ide-tape.c revision 4ef3b8f4a5c056d5f784725974a530d1a7b4a811
1/*
2 * linux/drivers/ide/ide-tape.c		Version 1.19	Nov, 2003
3 *
4 * Copyright (C) 1995 - 1999 Gadi Oxman <gadio@netvision.net.il>
5 *
6 * $Header$
7 *
8 * This driver was constructed as a student project in the software laboratory
9 * of the faculty of electrical engineering in the Technion - Israel's
10 * Institute Of Technology, with the guide of Avner Lottem and Dr. Ilana David.
11 *
12 * It is hereby placed under the terms of the GNU general public license.
13 * (See linux/COPYING).
14 */
15
16/*
17 * IDE ATAPI streaming tape driver.
18 *
19 * This driver is a part of the Linux ide driver and works in co-operation
20 * with linux/drivers/block/ide.c.
21 *
22 * The driver, in co-operation with ide.c, basically traverses the
23 * request-list for the block device interface. The character device
24 * interface, on the other hand, creates new requests, adds them
25 * to the request-list of the block device, and waits for their completion.
26 *
27 * Pipelined operation mode is now supported on both reads and writes.
28 *
29 * The block device major and minor numbers are determined from the
30 * tape's relative position in the ide interfaces, as explained in ide.c.
31 *
32 * The character device interface consists of the following devices:
33 *
34 * ht0		major 37, minor 0	first  IDE tape, rewind on close.
35 * ht1		major 37, minor 1	second IDE tape, rewind on close.
36 * ...
37 * nht0		major 37, minor 128	first  IDE tape, no rewind on close.
38 * nht1		major 37, minor 129	second IDE tape, no rewind on close.
39 * ...
40 *
41 * Run linux/scripts/MAKEDEV.ide to create the above entries.
42 *
43 * The general magnetic tape commands compatible interface, as defined by
44 * include/linux/mtio.h, is accessible through the character device.
45 *
46 * General ide driver configuration options, such as the interrupt-unmask
47 * flag, can be configured by issuing an ioctl to the block device interface,
48 * as any other ide device.
49 *
50 * Our own ide-tape ioctl's can be issued to either the block device or
51 * the character device interface.
52 *
53 * Maximal throughput with minimal bus load will usually be achieved in the
54 * following scenario:
55 *
56 *	1.	ide-tape is operating in the pipelined operation mode.
57 *	2.	No buffering is performed by the user backup program.
58 *
59 * Testing was done with a 2 GB CONNER CTMA 4000 IDE ATAPI Streaming Tape Drive.
60 *
61 * Ver 0.1   Nov  1 95   Pre-working code :-)
62 * Ver 0.2   Nov 23 95   A short backup (few megabytes) and restore procedure
63 *                        was successful ! (Using tar cvf ... on the block
64 *                        device interface).
65 *                       A longer backup resulted in major swapping, bad
66 *                        overall Linux performance and eventually failed as
67 *                        we received non serial read-ahead requests from the
68 *                        buffer cache.
69 * Ver 0.3   Nov 28 95   Long backups are now possible, thanks to the
70 *                        character device interface. Linux's responsiveness
71 *                        and performance doesn't seem to be much affected
72 *                        from the background backup procedure.
73 *                       Some general mtio.h magnetic tape operations are
74 *                        now supported by our character device. As a result,
75 *                        popular tape utilities are starting to work with
76 *                        ide tapes :-)
77 *                       The following configurations were tested:
78 *                       	1. An IDE ATAPI TAPE shares the same interface
79 *                       	   and irq with an IDE ATAPI CDROM.
80 *                        	2. An IDE ATAPI TAPE shares the same interface
81 *                          	   and irq with a normal IDE disk.
82 *                        Both configurations seemed to work just fine !
83 *                        However, to be on the safe side, it is meanwhile
84 *                        recommended to give the IDE TAPE its own interface
85 *                        and irq.
86 *                       The one thing which needs to be done here is to
87 *                        add a "request postpone" feature to ide.c,
88 *                        so that we won't have to wait for the tape to finish
89 *                        performing a long media access (DSC) request (such
90 *                        as a rewind) before we can access the other device
91 *                        on the same interface. This effect doesn't disturb
92 *                        normal operation most of the time because read/write
93 *                        requests are relatively fast, and once we are
94 *                        performing one tape r/w request, a lot of requests
95 *                        from the other device can be queued and ide.c will
96 *			  service all of them after this single tape request.
97 * Ver 1.0   Dec 11 95   Integrated into Linux 1.3.46 development tree.
98 *                       On each read / write request, we now ask the drive
99 *                        if we can transfer a constant number of bytes
100 *                        (a parameter of the drive) only to its buffers,
101 *                        without causing actual media access. If we can't,
102 *                        we just wait until we can by polling the DSC bit.
103 *                        This ensures that while we are not transferring
104 *                        more bytes than the constant referred to above, the
105 *                        interrupt latency will not become too high and
106 *                        we won't cause an interrupt timeout, as happened
107 *                        occasionally in the previous version.
108 *                       While polling for DSC, the current request is
109 *                        postponed and ide.c is free to handle requests from
110 *                        the other device. This is handled transparently to
111 *                        ide.c. The hwgroup locking method which was used
112 *                        in the previous version was removed.
113 *                       Use of new general features which are provided by
114 *                        ide.c for use with atapi devices.
115 *                        (Programming done by Mark Lord)
116 *                       Few potential bug fixes (Again, suggested by Mark)
117 *                       Single character device data transfers are now
118 *                        not limited in size, as they were before.
119 *                       We are asking the tape about its recommended
120 *                        transfer unit and send a larger data transfer
121 *                        as several transfers of the above size.
122 *                        For best results, use an integral number of this
123 *                        basic unit (which is shown during driver
124 *                        initialization). I will soon add an ioctl to get
125 *                        this important parameter.
126 *                       Our data transfer buffer is allocated on startup,
127 *                        rather than before each data transfer. This should
128 *                        ensure that we will indeed have a data buffer.
129 * Ver 1.1   Dec 14 95   Fixed random problems which occurred when the tape
130 *                        shared an interface with another device.
131 *                        (poll_for_dsc was a complete mess).
132 *                       Removed some old (non-active) code which had
133 *                        to do with supporting buffer cache originated
134 *                        requests.
135 *                       The block device interface can now be opened, so
136 *                        that general ide driver features like the unmask
137 *                        interrupts flag can be selected with an ioctl.
138 *                        This is the only use of the block device interface.
139 *                       New fast pipelined operation mode (currently only on
140 *                        writes). When using the pipelined mode, the
141 *                        throughput can potentially reach the maximum
142 *                        tape supported throughput, regardless of the
143 *                        user backup program. On my tape drive, it sometimes
144 *                        boosted performance by a factor of 2. Pipelined
145 *                        mode is enabled by default, but since it has a few
146 *                        downfalls as well, you may want to disable it.
147 *                        A short explanation of the pipelined operation mode
148 *                        is available below.
149 * Ver 1.2   Jan  1 96   Eliminated pipelined mode race condition.
150 *                       Added pipeline read mode. As a result, restores
151 *                        are now as fast as backups.
152 *                       Optimized shared interface behavior. The new behavior
153 *                        typically results in better IDE bus efficiency and
154 *                        higher tape throughput.
155 *                       Pre-calculation of the expected read/write request
156 *                        service time, based on the tape's parameters. In
157 *                        the pipelined operation mode, this allows us to
158 *                        adjust our polling frequency to a much lower value,
159 *                        and thus to dramatically reduce our load on Linux,
160 *                        without any decrease in performance.
161 *                       Implemented additional mtio.h operations.
162 *                       The recommended user block size is returned by
163 *                        the MTIOCGET ioctl.
164 *                       Additional minor changes.
165 * Ver 1.3   Feb  9 96   Fixed pipelined read mode bug which prevented the
166 *                        use of some block sizes during a restore procedure.
167 *                       The character device interface will now present a
168 *                        continuous view of the media - any mix of block sizes
169 *                        during a backup/restore procedure is supported. The
170 *                        driver will buffer the requests internally and
171 *                        convert them to the tape's recommended transfer
172 *                        unit, making performance almost independent of the
173 *                        chosen user block size.
174 *                       Some improvements in error recovery.
175 *                       By cooperating with ide-dma.c, bus mastering DMA can
176 *                        now sometimes be used with IDE tape drives as well.
177 *                        Bus mastering DMA has the potential to dramatically
178 *                        reduce the CPU's overhead when accessing the device,
179 *                        and can be enabled by using hdparm -d1 on the tape's
180 *                        block device interface. For more info, read the
181 *                        comments in ide-dma.c.
182 * Ver 1.4   Mar 13 96   Fixed serialize support.
183 * Ver 1.5   Apr 12 96   Fixed shared interface operation, broken in 1.3.85.
184 *                       Fixed pipelined read mode inefficiency.
185 *                       Fixed nasty null dereferencing bug.
186 * Ver 1.6   Aug 16 96   Fixed FPU usage in the driver.
187 *                       Fixed end of media bug.
188 * Ver 1.7   Sep 10 96   Minor changes for the CONNER CTT8000-A model.
189 * Ver 1.8   Sep 26 96   Attempt to find a better balance between good
190 *                        interactive response and high system throughput.
191 * Ver 1.9   Nov  5 96   Automatically cross encountered filemarks rather
192 *                        than requiring an explicit FSF command.
193 *                       Abort pending requests at end of media.
194 *                       MTTELL was sometimes returning incorrect results.
195 *                       Return the real block size in the MTIOCGET ioctl.
196 *                       Some error recovery bug fixes.
197 * Ver 1.10  Nov  5 96   Major reorganization.
198 *                       Reduced CPU overhead a bit by eliminating internal
199 *                        bounce buffers.
200 *                       Added module support.
201 *                       Added multiple tape drives support.
202 *                       Added partition support.
203 *                       Rewrote DSC handling.
204 *                       Some portability fixes.
205 *                       Removed ide-tape.h.
206 *                       Additional minor changes.
207 * Ver 1.11  Dec  2 96   Bug fix in previous DSC timeout handling.
208 *                       Use ide_stall_queue() for DSC overlap.
209 *                       Use the maximum speed rather than the current speed
210 *                        to compute the request service time.
211 * Ver 1.12  Dec  7 97   Fix random memory overwriting and/or last block data
212 *                        corruption, which could occur if the total number
213 *                        of bytes written to the tape was not an integral
214 *                        number of tape blocks.
215 *                       Add support for INTERRUPT DRQ devices.
216 * Ver 1.13  Jan  2 98   Add "speed == 0" work-around for HP COLORADO 5GB
217 * Ver 1.14  Dec 30 98   Partial fixes for the Sony/AIWA tape drives.
218 *                       Replace cli()/sti() with hwgroup spinlocks.
219 * Ver 1.15  Mar 25 99   Fix SMP race condition by replacing hwgroup
220 *                        spinlock with private per-tape spinlock.
221 * Ver 1.16  Sep  1 99   Add OnStream tape support.
222 *                       Abort read pipeline on EOD.
223 *                       Wait for the tape to become ready in case it returns
224 *                        "in the process of becoming ready" on open().
225 *                       Fix zero padding of the last written block in
226 *                        case the tape block size is larger than PAGE_SIZE.
227 *                       Decrease the default disconnection time to tn.
228 * Ver 1.16e Oct  3 99   Minor fixes.
229 * Ver 1.16e1 Oct 13 99  Patches by Arnold Niessen,
230 *                          niessen@iae.nl / arnold.niessen@philips.com
231 *                   GO-1)  Undefined code in idetape_read_position
232 *				according to Gadi's email
233 *                   AJN-1) Minor fix asc == 11 should be asc == 0x11
234 *                               in idetape_issue_packet_command (did effect
235 *                               debugging output only)
236 *                   AJN-2) Added more debugging output, and
237 *                              added ide-tape: where missing. I would also
238 *				like to add tape->name where possible
239 *                   AJN-3) Added different debug_level's
240 *                              via /proc/ide/hdc/settings
241 * 				"debug_level" determines amount of debugging output;
242 * 				can be changed using /proc/ide/hdx/settings
243 * 				0 : almost no debugging output
244 * 				1 : 0+output errors only
245 * 				2 : 1+output all sensekey/asc
246 * 				3 : 2+follow all chrdev related procedures
247 * 				4 : 3+follow all procedures
248 * 				5 : 4+include pc_stack rq_stack info
249 * 				6 : 5+USE_COUNT updates
250 *                   AJN-4) Fixed timeout for retension in idetape_queue_pc_tail
251 *				from 5 to 10 minutes
252 *                   AJN-5) Changed maximum number of blocks to skip when
253 *                              reading tapes with multiple consecutive write
254 *                              errors from 100 to 1000 in idetape_get_logical_blk
255 *                   Proposed changes to code:
256 *                   1) output "logical_blk_num" via /proc
257 *                   2) output "current_operation" via /proc
258 *                   3) Either solve or document the fact that `mt rewind' is
259 *                      required after reading from /dev/nhtx to be
260 *			able to rmmod the idetape module;
261 *			Also, sometimes an application finishes but the
262 *			device remains `busy' for some time. Same cause ?
263 *                   Proposed changes to release-notes:
264 *		     4) write a simple `quickstart' section in the
265 *                      release notes; I volunteer if you don't want to
266 * 		     5) include a pointer to video4linux in the doc
267 *                      to stimulate video applications
268 *                   6) release notes lines 331 and 362: explain what happens
269 *			if the application data rate is higher than 1100 KB/s;
270 *			similar approach to lower-than-500 kB/s ?
271 *		     7) 6.6 Comparison; wouldn't it be better to allow different
272 *			strategies for read and write ?
273 *			Wouldn't it be better to control the tape buffer
274 *			contents instead of the bandwidth ?
275 *		     8) line 536: replace will by would (if I understand
276 *			this section correctly, a hypothetical and unwanted situation
277 *			 is being described)
278 * Ver 1.16f Dec 15 99   Change place of the secondary OnStream header frames.
