ide-iops.c revision fa017176f7144028aa23c1adcebb1792c891320c
1/*
2 *  Copyright (C) 2000-2002	Andre Hedrick <andre@linux-ide.org>
3 *  Copyright (C) 2003		Red Hat <alan@redhat.com>
4 *
5 */
6
7#include <linux/module.h>
8#include <linux/types.h>
9#include <linux/string.h>
10#include <linux/kernel.h>
11#include <linux/timer.h>
12#include <linux/mm.h>
13#include <linux/interrupt.h>
14#include <linux/major.h>
15#include <linux/errno.h>
16#include <linux/genhd.h>
17#include <linux/blkpg.h>
18#include <linux/slab.h>
19#include <linux/pci.h>
20#include <linux/delay.h>
21#include <linux/hdreg.h>
22#include <linux/ide.h>
23#include <linux/bitops.h>
24#include <linux/nmi.h>
25
26#include <asm/byteorder.h>
27#include <asm/irq.h>
28#include <asm/uaccess.h>
29#include <asm/io.h>
30
31/*
32 *	Conventional PIO operations for ATA devices
33 */
34
35static u8 ide_inb (unsigned long port)
36{
37	return (u8) inb(port);
38}
39
40static u16 ide_inw (unsigned long port)
41{
42	return (u16) inw(port);
43}
44
45static void ide_insw (unsigned long port, void *addr, u32 count)
46{
47	insw(port, addr, count);
48}
49
50static void ide_insl (unsigned long port, void *addr, u32 count)
51{
52	insl(port, addr, count);
53}
54
55static void ide_outb (u8 val, unsigned long port)
56{
57	outb(val, port);
58}
59
60static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
61{
62	outb(addr, port);
63}
64
65static void ide_outw (u16 val, unsigned long port)
66{
67	outw(val, port);
68}
69
70static void ide_outsw (unsigned long port, void *addr, u32 count)
71{
72	outsw(port, addr, count);
73}
74
75static void ide_outsl (unsigned long port, void *addr, u32 count)
76{
77	outsl(port, addr, count);
78}
79
80void default_hwif_iops (ide_hwif_t *hwif)
81{
82	hwif->OUTB	= ide_outb;
83	hwif->OUTBSYNC	= ide_outbsync;
84	hwif->OUTW	= ide_outw;
85	hwif->OUTSW	= ide_outsw;
86	hwif->OUTSL	= ide_outsl;
87	hwif->INB	= ide_inb;
88	hwif->INW	= ide_inw;
89	hwif->INSW	= ide_insw;
90	hwif->INSL	= ide_insl;
91}
92
93/*
94 *	MMIO operations, typically used for SATA controllers
95 */
96
97static u8 ide_mm_inb (unsigned long port)
98{
99	return (u8) readb((void __iomem *) port);
100}
101
102static u16 ide_mm_inw (unsigned long port)
103{
104	return (u16) readw((void __iomem *) port);
105}
106
107static void ide_mm_insw (unsigned long port, void *addr, u32 count)
108{
109	__ide_mm_insw((void __iomem *) port, addr, count);
110}
111
112static void ide_mm_insl (unsigned long port, void *addr, u32 count)
113{
114	__ide_mm_insl((void __iomem *) port, addr, count);
115}
116
117static void ide_mm_outb (u8 value, unsigned long port)
118{
119	writeb(value, (void __iomem *) port);
120}
121
122static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
123{
124	writeb(value, (void __iomem *) port);
125}
126
127static void ide_mm_outw (u16 value, unsigned long port)
128{
129	writew(value, (void __iomem *) port);
130}
131
132static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
133{
134	__ide_mm_outsw((void __iomem *) port, addr, count);
135}
136
137static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
138{
139	__ide_mm_outsl((void __iomem *) port, addr, count);
140}
141
142void default_hwif_mmiops (ide_hwif_t *hwif)
143{
144	hwif->OUTB	= ide_mm_outb;
145	/* Most systems will need to override OUTBSYNC, alas however
146	   this one is controller specific! */
147	hwif->OUTBSYNC	= ide_mm_outbsync;
148	hwif->OUTW	= ide_mm_outw;
149	hwif->OUTSW	= ide_mm_outsw;
150	hwif->OUTSL	= ide_mm_outsl;
151	hwif->INB	= ide_mm_inb;
152	hwif->INW	= ide_mm_inw;
153	hwif->INSW	= ide_mm_insw;
154	hwif->INSL	= ide_mm_insl;
155}
156
157EXPORT_SYMBOL(default_hwif_mmiops);
158
159void SELECT_DRIVE (ide_drive_t *drive)
160{
161	if (HWIF(drive)->selectproc)
162		HWIF(drive)->selectproc(drive);
163	HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
164}
165
166void SELECT_MASK (ide_drive_t *drive, int mask)
167{
168	if (HWIF(drive)->maskproc)
169		HWIF(drive)->maskproc(drive, mask);
170}
171
172/*
173 * Some localbus EIDE interfaces require a special access sequence
174 * when using 32-bit I/O instructions to transfer data.  We call this
175 * the "vlb_sync" sequence, which consists of three successive reads
176 * of the sector count register location, with interrupts disabled
177 * to ensure that the reads all happen together.
