the drive, and issue the SETFEATURES command
759         */
760	disable_irq_nosync(hwif->irq);
761
762	/*
763	 *	FIXME: we race against the running IRQ here if
764	 *	this is called from non IRQ context. If we use
765	 *	disable_irq() we hang on the error path. Work
766	 *	is needed.
767	 */
768
769	udelay(1);
770	SELECT_DRIVE(drive);
771	SELECT_MASK(drive, 0);
772	udelay(1);
773	ide_set_irq(drive, 0);
774	hwif->OUTB(speed, io_ports->nsect_addr);
775	hwif->OUTB(SETFEATURES_XFER, io_ports->feature_addr);
776	hwif->OUTBSYNC(drive, WIN_SETFEATURES, io_ports->command_addr);
777	if (drive->quirk_list == 2)
778		ide_set_irq(drive, 1);
779
780	error = __ide_wait_stat(drive, drive->ready_stat,
781				BUSY_STAT|DRQ_STAT|ERR_STAT,
782				WAIT_CMD, &stat);
783
784	SELECT_MASK(drive, 0);
785
786	enable_irq(hwif->irq);
787
788	if (error) {
789		(void) ide_dump_status(drive, "set_drive_speed_status", stat);
790		return error;
791	}
792
793	drive->id->dma_ultra &= ~0xFF00;
794	drive->id->dma_mword &= ~0x0F00;
795	drive->id->dma_1word &= ~0x0F00;
796
797 skip:
798#ifdef CONFIG_BLK_DEV_IDEDMA
799	if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
800	    drive->using_dma)
801		hwif->dma_ops->dma_host_set(drive, 1);
802	else if (hwif->dma_ops)	/* check if host supports DMA */
803		ide_dma_off_quietly(drive);
804#endif
805
806	switch(speed) {
807		case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
808		case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
809		case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
810		case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
811		case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
812		case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
813		case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
814		case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
815		case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
816		case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
817		case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
818		case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
819		case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
820		case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
821		default: break;
822	}
823	if (!drive->init_speed)
824		drive->init_speed = speed;
825	drive->current_speed = speed;
826	return error;
827}
828
829/*
830 * This should get invoked any time we exit the driver to
831 * wait for an interrupt response from a drive.  handler() points
832 * at the appropriate code to handle the next interrupt, and a
833 * timer is started to prevent us from waiting forever in case
834 * something goes wrong (see the ide_timer_expiry() handler later on).
835 *
836 * See also ide_execute_command
837 */
838static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
839		      unsigned int timeout, ide_expiry_t *expiry)
840{
841	ide_hwgroup_t *hwgroup = HWGROUP(drive);
842
843	BUG_ON(hwgroup->handler);
844	hwgroup->handler	= handler;
845	hwgroup->expiry		= expiry;
846	hwgroup->timer.expires	= jiffies + timeout;
847	hwgroup->req_gen_timer	= hwgroup->req_gen;
848	add_timer(&hwgroup->timer);
849}
850
851void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
852		      unsigned int timeout, ide_expiry_t *expiry)
853{
854	unsigned long flags;
855	spin_lock_irqsave(&ide_lock, flags);
856	__ide_set_handler(drive, handler, timeout, expiry);
857	spin_unlock_irqrestore(&ide_lock, flags);
858}
859
860EXPORT_SYMBOL(ide_set_handler);
861
862/**
863 *	ide_execute_command	-	execute an IDE command
864 *	@drive: IDE drive to issue the command against
865 *	@command: command byte to write
866 *	@handler: handler for next phase
867 *	@timeout: timeout for command
868 *	@expiry:  handler to run on timeout
869 *
870 *	Helper function to issue an IDE command. This handles the
871 *	atomicity requirements, command timing and ensures that the
872 *	handler and IRQ setup do not race. All IDE command kick off
873 *	should go via this function or do equivalent locking.
874 */
875
876void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
877			 unsigned timeout, ide_expiry_t *expiry)
878{
879	unsigned long flags;
880	ide_hwif_t *hwif = HWIF(drive);
881
882	spin_lock_irqsave(&ide_lock, flags);
883	__ide_set_handler(drive, handler, timeout, expiry);
884	hwif->OUTBSYNC(drive, cmd, hwif->io_ports.command_addr);
885	/*
886	 * Drive takes 400nS to respond, we must avoid the IRQ being
887	 * serviced before that.
888	 *
889	 * FIXME: we could skip this delay with care on non shared devices
890	 */
891	ndelay(400);
892	spin_unlock_irqrestore(&ide_lock, flags);
893}
894EXPORT_SYMBOL(ide_execute_command);
895
896void ide_execute_pkt_cmd(ide_drive_t *drive)
897{
898	ide_hwif_t *hwif = drive->hwif;
899	unsigned long flags;
900
901	spin_lock_irqsave(&ide_lock, flags);
902	hwif->OUTBSYNC(drive, WIN_PACKETCMD, hwif->io_ports.command_addr);
903	ndelay(400);
904	spin_unlock_irqrestore(&ide_lock, flags);
905}
906EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
907
908/* needed below */
909static ide_startstop_t do_reset1 (ide_drive_t *, int);
910
911/*
912 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
913 * during an atapi drive reset operation. If the drive has not yet responded,
914 * and we have not yet hit our maximum waiting time, then the timer is restarted
915 * for another 50ms.