279 * Ver 1.17  Nov 2000 / Jan 2001  Marcel Mol, marcel@mesa.nl
280 *			- Add idetape_onstream_mode_sense_tape_parameter_page
281 *			  function to get tape capacity in frames: tape->capacity.
282 *			- Add support for DI-50 drives( or any DI- drive).
283 *			- 'workaround' for read error/blank block around block 3000.
284 *			- Implement Early warning for end of media for Onstream.
285 *			- Cosmetic code changes for readability.
286 *			- Idetape_position_tape should not use SKIP bit during
287 *			  Onstream read recovery.
288 *			- Add capacity, logical_blk_num and first/last_frame_position
289 *			  to /proc/ide/hd?/settings.
290 *			- Module use count was gone in the Linux 2.4 driver.
291 * Ver 1.17a Apr 2001 Willem Riede osst@riede.org
292 * 			- Get drive's actual block size from mode sense block descriptor
293 * 			- Limit size of pipeline
294 * Ver 1.17b Oct 2002   Alan Stern <stern@rowland.harvard.edu>
295 *			Changed IDETAPE_MIN_PIPELINE_STAGES to 1 and actually used
296 *			 it in the code!
297 *			Actually removed aborted stages in idetape_abort_pipeline
298 *			 instead of just changing the command code.
299 *			Made the transfer byte count for Request Sense equal to the
300 *			 actual length of the data transfer.
301 *			Changed handling of partial data transfers: they do not
302 *			 cause DMA errors.
303 *			Moved initiation of DMA transfers to the correct place.
304 *			Removed reference to unallocated memory.
305 *			Made __idetape_discard_read_pipeline return the number of
306 *			 sectors skipped, not the number of stages.
307 *			Replaced errant kfree() calls with __idetape_kfree_stage().
308 *			Fixed off-by-one error in testing the pipeline length.
309 *			Fixed handling of filemarks in the read pipeline.
310 *			Small code optimization for MTBSF and MTBSFM ioctls.
311 *			Don't try to unlock the door during device close if is
312 *			 already unlocked!
313 *			Cosmetic fixes to miscellaneous debugging output messages.
314 *			Set the minimum /proc/ide/hd?/settings values for "pipeline",
315 *			 "pipeline_min", and "pipeline_max" to 1.
316 *
317 * Here are some words from the first releases of hd.c, which are quoted
318 * in ide.c and apply here as well:
319 *
320 * | Special care is recommended.  Have Fun!
321 *
322 */
323
324/*
325 * An overview of the pipelined operation mode.
326 *
327 * In the pipelined write mode, we will usually just add requests to our
328 * pipeline and return immediately, before we even start to service them. The
329 * user program will then have enough time to prepare the next request while
330 * we are still busy servicing previous requests. In the pipelined read mode,
331 * the situation is similar - we add read-ahead requests into the pipeline,
332 * before the user even requested them.
333 *
334 * The pipeline can be viewed as a "safety net" which will be activated when
335 * the system load is high and prevents the user backup program from keeping up
336 * with the current tape speed. At this point, the pipeline will get
337 * shorter and shorter but the tape will still be streaming at the same speed.
338 * Assuming we have enough pipeline stages, the system load will hopefully
339 * decrease before the pipeline is completely empty, and the backup program
340 * will be able to "catch up" and refill the pipeline again.
341 *
342 * When using the pipelined mode, it would be best to disable any type of
343 * buffering done by the user program, as ide-tape already provides all the
344 * benefits in the kernel, where it can be done in a more efficient way.
345 * As we will usually not block the user program on a request, the most
346 * efficient user code will then be a simple read-write-read-... cycle.
347 * Any additional logic will usually just slow down the backup process.
348 *
349 * Using the pipelined mode, I get a constant over 400 KBps throughput,
350 * which seems to be the maximum throughput supported by my tape.
351 *
352 * However, there are some downfalls:
353 *
354 *	1.	We use memory (for data buffers) in proportional to the number
355 *		of pipeline stages (each stage is about 26 KB with my tape).
356 *	2.	In the pipelined write mode, we cheat and postpone error codes
357 *		to the user task. In read mode, the actual tape position
358 *		will be a bit further than the last requested block.
359 *
360 * Concerning (1):
361 *
362 *	1.	We allocate stages dynamically only when we need them. When
363 *		we don't need them, we don't consume additional memory. In
364 *		case we can't allocate stages, we just manage without them
365 *		(at the expense of decreased throughput) so when Linux is
366 *		tight in memory, we will not pose additional difficulties.
367 *
368 *	2.	The maximum number of stages (which is, in fact, the maximum
369 *		amount of memory) which we allocate is limited by the compile
370 *		time parameter IDETAPE_MAX_PIPELINE_STAGES.
371 *
372 *	3.	The maximum number of stages is a controlled parameter - We
373 *		don't start from the user defined maximum number of stages
374 *		but from the lower IDETAPE_MIN_PIPELINE_STAGES (again, we
375 *		will not even allocate this amount of stages if the user
376 *		program can't handle the speed). We then implement a feedback
377 *		loop which checks if the pipeline is empty, and if it is, we
378 *		increase the maximum number of stages as necessary until we
379 *		reach the optimum value which just manages to keep the tape
380 *		busy with minimum allocated memory or until we reach
381 *		IDETAPE_MAX_PIPELINE_STAGES.
382 *
383 * Concerning (2):
384 *
385 *	In pipelined write mode, ide-tape can not return accurate error codes
386 *	to the user program since we usually just add the request to the
387 *      pipeline without waiting for it to be serviced. In case an error
388 *      occurs, I will report it on the next user request.
389 *
390 *	In the pipelined read mode, subsequent read requests or forward
391 *	filemark spacing will perform correctly, as we preserve all blocks
392 *	and filemarks which we encountered during our excess read-ahead.
393 *
394 *	For accurate tape positioning and error reporting, disabling
395 *	pipelined mode might be the best option.
396 *
397 * You can enable/disable/tune the pipelined operation mode by adjusting
398 * the compile time parameters below.
399 */
400
401/*
402 *	Possible improvements.
403 *
404 *	1.	Support for the ATAPI overlap protocol.
405 *
406 *		In order to maximize bus throughput, we currently use the DSC
407 *		overlap method which enables ide.c to service requests from the
408 *		other device while the tape is busy executing a command. The
409 *		DSC overlap method involves polling the tape's status register
410 *		for the DSC bit, and servicing the other device while the tape
411 *		isn't ready.
412 *
413 *		In the current QIC development standard (December 1995),
414 *		it is recommended that new tape drives will *in addition*
415 *		implement the ATAPI overlap protocol, which is used for the
416 *		same purpose - efficient use of the IDE bus, but is interrupt
417 *		driven and thus has much less CPU overhead.
418 *
419 *		ATAPI overlap is likely to be supported in most new ATAPI
420 *		devices, including new ATAPI cdroms, and thus provides us
421 *		a method by which we can achieve higher throughput when
422 *		sharing a (fast) ATA-2 disk with any (slow) new ATAPI device.
423 */
424
425#define IDETAPE_VERSION "1.19"
426
427#include <linux/config.h>
428#include <linux/module.h>
429#include <linux/types.h>
430#include <linux/string.h>
431#include <linux/kernel.h>
432#include <linux/delay.h>
433#include <linux/timer.h>
434#include <linux/mm.h>
435#include <linux/interrupt.h>
436#include <linux/major.h>
437#include <linux/devfs_fs_kernel.h>
438#include <linux/errno.h>
439#include <linux/genhd.h>
440#include <linux/slab.h>
441#include <linux/pci.h>
442#include <linux/ide.h>
443#include <linux/smp_lock.h>
444#include <linux/completion.h>
445#include <linux/bitops.h>
446
447#include <asm/byteorder.h>
448#include <asm/irq.h>
449#include <asm/uaccess.h>
450#include <asm/io.h>
451#include <asm/unaligned.h>
452
453/*
454 * partition
455 */
456typedef struct os_partition_s {
457	__u8	partition_num;
458	__u8	par_desc_ver;
459	__u16	wrt_pass_cntr;
460	__u32	first_frame_addr;
461	__u32	last_frame_addr;
462	__u32	eod_frame_addr;
463} os_partition_t;
464
465/*
466 * DAT entry
467 */
468typedef struct os_dat_entry_s {
469	__u32	blk_sz;
470	__u16	blk_cnt;
471	__u8	flags;
472	__u8	reserved;
473} os_dat_entry_t;
474
475/*
476 * DAT
477 */
478#define OS_DAT_FLAGS_DATA	(0xc)
479#define OS_DAT_FLAGS_MARK	(0x1)
480
481typedef struct os_dat_s {
482	__u8		dat_sz;
483	__u8		reserved1;
484	__u8		entry_cnt;
485	__u8		reserved3;
486	os_dat_entry_t	dat_list[16];
487} os_dat_t;
488
489#include <linux/mtio.h>
490
491/**************************** Tunable parameters *****************************/
492
493
494/*
495 *	Pipelined mode parameters.
496 *
497 *	We try to use the minimum number of stages which is enough to
498 *	keep the tape constantly streaming. To accomplish that, we implement
499 *	a feedback loop around the maximum number of stages:
500 *
501 *	We start from MIN maximum stages (we will not even use MIN stages
502 *      if we don't need them), increment it by RATE*(MAX-MIN)
503 *	whenever we sense that the pipeline is empty, until we reach
504 *	the optimum value or until we reach MAX.
505 *
506 *	Setting the following parameter to 0 is illegal: the pipelined mode
507 *	cannot be disabled (calculate_speeds() divides by tape->max_stages.)
508 */
509#define IDETAPE_MIN_PIPELINE_STAGES	  1
510#define IDETAPE_MAX_PIPELINE_STAGES	400
511#define IDETAPE_INCREASE_STAGES_RATE	 20
512
513/*
514 *	The following are used to debug the driver:
515 *
516 *	Setting IDETAPE_DEBUG_INFO to 1 will report device capabilities.
517 *	Setting IDETAPE_DEBUG_LOG to 1 will log driver flow control.
518 *	Setting IDETAPE_DEBUG_BUGS to 1 will enable self-sanity checks in
519 *	some places.
520 *
521 *	Setting them to 0 will restore normal operation mode:
522 *
523 *		1.	Disable logging normal successful operations.
524 *		2.	Disable self-sanity checks.
525 *		3.	Errors will still be logged, of course.
526 *
527 *	All the #if DEBUG code will be removed some day, when the driver
528 *	is verified to be stable enough. This will make it much more
529 *	esthetic.
530 */
531#define IDETAPE_DEBUG_INFO		0
532#define IDETAPE_DEBUG_LOG		0
533#define IDETAPE_DEBUG_BUGS		1
534
535/*
536 *	After each failed packet command we issue a request sense command
537 *	and retry the packet command IDETAPE_MAX_PC_RETRIES times.
538 *
539 *	Setting IDETAPE_MAX_PC_RETRIES to 0 will disable retries.
540 */
541#define IDETAPE_MAX_PC_RETRIES		3
542
543/*
544 *	With each packet command, we allocate a buffer of
545 *	IDETAPE_PC_BUFFER_SIZE bytes. This is used for several packet
546 *	commands (Not for READ/WRITE commands).
547 */
548#define IDETAPE_PC_BUFFER_SIZE		256
549
550/*
551 *	In various places in the driver, we need to allocate storage
552 *	for packet commands and requests, which will remain valid while
553 *	we leave the driver to wait for an interrupt or a timeout event.
554 */
555#define IDETAPE_PC_STACK		(10 + IDETAPE_MAX_PC_RETRIES)
556
557/*
558 * Some drives (for example, Seagate STT3401A Travan) require a very long
559 * timeout, because they don't return an interrupt or clear their busy bit
560 * until after the command completes (even retension commands).
561 */
562#define IDETAPE_WAIT_CMD		(900*HZ)
563
564/*
565 *	The following parameter is used to select the point in the internal
566 *	tape fifo in which we will start to refill the buffer. Decreasing
567 *	the following parameter will improve the system's latency and
568 *	interactive response, while using a high value might improve sytem
569 *	throughput.
570 */
571#define IDETAPE_FIFO_THRESHOLD 		2
572
573/*
574 *	DSC polling parameters.
575 *
576 *	Polling for DSC (a single bit in the status register) is a very
577 *	important function in ide-tape. There are two cases in which we
578 *	poll for DSC:
579 *
580 *	1.	Before a read/write packet command, to ensure that we
581 *		can transfer data from/to the tape's data buffers, without
582 *		causing an actual media access. In case the tape is not
583 *		ready yet, we take out our request from the device
584 *		request queue, so that ide.c will service requests from
585 *		the other device on the same interface meanwhile.
586 *
587 *	2.	After the successful initialization of a "media access
588 *		packet command", which is a command which can take a long
589 *		time to complete (it can be several seconds or even an hour).
590 *
591 *		Again, we postpone our request in the middle to free the bus
592 *		for the other device. The polling frequency here should be
593 *		lower than the read/write frequency since those media access
594 *		commands are slow. We start from a "fast" frequency -
595 *		IDETAPE_DSC_MA_FAST (one second), and if we don't receive DSC
596 *		after IDETAPE_DSC_MA_THRESHOLD (5 minutes), we switch it to a
597 *		lower frequency - IDETAPE_DSC_MA_SLOW (1 minute).
598 *
599 *	We also set a timeout for the timer, in case something goes wrong.
600 *	The timeout should be longer then the maximum execution time of a
601 *	tape operation.
602 */
603
604/*
605 *	DSC timings.
606 */
607#define IDETAPE_DSC_RW_MIN		5*HZ/100	/* 50 msec */
608#define IDETAPE_DSC_RW_MAX		40*HZ/100	/* 400 msec */
609#define IDETAPE_DSC_RW_TIMEOUT		2*60*HZ		/* 2 minutes */
610#define IDETAPE_DSC_MA_FAST		2*HZ		/* 2 seconds */
611#define IDETAPE_DSC_MA_THRESHOLD	5*60*HZ		/* 5 minutes */
612#define IDETAPE_DSC_MA_SLOW		30*HZ		/* 30 seconds */
613#define IDETAPE_DSC_MA_TIMEOUT		2*60*60*HZ	/* 2 hours */
614
615/*************************** End of tunable parameters ***********************/
616
617/*
618 *	Debugging/Performance analysis
619 *
620 *	I/O trace support
621 */
622#define USE_IOTRACE	0
623#if USE_IOTRACE
624#include <linux/io_trace.h>
625#define IO_IDETAPE_FIFO	500
626#endif
627
628/*
629 *	Read/Write error simulation
630 */
631#define SIMULATE_ERRORS			0
632
633/*
634 *	For general magnetic tape device compatibility.