178 */
179static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
180{
181	(void) HWIF(drive)->INB(port);
182	(void) HWIF(drive)->INB(port);
183	(void) HWIF(drive)->INB(port);
184}
185
186/*
187 * This is used for most PIO data transfers *from* the IDE interface
188 */
189static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
190{
191	ide_hwif_t *hwif	= HWIF(drive);
192	u8 io_32bit		= drive->io_32bit;
193
194	if (io_32bit) {
195		if (io_32bit & 2) {
196			unsigned long flags;
197			local_irq_save(flags);
198			ata_vlb_sync(drive, IDE_NSECTOR_REG);
199			hwif->INSL(IDE_DATA_REG, buffer, wcount);
200			local_irq_restore(flags);
201		} else
202			hwif->INSL(IDE_DATA_REG, buffer, wcount);
203	} else {
204		hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
205	}
206}
207
208/*
209 * This is used for most PIO data transfers *to* the IDE interface
210 */
211static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
212{
213	ide_hwif_t *hwif	= HWIF(drive);
214	u8 io_32bit		= drive->io_32bit;
215
216	if (io_32bit) {
217		if (io_32bit & 2) {
218			unsigned long flags;
219			local_irq_save(flags);
220			ata_vlb_sync(drive, IDE_NSECTOR_REG);
221			hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
222			local_irq_restore(flags);
223		} else
224			hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
225	} else {
226		hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
227	}
228}
229
230/*
231 * The following routines are mainly used by the ATAPI drivers.
232 *
233 * These routines will round up any request for an odd number of bytes,
234 * so if an odd bytecount is specified, be sure that there's at least one
235 * extra byte allocated for the buffer.
236 */
237
238static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
239{
240	ide_hwif_t *hwif = HWIF(drive);
241
242	++bytecount;
243#if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
244	if (MACH_IS_ATARI || MACH_IS_Q40) {
245		/* Atari has a byte-swapped IDE interface */
246		insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
247		return;
248	}
249#endif /* CONFIG_ATARI || CONFIG_Q40 */
250	hwif->ata_input_data(drive, buffer, bytecount / 4);
251	if ((bytecount & 0x03) >= 2)
252		hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
253}
254
255static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
256{
257	ide_hwif_t *hwif = HWIF(drive);
258
259	++bytecount;
260#if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
261	if (MACH_IS_ATARI || MACH_IS_Q40) {
262		/* Atari has a byte-swapped IDE interface */
263		outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
264		return;
265	}
266#endif /* CONFIG_ATARI || CONFIG_Q40 */
267	hwif->ata_output_data(drive, buffer, bytecount / 4);
268	if ((bytecount & 0x03) >= 2)
269		hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
270}
271
272void default_hwif_transport(ide_hwif_t *hwif)
273{
274	hwif->ata_input_data		= ata_input_data;
275	hwif->ata_output_data		= ata_output_data;
276	hwif->atapi_input_bytes		= atapi_input_bytes;
277	hwif->atapi_output_bytes	= atapi_output_bytes;
278}
279
280void ide_fix_driveid (struct hd_driveid *id)
281{
282#ifndef __LITTLE_ENDIAN
283# ifdef __BIG_ENDIAN
284	int i;
285	u16 *stringcast;
286
287	id->config         = __le16_to_cpu(id->config);
288	id->cyls           = __le16_to_cpu(id->cyls);
289	id->reserved2      = __le16_to_cpu(id->reserved2);
290	id->heads          = __le16_to_cpu(id->heads);
291	id->track_bytes    = __le16_to_cpu(id->track_bytes);
292	id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
293	id->sectors        = __le16_to_cpu(id->sectors);
294	id->vendor0        = __le16_to_cpu(id->vendor0);
295	id->vendor1        = __le16_to_cpu(id->vendor1);
296	id->vendor2        = __le16_to_cpu(id->vendor2);
297	stringcast = (u16 *)&id->serial_no[0];
298	for (i = 0; i < (20/2); i++)
299		stringcast[i] = __le16_to_cpu(stringcast[i]);
300	id->buf_type       = __le16_to_cpu(id->buf_type);
301	id->buf_size       = __le16_to_cpu(id->buf_size);
302	id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
303	stringcast = (u16 *)&id->fw_rev[0];
304	for (i = 0; i < (8/2); i++)
305		stringcast[i] = __le16_to_cpu(stringcast[i]);
306	stringcast = (u16 *)&id->model[0];
307	for (i = 0; i < (40/2); i++)
308		stringcast[i] = __le16_to_cpu(stringcast[i]);
309	id->dword_io       = __le16_to_cpu(id->dword_io);
310	id->reserved50     = __le16_to_cpu(id->reserved50);
311	id->field_valid    = __le16_to_cpu(id->field_valid);
312	id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
313	id->cur_heads      = __le16_to_cpu(id->cur_heads);
314	id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
