ide-iops.c revision f1ca6d37f991347b87d86430db42e2ab139d1b1d
1/*
2 * linux/drivers/ide/ide-iops.c	Version 0.37	Mar 05, 2003
3 *
4 *  Copyright (C) 2000-2002	Andre Hedrick <andre@linux-ide.org>
5 *  Copyright (C) 2003		Red Hat <alan@redhat.com>
6 *
7 */
8
9#include <linux/module.h>
10#include <linux/types.h>
11#include <linux/string.h>
12#include <linux/kernel.h>
13#include <linux/timer.h>
14#include <linux/mm.h>
15#include <linux/interrupt.h>
16#include <linux/major.h>
17#include <linux/errno.h>
18#include <linux/genhd.h>
19#include <linux/blkpg.h>
20#include <linux/slab.h>
21#include <linux/pci.h>
22#include <linux/delay.h>
23#include <linux/hdreg.h>
24#include <linux/ide.h>
25#include <linux/bitops.h>
26#include <linux/nmi.h>
27
28#include <asm/byteorder.h>
29#include <asm/irq.h>
30#include <asm/uaccess.h>
31#include <asm/io.h>
32
33/*
34 *	Conventional PIO operations for ATA devices
35 */
36
37static u8 ide_inb (unsigned long port)
38{
39	return (u8) inb(port);
40}
41
42static u16 ide_inw (unsigned long port)
43{
44	return (u16) inw(port);
45}
46
47static void ide_insw (unsigned long port, void *addr, u32 count)
48{
49	insw(port, addr, count);
50}
51
52static void ide_insl (unsigned long port, void *addr, u32 count)
53{
54	insl(port, addr, count);
55}
56
57static void ide_outb (u8 val, unsigned long port)
58{
59	outb(val, port);
60}
61
62static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
63{
64	outb(addr, port);
65}
66
67static void ide_outw (u16 val, unsigned long port)
68{
69	outw(val, port);
70}
71
72static void ide_outsw (unsigned long port, void *addr, u32 count)
73{
74	outsw(port, addr, count);
75}
76
77static void ide_outsl (unsigned long port, void *addr, u32 count)
78{
79	outsl(port, addr, count);
80}
81
82void default_hwif_iops (ide_hwif_t *hwif)
83{
84	hwif->OUTB	= ide_outb;
85	hwif->OUTBSYNC	= ide_outbsync;
86	hwif->OUTW	= ide_outw;
87	hwif->OUTSW	= ide_outsw;
88	hwif->OUTSL	= ide_outsl;
89	hwif->INB	= ide_inb;
90	hwif->INW	= ide_inw;
91	hwif->INSW	= ide_insw;
92	hwif->INSL	= ide_insl;
93}
94
95/*
96 *	MMIO operations, typically used for SATA controllers
97 */
98
99static u8 ide_mm_inb (unsigned long port)
100{
101	return (u8) readb((void __iomem *) port);
102}
103
104static u16 ide_mm_inw (unsigned long port)
105{
106	return (u16) readw((void __iomem *) port);
107}
108
109static void ide_mm_insw (unsigned long port, void *addr, u32 count)
110{
111	__ide_mm_insw((void __iomem *) port, addr, count);
112}
113
114static void ide_mm_insl (unsigned long port, void *addr, u32 count)
115{
116	__ide_mm_insl((void __iomem *) port, addr, count);
117}
118
119static void ide_mm_outb (u8 value, unsigned long port)
120{
121	writeb(value, (void __iomem *) port);
122}
123
124static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
125{
126	writeb(value, (void __iomem *) port);
127}
128
129static void ide_mm_outw (u16 value, unsigned long port)
130{
131	writew(value, (void __iomem *) port);
132}
133
134static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
135{
136	__ide_mm_outsw((void __iomem *) port, addr, count);
137}
138
139static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
140{
141	__ide_mm_outsl((void __iomem *) port, addr, count);
142}
143
144void default_hwif_mmiops (ide_hwif_t *hwif)
145{
146	hwif->OUTB	= ide_mm_outb;
147	/* Most systems will need to override OUTBSYNC, alas however
148	   this one is controller specific! */
149	hwif->OUTBSYNC	= ide_mm_outbsync;
150	hwif->OUTW	= ide_mm_outw;
151	hwif->OUTSW	= ide_mm_outsw;
152	hwif->OUTSL	= ide_mm_outsl;
153	hwif->INB	= ide_mm_inb;
154	hwif->INW	= ide_mm_inw;
155	hwif->INSW	= ide_mm_insw;
156	hwif->INSL	= ide_mm_insl;
157}
158
159EXPORT_SYMBOL(default_hwif_mmiops);
160
161u32 ide_read_24 (ide_drive_t *drive)
162{
163	u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG);
164	u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG);
165	u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG);
166	return (hcyl<<16)|(lcyl<<8)|sect;
167}
168
169void SELECT_DRIVE (ide_drive_t *drive)
170{
171	if (HWIF(drive)->selectproc)
172		HWIF(drive)->selectproc(drive);
173	HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
174}
175
176EXPORT_SYMBOL(SELECT_DRIVE);
177
178void SELECT_INTERRUPT (ide_drive_t *drive)
179{
180	if (HWIF(drive)->intrproc)
181		HWIF(drive)->intrproc(drive);
182	else
183		HWIF(drive)->OUTB(drive->ctl|2, IDE_CONTROL_REG);
184}
185
186void SELECT_MASK (ide_drive_t *drive, int mask)
187{
188	if (HWIF(drive)->maskproc)
189		HWIF(drive)->maskproc(drive, mask);
190}
191
192void QUIRK_LIST (ide_drive_t *drive)
193{
194	if (HWIF(drive)->quirkproc)
195		drive->quirk_list = HWIF(drive)->quirkproc(drive);
196}
197
198/*
199 * Some localbus EIDE interfaces require a special access sequence
200 * when using 32-bit I/O instructions to transfer data.  We call this
201 * the "vlb_sync" sequence, which consists of three successive reads
202 * of the sector count register location, with interrupts disabled
203 * to ensure that the reads all happen together.