635 */
636typedef enum {
637	idetape_direction_none,
638	idetape_direction_read,
639	idetape_direction_write
640} idetape_chrdev_direction_t;
641
642struct idetape_bh {
643	unsigned short b_size;
644	atomic_t b_count;
645	struct idetape_bh *b_reqnext;
646	char *b_data;
647};
648
649/*
650 *	Our view of a packet command.
651 */
652typedef struct idetape_packet_command_s {
653	u8 c[12];				/* Actual packet bytes */
654	int retries;				/* On each retry, we increment retries */
655	int error;				/* Error code */
656	int request_transfer;			/* Bytes to transfer */
657	int actually_transferred;		/* Bytes actually transferred */
658	int buffer_size;			/* Size of our data buffer */
659	struct idetape_bh *bh;
660	char *b_data;
661	int b_count;
662	u8 *buffer;				/* Data buffer */
663	u8 *current_position;			/* Pointer into the above buffer */
664	ide_startstop_t (*callback) (ide_drive_t *);	/* Called when this packet command is completed */
665	u8 pc_buffer[IDETAPE_PC_BUFFER_SIZE];	/* Temporary buffer */
666	unsigned long flags;			/* Status/Action bit flags: long for set_bit */
667} idetape_pc_t;
668
669/*
670 *	Packet command flag bits.
671 */
672/* Set when an error is considered normal - We won't retry */
673#define	PC_ABORT			0
674/* 1 When polling for DSC on a media access command */
675#define PC_WAIT_FOR_DSC			1
676/* 1 when we prefer to use DMA if possible */
677#define PC_DMA_RECOMMENDED		2
678/* 1 while DMA in progress */
679#define	PC_DMA_IN_PROGRESS		3
680/* 1 when encountered problem during DMA */
681#define	PC_DMA_ERROR			4
682/* Data direction */
683#define	PC_WRITING			5
684
685/*
686 *	Capabilities and Mechanical Status Page
687 */
688typedef struct {
689	unsigned	page_code	:6;	/* Page code - Should be 0x2a */
690	__u8		reserved0_6	:1;
691	__u8		ps		:1;	/* parameters saveable */
692	__u8		page_length;		/* Page Length - Should be 0x12 */
693	__u8		reserved2, reserved3;
694	unsigned	ro		:1;	/* Read Only Mode */
695	unsigned	reserved4_1234	:4;
696	unsigned	sprev		:1;	/* Supports SPACE in the reverse direction */
697	unsigned	reserved4_67	:2;
698	unsigned	reserved5_012	:3;
699	unsigned	efmt		:1;	/* Supports ERASE command initiated formatting */
700	unsigned	reserved5_4	:1;
701	unsigned	qfa		:1;	/* Supports the QFA two partition formats */
702	unsigned	reserved5_67	:2;
703	unsigned	lock		:1;	/* Supports locking the volume */
704	unsigned	locked		:1;	/* The volume is locked */
705	unsigned	prevent		:1;	/* The device defaults in the prevent state after power up */
706	unsigned	eject		:1;	/* The device can eject the volume */
707	__u8		disconnect	:1;	/* The device can break request > ctl */
708	__u8		reserved6_5	:1;
709	unsigned	ecc		:1;	/* Supports error correction */
710	unsigned	cmprs		:1;	/* Supports data compression */
711	unsigned	reserved7_0	:1;
712	unsigned	blk512		:1;	/* Supports 512 bytes block size */
713	unsigned	blk1024		:1;	/* Supports 1024 bytes block size */
714	unsigned	reserved7_3_6	:4;
715	unsigned	blk32768	:1;	/* slowb - the device restricts the byte count for PIO */
716						/* transfers for slow buffer memory ??? */
717						/* Also 32768 block size in some cases */
718	__u16		max_speed;		/* Maximum speed supported in KBps */
719	__u8		reserved10, reserved11;
720	__u16		ctl;			/* Continuous Transfer Limit in blocks */
721	__u16		speed;			/* Current Speed, in KBps */
722	__u16		buffer_size;		/* Buffer Size, in 512 bytes */
723	__u8		reserved18, reserved19;
724} idetape_capabilities_page_t;
725
726/*
727 *	Block Size Page
728 */
729typedef struct {
730	unsigned	page_code	:6;	/* Page code - Should be 0x30 */
731	unsigned	reserved1_6	:1;
732	unsigned	ps		:1;
733	__u8		page_length;		/* Page Length - Should be 2 */
734	__u8		reserved2;
735	unsigned	play32		:1;
736	unsigned	play32_5	:1;
737	unsigned	reserved2_23	:2;
738	unsigned	record32	:1;
739	unsigned	record32_5	:1;
740	unsigned	reserved2_6	:1;
741	unsigned	one		:1;
742} idetape_block_size_page_t;
743
744/*
745 *	A pipeline stage.
746 */
747typedef struct idetape_stage_s {
748	struct request rq;			/* The corresponding request */
749	struct idetape_bh *bh;			/* The data buffers */
750	struct idetape_stage_s *next;		/* Pointer to the next stage */
751} idetape_stage_t;
752
753/*
754 *	REQUEST SENSE packet command result - Data Format.
755 */
756typedef struct {
757	unsigned	error_code	:7;	/* Current of deferred errors */
758	unsigned	valid		:1;	/* The information field conforms to QIC-157C */
759	__u8		reserved1	:8;	/* Segment Number - Reserved */
760	unsigned	sense_key	:4;	/* Sense Key */
761	unsigned	reserved2_4	:1;	/* Reserved */
762	unsigned	ili		:1;	/* Incorrect Length Indicator */
763	unsigned	eom		:1;	/* End Of Medium */
764	unsigned	filemark 	:1;	/* Filemark */
765	__u32		information __attribute__ ((packed));
766	__u8		asl;			/* Additional sense length (n-7) */
767	__u32		command_specific;	/* Additional command specific information */
768	__u8		asc;			/* Additional Sense Code */
769	__u8		ascq;			/* Additional Sense Code Qualifier */
770	__u8		replaceable_unit_code;	/* Field Replaceable Unit Code */
771	unsigned	sk_specific1 	:7;	/* Sense Key Specific */
772	unsigned	sksv		:1;	/* Sense Key Specific information is valid */
773	__u8		sk_specific2;		/* Sense Key Specific */
774	__u8		sk_specific3;		/* Sense Key Specific */
775	__u8		pad[2];			/* Padding to 20 bytes */
776} idetape_request_sense_result_t;
777
778
779/*
780 *	Most of our global data which we need to save even as we leave the
781 *	driver due to an interrupt or a timer event is stored in a variable
782 *	of type idetape_tape_t, defined below.
783 */
784typedef struct ide_tape_obj {
785	ide_drive_t	*drive;
786	ide_driver_t	*driver;
787	struct gendisk	*disk;
788	struct kref	kref;
789
790	/*
791	 *	Since a typical character device operation requires more
792	 *	than one packet command, we provide here enough memory
793	 *	for the maximum of interconnected packet commands.
794	 *	The packet commands are stored in the circular array pc_stack.
795	 *	pc_stack_index points to the last used entry, and warps around
796	 *	to the start when we get to the last array entry.
797	 *
798	 *	pc points to the current processed packet command.
799	 *
800	 *	failed_pc points to the last failed packet command, or contains
801	 *	NULL if we do not need to retry any packet command. This is
802	 *	required since an additional packet command is needed before the
803	 *	retry, to get detailed information on what went wrong.
804	 */
805	/* Current packet command */
806	idetape_pc_t *pc;
807	/* Last failed packet command */
808	idetape_pc_t *failed_pc;
809	/* Packet command stack */
810	idetape_pc_t pc_stack[IDETAPE_PC_STACK];
811	/* Next free packet command storage space */
812	int pc_stack_index;
813	struct request rq_stack[IDETAPE_PC_STACK];
814	/* We implement a circular array */
815	int rq_stack_index;
816
817	/*
818	 *	DSC polling variables.
819	 *
820	 *	While polling for DSC we use postponed_rq to postpone the
821	 *	current request so that ide.c will be able to service
822	 *	pending requests on the other device. Note that at most
823	 *	we will have only one DSC (usually data transfer) request
824	 *	in the device request queue. Additional requests can be
825	 *	queued in our internal pipeline, but they will be visible
826	 *	to ide.c only one at a time.
827	 */
828	struct request *postponed_rq;
829	/* The time in which we started polling for DSC */
830	unsigned long dsc_polling_start;
831	/* Timer used to poll for dsc */
832	struct timer_list dsc_timer;
833	/* Read/Write dsc polling frequency */
834	unsigned long best_dsc_rw_frequency;
835	/* The current polling frequency */
836	unsigned long dsc_polling_frequency;
837	/* Maximum waiting time */
838	unsigned long dsc_timeout;
839
840	/*
841	 *	Read position information
842	 */
843	u8 partition;
844	/* Current block */
845	unsigned int first_frame_position;
846	unsigned int last_frame_position;
847	unsigned int blocks_in_buffer;
848
849	/*
850	 *	Last error information
851	 */
852	u8 sense_key, asc, ascq;
853
854	/*
855	 *	Character device operation
856	 */
857	unsigned int minor;
858	/* device name */
859	char name[4];
860	/* Current character device data transfer direction */
861	idetape_chrdev_direction_t chrdev_direction;
862
863	/*
864	 *	Device information
865	 */
866	/* Usually 512 or 1024 bytes */
867	unsigned short tape_block_size;
868	int user_bs_factor;
869	/* Copy of the tape's Capabilities and Mechanical Page */
870	idetape_capabilities_page_t capabilities;
871
872	/*
873	 *	Active data transfer request parameters.
874	 *
875	 *	At most, there is only one ide-tape originated data transfer
876	 *	request in the device request queue. This allows ide.c to
877	 *	easily service requests from the other device when we
878	 *	postpone our active request. In the pipelined operation
879	 *	mode, we use our internal pipeline structure to hold
880	 *	more data requests.
881	 *
882	 *	The data buffer size is chosen based on the tape's
883	 *	recommendation.
884	 */
885	/* Pointer to the request which is waiting in the device request queue */
886	struct request *active_data_request;
887	/* Data buffer size (chosen based on the tape's recommendation */
888	int stage_size;
889	idetape_stage_t *merge_stage;
890	int merge_stage_size;
891	struct idetape_bh *bh;
892	char *b_data;
893	int b_count;
894
895	/*
896	 *	Pipeline parameters.
897	 *
898	 *	To accomplish non-pipelined mode, we simply set the following
899	 *	variables to zero (or NULL, where appropriate).
900	 */
901	/* Number of currently used stages */
902	int nr_stages;
903	/* Number of pending stages */
904	int nr_pending_stages;
905	/* We will not allocate more than this number of stages */
906	int max_stages, min_pipeline, max_pipeline;
907	/* The first stage which will be removed from the pipeline */
908	idetape_stage_t *first_stage;
909	/* The currently active stage */
910	idetape_stage_t *active_stage;
911	/* Will be serviced after the currently active request */
912	idetape_stage_t *next_stage;
913	/* New requests will be added to the pipeline here */
914	idetape_stage_t *last_stage;
915	/* Optional free stage which we can use */
916	idetape_stage_t *cache_stage;
917	int pages_per_stage;
918	/* Wasted space in each stage */
919	int excess_bh_size;
920
921	/* Status/Action flags: long for set_bit */
922	unsigned long flags;
923	/* protects the ide-tape queue */
924	spinlock_t spinlock;
925
926	/*
927	 * Measures average tape speed
928	 */
929	unsigned long avg_time;
930	int avg_size;
931	int avg_speed;
932
933	/* last sense information */
934	idetape_request_sense_result_t sense;
935
936	char vendor_id[10];
937	char product_id[18];
938	char firmware_revision[6];
939	int firmware_revision_num;
940
941	/* the door is currently locked */
942	int door_locked;
943	/* the tape hardware is write protected */
944	char drv_write_prot;
945	/* the tape is write protected (hardware or opened as read-only) */
946	char write_prot;
947
948	/*
949	 * Limit the number of times a request can
950	 * be postponed, to avoid an infinite postpone
951	 * deadlock.
952	 */
953	/* request postpone count limit */
954	int postpone_cnt;
955
956	/*
957	 * Measures number of frames:
958	 *
959	 * 1. written/read to/from the driver pipeline (pipeline_head).
960	 * 2. written/read to/from the tape buffers (idetape_bh).
961	 * 3. written/read by the tape to/from the media (tape_head).