315	id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
316	id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
317	id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
318	id->dma_1word      = __le16_to_cpu(id->dma_1word);
319	id->dma_mword      = __le16_to_cpu(id->dma_mword);
320	id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
321	id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
322	id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
323	id->eide_pio       = __le16_to_cpu(id->eide_pio);
324	id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
325	for (i = 0; i < 2; ++i)
326		id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
327	for (i = 0; i < 4; ++i)
328		id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
329	id->queue_depth    = __le16_to_cpu(id->queue_depth);
330	for (i = 0; i < 4; ++i)
331		id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
332	id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
333	id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
334	id->command_set_1  = __le16_to_cpu(id->command_set_1);
335	id->command_set_2  = __le16_to_cpu(id->command_set_2);
336	id->cfsse          = __le16_to_cpu(id->cfsse);
337	id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
338	id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
339	id->csf_default    = __le16_to_cpu(id->csf_default);
340	id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
341	id->trseuc         = __le16_to_cpu(id->trseuc);
342	id->trsEuc         = __le16_to_cpu(id->trsEuc);
343	id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
344	id->mprc           = __le16_to_cpu(id->mprc);
345	id->hw_config      = __le16_to_cpu(id->hw_config);
346	id->acoustic       = __le16_to_cpu(id->acoustic);
347	id->msrqs          = __le16_to_cpu(id->msrqs);
348	id->sxfert         = __le16_to_cpu(id->sxfert);
349	id->sal            = __le16_to_cpu(id->sal);
350	id->spg            = __le32_to_cpu(id->spg);
351	id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
352	for (i = 0; i < 22; i++)
353		id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
354	id->last_lun       = __le16_to_cpu(id->last_lun);
355	id->word127        = __le16_to_cpu(id->word127);
356	id->dlf            = __le16_to_cpu(id->dlf);
357	id->csfo           = __le16_to_cpu(id->csfo);
358	for (i = 0; i < 26; i++)
359		id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
360	id->word156        = __le16_to_cpu(id->word156);
361	for (i = 0; i < 3; i++)
362		id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
363	id->cfa_power      = __le16_to_cpu(id->cfa_power);
364	for (i = 0; i < 14; i++)
365		id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
366	for (i = 0; i < 31; i++)
367		id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
368	for (i = 0; i < 48; i++)
369		id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
370	id->integrity_word  = __le16_to_cpu(id->integrity_word);
371# else
372#  error "Please fix <asm/byteorder.h>"
373# endif
374#endif
375}
376
377/*
378 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
379 * removing leading/trailing blanks and compressing internal blanks.
380 * It is primarily used to tidy up the model name/number fields as
381 * returned by the WIN_[P]IDENTIFY commands.
382 */
383
384void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
385{
386	u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
387
388	if (byteswap) {
389		/* convert from big-endian to host byte order */
390		for (p = end ; p != s;) {
391			unsigned short *pp = (unsigned short *) (p -= 2);
392			*pp = ntohs(*pp);
393		}
394	}
395	/* strip leading blanks */
396	while (s != end && *s == ' ')
397		++s;
398	/* compress internal blanks and strip trailing blanks */
399	while (s != end && *s) {
400		if (*s++ != ' ' || (s != end && *s && *s != ' '))
401			*p++ = *(s-1);
402	}
403	/* wipe out trailing garbage */
404	while (p != end)
405		*p++ = '\0';
406}
407
408EXPORT_SYMBOL(ide_fixstring);
409
410/*
411 * Needed for PCI irq sharing
412 */
413int drive_is_ready (ide_drive_t *drive)
414{
415	ide_hwif_t *hwif	= HWIF(drive);
416	u8 stat			= 0;
417
418	if (drive->waiting_for_dma)
419		return hwif->ide_dma_test_irq(drive);
420
421#if 0
422	/* need to guarantee 400ns since last command was issued */
423	udelay(1);
424#endif
425
426	/*
427	 * We do a passive status test under shared PCI interrupts on
428	 * cards that truly share the ATA side interrupt, but may also share
429	 * an interrupt with another pci card/device.  We make no assumptions
430	 * about possible isa-pnp and pci-pnp issues yet.