916 */
917static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
918{
919	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
920	u8 stat;
921
922	SELECT_DRIVE(drive);
923	udelay (10);
924	stat = ide_read_status(drive);
925
926	if (OK_STAT(stat, 0, BUSY_STAT))
927		printk("%s: ATAPI reset complete\n", drive->name);
928	else {
929		if (time_before(jiffies, hwgroup->poll_timeout)) {
930			ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
931			/* continue polling */
932			return ide_started;
933		}
934		/* end of polling */
935		hwgroup->polling = 0;
936		printk("%s: ATAPI reset timed-out, status=0x%02x\n",
937				drive->name, stat);
938		/* do it the old fashioned way */
939		return do_reset1(drive, 1);
940	}
941	/* done polling */
942	hwgroup->polling = 0;
943	hwgroup->resetting = 0;
944	return ide_stopped;
945}
946
947/*
948 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
949 * during an ide reset operation. If the drives have not yet responded,
950 * and we have not yet hit our maximum waiting time, then the timer is restarted
951 * for another 50ms.
952 */
953static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
954{
955	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
956	ide_hwif_t *hwif	= HWIF(drive);
957	const struct ide_port_ops *port_ops = hwif->port_ops;
958	u8 tmp;
959
960	if (port_ops && port_ops->reset_poll) {
961		if (port_ops->reset_poll(drive)) {
962			printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
963				hwif->name, drive->name);
964			return ide_stopped;
965		}
966	}
967
968	tmp = ide_read_status(drive);
969
970	if (!OK_STAT(tmp, 0, BUSY_STAT)) {
971		if (time_before(jiffies, hwgroup->poll_timeout)) {
972			ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
973			/* continue polling */
974			return ide_started;
975		}
976		printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
977		drive->failures++;
978	} else  {
979		printk("%s: reset: ", hwif->name);
980		tmp = ide_read_error(drive);
981
982		if (tmp == 1) {
983			printk("success\n");
984			drive->failures = 0;
985		} else {
986			drive->failures++;
987			printk("master: ");
988			switch (tmp & 0x7f) {
989				case 1: printk("passed");
990					break;
991				case 2: printk("formatter device error");
992					break;
993				case 3: printk("sector buffer error");
994					break;
995				case 4: printk("ECC circuitry error");
996					break;
997				case 5: printk("controlling MPU error");
998					break;
999				default:printk("error (0x%02x?)", tmp);
1000			}
1001			if (tmp & 0x80)
1002				printk("; slave: failed");
1003			printk("\n");
1004		}
1005	}
1006	hwgroup->polling = 0;	/* done polling */
1007	hwgroup->resetting = 0; /* done reset attempt */
1008	return ide_stopped;
1009}
1010
1011static void ide_disk_pre_reset(ide_drive_t *drive)
1012{
1013	int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1014
1015	drive->special.all = 0;
1016	drive->special.b.set_geometry = legacy;
1017	drive->special.b.recalibrate  = legacy;
1018	drive->mult_count = 0;
1019	if (!drive->keep_settings && !drive->using_dma)
1020		drive->mult_req = 0;
1021	if (drive->mult_req != drive->mult_count)
1022		drive->special.b.set_multmode = 1;
1023}
1024
1025static void pre_reset(ide_drive_t *drive)
1026{
1027	const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1028
1029	if (drive->media == ide_disk)
1030		ide_disk_pre_reset(drive);
1031	else
1032		drive->post_reset = 1;
1033
1034	if (drive->using_dma) {
1035		if (drive->crc_count)
1036			ide_check_dma_crc(drive);
1037		else
1038			ide_dma_off(drive);
1039	}
1040
1041	if (!drive->keep_settings) {
1042		if (!drive->using_dma) {
1043			drive->unmask = 0;
1044			drive->io_32bit = 0;
1045		}
1046		return;
1047	}
1048
1049	if (port_ops && port_ops->pre_reset)
1050		port_ops->pre_reset(drive);
1051
1052	if (drive->current_speed != 0xff)
1053		drive->desired_speed = drive->current_speed;
1054	drive->current_speed = 0xff;
1055}
1056
1057/*
1058 * do_reset1() attempts to recover a confused drive by resetting it.
1059 * Unfortunately, resetting a disk drive actually resets all devices on
1060 * the same interface, so it can really be thought of as resetting the
1061 * interface rather than resetting the drive.