962	 */
963	int pipeline_head;
964	int buffer_head;
965	int tape_head;
966	int last_tape_head;
967
968	/*
969	 * Speed control at the tape buffers input/output
970	 */
971	unsigned long insert_time;
972	int insert_size;
973	int insert_speed;
974	int max_insert_speed;
975	int measure_insert_time;
976
977	/*
978	 * Measure tape still time, in milliseconds
979	 */
980	unsigned long tape_still_time_begin;
981	int tape_still_time;
982
983	/*
984	 * Speed regulation negative feedback loop
985	 */
986	int speed_control;
987	int pipeline_head_speed;
988	int controlled_pipeline_head_speed;
989	int uncontrolled_pipeline_head_speed;
990	int controlled_last_pipeline_head;
991	int uncontrolled_last_pipeline_head;
992	unsigned long uncontrolled_pipeline_head_time;
993	unsigned long controlled_pipeline_head_time;
994	int controlled_previous_pipeline_head;
995	int uncontrolled_previous_pipeline_head;
996	unsigned long controlled_previous_head_time;
997	unsigned long uncontrolled_previous_head_time;
998	int restart_speed_control_req;
999
1000        /*
1001         * Debug_level determines amount of debugging output;
1002         * can be changed using /proc/ide/hdx/settings
1003         * 0 : almost no debugging output
1004         * 1 : 0+output errors only
1005         * 2 : 1+output all sensekey/asc
1006         * 3 : 2+follow all chrdev related procedures
1007         * 4 : 3+follow all procedures
1008         * 5 : 4+include pc_stack rq_stack info
1009         * 6 : 5+USE_COUNT updates
1010         */
1011         int debug_level;
1012} idetape_tape_t;
1013
1014static DECLARE_MUTEX(idetape_ref_sem);
1015
1016static struct class *idetape_sysfs_class;
1017
1018#define to_ide_tape(obj) container_of(obj, struct ide_tape_obj, kref)
1019
1020#define ide_tape_g(disk) \
1021	container_of((disk)->private_data, struct ide_tape_obj, driver)
1022
1023static struct ide_tape_obj *ide_tape_get(struct gendisk *disk)
1024{
1025	struct ide_tape_obj *tape = NULL;
1026
1027	down(&idetape_ref_sem);
1028	tape = ide_tape_g(disk);
1029	if (tape)
1030		kref_get(&tape->kref);
1031	up(&idetape_ref_sem);
1032	return tape;
1033}
1034
1035static void ide_tape_release(struct kref *);
1036
1037static void ide_tape_put(struct ide_tape_obj *tape)
1038{
1039	down(&idetape_ref_sem);
1040	kref_put(&tape->kref, ide_tape_release);
1041	up(&idetape_ref_sem);
1042}
1043
1044/*
1045 *	Tape door status
1046 */
1047#define DOOR_UNLOCKED			0
1048#define DOOR_LOCKED			1
1049#define DOOR_EXPLICITLY_LOCKED		2
1050
1051/*
1052 *	Tape flag bits values.
1053 */
1054#define IDETAPE_IGNORE_DSC		0
1055#define IDETAPE_ADDRESS_VALID		1	/* 0 When the tape position is unknown */
1056#define IDETAPE_BUSY			2	/* Device already opened */
1057#define IDETAPE_PIPELINE_ERROR		3	/* Error detected in a pipeline stage */
1058#define IDETAPE_DETECT_BS		4	/* Attempt to auto-detect the current user block size */
1059#define IDETAPE_FILEMARK		5	/* Currently on a filemark */
1060#define IDETAPE_DRQ_INTERRUPT		6	/* DRQ interrupt device */
1061#define IDETAPE_READ_ERROR		7
1062#define IDETAPE_PIPELINE_ACTIVE		8	/* pipeline active */
1063/* 0 = no tape is loaded, so we don't rewind after ejecting */
1064#define IDETAPE_MEDIUM_PRESENT		9
1065
1066/*
1067 *	Supported ATAPI tape drives packet commands
1068 */
1069#define IDETAPE_TEST_UNIT_READY_CMD	0x00
1070#define IDETAPE_REWIND_CMD		0x01
1071#define IDETAPE_REQUEST_SENSE_CMD	0x03
1072#define IDETAPE_READ_CMD		0x08
1073#define IDETAPE_WRITE_CMD		0x0a
1074#define IDETAPE_WRITE_FILEMARK_CMD	0x10
1075#define IDETAPE_SPACE_CMD		0x11
1076#define IDETAPE_INQUIRY_CMD		0x12
1077#define IDETAPE_ERASE_CMD		0x19
1078#define IDETAPE_MODE_SENSE_CMD		0x1a
1079#define IDETAPE_MODE_SELECT_CMD		0x15
1080#define IDETAPE_LOAD_UNLOAD_CMD		0x1b
1081#define IDETAPE_PREVENT_CMD		0x1e
1082#define IDETAPE_LOCATE_CMD		0x2b
1083#define IDETAPE_READ_POSITION_CMD	0x34
1084#define IDETAPE_READ_BUFFER_CMD		0x3c
1085#define IDETAPE_SET_SPEED_CMD		0xbb
1086
1087/*
1088 *	Some defines for the READ BUFFER command
1089 */
1090#define IDETAPE_RETRIEVE_FAULTY_BLOCK	6
1091
1092/*
1093 *	Some defines for the SPACE command
1094 */
1095#define IDETAPE_SPACE_OVER_FILEMARK	1
1096#define IDETAPE_SPACE_TO_EOD		3
1097
1098/*
1099 *	Some defines for the LOAD UNLOAD command
1100 */
1101#define IDETAPE_LU_LOAD_MASK		1
1102#define IDETAPE_LU_RETENSION_MASK	2
1103#define IDETAPE_LU_EOT_MASK		4
1104
1105/*
1106 *	Special requests for our block device strategy routine.
1107 *
1108 *	In order to service a character device command, we add special
1109 *	requests to the tail of our block device request queue and wait
1110 *	for their completion.
1111 */
1112
1113enum {
1114	REQ_IDETAPE_PC1		= (1 << 0), /* packet command (first stage) */
1115	REQ_IDETAPE_PC2		= (1 << 1), /* packet command (second stage) */
1116	REQ_IDETAPE_READ	= (1 << 2),
1117	REQ_IDETAPE_WRITE	= (1 << 3),
1118	REQ_IDETAPE_READ_BUFFER	= (1 << 4),
1119};
1120
1121/*
1122 *	Error codes which are returned in rq->errors to the higher part
1123 *	of the driver.
1124 */
1125#define	IDETAPE_ERROR_GENERAL		101
1126#define	IDETAPE_ERROR_FILEMARK		102
1127#define	IDETAPE_ERROR_EOD		103
1128
1129/*
1130 *	The following is used to format the general configuration word of
1131 *	the ATAPI IDENTIFY DEVICE command.
1132 */
1133struct idetape_id_gcw {
1134	unsigned packet_size		:2;	/* Packet Size */
1135	unsigned reserved234		:3;	/* Reserved */
1136	unsigned drq_type		:2;	/* Command packet DRQ type */
1137	unsigned removable		:1;	/* Removable media */
1138	unsigned device_type		:5;	/* Device type */
1139	unsigned reserved13		:1;	/* Reserved */
1140	unsigned protocol		:2;	/* Protocol type */
1141};
1142
1143/*
1144 *	INQUIRY packet command - Data Format (From Table 6-8 of QIC-157C)
1145 */
1146typedef struct {
1147	unsigned	device_type	:5;	/* Peripheral Device Type */
1148	unsigned	reserved0_765	:3;	/* Peripheral Qualifier - Reserved */
1149	unsigned	reserved1_6t0	:7;	/* Reserved */
1150	unsigned	rmb		:1;	/* Removable Medium Bit */
1151	unsigned	ansi_version	:3;	/* ANSI Version */
1152	unsigned	ecma_version	:3;	/* ECMA Version */
1153	unsigned	iso_version	:2;	/* ISO Version */
1154	unsigned	response_format :4;	/* Response Data Format */
1155	unsigned	reserved3_45	:2;	/* Reserved */
1156	unsigned	reserved3_6	:1;	/* TrmIOP - Reserved */
1157	unsigned	reserved3_7	:1;	/* AENC - Reserved */
1158	__u8		additional_length;	/* Additional Length (total_length-4) */
1159	__u8		rsv5, rsv6, rsv7;	/* Reserved */
1160	__u8		vendor_id[8];		/* Vendor Identification */
1161	__u8		product_id[16];		/* Product Identification */
1162	__u8		revision_level[4];	/* Revision Level */
1163	__u8		vendor_specific[20];	/* Vendor Specific - Optional */
1164	__u8		reserved56t95[40];	/* Reserved - Optional */
1165						/* Additional information may be returned */
1166} idetape_inquiry_result_t;
1167
1168/*
1169 *	READ POSITION packet command - Data Format (From Table 6-57)
1170 */
1171typedef struct {
1172	unsigned	reserved0_10	:2;	/* Reserved */
1173	unsigned	bpu		:1;	/* Block Position Unknown */
1174	unsigned	reserved0_543	:3;	/* Reserved */
1175	unsigned	eop		:1;	/* End Of Partition */
1176	unsigned	bop		:1;	/* Beginning Of Partition */
1177	u8		partition;		/* Partition Number */
1178	u8		reserved2, reserved3;	/* Reserved */
1179	u32		first_block;		/* First Block Location */
1180	u32		last_block;		/* Last Block Location (Optional) */
1181	u8		reserved12;		/* Reserved */
1182	u8		blocks_in_buffer[3];	/* Blocks In Buffer - (Optional) */
1183	u32		bytes_in_buffer;	/* Bytes In Buffer (Optional) */
1184} idetape_read_position_result_t;
1185
1186/*
1187 *	Follows structures which are related to the SELECT SENSE / MODE SENSE
1188 *	packet commands. Those packet commands are still not supported
1189 *	by ide-tape.
1190 */
1191#define IDETAPE_BLOCK_DESCRIPTOR	0
1192#define	IDETAPE_CAPABILITIES_PAGE	0x2a
1193#define IDETAPE_PARAMTR_PAGE		0x2b   /* Onstream DI-x0 only */
1194#define IDETAPE_BLOCK_SIZE_PAGE		0x30
1195#define IDETAPE_BUFFER_FILLING_PAGE	0x33
1196
1197/*
1198 *	Mode Parameter Header for the MODE SENSE packet command
1199 */
1200typedef struct {
1201	__u8	mode_data_length;	/* Length of the following data transfer */
1202	__u8	medium_type;		/* Medium Type */
1203	__u8	dsp;			/* Device Specific Parameter */
1204	__u8	bdl;			/* Block Descriptor Length */
1205#if 0
1206	/* data transfer page */
1207	__u8	page_code	:6;
1208	__u8	reserved0_6	:1;
1209	__u8	ps		:1;	/* parameters saveable */
1210	__u8	page_length;		/* page Length == 0x02 */
1211	__u8	reserved2;
1212	__u8	read32k		:1;	/* 32k blk size (data only) */
1213	__u8	read32k5	:1;	/* 32.5k blk size (data&AUX) */
1214	__u8	reserved3_23	:2;
1215	__u8	write32k	:1;	/* 32k blk size (data only) */
1216	__u8	write32k5	:1;	/* 32.5k blk size (data&AUX) */
1217	__u8	reserved3_6	:1;
1218	__u8	streaming	:1;	/* streaming mode enable */
1219#endif
1220} idetape_mode_parameter_header_t;
1221
1222/*
1223 *	Mode Parameter Block Descriptor the MODE SENSE packet command
1224 *
1225 *	Support for block descriptors is optional.
1226 */
1227typedef struct {
1228	__u8		density_code;		/* Medium density code */
1229	__u8		blocks[3];		/* Number of blocks */
1230	__u8		reserved4;		/* Reserved */
1231	__u8		length[3];		/* Block Length */
1232} idetape_parameter_block_descriptor_t;
1233
1234/*
1235 *	The Data Compression Page, as returned by the MODE SENSE packet command.
1236 */
1237typedef struct {
1238	unsigned	page_code	:6;	/* Page Code - Should be 0xf */
1239	unsigned	reserved0	:1;	/* Reserved */
1240	unsigned	ps		:1;
1241	__u8		page_length;		/* Page Length - Should be 14 */
1242	unsigned	reserved2	:6;	/* Reserved */
1243	unsigned	dcc		:1;	/* Data Compression Capable */
1244	unsigned	dce		:1;	/* Data Compression Enable */
1245	unsigned	reserved3	:5;	/* Reserved */
1246	unsigned	red		:2;	/* Report Exception on Decompression */
1247	unsigned	dde		:1;	/* Data Decompression Enable */
1248	__u32		ca;			/* Compression Algorithm */
1249	__u32		da;			/* Decompression Algorithm */
1250	__u8		reserved[4];		/* Reserved */
1251} idetape_data_compression_page_t;
1252
1253/*
1254 *	The Medium Partition Page, as returned by the MODE SENSE packet command.
1255 */
1256typedef struct {
1257	unsigned	page_code	:6;	/* Page Code - Should be 0x11 */
1258	unsigned	reserved1_6	:1;	/* Reserved */
1259	unsigned	ps		:1;
1260	__u8		page_length;		/* Page Length - Should be 6 */
1261	__u8		map;			/* Maximum Additional Partitions - Should be 0 */
1262	__u8		apd;			/* Additional Partitions Defined - Should be 0 */
1263	unsigned	reserved4_012	:3;	/* Reserved */
1264	unsigned	psum		:2;	/* Should be 0 */
1265	unsigned	idp		:1;	/* Should be 0 */
1266	unsigned	sdp		:1;	/* Should be 0 */
1267	unsigned	fdp		:1;	/* Fixed Data Partitions */
1268	__u8		mfr;			/* Medium Format Recognition */
1269	__u8		reserved[2];		/* Reserved */
1270} idetape_medium_partition_page_t;
1271
1272/*
1273 *	Run time configurable parameters.
1274 */
1275typedef struct {
1276	int	dsc_rw_frequency;
1277	int	dsc_media_access_frequency;
1278	int	nr_stages;
1279} idetape_config_t;
1280
1281/*
1282 *	The variables below are used for the character device interface.
1283 *	Additional state variables are defined in our ide_drive_t structure.
1284 */
1285static struct ide_tape_obj * idetape_devs[MAX_HWIFS * MAX_DRIVES];
1286
1287#define ide_tape_f(file) ((file)->private_data)
1288
1289static struct ide_tape_obj *ide_tape_chrdev_get(unsigned int i)
1290{
1291	struct ide_tape_obj *tape = NULL;
1292
1293	down(&idetape_ref_sem);
1294	tape = idetape_devs[i];
1295	if (tape)
1296		kref_get(&tape->kref);
1297	up(&idetape_ref_sem);
1298	return tape;
1299}
1300
1301/*
1302 *      Function declarations
1303 *
1304 */
1305static int idetape_chrdev_release (struct inode *inode, struct file *filp);
1306static void idetape_write_release (ide_drive_t *drive, unsigned int minor);
1307
1308/*
1309 * Too bad. The drive wants to send us data which we are not ready to accept.