431	 */
432	if (IDE_CONTROL_REG)
433		stat = hwif->INB(IDE_ALTSTATUS_REG);
434	else
435		/* Note: this may clear a pending IRQ!! */
436		stat = hwif->INB(IDE_STATUS_REG);
437
438	if (stat & BUSY_STAT)
439		/* drive busy:  definitely not interrupting */
440		return 0;
441
442	/* drive ready: *might* be interrupting */
443	return 1;
444}
445
446EXPORT_SYMBOL(drive_is_ready);
447
448/*
449 * This routine busy-waits for the drive status to be not "busy".
450 * It then checks the status for all of the "good" bits and none
451 * of the "bad" bits, and if all is okay it returns 0.  All other
452 * cases return error -- caller may then invoke ide_error().
453 *
454 * This routine should get fixed to not hog the cpu during extra long waits..
455 * That could be done by busy-waiting for the first jiffy or two, and then
456 * setting a timer to wake up at half second intervals thereafter,
457 * until timeout is achieved, before timing out.
458 */
459static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
460{
461	ide_hwif_t *hwif = drive->hwif;
462	unsigned long flags;
463	int i;
464	u8 stat;
465
466	udelay(1);	/* spec allows drive 400ns to assert "BUSY" */
467	if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
468		local_irq_set(flags);
469		timeout += jiffies;
470		while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
471			if (time_after(jiffies, timeout)) {
472				/*
473				 * One last read after the timeout in case
474				 * heavy interrupt load made us not make any
475				 * progress during the timeout..
476				 */
477				stat = hwif->INB(IDE_STATUS_REG);
478				if (!(stat & BUSY_STAT))
479					break;
480
481				local_irq_restore(flags);
482				*rstat = stat;
483				return -EBUSY;
484			}
485		}
486		local_irq_restore(flags);
487	}
488	/*
489	 * Allow status to settle, then read it again.
490	 * A few rare drives vastly violate the 400ns spec here,
491	 * so we'll wait up to 10usec for a "good" status
492	 * rather than expensively fail things immediately.
493	 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
494	 */
495	for (i = 0; i < 10; i++) {
496		udelay(1);
497		if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad)) {
498			*rstat = stat;
499			return 0;
500		}
501	}
502	*rstat = stat;
503	return -EFAULT;
504}
505
506/*
507 * In case of error returns error value after doing "*startstop = ide_error()".
508 * The caller should return the updated value of "startstop" in this case,
509 * "startstop" is unchanged when the function returns 0.
510 */
511int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
512{
513	int err;
514	u8 stat;
515
516	/* bail early if we've exceeded max_failures */
517	if (drive->max_failures && (drive->failures > drive->max_failures)) {
518		*startstop = ide_stopped;
519		return 1;
520	}
521
522	err = __ide_wait_stat(drive, good, bad, timeout, &stat);
523
524	if (err) {
525		char *s = (err == -EBUSY) ? "status timeout" : "status error";
526		*startstop = ide_error(drive, s, stat);
527	}
528
529	return err;
530}
531
532EXPORT_SYMBOL(ide_wait_stat);
533
534/**
535 *	ide_in_drive_list	-	look for drive in black/white list
536 *	@id: drive identifier
537 *	@drive_table: list to inspect
538 *
539 *	Look for a drive in the blacklist and the whitelist tables
540 *	Returns 1 if the drive is found in the table.
541 */
542
543int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
544{
545	for ( ; drive_table->id_model; drive_table++)
546		if ((!strcmp(drive_table->id_model, id->model)) &&
547		    (!drive_table->id_firmware ||
548		     strstr(id->fw_rev, drive_table->id_firmware)))
549			return 1;
550	return 0;
551}
552
553EXPORT_SYMBOL_GPL(ide_in_drive_list);
554
555/*
556 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
557 * We list them here and depend on the device side cable detection for them.
558 *
559 * Some optical devices with the buggy firmwares have the same problem.
560 */
561static const struct drive_list_entry ivb_list[] = {
562	{ "QUANTUM FIREBALLlct10 05"	, "A03.0900"	},
563	{ "TSSTcorp CDDVDW SH-S202J"	, "SB00"	},
564	{ "TSSTcorp CDDVDW SH-S202J"	, "SB01"	},
565	{ "TSSTcorp CDDVDW SH-S202N"	, "SB00"	},
566	{ "TSSTcorp CDDVDW SH-S202N"	, "SB01"	},
567	{ NULL				, NULL		}
568};
569
570/*
571 *  All hosts that use the 80c ribbon must use!
572 *  The name is derived from upper byte of word 93 and the 80c ribbon.