204 */
205static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
206{
207	(void) HWIF(drive)->INB(port);
208	(void) HWIF(drive)->INB(port);
209	(void) HWIF(drive)->INB(port);
210}
211
212/*
213 * This is used for most PIO data transfers *from* the IDE interface
214 */
215static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
216{
217	ide_hwif_t *hwif	= HWIF(drive);
218	u8 io_32bit		= drive->io_32bit;
219
220	if (io_32bit) {
221		if (io_32bit & 2) {
222			unsigned long flags;
223			local_irq_save(flags);
224			ata_vlb_sync(drive, IDE_NSECTOR_REG);
225			hwif->INSL(IDE_DATA_REG, buffer, wcount);
226			local_irq_restore(flags);
227		} else
228			hwif->INSL(IDE_DATA_REG, buffer, wcount);
229	} else {
230		hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
231	}
232}
233
234/*
235 * This is used for most PIO data transfers *to* the IDE interface
236 */
237static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
238{
239	ide_hwif_t *hwif	= HWIF(drive);
240	u8 io_32bit		= drive->io_32bit;
241
242	if (io_32bit) {
243		if (io_32bit & 2) {
244			unsigned long flags;
245			local_irq_save(flags);
246			ata_vlb_sync(drive, IDE_NSECTOR_REG);
247			hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
248			local_irq_restore(flags);
249		} else
250			hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
251	} else {
252		hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
253	}
254}
255
256/*
257 * The following routines are mainly used by the ATAPI drivers.
258 *
259 * These routines will round up any request for an odd number of bytes,
260 * so if an odd bytecount is specified, be sure that there's at least one
261 * extra byte allocated for the buffer.
262 */
263
264static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
265{
266	ide_hwif_t *hwif = HWIF(drive);
267
268	++bytecount;
269#if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
270	if (MACH_IS_ATARI || MACH_IS_Q40) {
271		/* Atari has a byte-swapped IDE interface */
272		insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
273		return;
274	}
275#endif /* CONFIG_ATARI || CONFIG_Q40 */
276	hwif->ata_input_data(drive, buffer, bytecount / 4);
277	if ((bytecount & 0x03) >= 2)
278		hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
279}
280
281static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
282{
283	ide_hwif_t *hwif = HWIF(drive);
284
285	++bytecount;
286#if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
287	if (MACH_IS_ATARI || MACH_IS_Q40) {
288		/* Atari has a byte-swapped IDE interface */
289		outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
290		return;
291	}
292#endif /* CONFIG_ATARI || CONFIG_Q40 */
293	hwif->ata_output_data(drive, buffer, bytecount / 4);
294	if ((bytecount & 0x03) >= 2)
295		hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
296}
297
298void default_hwif_transport(ide_hwif_t *hwif)
299{
300	hwif->ata_input_data		= ata_input_data;
301	hwif->ata_output_data		= ata_output_data;
302	hwif->atapi_input_bytes		= atapi_input_bytes;
303	hwif->atapi_output_bytes	= atapi_output_bytes;
304}
305
306void ide_fix_driveid (struct hd_driveid *id)
307{
308#ifndef __LITTLE_ENDIAN
309# ifdef __BIG_ENDIAN
310	int i;
311	u16 *stringcast;
312
313	id->config         = __le16_to_cpu(id->config);
314	id->cyls           = __le16_to_cpu(id->cyls);
315	id->reserved2      = __le16_to_cpu(id->reserved2);
316	id->heads          = __le16_to_cpu(id->heads);
317	id->track_bytes    = __le16_to_cpu(id->track_bytes);
318	id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
319	id->sectors        = __le16_to_cpu(id->sectors);
320	id->vendor0        = __le16_to_cpu(id->vendor0);
321	id->vendor1        = __le16_to_cpu(id->vendor1);
322	id->vendor2        = __le16_to_cpu(id->vendor2);
323	stringcast = (u16 *)&id->serial_no[0];
324	for (i = 0; i < (20/2); i++)
325		stringcast[i] = __le16_to_cpu(stringcast[i]);
326	id->buf_type       = __le16_to_cpu(id->buf_type);
327	id->buf_size       = __le16_to_cpu(id->buf_size);
328	id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
329	stringcast = (u16 *)&id->fw_rev[0];
330	for (i = 0; i < (8/2); i++)
331		stringcast[i] = __le16_to_cpu(stringcast[i]);
332	stringcast = (u16 *)&id->model[0];
333	for (i = 0; i < (40/2); i++)
334		stringcast[i] = __le16_to_cpu(stringcast[i]);
335	id->dword_io       = __le16_to_cpu(id->dword_io);
336	id->reserved50     = __le16_to_cpu(id->reserved50);
337	id->field_valid    = __le16_to_cpu(id->field_valid);
338	id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
339	id->cur_heads      = __le16_to_cpu(id->cur_heads);
340	id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