1310 * Just throw it away.
1311 */
1312static void idetape_discard_data (ide_drive_t *drive, unsigned int bcount)
1313{
1314	while (bcount--)
1315		(void) HWIF(drive)->INB(IDE_DATA_REG);
1316}
1317
1318static void idetape_input_buffers (ide_drive_t *drive, idetape_pc_t *pc, unsigned int bcount)
1319{
1320	struct idetape_bh *bh = pc->bh;
1321	int count;
1322
1323	while (bcount) {
1324#if IDETAPE_DEBUG_BUGS
1325		if (bh == NULL) {
1326			printk(KERN_ERR "ide-tape: bh == NULL in "
1327				"idetape_input_buffers\n");
1328			idetape_discard_data(drive, bcount);
1329			return;
1330		}
1331#endif /* IDETAPE_DEBUG_BUGS */
1332		count = min((unsigned int)(bh->b_size - atomic_read(&bh->b_count)), bcount);
1333		HWIF(drive)->atapi_input_bytes(drive, bh->b_data + atomic_read(&bh->b_count), count);
1334		bcount -= count;
1335		atomic_add(count, &bh->b_count);
1336		if (atomic_read(&bh->b_count) == bh->b_size) {
1337			bh = bh->b_reqnext;
1338			if (bh)
1339				atomic_set(&bh->b_count, 0);
1340		}
1341	}
1342	pc->bh = bh;
1343}
1344
1345static void idetape_output_buffers (ide_drive_t *drive, idetape_pc_t *pc, unsigned int bcount)
1346{
1347	struct idetape_bh *bh = pc->bh;
1348	int count;
1349
1350	while (bcount) {
1351#if IDETAPE_DEBUG_BUGS
1352		if (bh == NULL) {
1353			printk(KERN_ERR "ide-tape: bh == NULL in "
1354				"idetape_output_buffers\n");
1355			return;
1356		}
1357#endif /* IDETAPE_DEBUG_BUGS */
1358		count = min((unsigned int)pc->b_count, (unsigned int)bcount);
1359		HWIF(drive)->atapi_output_bytes(drive, pc->b_data, count);
1360		bcount -= count;
1361		pc->b_data += count;
1362		pc->b_count -= count;
1363		if (!pc->b_count) {
1364			pc->bh = bh = bh->b_reqnext;
1365			if (bh) {
1366				pc->b_data = bh->b_data;
1367				pc->b_count = atomic_read(&bh->b_count);
1368			}
1369		}
1370	}
1371}
1372
1373static void idetape_update_buffers (idetape_pc_t *pc)
1374{
1375	struct idetape_bh *bh = pc->bh;
1376	int count;
1377	unsigned int bcount = pc->actually_transferred;
1378
1379	if (test_bit(PC_WRITING, &pc->flags))
1380		return;
1381	while (bcount) {
1382#if IDETAPE_DEBUG_BUGS
1383		if (bh == NULL) {
1384			printk(KERN_ERR "ide-tape: bh == NULL in "
1385				"idetape_update_buffers\n");
1386			return;
1387		}
1388#endif /* IDETAPE_DEBUG_BUGS */
1389		count = min((unsigned int)bh->b_size, (unsigned int)bcount);
1390		atomic_set(&bh->b_count, count);
1391		if (atomic_read(&bh->b_count) == bh->b_size)
1392			bh = bh->b_reqnext;
1393		bcount -= count;
1394	}
1395	pc->bh = bh;
1396}
1397
1398/*
1399 *	idetape_next_pc_storage returns a pointer to a place in which we can
1400 *	safely store a packet command, even though we intend to leave the
1401 *	driver. A storage space for a maximum of IDETAPE_PC_STACK packet
1402 *	commands is allocated at initialization time.
1403 */
1404static idetape_pc_t *idetape_next_pc_storage (ide_drive_t *drive)
1405{
1406	idetape_tape_t *tape = drive->driver_data;
1407
1408#if IDETAPE_DEBUG_LOG
1409	if (tape->debug_level >= 5)
1410		printk(KERN_INFO "ide-tape: pc_stack_index=%d\n",
1411			tape->pc_stack_index);
1412#endif /* IDETAPE_DEBUG_LOG */
1413	if (tape->pc_stack_index == IDETAPE_PC_STACK)
1414		tape->pc_stack_index=0;
1415	return (&tape->pc_stack[tape->pc_stack_index++]);
1416}
1417
1418/*
1419 *	idetape_next_rq_storage is used along with idetape_next_pc_storage.
1420 *	Since we queue packet commands in the request queue, we need to
1421 *	allocate a request, along with the allocation of a packet command.
1422 */
1423
1424/**************************************************************
1425 *                                                            *
1426 *  This should get fixed to use kmalloc(.., GFP_ATOMIC)      *
1427 *  followed later on by kfree().   -ml                       *
1428 *                                                            *
1429 **************************************************************/
1430
1431static struct request *idetape_next_rq_storage (ide_drive_t *drive)
1432{
1433	idetape_tape_t *tape = drive->driver_data;
1434
1435#if IDETAPE_DEBUG_LOG
1436	if (tape->debug_level >= 5)
1437		printk(KERN_INFO "ide-tape: rq_stack_index=%d\n",
1438			tape->rq_stack_index);
1439#endif /* IDETAPE_DEBUG_LOG */
1440	if (tape->rq_stack_index == IDETAPE_PC_STACK)
1441		tape->rq_stack_index=0;
1442	return (&tape->rq_stack[tape->rq_stack_index++]);
1443}
1444
1445/*
1446 *	idetape_init_pc initializes a packet command.
1447 */
1448static void idetape_init_pc (idetape_pc_t *pc)
1449{
1450	memset(pc->c, 0, 12);
1451	pc->retries = 0;
1452	pc->flags = 0;
1453	pc->request_transfer = 0;
1454	pc->buffer = pc->pc_buffer;
1455	pc->buffer_size = IDETAPE_PC_BUFFER_SIZE;
1456	pc->bh = NULL;
1457	pc->b_data = NULL;
1458}
1459
1460/*
1461 *	idetape_analyze_error is called on each failed packet command retry
1462 *	to analyze the request sense. We currently do not utilize this
1463 *	information.
1464 */
1465static void idetape_analyze_error (ide_drive_t *drive, idetape_request_sense_result_t *result)
1466{
1467	idetape_tape_t *tape = drive->driver_data;
1468	idetape_pc_t *pc = tape->failed_pc;
1469
1470	tape->sense     = *result;
1471	tape->sense_key = result->sense_key;
1472	tape->asc       = result->asc;
1473	tape->ascq      = result->ascq;
1474#if IDETAPE_DEBUG_LOG
1475	/*
1476	 *	Without debugging, we only log an error if we decided to
1477	 *	give up retrying.
1478	 */
1479	if (tape->debug_level >= 1)
1480		printk(KERN_INFO "ide-tape: pc = %x, sense key = %x, "
1481			"asc = %x, ascq = %x\n",
1482			pc->c[0], result->sense_key,
1483			result->asc, result->ascq);
1484#endif /* IDETAPE_DEBUG_LOG */
1485
1486	/*
1487	 *	Correct pc->actually_transferred by asking the tape.
1488	 */
1489	if (test_bit(PC_DMA_ERROR, &pc->flags)) {
1490		pc->actually_transferred = pc->request_transfer - tape->tape_block_size * ntohl(get_unaligned(&result->information));
1491		idetape_update_buffers(pc);
1492	}
1493
1494	/*
1495	 * If error was the result of a zero-length read or write command,
1496	 * with sense key=5, asc=0x22, ascq=0, let it slide.  Some drives
1497	 * (i.e. Seagate STT3401A Travan) don't support 0-length read/writes.
1498	 */
1499	if ((pc->c[0] == IDETAPE_READ_CMD || pc->c[0] == IDETAPE_WRITE_CMD)
1500	    && pc->c[4] == 0 && pc->c[3] == 0 && pc->c[2] == 0) { /* length==0 */
1501		if (result->sense_key == 5) {
1502			/* don't report an error, everything's ok */
1503			pc->error = 0;
1504			/* don't retry read/write */
1505			set_bit(PC_ABORT, &pc->flags);
1506		}
1507	}
1508	if (pc->c[0] == IDETAPE_READ_CMD && result->filemark) {
1509		pc->error = IDETAPE_ERROR_FILEMARK;
1510		set_bit(PC_ABORT, &pc->flags);
1511	}
1512	if (pc->c[0] == IDETAPE_WRITE_CMD) {
1513		if (result->eom ||
1514		    (result->sense_key == 0xd && result->asc == 0x0 &&
1515		     result->ascq == 0x2)) {
1516			pc->error = IDETAPE_ERROR_EOD;
1517			set_bit(PC_ABORT, &pc->flags);
1518		}
1519	}
1520	if (pc->c[0] == IDETAPE_READ_CMD || pc->c[0] == IDETAPE_WRITE_CMD) {
1521		if (result->sense_key == 8) {
1522			pc->error = IDETAPE_ERROR_EOD;
1523			set_bit(PC_ABORT, &pc->flags);
1524		}
1525		if (!test_bit(PC_ABORT, &pc->flags) &&
1526		    pc->actually_transferred)
1527			pc->retries = IDETAPE_MAX_PC_RETRIES + 1;
1528	}
1529}
1530
1531/*
1532 * idetape_active_next_stage will declare the next stage as "active".
1533 */
1534static void idetape_active_next_stage (ide_drive_t *drive)
1535{
1536	idetape_tape_t *tape = drive->driver_data;
1537	idetape_stage_t *stage = tape->next_stage;
1538	struct request *rq = &stage->rq;
1539
1540#if IDETAPE_DEBUG_LOG
1541	if (tape->debug_level >= 4)
1542		printk(KERN_INFO "ide-tape: Reached idetape_active_next_stage\n");
1543#endif /* IDETAPE_DEBUG_LOG */
1544#if IDETAPE_DEBUG_BUGS
1545	if (stage == NULL) {
1546		printk(KERN_ERR "ide-tape: bug: Trying to activate a non existing stage\n");
1547		return;
1548	}
1549#endif /* IDETAPE_DEBUG_BUGS */
1550
1551	rq->rq_disk = tape->disk;
1552	rq->buffer = NULL;
1553	rq->special = (void *)stage->bh;
1554	tape->active_data_request = rq;
1555	tape->active_stage = stage;
1556	tape->next_stage = stage->next;
1557}
1558
1559/*
1560 *	idetape_increase_max_pipeline_stages is a part of the feedback
1561 *	loop which tries to find the optimum number of stages. In the
1562 *	feedback loop, we are starting from a minimum maximum number of
1563 *	stages, and if we sense that the pipeline is empty, we try to
1564 *	increase it, until we reach the user compile time memory limit.
1565 */
1566static void idetape_increase_max_pipeline_stages (ide_drive_t *drive)
1567{
1568	idetape_tape_t *tape = drive->driver_data;
1569	int increase = (tape->max_pipeline - tape->min_pipeline) / 10;
1570
1571#if IDETAPE_DEBUG_LOG
1572	if (tape->debug_level >= 4)
1573		printk (KERN_INFO "ide-tape: Reached idetape_increase_max_pipeline_stages\n");
1574#endif /* IDETAPE_DEBUG_LOG */
1575
1576	tape->max_stages += max(increase, 1);
1577	tape->max_stages = max(tape->max_stages, tape->min_pipeline);
1578	tape->max_stages = min(tape->max_stages, tape->max_pipeline);
1579}
1580
1581/*
1582 *	idetape_kfree_stage calls kfree to completely free a stage, along with
1583 *	its related buffers.
1584 */
1585static void __idetape_kfree_stage (idetape_stage_t *stage)
1586{
1587	struct idetape_bh *prev_bh, *bh = stage->bh;
1588	int size;
1589
1590	while (bh != NULL) {
1591		if (bh->b_data != NULL) {
1592			size = (int) bh->b_size;
1593			while (size > 0) {
1594				free_page((unsigned long) bh->b_data);
1595				size -= PAGE_SIZE;
1596				bh->b_data += PAGE_SIZE;
1597			}
1598		}
1599		prev_bh = bh;
1600		bh = bh->b_reqnext;
1601		kfree(prev_bh);
1602	}
1603	kfree(stage);
1604}
1605
1606static void idetape_kfree_stage (idetape_tape_t *tape, idetape_stage_t *stage)
1607{
1608	__idetape_kfree_stage(stage);
1609}
1610
1611/*
1612 *	idetape_remove_stage_head removes tape->first_stage from the pipeline.
1613 *	The caller should avoid race conditions.
1614 */
1615static void idetape_remove_stage_head (ide_drive_t *drive)
1616{
1617	idetape_tape_t *tape = drive->driver_data;
1618	idetape_stage_t *stage;
1619
1620#if IDETAPE_DEBUG_LOG
1621	if (tape->debug_level >= 4)
1622		printk(KERN_INFO "ide-tape: Reached idetape_remove_stage_head\n");
1623#endif /* IDETAPE_DEBUG_LOG */
1624#if IDETAPE_DEBUG_BUGS
1625	if (tape->first_stage == NULL) {
1626		printk(KERN_ERR "ide-tape: bug: tape->first_stage is NULL\n");
1627		return;
1628	}
1629	if (tape->active_stage == tape->first_stage) {
1630		printk(KERN_ERR "ide-tape: bug: Trying to free our active pipeline stage\n");
1631		return;
1632	}
1633#endif /* IDETAPE_DEBUG_BUGS */
1634	stage = tape->first_stage;
1635	tape->first_stage = stage->next;
1636	idetape_kfree_stage(tape, stage);
1637	tape->nr_stages--;
1638	if (tape->first_stage == NULL) {
1639		tape->last_stage = NULL;
1640#if IDETAPE_DEBUG_BUGS
1641		if (tape->next_stage != NULL)
1642			printk(KERN_ERR "ide-tape: bug: tape->next_stage != NULL\n");
1643		if (tape->nr_stages)
1644			printk(KERN_ERR "ide-tape: bug: nr_stages should be 0 now\n");
1645#endif /* IDETAPE_DEBUG_BUGS */
1646	}
1647}
1648
1649/*
1650 * This will free all the pipeline stages starting from new_last_stage->next
1651 * to the end of the list, and point tape->last_stage to new_last_stage.