573 */
574u8 eighty_ninty_three (ide_drive_t *drive)
575{
576	ide_hwif_t *hwif = drive->hwif;
577	struct hd_driveid *id = drive->id;
578	int ivb = ide_in_drive_list(id, ivb_list);
579
580	if (hwif->cbl == ATA_CBL_PATA40_SHORT)
581		return 1;
582
583	if (ivb)
584		printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
585				  drive->name);
586
587	if (ide_dev_is_sata(id) && !ivb)
588		return 1;
589
590	if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
591		goto no_80w;
592
593	/*
594	 * FIXME:
595	 * - force bit13 (80c cable present) check also for !ivb devices
596	 *   (unless the slave device is pre-ATA3)
597	 */
598	if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
599		return 1;
600
601no_80w:
602	if (drive->udma33_warned == 1)
603		return 0;
604
605	printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
606			    "limiting max speed to UDMA33\n",
607			    drive->name,
608			    hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
609
610	drive->udma33_warned = 1;
611
612	return 0;
613}
614
615int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
616{
617	if (args->tf.command == WIN_SETFEATURES &&
618	    args->tf.nsect > XFER_UDMA_2 &&
619	    args->tf.feature == SETFEATURES_XFER) {
620		if (eighty_ninty_three(drive) == 0) {
621			printk(KERN_WARNING "%s: UDMA speeds >UDMA33 cannot "
622					    "be set\n", drive->name);
623			return 1;
624		}
625	}
626
627	return 0;
628}
629
630/*
631 * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
632 * 1 : Safe to update drive->id DMA registers.
633 * 0 : OOPs not allowed.
634 */
635int set_transfer (ide_drive_t *drive, ide_task_t *args)
636{
637	if (args->tf.command == WIN_SETFEATURES &&
638	    args->tf.nsect >= XFER_SW_DMA_0 &&
639	    args->tf.feature == SETFEATURES_XFER &&
640	    (drive->id->dma_ultra ||
641	     drive->id->dma_mword ||
642	     drive->id->dma_1word))
643		return 1;
644
645	return 0;
646}
647
648#ifdef CONFIG_BLK_DEV_IDEDMA
649static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
650{
651	if (!drive->crc_count)
652		return drive->current_speed;
653	drive->crc_count = 0;
654
655	switch(drive->current_speed) {
656		case XFER_UDMA_7:	return XFER_UDMA_6;
657		case XFER_UDMA_6:	return XFER_UDMA_5;
658		case XFER_UDMA_5:	return XFER_UDMA_4;
659		case XFER_UDMA_4:	return XFER_UDMA_3;
660		case XFER_UDMA_3:	return XFER_UDMA_2;
661		case XFER_UDMA_2:	return XFER_UDMA_1;
662		case XFER_UDMA_1:	return XFER_UDMA_0;
663			/*
664			 * OOPS we do not goto non Ultra DMA modes
665			 * without iCRC's available we force
666			 * the system to PIO and make the user
667			 * invoke the ATA-1 ATA-2 DMA modes.
668			 */
669		case XFER_UDMA_0:
670		default:		return XFER_PIO_4;
671	}
672}
673#endif /* CONFIG_BLK_DEV_IDEDMA */
674
675int ide_driveid_update(ide_drive_t *drive)
676{
677	ide_hwif_t *hwif = drive->hwif;
678	struct hd_driveid *id;
679	unsigned long timeout, flags;
680
681	/*
682	 * Re-read drive->id for possible DMA mode
683	 * change (copied from ide-probe.c)
684	 */
685
686	SELECT_MASK(drive, 1);
687	ide_set_irq(drive, 1);
688	msleep(50);
689	hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
690	timeout = jiffies + WAIT_WORSTCASE;
691	do {
692		if (time_after(jiffies, timeout)) {
693			SELECT_MASK(drive, 0);
694			return 0;	/* drive timed-out */
695		}
696		msleep(50);	/* give drive a breather */
697	} while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
698	msleep(50);	/* wait for IRQ and DRQ_STAT */
699	if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
700		SELECT_MASK(drive, 0);
701		printk("%s: CHECK for good STATUS\n", drive->name);
702		return 0;
703	}
704	local_irq_save(flags);
705	SELECT_MASK(drive, 0);
706	id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
707	if (!id) {
708		local_irq_restore(flags);
709		return 0;
710	}
711	ata_input_data(drive, id, SECTOR_WORDS);
712	(void) hwif->INB(IDE_STATUS_REG);	/* clear drive IRQ */
713	local_irq_enable();
714	local_irq_restore(flags);
715	ide_fix_driveid(id);
716	if (id) {
717		drive->id->dma_ultra = id->dma_ultra;
718		drive->id->dma_mword = id->dma_mword;
719		drive->id->dma_1word = id->dma_1word;
720		/* anything more ? */
721		kfree(id);
722
723		if (drive->using_dma && ide_id_dma_bug(drive))
724			ide_dma_off(drive);
725	}
726
727	return 1;
728}
729
730int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
731{
732	ide_hwif_t *hwif = drive->hwif;
733	int error = 0;
734	u8 stat;
735
736//	while (HWGROUP(drive)->busy)
737//		msleep(50);
738
739#ifdef CONFIG_BLK_DEV_IDEDMA
740	if (hwif->dma_host_set)	/* check if host supports DMA */
741		hwif->dma_host_set(drive, 0);
742#endif
743
744	/* Skip setting PIO flow-control modes on pre-EIDE drives */
745	if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
746		goto skip;
747
748	/*
749	 * Don't use ide_wait_cmd here - it will
750	 * attempt to set_geometry and recalibrate,
751	 * but for some reason these don't work at
752	 * this point (lost interrupt).