341	id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
342	id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
343	id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
344	id->dma_1word      = __le16_to_cpu(id->dma_1word);
345	id->dma_mword      = __le16_to_cpu(id->dma_mword);
346	id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
347	id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
348	id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
349	id->eide_pio       = __le16_to_cpu(id->eide_pio);
350	id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
351	for (i = 0; i < 2; ++i)
352		id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
353	for (i = 0; i < 4; ++i)
354		id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
355	id->queue_depth    = __le16_to_cpu(id->queue_depth);
356	for (i = 0; i < 4; ++i)
357		id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
358	id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
359	id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
360	id->command_set_1  = __le16_to_cpu(id->command_set_1);
361	id->command_set_2  = __le16_to_cpu(id->command_set_2);
362	id->cfsse          = __le16_to_cpu(id->cfsse);
363	id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
364	id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
365	id->csf_default    = __le16_to_cpu(id->csf_default);
366	id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
367	id->trseuc         = __le16_to_cpu(id->trseuc);
368	id->trsEuc         = __le16_to_cpu(id->trsEuc);
369	id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
370	id->mprc           = __le16_to_cpu(id->mprc);
371	id->hw_config      = __le16_to_cpu(id->hw_config);
372	id->acoustic       = __le16_to_cpu(id->acoustic);
373	id->msrqs          = __le16_to_cpu(id->msrqs);
374	id->sxfert         = __le16_to_cpu(id->sxfert);
375	id->sal            = __le16_to_cpu(id->sal);
376	id->spg            = __le32_to_cpu(id->spg);
377	id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
378	for (i = 0; i < 22; i++)
379		id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
380	id->last_lun       = __le16_to_cpu(id->last_lun);
381	id->word127        = __le16_to_cpu(id->word127);
382	id->dlf            = __le16_to_cpu(id->dlf);
383	id->csfo           = __le16_to_cpu(id->csfo);
384	for (i = 0; i < 26; i++)
385		id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
386	id->word156        = __le16_to_cpu(id->word156);
387	for (i = 0; i < 3; i++)
388		id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
389	id->cfa_power      = __le16_to_cpu(id->cfa_power);
390	for (i = 0; i < 14; i++)
391		id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
392	for (i = 0; i < 31; i++)
393		id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
394	for (i = 0; i < 48; i++)
395		id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
396	id->integrity_word  = __le16_to_cpu(id->integrity_word);
397# else
398#  error "Please fix <asm/byteorder.h>"
399# endif
400#endif
401}
402
403/*
404 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
405 * removing leading/trailing blanks and compressing internal blanks.
406 * It is primarily used to tidy up the model name/number fields as
407 * returned by the WIN_[P]IDENTIFY commands.
408 */
409
410void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
411{
412	u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
413
414	if (byteswap) {
415		/* convert from big-endian to host byte order */
416		for (p = end ; p != s;) {
417			unsigned short *pp = (unsigned short *) (p -= 2);
418			*pp = ntohs(*pp);
419		}
420	}
421	/* strip leading blanks */
422	while (s != end && *s == ' ')
423		++s;
424	/* compress internal blanks and strip trailing blanks */
425	while (s != end && *s) {
426		if (*s++ != ' ' || (s != end && *s && *s != ' '))
427			*p++ = *(s-1);
428	}
429	/* wipe out trailing garbage */
430	while (p != end)
431		*p++ = '\0';
432}
433
434EXPORT_SYMBOL(ide_fixstring);
435
436/*
437 * Needed for PCI irq sharing
438 */
439int drive_is_ready (ide_drive_t *drive)
440{
441	ide_hwif_t *hwif	= HWIF(drive);
442	u8 stat			= 0;
443
444	if (drive->waiting_for_dma)
445		return hwif->ide_dma_test_irq(drive);
446
447#if 0
448	/* need to guarantee 400ns since last command was issued */
449	udelay(1);
450#endif
451
452	/*
453	 * We do a passive status test under shared PCI interrupts on
454	 * cards that truly share the ATA side interrupt, but may also share
455	 * an interrupt with another pci card/device.  We make no assumptions
456	 * about possible isa-pnp and pci-pnp issues yet.