1652 */
1653static void idetape_abort_pipeline(ide_drive_t *drive,
1654				   idetape_stage_t *new_last_stage)
1655{
1656	idetape_tape_t *tape = drive->driver_data;
1657	idetape_stage_t *stage = new_last_stage->next;
1658	idetape_stage_t *nstage;
1659
1660#if IDETAPE_DEBUG_LOG
1661	if (tape->debug_level >= 4)
1662		printk(KERN_INFO "ide-tape: %s: idetape_abort_pipeline called\n", tape->name);
1663#endif
1664	while (stage) {
1665		nstage = stage->next;
1666		idetape_kfree_stage(tape, stage);
1667		--tape->nr_stages;
1668		--tape->nr_pending_stages;
1669		stage = nstage;
1670	}
1671	if (new_last_stage)
1672		new_last_stage->next = NULL;
1673	tape->last_stage = new_last_stage;
1674	tape->next_stage = NULL;
1675}
1676
1677/*
1678 *	idetape_end_request is used to finish servicing a request, and to
1679 *	insert a pending pipeline request into the main device queue.
1680 */
1681static int idetape_end_request(ide_drive_t *drive, int uptodate, int nr_sects)
1682{
1683	struct request *rq = HWGROUP(drive)->rq;
1684	idetape_tape_t *tape = drive->driver_data;
1685	unsigned long flags;
1686	int error;
1687	int remove_stage = 0;
1688	idetape_stage_t *active_stage;
1689
1690#if IDETAPE_DEBUG_LOG
1691        if (tape->debug_level >= 4)
1692	printk(KERN_INFO "ide-tape: Reached idetape_end_request\n");
1693#endif /* IDETAPE_DEBUG_LOG */
1694
1695	switch (uptodate) {
1696		case 0:	error = IDETAPE_ERROR_GENERAL; break;
1697		case 1: error = 0; break;
1698		default: error = uptodate;
1699	}
1700	rq->errors = error;
1701	if (error)
1702		tape->failed_pc = NULL;
1703
1704	spin_lock_irqsave(&tape->spinlock, flags);
1705
1706	/* The request was a pipelined data transfer request */
1707	if (tape->active_data_request == rq) {
1708		active_stage = tape->active_stage;
1709		tape->active_stage = NULL;
1710		tape->active_data_request = NULL;
1711		tape->nr_pending_stages--;
1712		if (rq->cmd[0] & REQ_IDETAPE_WRITE) {
1713			remove_stage = 1;
1714			if (error) {
1715				set_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
1716				if (error == IDETAPE_ERROR_EOD)
1717					idetape_abort_pipeline(drive, active_stage);
1718			}
1719		} else if (rq->cmd[0] & REQ_IDETAPE_READ) {
1720			if (error == IDETAPE_ERROR_EOD) {
1721				set_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
1722				idetape_abort_pipeline(drive, active_stage);
1723			}
1724		}
1725		if (tape->next_stage != NULL) {
1726			idetape_active_next_stage(drive);
1727
1728			/*
1729			 * Insert the next request into the request queue.
1730			 */
1731			(void) ide_do_drive_cmd(drive, tape->active_data_request, ide_end);
1732		} else if (!error) {
1733				idetape_increase_max_pipeline_stages(drive);
1734		}
1735	}
1736	ide_end_drive_cmd(drive, 0, 0);
1737//	blkdev_dequeue_request(rq);
1738//	drive->rq = NULL;
1739//	end_that_request_last(rq);
1740
1741	if (remove_stage)
1742		idetape_remove_stage_head(drive);
1743	if (tape->active_data_request == NULL)
1744		clear_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
1745	spin_unlock_irqrestore(&tape->spinlock, flags);
1746	return 0;
1747}
1748
1749static ide_startstop_t idetape_request_sense_callback (ide_drive_t *drive)
1750{
1751	idetape_tape_t *tape = drive->driver_data;
1752
1753#if IDETAPE_DEBUG_LOG
1754	if (tape->debug_level >= 4)
1755		printk(KERN_INFO "ide-tape: Reached idetape_request_sense_callback\n");
1756#endif /* IDETAPE_DEBUG_LOG */
1757	if (!tape->pc->error) {
1758		idetape_analyze_error(drive, (idetape_request_sense_result_t *) tape->pc->buffer);
1759		idetape_end_request(drive, 1, 0);
1760	} else {
1761		printk(KERN_ERR "ide-tape: Error in REQUEST SENSE itself - Aborting request!\n");
1762		idetape_end_request(drive, 0, 0);
1763	}
1764	return ide_stopped;
1765}
1766
1767static void idetape_create_request_sense_cmd (idetape_pc_t *pc)
1768{
1769	idetape_init_pc(pc);
1770	pc->c[0] = IDETAPE_REQUEST_SENSE_CMD;
1771	pc->c[4] = 20;
1772	pc->request_transfer = 20;
1773	pc->callback = &idetape_request_sense_callback;
1774}
1775
1776static void idetape_init_rq(struct request *rq, u8 cmd)
1777{
1778	memset(rq, 0, sizeof(*rq));
1779	rq->flags = REQ_SPECIAL;
1780	rq->cmd[0] = cmd;
1781}
1782
1783/*
1784 *	idetape_queue_pc_head generates a new packet command request in front
1785 *	of the request queue, before the current request, so that it will be
1786 *	processed immediately, on the next pass through the driver.
1787 *
1788 *	idetape_queue_pc_head is called from the request handling part of
1789 *	the driver (the "bottom" part). Safe storage for the request should
1790 *	be allocated with idetape_next_pc_storage and idetape_next_rq_storage
1791 *	before calling idetape_queue_pc_head.
1792 *
1793 *	Memory for those requests is pre-allocated at initialization time, and
1794 *	is limited to IDETAPE_PC_STACK requests. We assume that we have enough
1795 *	space for the maximum possible number of inter-dependent packet commands.
1796 *
1797 *	The higher level of the driver - The ioctl handler and the character
1798 *	device handling functions should queue request to the lower level part
1799 *	and wait for their completion using idetape_queue_pc_tail or
1800 *	idetape_queue_rw_tail.
1801 */
1802static void idetape_queue_pc_head (ide_drive_t *drive, idetape_pc_t *pc,struct request *rq)
1803{
1804	struct ide_tape_obj *tape = drive->driver_data;
1805
1806	idetape_init_rq(rq, REQ_IDETAPE_PC1);
1807	rq->buffer = (char *) pc;
1808	rq->rq_disk = tape->disk;
1809	(void) ide_do_drive_cmd(drive, rq, ide_preempt);
1810}
1811
1812/*
1813 *	idetape_retry_pc is called when an error was detected during the
1814 *	last packet command. We queue a request sense packet command in
1815 *	the head of the request list.
1816 */
1817static ide_startstop_t idetape_retry_pc (ide_drive_t *drive)
1818{
1819	idetape_tape_t *tape = drive->driver_data;
1820	idetape_pc_t *pc;
1821	struct request *rq;
1822	atapi_error_t error;
1823
1824	error.all = HWIF(drive)->INB(IDE_ERROR_REG);
1825	pc = idetape_next_pc_storage(drive);
1826	rq = idetape_next_rq_storage(drive);
1827	idetape_create_request_sense_cmd(pc);
1828	set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
1829	idetape_queue_pc_head(drive, pc, rq);
1830	return ide_stopped;
1831}
1832
1833/*
1834 *	idetape_postpone_request postpones the current request so that
1835 *	ide.c will be able to service requests from another device on
1836 *	the same hwgroup while we are polling for DSC.
1837 */
1838static void idetape_postpone_request (ide_drive_t *drive)
1839{
1840	idetape_tape_t *tape = drive->driver_data;
1841
1842#if IDETAPE_DEBUG_LOG
1843	if (tape->debug_level >= 4)
1844		printk(KERN_INFO "ide-tape: idetape_postpone_request\n");
1845#endif
1846	tape->postponed_rq = HWGROUP(drive)->rq;
1847	ide_stall_queue(drive, tape->dsc_polling_frequency);
1848}
1849
1850/*
1851 *	idetape_pc_intr is the usual interrupt handler which will be called
1852 *	during a packet command. We will transfer some of the data (as
1853 *	requested by the drive) and will re-point interrupt handler to us.
1854 *	When data transfer is finished, we will act according to the
1855 *	algorithm described before idetape_issue_packet_command.
1856 *
1857 */
1858static ide_startstop_t idetape_pc_intr (ide_drive_t *drive)
1859{
1860	ide_hwif_t *hwif = drive->hwif;
1861	idetape_tape_t *tape = drive->driver_data;
1862	atapi_status_t status;
1863	atapi_bcount_t bcount;
1864	atapi_ireason_t ireason;
1865	idetape_pc_t *pc = tape->pc;
1866
1867	unsigned int temp;
1868#if SIMULATE_ERRORS
1869	static int error_sim_count = 0;
1870#endif
1871
1872#if IDETAPE_DEBUG_LOG
1873	if (tape->debug_level >= 4)
1874		printk(KERN_INFO "ide-tape: Reached idetape_pc_intr "
1875				"interrupt handler\n");
1876#endif /* IDETAPE_DEBUG_LOG */
1877
1878	/* Clear the interrupt */
1879	status.all = HWIF(drive)->INB(IDE_STATUS_REG);
1880
1881	if (test_bit(PC_DMA_IN_PROGRESS, &pc->flags)) {
1882		if (HWIF(drive)->ide_dma_end(drive) || status.b.check) {
1883			/*
1884			 * A DMA error is sometimes expected. For example,
1885			 * if the tape is crossing a filemark during a
1886			 * READ command, it will issue an irq and position
1887			 * itself before the filemark, so that only a partial
1888			 * data transfer will occur (which causes the DMA
1889			 * error). In that case, we will later ask the tape
1890			 * how much bytes of the original request were
1891			 * actually transferred (we can't receive that
1892			 * information from the DMA engine on most chipsets).
1893			 */
1894
1895			/*
1896			 * On the contrary, a DMA error is never expected;
1897			 * it usually indicates a hardware error or abort.
1898			 * If the tape crosses a filemark during a READ
1899			 * command, it will issue an irq and position itself
1900			 * after the filemark (not before). Only a partial
1901			 * data transfer will occur, but no DMA error.
1902			 * (AS, 19 Apr 2001)
1903			 */
1904			set_bit(PC_DMA_ERROR, &pc->flags);
1905		} else {
1906			pc->actually_transferred = pc->request_transfer;
1907			idetape_update_buffers(pc);
1908		}
1909#if IDETAPE_DEBUG_LOG
1910		if (tape->debug_level >= 4)
1911			printk(KERN_INFO "ide-tape: DMA finished\n");
1912#endif /* IDETAPE_DEBUG_LOG */
1913	}
1914
1915	/* No more interrupts */
1916	if (!status.b.drq) {
1917#if IDETAPE_DEBUG_LOG
1918		if (tape->debug_level >= 2)
1919			printk(KERN_INFO "ide-tape: Packet command completed, %d bytes transferred\n", pc->actually_transferred);
1920#endif /* IDETAPE_DEBUG_LOG */
1921		clear_bit(PC_DMA_IN_PROGRESS, &pc->flags);
1922
1923		local_irq_enable();
1924
1925#if SIMULATE_ERRORS
1926		if ((pc->c[0] == IDETAPE_WRITE_CMD ||
1927		     pc->c[0] == IDETAPE_READ_CMD) &&
1928		    (++error_sim_count % 100) == 0) {
1929			printk(KERN_INFO "ide-tape: %s: simulating error\n",
1930				tape->name);
1931			status.b.check = 1;
1932		}
1933#endif
1934		if (status.b.check && pc->c[0] == IDETAPE_REQUEST_SENSE_CMD)
1935			status.b.check = 0;
1936		if (status.b.check || test_bit(PC_DMA_ERROR, &pc->flags)) {	/* Error detected */
1937#if IDETAPE_DEBUG_LOG
1938			if (tape->debug_level >= 1)
1939				printk(KERN_INFO "ide-tape: %s: I/O error\n",
1940					tape->name);
1941#endif /* IDETAPE_DEBUG_LOG */
1942			if (pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) {
1943				printk(KERN_ERR "ide-tape: I/O error in request sense command\n");
1944				return ide_do_reset(drive);
1945			}
1946#if IDETAPE_DEBUG_LOG
1947			if (tape->debug_level >= 1)
1948				printk(KERN_INFO "ide-tape: [cmd %x]: check condition\n", pc->c[0]);
1949#endif
1950			/* Retry operation */
1951			return idetape_retry_pc(drive);
1952		}
1953		pc->error = 0;
1954		if (test_bit(PC_WAIT_FOR_DSC, &pc->flags) &&
1955		    !status.b.dsc) {
1956			/* Media access command */
1957			tape->dsc_polling_start = jiffies;
1958			tape->dsc_polling_frequency = IDETAPE_DSC_MA_FAST;
1959			tape->dsc_timeout = jiffies + IDETAPE_DSC_MA_TIMEOUT;
1960			/* Allow ide.c to handle other requests */
1961			idetape_postpone_request(drive);
1962			return ide_stopped;
1963		}
1964		if (tape->failed_pc == pc)
1965			tape->failed_pc = NULL;
1966		/* Command finished - Call the callback function */
1967		return pc->callback(drive);
1968	}
1969	if (test_and_clear_bit(PC_DMA_IN_PROGRESS, &pc->flags)) {
1970		printk(KERN_ERR "ide-tape: The tape wants to issue more "
1971				"interrupts in DMA mode\n");
1972		printk(KERN_ERR "ide-tape: DMA disabled, reverting to PIO\n");
1973		(void)__ide_dma_off(drive);
1974		return ide_do_reset(drive);
1975	}
1976	/* Get the number of bytes to transfer on this interrupt. */
1977	bcount.b.high = hwif->INB(IDE_BCOUNTH_REG);
1978	bcount.b.low = hwif->INB(IDE_BCOUNTL_REG);
1979
1980	ireason.all = hwif->INB(IDE_IREASON_REG);
1981
1982	if (ireason.b.cod) {
1983		printk(KERN_ERR "ide-tape: CoD != 0 in idetape_pc_intr\n");
1984		return ide_do_reset(drive);
1985	}
1986	if (ireason.b.io == test_bit(PC_WRITING, &pc->flags)) {
1987		/* Hopefully, we will never get here */
1988		printk(KERN_ERR "ide-tape: We wanted to %s, ",
1989			ireason.b.io ? "Write":"Read");
1990		printk(KERN_ERR "ide-tape: but the tape wants us to %s !\n",
1991			ireason.b.io ? "Read":"Write");
1992		return ide_do_reset(drive);
1993	}
1994	if (!test_bit(PC_WRITING, &pc->flags)) {
1995		/* Reading - Check that we have enough space */
1996		temp = pc->actually_transferred + bcount.all;
1997		if (temp > pc->request_transfer) {
1998			if (temp > pc->buffer_size) {
1999				printk(KERN_ERR "ide-tape: The tape wants to send us more data than expected - discarding data\n");
2000				idetape_discard_data(drive, bcount.all);
2001				ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
2002				return ide_started;
2003			}
2004#if IDETAPE_DEBUG_LOG
2005			if (tape->debug_level >= 2)
2006				printk(KERN_NOTICE "ide-tape: The tape wants to send us more data than expected - allowing transfer\n");
2007#endif /* IDETAPE_DEBUG_LOG */
2008		}
2009	}
2010	if (test_bit(PC_WRITING, &pc->flags)) {
2011		if (pc->bh != NULL)
2012			idetape_output_buffers(drive, pc, bcount.all);
2013		else
2014			/* Write the current buffer */
2015			HWIF(drive)->atapi_output_bytes(drive, pc->current_position, bcount.all);
2016	} else {
2017		if (pc->bh != NULL)
2018			idetape_input_buffers(drive, pc, bcount.all);
2019		else
2020			/* Read the current buffer */
2021			HWIF(drive)->atapi_input_bytes(drive, pc->current_position, bcount.all);
2022	}
2023	/* Update the current position */
2024	pc->actually_transferred += bcount.all;
2025	pc->current_position += bcount.all;
2026#if IDETAPE_DEBUG_LOG
2027	if (tape->debug_level >= 2)
2028		printk(KERN_INFO "ide-tape: [cmd %x] transferred %d bytes on that interrupt\n", pc->c[0], bcount.all);
2029#endif
2030	/* And set the interrupt handler again */
2031	ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
2032	return ide_started;
2033}
2034
2035/*
2036 *	Packet Command Interface
2037 *
2038 *	The current Packet Command is available in tape->pc, and will not
2039 *	change until we finish handling it. Each packet command is associated
2040 *	with a callback function that will be called when the command is
2041 *	finished.