753	 */
754        /*
755         * Select the drive, and issue the SETFEATURES command
756         */
757	disable_irq_nosync(hwif->irq);
758
759	/*
760	 *	FIXME: we race against the running IRQ here if
761	 *	this is called from non IRQ context. If we use
762	 *	disable_irq() we hang on the error path. Work
763	 *	is needed.
764	 */
765
766	udelay(1);
767	SELECT_DRIVE(drive);
768	SELECT_MASK(drive, 0);
769	udelay(1);
770	ide_set_irq(drive, 0);
771	hwif->OUTB(speed, IDE_NSECTOR_REG);
772	hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
773	hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
774	if (drive->quirk_list == 2)
775		ide_set_irq(drive, 1);
776
777	error = __ide_wait_stat(drive, drive->ready_stat,
778				BUSY_STAT|DRQ_STAT|ERR_STAT,
779				WAIT_CMD, &stat);
780
781	SELECT_MASK(drive, 0);
782
783	enable_irq(hwif->irq);
784
785	if (error) {
786		(void) ide_dump_status(drive, "set_drive_speed_status", stat);
787		return error;
788	}
789
790	drive->id->dma_ultra &= ~0xFF00;
791	drive->id->dma_mword &= ~0x0F00;
792	drive->id->dma_1word &= ~0x0F00;
793
794 skip:
795#ifdef CONFIG_BLK_DEV_IDEDMA
796	if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
797	    drive->using_dma)
798		hwif->dma_host_set(drive, 1);
799	else if (hwif->dma_host_set)	/* check if host supports DMA */
800		ide_dma_off_quietly(drive);
801#endif
802
803	switch(speed) {
804		case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
805		case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
806		case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
807		case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
808		case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
809		case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
810		case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
811		case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
812		case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
813		case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
814		case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
815		case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
816		case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
817		case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
818		default: break;
819	}
820	if (!drive->init_speed)
821		drive->init_speed = speed;
822	drive->current_speed = speed;
823	return error;
824}
825
826/*
827 * This should get invoked any time we exit the driver to
828 * wait for an interrupt response from a drive.  handler() points
829 * at the appropriate code to handle the next interrupt, and a
830 * timer is started to prevent us from waiting forever in case
831 * something goes wrong (see the ide_timer_expiry() handler later on).
832 *
833 * See also ide_execute_command
834 */
835static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
836		      unsigned int timeout, ide_expiry_t *expiry)
837{
838	ide_hwgroup_t *hwgroup = HWGROUP(drive);
839
840	if (hwgroup->handler != NULL) {
841		printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
842			"old=%p, new=%p\n",
843			drive->name, hwgroup->handler, handler);
844	}
845	hwgroup->handler	= handler;
846	hwgroup->expiry		= expiry;
847	hwgroup->timer.expires	= jiffies + timeout;
848	hwgroup->req_gen_timer = hwgroup->req_gen;
849	add_timer(&hwgroup->timer);
850}
851
852void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
853		      unsigned int timeout, ide_expiry_t *expiry)
854{
855	unsigned long flags;
856	spin_lock_irqsave(&ide_lock, flags);
857	__ide_set_handler(drive, handler, timeout, expiry);
858	spin_unlock_irqrestore(&ide_lock, flags);
859}
860
861EXPORT_SYMBOL(ide_set_handler);
862
863/**
864 *	ide_execute_command	-	execute an IDE command
865 *	@drive: IDE drive to issue the command against
866 *	@command: command byte to write
867 *	@handler: handler for next phase
868 *	@timeout: timeout for command
869 *	@expiry:  handler to run on timeout
870 *
871 *	Helper function to issue an IDE command. This handles the
872 *	atomicity requirements, command timing and ensures that the
873 *	handler and IRQ setup do not race. All IDE command kick off
874 *	should go via this function or do equivalent locking.
875 */
876
877void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
878			 unsigned timeout, ide_expiry_t *expiry)
879{
880	unsigned long flags;
881	ide_hwgroup_t *hwgroup = HWGROUP(drive);
882	ide_hwif_t *hwif = HWIF(drive);
883
884	spin_lock_irqsave(&ide_lock, flags);
885	BUG_ON(hwgroup->handler);
886	__ide_set_handler(drive, handler, timeout, expiry);
887	hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
888	/*
889	 * Drive takes 400nS to respond, we must avoid the IRQ being
890	 * serviced before that.