457	 */
458	if (IDE_CONTROL_REG)
459		stat = hwif->INB(IDE_ALTSTATUS_REG);
460	else
461		/* Note: this may clear a pending IRQ!! */
462		stat = hwif->INB(IDE_STATUS_REG);
463
464	if (stat & BUSY_STAT)
465		/* drive busy:  definitely not interrupting */
466		return 0;
467
468	/* drive ready: *might* be interrupting */
469	return 1;
470}
471
472EXPORT_SYMBOL(drive_is_ready);
473
474/*
475 * This routine busy-waits for the drive status to be not "busy".
476 * It then checks the status for all of the "good" bits and none
477 * of the "bad" bits, and if all is okay it returns 0.  All other
478 * cases return error -- caller may then invoke ide_error().
479 *
480 * This routine should get fixed to not hog the cpu during extra long waits..
481 * That could be done by busy-waiting for the first jiffy or two, and then
482 * setting a timer to wake up at half second intervals thereafter,
483 * until timeout is achieved, before timing out.
484 */
485static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
486{
487	ide_hwif_t *hwif = drive->hwif;
488	unsigned long flags;
489	int i;
490	u8 stat;
491
492	udelay(1);	/* spec allows drive 400ns to assert "BUSY" */
493	if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
494		local_irq_set(flags);
495		timeout += jiffies;
496		while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
497			if (time_after(jiffies, timeout)) {
498				/*
499				 * One last read after the timeout in case
500				 * heavy interrupt load made us not make any
501				 * progress during the timeout..
502				 */
503				stat = hwif->INB(IDE_STATUS_REG);
504				if (!(stat & BUSY_STAT))
505					break;
506
507				local_irq_restore(flags);
508				*rstat = stat;
509				return -EBUSY;
510			}
511		}
512		local_irq_restore(flags);
513	}
514	/*
515	 * Allow status to settle, then read it again.
516	 * A few rare drives vastly violate the 400ns spec here,
517	 * so we'll wait up to 10usec for a "good" status
518	 * rather than expensively fail things immediately.
519	 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
520	 */
521	for (i = 0; i < 10; i++) {
522		udelay(1);
523		if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad)) {
524			*rstat = stat;
525			return 0;
526		}
527	}
528	*rstat = stat;
529	return -EFAULT;
530}
531
532/*
533 * In case of error returns error value after doing "*startstop = ide_error()".
534 * The caller should return the updated value of "startstop" in this case,
535 * "startstop" is unchanged when the function returns 0.
536 */
537int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
538{
539	int err;
540	u8 stat;
541
542	/* bail early if we've exceeded max_failures */
543	if (drive->max_failures && (drive->failures > drive->max_failures)) {
544		*startstop = ide_stopped;
545		return 1;
546	}
547
548	err = __ide_wait_stat(drive, good, bad, timeout, &stat);
549
550	if (err) {
551		char *s = (err == -EBUSY) ? "status timeout" : "status error";
552		*startstop = ide_error(drive, s, stat);
553	}
554
555	return err;
556}
557
558EXPORT_SYMBOL(ide_wait_stat);
559
560/**
561 *	ide_in_drive_list	-	look for drive in black/white list
562 *	@id: drive identifier
563 *	@drive_table: list to inspect
564 *
565 *	Look for a drive in the blacklist and the whitelist tables
566 *	Returns 1 if the drive is found in the table.
567 */
568
569int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
570{
571	for ( ; drive_table->id_model; drive_table++)
572		if ((!strcmp(drive_table->id_model, id->model)) &&
573		    (!drive_table->id_firmware ||
574		     strstr(id->fw_rev, drive_table->id_firmware)))
575			return 1;
576	return 0;
577}
578
579EXPORT_SYMBOL_GPL(ide_in_drive_list);
580
581/*
582 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
583 * We list them here and depend on the device side cable detection for them.
584 *
585 * Some optical devices with the buggy firmwares have the same problem.
586 */
587static const struct drive_list_entry ivb_list[] = {
588	{ "QUANTUM FIREBALLlct10 05"	, "A03.0900"	},
589	{ "TSSTcorp CDDVDW SH-S202J"	, "SB00"	},
590	{ "TSSTcorp CDDVDW SH-S202J"	, "SB01"	},
591	{ "TSSTcorp CDDVDW SH-S202N"	, "SB00"	},
592	{ "TSSTcorp CDDVDW SH-S202N"	, "SB01"	},
593	{ NULL				, NULL		}
594};
595
596/*
597 *  All hosts that use the 80c ribbon must use!
598 *  The name is derived from upper byte of word 93 and the 80c ribbon.