2042 *
2043 *	The handling will be done in three stages:
2044 *
2045 *	1.	idetape_issue_packet_command will send the packet command to the
2046 *		drive, and will set the interrupt handler to idetape_pc_intr.
2047 *
2048 *	2.	On each interrupt, idetape_pc_intr will be called. This step
2049 *		will be repeated until the device signals us that no more
2050 *		interrupts will be issued.
2051 *
2052 *	3.	ATAPI Tape media access commands have immediate status with a
2053 *		delayed process. In case of a successful initiation of a
2054 *		media access packet command, the DSC bit will be set when the
2055 *		actual execution of the command is finished.
2056 *		Since the tape drive will not issue an interrupt, we have to
2057 *		poll for this event. In this case, we define the request as
2058 *		"low priority request" by setting rq_status to
2059 *		IDETAPE_RQ_POSTPONED, 	set a timer to poll for DSC and exit
2060 *		the driver.
2061 *
2062 *		ide.c will then give higher priority to requests which
2063 *		originate from the other device, until will change rq_status
2064 *		to RQ_ACTIVE.
2065 *
2066 *	4.	When the packet command is finished, it will be checked for errors.
2067 *
2068 *	5.	In case an error was found, we queue a request sense packet
2069 *		command in front of the request queue and retry the operation
2070 *		up to IDETAPE_MAX_PC_RETRIES times.
2071 *
2072 *	6.	In case no error was found, or we decided to give up and not
2073 *		to retry again, the callback function will be called and then
2074 *		we will handle the next request.
2075 *
2076 */
2077static ide_startstop_t idetape_transfer_pc(ide_drive_t *drive)
2078{
2079	ide_hwif_t *hwif = drive->hwif;
2080	idetape_tape_t *tape = drive->driver_data;
2081	idetape_pc_t *pc = tape->pc;
2082	atapi_ireason_t ireason;
2083	int retries = 100;
2084	ide_startstop_t startstop;
2085
2086	if (ide_wait_stat(&startstop,drive,DRQ_STAT,BUSY_STAT,WAIT_READY)) {
2087		printk(KERN_ERR "ide-tape: Strange, packet command initiated yet DRQ isn't asserted\n");
2088		return startstop;
2089	}
2090	ireason.all = hwif->INB(IDE_IREASON_REG);
2091	while (retries-- && (!ireason.b.cod || ireason.b.io)) {
2092		printk(KERN_ERR "ide-tape: (IO,CoD != (0,1) while issuing "
2093				"a packet command, retrying\n");
2094		udelay(100);
2095		ireason.all = hwif->INB(IDE_IREASON_REG);
2096		if (retries == 0) {
2097			printk(KERN_ERR "ide-tape: (IO,CoD != (0,1) while "
2098					"issuing a packet command, ignoring\n");
2099			ireason.b.cod = 1;
2100			ireason.b.io = 0;
2101		}
2102	}
2103	if (!ireason.b.cod || ireason.b.io) {
2104		printk(KERN_ERR "ide-tape: (IO,CoD) != (0,1) while issuing "
2105				"a packet command\n");
2106		return ide_do_reset(drive);
2107	}
2108	/* Set the interrupt routine */
2109	ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
2110#ifdef CONFIG_BLK_DEV_IDEDMA
2111	/* Begin DMA, if necessary */
2112	if (test_bit(PC_DMA_IN_PROGRESS, &pc->flags))
2113		hwif->dma_start(drive);
2114#endif
2115	/* Send the actual packet */
2116	HWIF(drive)->atapi_output_bytes(drive, pc->c, 12);
2117	return ide_started;
2118}
2119
2120static ide_startstop_t idetape_issue_packet_command (ide_drive_t *drive, idetape_pc_t *pc)
2121{
2122	ide_hwif_t *hwif = drive->hwif;
2123	idetape_tape_t *tape = drive->driver_data;
2124	atapi_bcount_t bcount;
2125	int dma_ok = 0;
2126
2127#if IDETAPE_DEBUG_BUGS
2128	if (tape->pc->c[0] == IDETAPE_REQUEST_SENSE_CMD &&
2129	    pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) {
2130		printk(KERN_ERR "ide-tape: possible ide-tape.c bug - "
2131			"Two request sense in serial were issued\n");
2132	}
2133#endif /* IDETAPE_DEBUG_BUGS */
2134
2135	if (tape->failed_pc == NULL && pc->c[0] != IDETAPE_REQUEST_SENSE_CMD)
2136		tape->failed_pc = pc;
2137	/* Set the current packet command */
2138	tape->pc = pc;
2139
2140	if (pc->retries > IDETAPE_MAX_PC_RETRIES ||
2141	    test_bit(PC_ABORT, &pc->flags)) {
2142		/*
2143		 *	We will "abort" retrying a packet command in case
2144		 *	a legitimate error code was received (crossing a
2145		 *	filemark, or end of the media, for example).
2146		 */
2147		if (!test_bit(PC_ABORT, &pc->flags)) {
2148			if (!(pc->c[0] == IDETAPE_TEST_UNIT_READY_CMD &&
2149			      tape->sense_key == 2 && tape->asc == 4 &&
2150			     (tape->ascq == 1 || tape->ascq == 8))) {
2151				printk(KERN_ERR "ide-tape: %s: I/O error, "
2152						"pc = %2x, key = %2x, "
2153						"asc = %2x, ascq = %2x\n",
2154						tape->name, pc->c[0],
2155						tape->sense_key, tape->asc,
2156						tape->ascq);
2157			}
2158			/* Giving up */
2159			pc->error = IDETAPE_ERROR_GENERAL;
2160		}
2161		tape->failed_pc = NULL;
2162		return pc->callback(drive);
2163	}
2164#if IDETAPE_DEBUG_LOG
2165	if (tape->debug_level >= 2)
2166		printk(KERN_INFO "ide-tape: Retry number - %d, cmd = %02X\n", pc->retries, pc->c[0]);
2167#endif /* IDETAPE_DEBUG_LOG */
2168
2169	pc->retries++;
2170	/* We haven't transferred any data yet */
2171	pc->actually_transferred = 0;
2172	pc->current_position = pc->buffer;
2173	/* Request to transfer the entire buffer at once */
2174	bcount.all = pc->request_transfer;
2175
2176	if (test_and_clear_bit(PC_DMA_ERROR, &pc->flags)) {
2177		printk(KERN_WARNING "ide-tape: DMA disabled, "
2178				"reverting to PIO\n");
2179		(void)__ide_dma_off(drive);
2180	}
2181	if (test_bit(PC_DMA_RECOMMENDED, &pc->flags) && drive->using_dma)
2182		dma_ok = !hwif->dma_setup(drive);
2183
2184	if (IDE_CONTROL_REG)
2185		hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
2186	hwif->OUTB(dma_ok ? 1 : 0, IDE_FEATURE_REG);	/* Use PIO/DMA */
2187	hwif->OUTB(bcount.b.high, IDE_BCOUNTH_REG);
2188	hwif->OUTB(bcount.b.low, IDE_BCOUNTL_REG);
2189	hwif->OUTB(drive->select.all, IDE_SELECT_REG);
2190	if (dma_ok)			/* Will begin DMA later */
2191		set_bit(PC_DMA_IN_PROGRESS, &pc->flags);
2192	if (test_bit(IDETAPE_DRQ_INTERRUPT, &tape->flags)) {
2193		ide_set_handler(drive, &idetape_transfer_pc, IDETAPE_WAIT_CMD, NULL);
2194		hwif->OUTB(WIN_PACKETCMD, IDE_COMMAND_REG);
2195		return ide_started;
2196	} else {
2197		hwif->OUTB(WIN_PACKETCMD, IDE_COMMAND_REG);
2198		return idetape_transfer_pc(drive);
2199	}
2200}
2201
2202/*
2203 *	General packet command callback function.
2204 */
2205static ide_startstop_t idetape_pc_callback (ide_drive_t *drive)
2206{
2207	idetape_tape_t *tape = drive->driver_data;
2208
2209#if IDETAPE_DEBUG_LOG
2210	if (tape->debug_level >= 4)
2211		printk(KERN_INFO "ide-tape: Reached idetape_pc_callback\n");
2212#endif /* IDETAPE_DEBUG_LOG */
2213
2214	idetape_end_request(drive, tape->pc->error ? 0 : 1, 0);
2215	return ide_stopped;
2216}
2217
2218/*
2219 *	A mode sense command is used to "sense" tape parameters.
2220 */
2221static void idetape_create_mode_sense_cmd (idetape_pc_t *pc, u8 page_code)
2222{
2223	idetape_init_pc(pc);
2224	pc->c[0] = IDETAPE_MODE_SENSE_CMD;
2225	if (page_code != IDETAPE_BLOCK_DESCRIPTOR)
2226		pc->c[1] = 8;	/* DBD = 1 - Don't return block descriptors */
2227	pc->c[2] = page_code;
2228	/*
2229	 * Changed pc->c[3] to 0 (255 will at best return unused info).
2230	 *
2231	 * For SCSI this byte is defined as subpage instead of high byte
2232	 * of length and some IDE drives seem to interpret it this way
2233	 * and return an error when 255 is used.