891	 *
892	 * FIXME: we could skip this delay with care on non shared devices
893	 */
894	ndelay(400);
895	spin_unlock_irqrestore(&ide_lock, flags);
896}
897
898EXPORT_SYMBOL(ide_execute_command);
899
900
901/* needed below */
902static ide_startstop_t do_reset1 (ide_drive_t *, int);
903
904/*
905 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
906 * during an atapi drive reset operation. If the drive has not yet responded,
907 * and we have not yet hit our maximum waiting time, then the timer is restarted
908 * for another 50ms.
909 */
910static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
911{
912	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
913	ide_hwif_t *hwif	= HWIF(drive);
914	u8 stat;
915
916	SELECT_DRIVE(drive);
917	udelay (10);
918
919	if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
920		printk("%s: ATAPI reset complete\n", drive->name);
921	} else {
922		if (time_before(jiffies, hwgroup->poll_timeout)) {
923			BUG_ON(HWGROUP(drive)->handler != NULL);
924			ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
925			/* continue polling */
926			return ide_started;
927		}
928		/* end of polling */
929		hwgroup->polling = 0;
930		printk("%s: ATAPI reset timed-out, status=0x%02x\n",
931				drive->name, stat);
932		/* do it the old fashioned way */
933		return do_reset1(drive, 1);
934	}
935	/* done polling */
936	hwgroup->polling = 0;
937	hwgroup->resetting = 0;
938	return ide_stopped;
939}
940
941/*
942 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
943 * during an ide reset operation. If the drives have not yet responded,
944 * and we have not yet hit our maximum waiting time, then the timer is restarted
945 * for another 50ms.
946 */
947static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
948{
949	ide_hwgroup_t *hwgroup	= HWGROUP(drive);
950	ide_hwif_t *hwif	= HWIF(drive);
951	u8 tmp;
952
953	if (hwif->reset_poll != NULL) {
954		if (hwif->reset_poll(drive)) {
955			printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
956				hwif->name, drive->name);
957			return ide_stopped;
958		}
959	}
960
961	if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
962		if (time_before(jiffies, hwgroup->poll_timeout)) {
963			BUG_ON(HWGROUP(drive)->handler != NULL);
964			ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
965			/* continue polling */
966			return ide_started;
967		}
968		printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
969		drive->failures++;
970	} else  {
971		printk("%s: reset: ", hwif->name);
972		if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
973			printk("success\n");
974			drive->failures = 0;
975		} else {
976			drive->failures++;
977			printk("master: ");
978			switch (tmp & 0x7f) {
979				case 1: printk("passed");
980					break;
981				case 2: printk("formatter device error");
982					break;
983				case 3: printk("sector buffer error");
984					break;
985				case 4: printk("ECC circuitry error");
986					break;
987				case 5: printk("controlling MPU error");
988					break;
989				default:printk("error (0x%02x?)", tmp);
990			}
991			if (tmp & 0x80)
992				printk("; slave: failed");
993			printk("\n");
994		}
995	}
996	hwgroup->polling = 0;	/* done polling */
997	hwgroup->resetting = 0; /* done reset attempt */
998	return ide_stopped;
999}
1000
1001static void check_dma_crc(ide_drive_t *drive)
1002{
1003#ifdef CONFIG_BLK_DEV_IDEDMA
1004	if (drive->crc_count) {
1005		ide_dma_off_quietly(drive);
1006		ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
1007		if (drive->current_speed >= XFER_SW_DMA_0)
1008			ide_dma_on(drive);
1009	} else
1010		ide_dma_off(drive);
1011#endif
1012}
1013
1014static void ide_disk_pre_reset(ide_drive_t *drive)
1015{
1016	int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1017
1018	drive->special.all = 0;
1019	drive->special.b.set_geometry = legacy;
1020	drive->special.b.recalibrate  = legacy;
1021	drive->mult_count = 0;
1022	if (!drive->keep_settings && !drive->using_dma)
1023		drive->mult_req = 0;
1024	if (drive->mult_req != drive->mult_count)
1025		drive->special.b.set_multmode = 1;
1026}
1027
1028static void pre_reset(ide_drive_t *drive)
1029{
1030	if (drive->media == ide_disk)
1031		ide_disk_pre_reset(drive);
1032	else
1033		drive->post_reset = 1;
1034
1035	if (!drive->keep_settings) {
1036		if (drive->using_dma) {
1037			check_dma_crc(drive);
1038		} else {
1039			drive->unmask = 0;
1040			drive->io_32bit = 0;
1041		}
1042		return;
1043	}
1044	if (drive->using_dma)
1045		check_dma_crc(drive);
1046
1047	if (HWIF(drive)->pre_reset != NULL)
1048		HWIF(drive)->pre_reset(drive);
1049
1050	if (drive->current_speed != 0xff)
1051		drive->desired_speed = drive->current_speed;
1052	drive->current_speed = 0xff;
1053}
1054
1055/*
1056 * do_reset1() attempts to recover a confused drive by resetting it.