599 */
600u8 eighty_ninty_three (ide_drive_t *drive)
601{
602	ide_hwif_t *hwif = drive->hwif;
603	struct hd_driveid *id = drive->id;
604	int ivb = ide_in_drive_list(id, ivb_list);
605
606	if (hwif->cbl == ATA_CBL_PATA40_SHORT)
607		return 1;
608
609	if (ivb)
610		printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
611				  drive->name);
612
613	if (ide_dev_is_sata(id) && !ivb)
614		return 1;
615
616	if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
617		goto no_80w;
618
619	/*
620	 * FIXME:
621	 * - force bit13 (80c cable present) check also for !ivb devices
622	 *   (unless the slave device is pre-ATA3)
623	 */
624	if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
625		return 1;
626
627no_80w:
628	if (drive->udma33_warned == 1)
629		return 0;
630
631	printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
632			    "limiting max speed to UDMA33\n",
633			    drive->name,
634			    hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
635
636	drive->udma33_warned = 1;
637
638	return 0;
639}
640
641int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
642{
643	if (args->tf.command == WIN_SETFEATURES &&
644	    args->tf.lbal > XFER_UDMA_2 &&
645	    args->tf.feature == SETFEATURES_XFER) {
646		if (eighty_ninty_three(drive) == 0) {
647			printk(KERN_WARNING "%s: UDMA speeds >UDMA33 cannot "
648					    "be set\n", drive->name);
649			return 1;
650		}
651	}
652
653	return 0;
654}
655
656/*
657 * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
658 * 1 : Safe to update drive->id DMA registers.
659 * 0 : OOPs not allowed.
660 */
661int set_transfer (ide_drive_t *drive, ide_task_t *args)
662{
663	if (args->tf.command == WIN_SETFEATURES &&
664	    args->tf.lbal >= XFER_SW_DMA_0 &&
665	    args->tf.feature == SETFEATURES_XFER &&
666	    (drive->id->dma_ultra ||
667	     drive->id->dma_mword ||
668	     drive->id->dma_1word))
669		return 1;
670
671	return 0;
672}
673
674#ifdef CONFIG_BLK_DEV_IDEDMA
675static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
676{
677	if (!drive->crc_count)
678		return drive->current_speed;
679	drive->crc_count = 0;
680
681	switch(drive->current_speed) {
682		case XFER_UDMA_7:	return XFER_UDMA_6;
683		case XFER_UDMA_6:	return XFER_UDMA_5;
684		case XFER_UDMA_5:	return XFER_UDMA_4;
685		case XFER_UDMA_4:	return XFER_UDMA_3;
686		case XFER_UDMA_3:	return XFER_UDMA_2;
687		case XFER_UDMA_2:	return XFER_UDMA_1;
688		case XFER_UDMA_1:	return XFER_UDMA_0;
689			/*
690			 * OOPS we do not goto non Ultra DMA modes
691			 * without iCRC's available we force
692			 * the system to PIO and make the user
693			 * invoke the ATA-1 ATA-2 DMA modes.
694			 */
695		case XFER_UDMA_0:
696		default:		return XFER_PIO_4;
697	}
698}
699#endif /* CONFIG_BLK_DEV_IDEDMA */
700
701int ide_driveid_update(ide_drive_t *drive)
702{
703	ide_hwif_t *hwif = drive->hwif;
704	struct hd_driveid *id;
705	unsigned long timeout, flags;
706
707	/*
708	 * Re-read drive->id for possible DMA mode
709	 * change (copied from ide-probe.c)
710	 */
711
712	SELECT_MASK(drive, 1);
713	if (IDE_CONTROL_REG)
714		hwif->OUTB(drive->ctl,IDE_CONTROL_REG);
715	msleep(50);
716	hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
717	timeout = jiffies + WAIT_WORSTCASE;
718	do {
719		if (time_after(jiffies, timeout)) {
720			SELECT_MASK(drive, 0);
721			return 0;	/* drive timed-out */
722		}
723		msleep(50);	/* give drive a breather */
724	} while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
725	msleep(50);	/* wait for IRQ and DRQ_STAT */
726	if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
727		SELECT_MASK(drive, 0);
728		printk("%s: CHECK for good STATUS\n", drive->name);
729		return 0;
730	}
731	local_irq_save(flags);
732	SELECT_MASK(drive, 0);
733	id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
734	if (!id) {
735		local_irq_restore(flags);
736		return 0;
737	}
738	ata_input_data(drive, id, SECTOR_WORDS);
739	(void) hwif->INB(IDE_STATUS_REG);	/* clear drive IRQ */
740	local_irq_enable();
741	local_irq_restore(flags);
742	ide_fix_driveid(id);
743	if (id) {
744		drive->id->dma_ultra = id->dma_ultra;
745		drive->id->dma_mword = id->dma_mword;
746		drive->id->dma_1word = id->dma_1word;
747		/* anything more ? */
748		kfree(id);
749
750		if (drive->using_dma && ide_id_dma_bug(drive))
751			ide_dma_off(drive);
752	}
753
754	return 1;
755}
756
757int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
758{
759	ide_hwif_t *hwif = drive->hwif;
760	int error = 0;
761	u8 stat;
762
763//	while (HWGROUP(drive)->busy)
764//		msleep(50);
765
766#ifdef CONFIG_BLK_DEV_IDEDMA
767	if (hwif->ide_dma_on)	/* check if host supports DMA */
768		hwif->dma_host_off(drive);
769#endif
770
771	/* Skip setting PIO flow-control modes on pre-EIDE drives */
772	if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
773		goto skip;
774
775	/*
776	 * Don't use ide_wait_cmd here - it will
777	 * attempt to set_geometry and recalibrate,
778	 * but for some reason these don't work at
779	 * this point (lost interrupt).