1062 *
1063 * ATAPI devices have their own reset mechanism which allows them to be
1064 * individually reset without clobbering other devices on the same interface.
1065 *
1066 * Unfortunately, the IDE interface does not generate an interrupt to let
1067 * us know when the reset operation has finished, so we must poll for this.
1068 * Equally poor, though, is the fact that this may a very long time to complete,
1069 * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1070 * we set a timer to poll at 50ms intervals.
1071 */
1072static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1073{
1074	unsigned int unit;
1075	unsigned long flags;
1076	ide_hwif_t *hwif;
1077	ide_hwgroup_t *hwgroup;
1078	struct ide_io_ports *io_ports;
1079	const struct ide_port_ops *port_ops;
1080	u8 ctl;
1081
1082	spin_lock_irqsave(&ide_lock, flags);
1083	hwif = HWIF(drive);
1084	hwgroup = HWGROUP(drive);
1085
1086	io_ports = &hwif->io_ports;
1087
1088	/* We must not reset with running handlers */
1089	BUG_ON(hwgroup->handler != NULL);
1090
1091	/* For an ATAPI device, first try an ATAPI SRST. */
1092	if (drive->media != ide_disk && !do_not_try_atapi) {
1093		hwgroup->resetting = 1;
1094		pre_reset(drive);
1095		SELECT_DRIVE(drive);
1096		udelay (20);
1097		hwif->OUTBSYNC(drive, WIN_SRST, io_ports->command_addr);
1098		ndelay(400);
1099		hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1100		hwgroup->polling = 1;
1101		__ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1102		spin_unlock_irqrestore(&ide_lock, flags);
1103		return ide_started;
1104	}
1105
1106	/*
1107	 * First, reset any device state data we were maintaining
1108	 * for any of the drives on this interface.
1109	 */
1110	for (unit = 0; unit < MAX_DRIVES; ++unit)
1111		pre_reset(&hwif->drives[unit]);
1112
1113	if (io_ports->ctl_addr == 0) {
1114		spin_unlock_irqrestore(&ide_lock, flags);
1115		return ide_stopped;
1116	}
1117
1118	hwgroup->resetting = 1;
1119	/*
1120	 * Note that we also set nIEN while resetting the device,
1121	 * to mask unwanted interrupts from the interface during the reset.
1122	 * However, due to the design of PC hardware, this will cause an
1123	 * immediate interrupt due to the edge transition it produces.
1124	 * This single interrupt gives us a "fast poll" for drives that
1125	 * recover from reset very quickly, saving us the first 50ms wait time.
1126	 */
1127	/* set SRST and nIEN */
1128	hwif->OUTBSYNC(drive, drive->ctl|6, io_ports->ctl_addr);
1129	/* more than enough time */
1130	udelay(10);
1131	if (drive->quirk_list == 2)
1132		ctl = drive->ctl;	/* clear SRST and nIEN */
1133	else
1134		ctl = drive->ctl | 2;	/* clear SRST, leave nIEN */
1135	hwif->OUTBSYNC(drive, ctl, io_ports->ctl_addr);
1136	/* more than enough time */
1137	udelay(10);
1138	hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1139	hwgroup->polling = 1;
1140	__ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1141
1142	/*
1143	 * Some weird controller like resetting themselves to a strange
1144	 * state when the disks are reset this way. At least, the Winbond
1145	 * 553 documentation says that
1146	 */
1147	port_ops = hwif->port_ops;
1148	if (port_ops && port_ops->resetproc)
1149		port_ops->resetproc(drive);
1150
1151	spin_unlock_irqrestore(&ide_lock, flags);
1152	return ide_started;
1153}
1154
1155/*
1156 * ide_do_reset() is the entry point to the drive/interface reset code.
1157 */
1158
1159ide_startstop_t ide_do_reset (ide_drive_t *drive)
1160{
1161	return do_reset1(drive, 0);
1162}
1163
1164EXPORT_SYMBOL(ide_do_reset);
1165
1166/*
1167 * ide_wait_not_busy() waits for the currently selected device on the hwif
1168 * to report a non-busy status, see comments in ide_probe_port().
1169 */
1170int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1171{
1172	u8 stat = 0;
1173
1174	while(timeout--) {
1175		/*
1176		 * Turn this into a schedule() sleep once I'm sure
1177		 * about locking issues (2.5 work ?).
1178		 */
1179		mdelay(1);
1180		stat = hwif->INB(hwif->io_ports.status_addr);
1181		if ((stat & BUSY_STAT) == 0)
1182			return 0;
1183		/*
1184		 * Assume a value of 0xff means nothing is connected to
1185		 * the interface and it doesn't implement the pull-down
1186		 * resistor on D7.
1187		 */
1188		if (stat == 0xff)
1189			return -ENODEV;
1190		touch_softlockup_watchdog();
1191		touch_nmi_watchdog();
1192	}
1193	return -EBUSY;
1194}
1195
1196EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1197
1198