1057 * Unfortunately, resetting a disk drive actually resets all devices on
1058 * the same interface, so it can really be thought of as resetting the
1059 * interface rather than resetting the drive.
1060 *
1061 * ATAPI devices have their own reset mechanism which allows them to be
1062 * individually reset without clobbering other devices on the same interface.
1063 *
1064 * Unfortunately, the IDE interface does not generate an interrupt to let
1065 * us know when the reset operation has finished, so we must poll for this.
1066 * Equally poor, though, is the fact that this may a very long time to complete,
1067 * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1068 * we set a timer to poll at 50ms intervals.
1069 */
1070static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1071{
1072	unsigned int unit;
1073	unsigned long flags;
1074	ide_hwif_t *hwif;
1075	ide_hwgroup_t *hwgroup;
1076
1077	spin_lock_irqsave(&ide_lock, flags);
1078	hwif = HWIF(drive);
1079	hwgroup = HWGROUP(drive);
1080
1081	/* We must not reset with running handlers */
1082	BUG_ON(hwgroup->handler != NULL);
1083
1084	/* For an ATAPI device, first try an ATAPI SRST. */
1085	if (drive->media != ide_disk && !do_not_try_atapi) {
1086		hwgroup->resetting = 1;
1087		pre_reset(drive);
1088		SELECT_DRIVE(drive);
1089		udelay (20);
1090		hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1091		ndelay(400);
1092		hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1093		hwgroup->polling = 1;
1094		__ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1095		spin_unlock_irqrestore(&ide_lock, flags);
1096		return ide_started;
1097	}
1098
1099	/*
1100	 * First, reset any device state data we were maintaining
1101	 * for any of the drives on this interface.
1102	 */
1103	for (unit = 0; unit < MAX_DRIVES; ++unit)
1104		pre_reset(&hwif->drives[unit]);
1105
1106	if (!IDE_CONTROL_REG) {
1107		spin_unlock_irqrestore(&ide_lock, flags);
1108		return ide_stopped;
1109	}
1110
1111	hwgroup->resetting = 1;
1112	/*
1113	 * Note that we also set nIEN while resetting the device,
1114	 * to mask unwanted interrupts from the interface during the reset.
1115	 * However, due to the design of PC hardware, this will cause an
1116	 * immediate interrupt due to the edge transition it produces.
1117	 * This single interrupt gives us a "fast poll" for drives that
1118	 * recover from reset very quickly, saving us the first 50ms wait time.
1119	 */
1120	/* set SRST and nIEN */
1121	hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1122	/* more than enough time */
1123	udelay(10);
1124	if (drive->quirk_list == 2) {
1125		/* clear SRST and nIEN */
1126		hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1127	} else {
1128		/* clear SRST, leave nIEN */
1129		hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1130	}
1131	/* more than enough time */
1132	udelay(10);
1133	hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1134	hwgroup->polling = 1;
1135	__ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1136
1137	/*
1138	 * Some weird controller like resetting themselves to a strange
1139	 * state when the disks are reset this way. At least, the Winbond
1140	 * 553 documentation says that
1141	 */
1142	if (hwif->resetproc)
1143		hwif->resetproc(drive);
1144
1145	spin_unlock_irqrestore(&ide_lock, flags);
1146	return ide_started;
1147}
1148
1149/*
1150 * ide_do_reset() is the entry point to the drive/interface reset code.
1151 */
1152
1153ide_startstop_t ide_do_reset (ide_drive_t *drive)
1154{
1155	return do_reset1(drive, 0);
1156}
1157
1158EXPORT_SYMBOL(ide_do_reset);
1159
1160/*
1161 * ide_wait_not_busy() waits for the currently selected device on the hwif
1162 * to report a non-busy status, see comments in ide_probe_port().
1163 */
1164int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1165{
1166	u8 stat = 0;
1167
1168	while(timeout--) {
1169		/*
1170		 * Turn this into a schedule() sleep once I'm sure
1171		 * about locking issues (2.5 work ?).
1172		 */
1173		mdelay(1);
1174		stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1175		if ((stat & BUSY_STAT) == 0)
1176			return 0;
1177		/*
1178		 * Assume a value of 0xff means nothing is connected to
1179		 * the interface and it doesn't implement the pull-down
1180		 * resistor on D7.
1181		 */
1182		if (stat == 0xff)
1183			return -ENODEV;
1184		touch_softlockup_watchdog();
1185		touch_nmi_watchdog();
1186	}
1187	return -EBUSY;
1188}
1189
1190EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1191
1192