780	 */
781        /*
782         * Select the drive, and issue the SETFEATURES command
783         */
784	disable_irq_nosync(hwif->irq);
785
786	/*
787	 *	FIXME: we race against the running IRQ here if
788	 *	this is called from non IRQ context. If we use
789	 *	disable_irq() we hang on the error path. Work
790	 *	is needed.
791	 */
792
793	udelay(1);
794	SELECT_DRIVE(drive);
795	SELECT_MASK(drive, 0);
796	udelay(1);
797	if (IDE_CONTROL_REG)
798		hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
799	hwif->OUTB(speed, IDE_NSECTOR_REG);
800	hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
801	hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
802	if ((IDE_CONTROL_REG) && (drive->quirk_list == 2))
803		hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
804
805	error = __ide_wait_stat(drive, drive->ready_stat,
806				BUSY_STAT|DRQ_STAT|ERR_STAT,
807				WAIT_CMD, &stat);
808
809	SELECT_MASK(drive, 0);
810
811	enable_irq(hwif->irq);
812
813	if (error) {
814		(void) ide_dump_status(drive, "set_drive_speed_status", stat);
815		return error;
816	}
817
818	drive->id->dma_ultra &= ~0xFF00;
819	drive->id->dma_mword &= ~0x0F00;
820	drive->id->dma_1word &= ~0x0F00;
821
822 skip:
823#ifdef CONFIG_BLK_DEV_IDEDMA
824	if (speed >= XFER_SW_DMA_0)
825		hwif->dma_host_on(drive);
826	else if (hwif->ide_dma_on)	/* check if host supports DMA */
827		hwif->dma_off_quietly(drive);
828#endif
829
830	switch(speed) {
831		case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
832		case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
833		case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
834		case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
835		case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
836		case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
837		case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
838		case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
839		case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
840		case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
841		case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
842		case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
843		case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
844		case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
845		default: break;
846	}
847	if (!drive->init_speed)
848		drive->init_speed = speed;
849	drive->current_speed = speed;
850	return error;
851}
852
853/*
854 * This should get invoked any time we exit the driver to
855 * wait for an interrupt response from a drive.  handler() points
856 * at the appropriate code to handle the next interrupt, and a
857 * timer is started to prevent us from waiting forever in case
858 * something goes wrong (see the ide_timer_expiry() handler later on).
859 *
860 * See also ide_execute_command
861 */
862static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
863		      unsigned int timeout, ide_expiry_t *expiry)
864{
865	ide_hwgroup_t *hwgroup = HWGROUP(drive);
866
867	if (hwgroup->handler != NULL) {
868		printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
869			"old=%p, new=%p\n",
870			drive->name, hwgroup->handler, handler);
871	}
872	hwgroup->handler	= handler;
873	hwgroup->expiry		= expiry;
874	hwgroup->timer.expires	= jiffies + timeout;
875	hwgroup->req_gen_timer = hwgroup->req_gen;
876	add_timer(&hwgroup->timer);
877}
878
879void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
880		      unsigned int timeout, ide_expiry_t *expiry)
881{
882	unsigned long flags;
883	spin_lock_irqsave(&ide_lock, flags);
884	__ide_set_handler(drive, handler, timeout, expiry);
885	spin_unlock_irqrestore(&ide_lock, flags);
886}
887
888EXPORT_SYMBOL(ide_set_handler);
889
890/**
891 *	ide_execute_command	-	execute an IDE command
892 *	@drive: IDE drive to issue the command against
893 *	@command: command byte to write
894 *	@handler: handler for next phase
895 *	@timeout: timeout for command
896 *	@expiry:  handler to run on timeout
897 *
898 *	Helper function to issue an IDE command. This handles the
899 *	atomicity requirements, command timing and ensures that the
900 *	handler and IRQ setup do not race. All IDE command kick off
901 *	should go via this function or do equivalent locking.
902 */
903
904void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
905			 unsigned timeout, ide_expiry_t *expiry)
906{
907	unsigned long flags;
908	ide_hwgroup_t *hwgroup = HWGROUP(drive);
909	ide_hwif_t *hwif = HWIF(drive);
910
911	spin_lock_irqsave(&ide_lock, flags);
912
913	BUG_ON(hwgroup->handler);
914	hwgroup->handler	= handler;
915	hwgroup->expiry		= expiry;
916	hwgroup->timer.expires	= jiffies + timeout;
917	hwgroup->req_gen_timer = hwgroup->req_gen;
918	add_timer(&hwgroup->timer);
919	hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
920	/* Drive takes 400nS to respond, we must avoid the IRQ being
921	   serviced before that.
922
923	   FIXME: we could skip this delay with care on non shared
924	   devices
925	*/
926	ndelay(400);
927	spin_unlock_irqrestore(&ide_lock, flags);
928}
929
930EXPORT_SYMBOL(ide_execute_command);
931
932
933/* needed below */
934static ide_startstop_t do_reset1 (ide_drive_t *, int);
935
936/*
937 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
938 * during an atapi drive reset operation. If the drive has not yet responded,
939 * and we have not yet hit our maximum waiting time, then the timer is restarted
940 * for another 50ms.
941 */
942static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
943{
944	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
945	ide_hwif_t *hwif	= HWIF(drive);
946	u8 stat;
947
948	SELECT_DRIVE(drive);
949	udelay (10);
950
951	if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
952		printk("%s: ATAPI reset complete\n", drive->name);
953	} else {
954		if (time_before(jiffies, hwgroup->poll_timeout)) {
955			BUG_ON(HWGROUP(drive)->handler != NULL);
956			ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
957			/* continue polling */
958			return ide_started;
959		}
960		/* end of polling */
961		hwgroup->polling = 0;
962		printk("%s: ATAPI reset timed-out, status=0x%02x\n",
963				drive->name, stat);
964		/* do it the old fashioned way */
965		return do_reset1(drive, 1);
966	}
967	/* done polling */
968	hwgroup->polling = 0;
969	hwgroup->resetting = 0;
970	return ide_stopped;
971}
972
973/*
974 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
975 * during an ide reset operation. If the drives have not yet responded,
976 * and we have not yet hit our maximum waiting time, then the timer is restarted
977 * for another 50ms.
978 */
979static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
980{
981	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
982	ide_hwif_t *hwif	= HWIF(drive);
983	u8 tmp;
984
985	if (hwif->reset_poll != NULL) {
986		if (hwif->reset_poll(drive)) {
987			printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
988				hwif->name, drive->name);
989			return ide_stopped;
990		}
991	}
992
993	if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
994		if (time_before(jiffies, hwgroup->poll_timeout)) {
995			BUG_ON(HWGROUP(drive)->handler != NULL);
996			ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
997			/* continue polling */
998			return ide_started;
999		}
1000		printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
1001		drive->failures++;
1002	} else  {
1003		printk("%s: reset: ", hwif->name);
1004		if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
1005			printk("success\n");
1006			drive->failures = 0;
1007		} else {
1008			drive->failures++;
1009			printk("master: ");
1010			switch (tmp & 0x7f) {
1011				case 1: printk("passed");
1012					break;
1013				case 2: printk("formatter device error");
1014					break;
1015				case 3: printk("sector buffer error");
1016					break;
1017				case 4: printk("ECC circuitry error");
1018					break;
1019				case 5: printk("controlling MPU error");
1020					break;
1021				default:printk("error (0x%02x?)", tmp);
1022			}
1023			if (tmp & 0x80)
1024				printk("; slave: failed");
1025			printk("\n");
1026		}
1027	}
1028	hwgroup->polling = 0;	/* done polling */
1029	hwgroup->resetting = 0; /* done reset attempt */
1030	return ide_stopped;
1031}
1032
1033static void check_dma_crc(ide_drive_t *drive)
1034{
1035#ifdef CONFIG_BLK_DEV_IDEDMA
1036	if (drive->crc_count) {
1037		drive->hwif->dma_off_quietly(drive);
1038		ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
1039		if (drive->current_speed >= XFER_SW_DMA_0)
1040			(void) HWIF(drive)->ide_dma_on(drive);
1041	} else
1042		ide_dma_off(drive);
1043#endif
1044}
1045
1046static void ide_disk_pre_reset(ide_drive_t *drive)
1047{
1048	int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1049
1050	drive->special.all = 0;
1051	drive->special.b.set_geometry = legacy;
1052	drive->special.b.recalibrate  = legacy;
1053	if (OK_TO_RESET_CONTROLLER)
1054		drive->mult_count = 0;
1055	if (!drive->keep_settings && !drive->using_dma)
1056		drive->mult_req = 0;
1057	if (drive->mult_req != drive->mult_count)
1058		drive->special.b.set_multmode = 1;
1059}
1060
1061static void pre_reset(ide_drive_t *drive)
1062{
1063	if (drive->media == ide_disk)
1064		ide_disk_pre_reset(drive);
1065	else
1066		drive->post_reset = 1;
1067
1068	if (!drive->keep_settings) {
1069		if (drive->using_dma) {
1070			check_dma_crc(drive);
1071		} else {
1072			drive->unmask = 0;
1073			drive->io_32bit = 0;
1074		}
1075		return;
1076	}
1077	if (drive->using_dma)
1078		check_dma_crc(drive);
1079
1080	if (HWIF(drive)->pre_reset != NULL)
1081		HWIF(drive)->pre_reset(drive);
1082
1083	if (drive->current_speed != 0xff)
1084		drive->desired_speed = drive->current_speed;
1085	drive->current_speed = 0xff;
1086}
1087
1088/*
1089 * do_reset1() attempts to recover a confused drive by resetting it.
1090 * Unfortunately, resetting a disk drive actually resets all devices on
1091 * the same interface, so it can really be thought of as resetting the
1092 * interface rather than resetting the drive.
1093 *
1094 * ATAPI devices have their own reset mechanism which allows them to be
1095 * individually reset without clobbering other devices on the same interface.
1096 *
1097 * Unfortunately, the IDE interface does not generate an interrupt to let
1098 * us know when the reset operation has finished, so we must poll for this.
1099 * Equally poor, though, is the fact that this may a very long time to complete,
1100 * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1101 * we set a timer to poll at 50ms intervals.
1102 */
1103static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1104{
1105	unsigned int unit;
1106	unsigned long flags;
1107	ide_hwif_t *hwif;
1108	ide_hwgroup_t *hwgroup;
1109
1110	spin_lock_irqsave(&ide_lock, flags);
1111	hwif = HWIF(drive);
1112	hwgroup = HWGROUP(drive);
1113
1114	/* We must not reset with running handlers */
1115	BUG_ON(hwgroup->handler != NULL);
1116
1117	/* For an ATAPI device, first try an ATAPI SRST. */
1118	if (drive->media != ide_disk && !do_not_try_atapi) {
1119		hwgroup->resetting = 1;
1120		pre_reset(drive);
1121		SELECT_DRIVE(drive);
1122		udelay (20);
1123		hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1124		ndelay(400);
1125		hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1126		hwgroup->polling = 1;
1127		__ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1128		spin_unlock_irqrestore(&ide_lock, flags);
1129		return ide_started;
1130	}
1131
1132	/*
1133	 * First, reset any device state data we were maintaining
1134	 * for any of the drives on this interface.
1135	 */
1136	for (unit = 0; unit < MAX_DRIVES; ++unit)
1137		pre_reset(&hwif->drives[unit]);
1138
1139#if OK_TO_RESET_CONTROLLER
1140	if (!IDE_CONTROL_REG) {
1141		spin_unlock_irqrestore(&ide_lock, flags);
1142		return ide_stopped;
1143	}
1144
1145	hwgroup->resetting = 1;
1146	/*
1147	 * Note that we also set nIEN while resetting the device,
1148	 * to mask unwanted interrupts from the interface during the reset.
1149	 * However, due to the design of PC hardware, this will cause an
1150	 * immediate interrupt due to the edge transition it produces.
1151	 * This single interrupt gives us a "fast poll" for drives that
1152	 * recover from reset very quickly, saving us the first 50ms wait time.
1153	 */
1154	/* set SRST and nIEN */
1155	hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1156	/* more than enough time */
1157	udelay(10);
1158	if (drive->quirk_list == 2) {
1159		/* clear SRST and nIEN */
1160		hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1161	} else {
1162		/* clear SRST, leave nIEN */
1163		hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1164	}
1165	/* more than enough time */
1166	udelay(10);
1167	hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1168	hwgroup->polling = 1;
1169	__ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1170
1171	/*
1172	 * Some weird controller like resetting themselves to a strange
1173	 * state when the disks are reset this way. At least, the Winbond
1174	 * 553 documentation says that
1175	 */
1176	if (hwif->resetproc != NULL) {
1177		hwif->resetproc(drive);
1178	}
1179
1180#endif	/* OK_TO_RESET_CONTROLLER */
1181
1182	spin_unlock_irqrestore(&ide_lock, flags);
1183	return ide_started;
1184}
1185
1186/*
1187 * ide_do_reset() is the entry point to the drive/interface reset code.
1188 */
1189
1190ide_startstop_t ide_do_reset (ide_drive_t *drive)
1191{
1192	return do_reset1(drive, 0);
1193}
1194
1195EXPORT_SYMBOL(ide_do_reset);
1196
1197/*
1198 * ide_wait_not_busy() waits for the currently selected device on the hwif
1199 * to report a non-busy status, see comments in probe_hwif().
1200 */
1201int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1202{
1203	u8 stat = 0;
1204
1205	while(timeout--) {
1206		/*
1207		 * Turn this into a schedule() sleep once I'm sure
1208		 * about locking issues (2.5 work ?).
1209		 */
1210		mdelay(1);
1211		stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1212		if ((stat & BUSY_STAT) == 0)
1213			return 0;
1214		/*
1215		 * Assume a value of 0xff means nothing is connected to
1216		 * the interface and it doesn't implement the pull-down
1217		 * resistor on D7.
1218		 */
1219		if (stat == 0xff)
1220			return -ENODEV;
1221		touch_softlockup_watchdog();
1222		touch_nmi_watchdog();
1223	}
1224	return -EBUSY;
1225}
1226
1227EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1228
1229