2234	 */
2235	pc->c[3] = 0;
2236	pc->c[4] = 255;		/* (We will just discard data in that case) */
2237	if (page_code == IDETAPE_BLOCK_DESCRIPTOR)
2238		pc->request_transfer = 12;
2239	else if (page_code == IDETAPE_CAPABILITIES_PAGE)
2240		pc->request_transfer = 24;
2241	else
2242		pc->request_transfer = 50;
2243	pc->callback = &idetape_pc_callback;
2244}
2245
2246static void calculate_speeds(ide_drive_t *drive)
2247{
2248	idetape_tape_t *tape = drive->driver_data;
2249	int full = 125, empty = 75;
2250
2251	if (time_after(jiffies, tape->controlled_pipeline_head_time + 120 * HZ)) {
2252		tape->controlled_previous_pipeline_head = tape->controlled_last_pipeline_head;
2253		tape->controlled_previous_head_time = tape->controlled_pipeline_head_time;
2254		tape->controlled_last_pipeline_head = tape->pipeline_head;
2255		tape->controlled_pipeline_head_time = jiffies;
2256	}
2257	if (time_after(jiffies, tape->controlled_pipeline_head_time + 60 * HZ))
2258		tape->controlled_pipeline_head_speed = (tape->pipeline_head - tape->controlled_last_pipeline_head) * 32 * HZ / (jiffies - tape->controlled_pipeline_head_time);
2259	else if (time_after(jiffies, tape->controlled_previous_head_time))
2260		tape->controlled_pipeline_head_speed = (tape->pipeline_head - tape->controlled_previous_pipeline_head) * 32 * HZ / (jiffies - tape->controlled_previous_head_time);
2261
2262	if (tape->nr_pending_stages < tape->max_stages /*- 1 */) {
2263		/* -1 for read mode error recovery */
2264		if (time_after(jiffies, tape->uncontrolled_previous_head_time + 10 * HZ)) {
2265			tape->uncontrolled_pipeline_head_time = jiffies;
2266			tape->uncontrolled_pipeline_head_speed = (tape->pipeline_head - tape->uncontrolled_previous_pipeline_head) * 32 * HZ / (jiffies - tape->uncontrolled_previous_head_time);
2267		}
2268	} else {
2269		tape->uncontrolled_previous_head_time = jiffies;
2270		tape->uncontrolled_previous_pipeline_head = tape->pipeline_head;
2271		if (time_after(jiffies, tape->uncontrolled_pipeline_head_time + 30 * HZ)) {
2272			tape->uncontrolled_pipeline_head_time = jiffies;
2273		}
2274	}
2275	tape->pipeline_head_speed = max(tape->uncontrolled_pipeline_head_speed, tape->controlled_pipeline_head_speed);
2276	if (tape->speed_control == 0) {
2277		tape->max_insert_speed = 5000;
2278	} else if (tape->speed_control == 1) {
2279		if (tape->nr_pending_stages >= tape->max_stages / 2)
2280			tape->max_insert_speed = tape->pipeline_head_speed +
2281				(1100 - tape->pipeline_head_speed) * 2 * (tape->nr_pending_stages - tape->max_stages / 2) / tape->max_stages;
2282		else
2283			tape->max_insert_speed = 500 +
2284				(tape->pipeline_head_speed - 500) * 2 * tape->nr_pending_stages / tape->max_stages;
2285		if (tape->nr_pending_stages >= tape->max_stages * 99 / 100)
2286			tape->max_insert_speed = 5000;
2287	} else if (tape->speed_control == 2) {
2288		tape->max_insert_speed = tape->pipeline_head_speed * empty / 100 +
2289			(tape->pipeline_head_speed * full / 100 - tape->pipeline_head_speed * empty / 100) * tape->nr_pending_stages / tape->max_stages;
2290	} else
2291		tape->max_insert_speed = tape->speed_control;
2292	tape->max_insert_speed = max(tape->max_insert_speed, 500);
2293}
2294
2295static ide_startstop_t idetape_media_access_finished (ide_drive_t *drive)
2296{
2297	idetape_tape_t *tape = drive->driver_data;
2298	idetape_pc_t *pc = tape->pc;
2299	atapi_status_t status;
2300
2301	status.all = HWIF(drive)->INB(IDE_STATUS_REG);
2302	if (status.b.dsc) {
2303		if (status.b.check) {
2304			/* Error detected */
2305			if (pc->c[0] != IDETAPE_TEST_UNIT_READY_CMD)
2306				printk(KERN_ERR "ide-tape: %s: I/O error, ",
2307						tape->name);
2308			/* Retry operation */
2309			return idetape_retry_pc(drive);
2310		}
2311		pc->error = 0;
2312		if (tape->failed_pc == pc)
2313			tape->failed_pc = NULL;
2314	} else {
2315		pc->error = IDETAPE_ERROR_GENERAL;
2316		tape->failed_pc = NULL;
2317	}
2318	return pc->callback(drive);
2319}
2320
2321static ide_startstop_t idetape_rw_callback (ide_drive_t *drive)
2322{
2323	idetape_tape_t *tape = drive->driver_data;
2324	struct request *rq = HWGROUP(drive)->rq;
2325	int blocks = tape->pc->actually_transferred / tape->tape_block_size;
2326
2327	tape->avg_size += blocks * tape->tape_block_size;
2328	tape->insert_size += blocks * tape->tape_block_size;
2329	if (tape->insert_size > 1024 * 1024)
2330		tape->measure_insert_time = 1;
2331	if (tape->measure_insert_time) {
2332		tape->measure_insert_time = 0;
2333		tape->insert_time = jiffies;
2334		tape->insert_size = 0;
2335	}
2336	if (time_after(jiffies, tape->insert_time))
2337		tape->insert_speed = tape->insert_size / 1024 * HZ / (jiffies - tape->insert_time);
2338	if (jiffies - tape->avg_time >= HZ) {
2339		tape->avg_speed = tape->avg_size * HZ / (jiffies - tape->avg_time) / 1024;
2340		tape->avg_size = 0;
2341		tape->avg_time = jiffies;
2342	}
2343
2344#if IDETAPE_DEBUG_LOG
2345	if (tape->debug_level >= 4)
2346		printk(KERN_INFO "ide-tape: Reached idetape_rw_callback\n");
2347#endif /* IDETAPE_DEBUG_LOG */
2348
2349	tape->first_frame_position += blocks;
2350	rq->current_nr_sectors -= blocks;
2351
2352	if (!tape->pc->error)
2353		idetape_end_request(drive, 1, 0);
2354	else
2355		idetape_end_request(drive, tape->pc->error, 0);
2356	return ide_stopped;
2357}
2358
2359static void idetape_create_read_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
2360{
2361	idetape_init_pc(pc);
2362	pc->c[0] = IDETAPE_READ_CMD;
2363	put_unaligned(htonl(length), (unsigned int *) &pc->c[1]);
2364	pc->c[1] = 1;
2365	pc->callback = &idetape_rw_callback;
2366	pc->bh = bh;
2367	atomic_set(&bh->b_count, 0);
2368	pc->buffer = NULL;
2369	pc->request_transfer = pc->buffer_size = length * tape->tape_block_size;
2370	if (pc->request_transfer == tape->stage_size)
2371		set_bit(PC_DMA_RECOMMENDED, &pc->flags);
2372}
2373
2374static void idetape_create_read_buffer_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
2375{
2376	int size = 32768;
2377	struct idetape_bh *p = bh;
2378
2379	idetape_init_pc(pc);
2380	pc->c[0] = IDETAPE_READ_BUFFER_CMD;
2381	pc->c[1] = IDETAPE_RETRIEVE_FAULTY_BLOCK;
2382	pc->c[7] = size >> 8;
2383	pc->c[8] = size & 0xff;
2384	pc->callback = &idetape_pc_callback;
2385	pc->bh = bh;
2386	atomic_set(&bh->b_count, 0);
2387	pc->buffer = NULL;
2388	while (p) {
2389		atomic_set(&p->b_count, 0);
2390		p = p->b_reqnext;
2391	}
2392	pc->request_transfer = pc->buffer_size = size;
2393}
2394
2395static void idetape_create_write_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
2396{
2397	idetape_init_pc(pc);
2398	pc->c[0] = IDETAPE_WRITE_CMD;
2399	put_unaligned(htonl(length), (unsigned int *) &pc->c[1]);
2400	pc->c[1] = 1;
2401	pc->callback = &idetape_rw_callback;
2402	set_bit(PC_WRITING, &pc->flags);
2403	pc->bh = bh;
2404	pc->b_data = bh->b_data;
2405	pc->b_count = atomic_read(&bh->b_count);
2406	pc->buffer = NULL;
2407	pc->request_transfer = pc->buffer_size = length * tape->tape_block_size;
2408	if (pc->request_transfer == tape->stage_size)
2409		set_bit(PC_DMA_RECOMMENDED, &pc->flags);
2410}
2411
2412/*
2413 * idetape_do_request is our request handling function.
2414 */
2415static ide_startstop_t idetape_do_request(ide_drive_t *drive,
2416					  struct request *rq, sector_t block)
2417{
2418	idetape_tape_t *tape = drive->driver_data;
2419	idetape_pc_t *pc = NULL;
2420	struct request *postponed_rq = tape->postponed_rq;
2421	atapi_status_t status;
2422
2423#if IDETAPE_DEBUG_LOG
2424#if 0
2425	if (tape->debug_level >= 5)
2426		printk(KERN_INFO "ide-tape: rq_status: %d, "
2427			"dev: %s, cmd: %ld, errors: %d\n", rq->rq_status,
2428			 rq->rq_disk->disk_name, rq->cmd[0], rq->errors);
2429#endif
2430	if (tape->debug_level >= 2)
2431		printk(KERN_INFO "ide-tape: sector: %ld, "
2432			"nr_sectors: %ld, current_nr_sectors: %d\n",
2433			rq->sector, rq->nr_sectors, rq->current_nr_sectors);
2434#endif /* IDETAPE_DEBUG_LOG */
2435
2436	if ((rq->flags & REQ_SPECIAL) == 0) {
2437		/*
2438		 * We do not support buffer cache originated requests.
2439		 */
2440		printk(KERN_NOTICE "ide-tape: %s: Unsupported request in "
2441			"request queue (%ld)\n", drive->name, rq->flags);
2442		ide_end_request(drive, 0, 0);
2443		return ide_stopped;
2444	}
2445
2446	/*
2447	 *	Retry a failed packet command
2448	 */
2449	if (tape->failed_pc != NULL &&
2450	    tape->pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) {
2451		return idetape_issue_packet_command(drive, tape->failed_pc);
2452	}
2453#if IDETAPE_DEBUG_BUGS
2454	if (postponed_rq != NULL)
2455		if (rq != postponed_rq) {
2456			printk(KERN_ERR "ide-tape: ide-tape.c bug - "
2457					"Two DSC requests were queued\n");
2458			idetape_end_request(drive, 0, 0);
2459			return ide_stopped;
2460		}
2461#endif /* IDETAPE_DEBUG_BUGS */
2462
2463	tape->postponed_rq = NULL;
2464
2465	/*
2466	 * If the tape is still busy, postpone our request and service
2467	 * the other device meanwhile.
2468	 */
2469	status.all = HWIF(drive)->INB(IDE_STATUS_REG);
2470
2471	if (!drive->dsc_overlap && !(rq->cmd[0] & REQ_IDETAPE_PC2))
2472		set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
2473
2474	if (drive->post_reset == 1) {
2475		set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
2476		drive->post_reset = 0;
2477	}
2478
2479	if (tape->tape_still_time > 100 && tape->tape_still_time < 200)
2480		tape->measure_insert_time = 1;
2481	if (time_after(jiffies, tape->insert_time))
2482		tape->insert_speed = tape->insert_size / 1024 * HZ / (jiffies - tape->insert_time);
2483	calculate_speeds(drive);
2484	if (!test_and_clear_bit(IDETAPE_IGNORE_DSC, &tape->flags) &&
2485	    !status.b.dsc) {
2486		if (postponed_rq == NULL) {
2487			tape->dsc_polling_start = jiffies;
2488			tape->dsc_polling_frequency = tape->best_dsc_rw_frequency;
2489			tape->dsc_timeout = jiffies + IDETAPE_DSC_RW_TIMEOUT;
2490		} else if (time_after(jiffies, tape->dsc_timeout)) {
2491			printk(KERN_ERR "ide-tape: %s: DSC timeout\n",
2492				tape->name);
2493			if (rq->cmd[0] & REQ_IDETAPE_PC2) {
2494				idetape_media_access_finished(drive);
2495				return ide_stopped;
2496			} else {
2497				return ide_do_reset(drive);
2498			}
2499		} else if (jiffies - tape->dsc_polling_start > IDETAPE_DSC_MA_THRESHOLD)
2500			tape->dsc_polling_frequency = IDETAPE_DSC_MA_SLOW;
2501		idetape_postpone_request(drive);
2502		return ide_stopped;
2503	}
2504	if (rq->cmd[0] & REQ_IDETAPE_READ) {
2505		tape->buffer_head++;
2506#if USE_IOTRACE
2507		IO_trace(IO_IDETAPE_FIFO, tape->pipeline_head, tape->buffer_head, tape->tape_head, tape->minor);
2508#endif
2509		tape->postpone_cnt = 0;
2510		pc = idetape_next_pc_storage(drive);
2511		idetape_create_read_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
2512		goto out;
2513	}
2514	if (rq->cmd[0] & REQ_IDETAPE_WRITE) {
2515		tape->buffer_head++;
2516#if USE_IOTRACE
2517		IO_trace(IO_IDETAPE_FIFO, tape->pipeline_head, tape->buffer_head, tape->tape_head, tape->minor);
2518#endif
2519		tape->postpone_cnt = 0;
2520		pc = idetape_next_pc_storage(drive);
2521		idetape_create_write_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
2522		goto out;
2523	}
2524	if (rq->cmd[0] & REQ_IDETAPE_READ_BUFFER) {
2525		tape->postpone_cnt = 0;
2526		pc = idetape_next_pc_storage(drive);
2527		idetape_create_read_buffer_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
2528		goto out;
2529	}
2530	if (rq->cmd[0] & REQ_IDETAPE_PC1) {
2531		pc = (idetape_pc_t *) rq->buffer;
2532		rq->cmd[0] &= ~(REQ_IDETAPE_PC1);
2533		rq->cmd[0] |= REQ_IDETAPE_PC2;
2534		goto out;
2535	}
2536	if (rq->cmd[0] & REQ_IDETAPE_PC2) {
2537		idetape_media_access_finished(drive);
2538		return ide_stopped;
2539	}
2540	BUG();
2541out:
2542	return idetape_issue_packet_command(drive, pc);
2543}
2544
2545/*
2546 *	Pipeline related functions
2547 */
2548static inline int idetape_pipeline_active (idetape_tape_t *tape)
2549{
2550	int rc1, rc2;
2551
2552	rc1 = test_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
2553	rc2 = (tape->active_data_request != NULL);
2554	return rc1;
2555}
2556
2557/*
2558 *	idetape_kmalloc_stage uses __get_free_page to allocate a pipeline
2559 *	stage, along with all the necessary small buffers which together make
2560 *	a buffer of size tape->stage_size (or a bit more). We attempt to
2561 *	combine sequential pages as much as possible.
2562 *
2563 *	Returns a pointer to the new allocated stage, or NULL if we
2564 *	can't (or don't want to) allocate a stage.
2565 *
2566 *	Pipeline stages are optional and are used to increase performance.
2567 *	If we can't allocate them, we'll manage without them.
2568 */
2569static idetape_stage_t *__idetape_kmalloc_stage (idetape_tape_t *tape, int full, int clear)
2570{
2571	idetape_stage_t *stage;
2572	struct idetape_bh *prev_bh, *bh;
2573	int pages = tape->pages_per_stage;
2574	char *b_data = NULL;
2575
2576	if ((stage = (idetape_stage_t *) kmalloc (sizeof (idetape_stage_t),GFP_KERNEL)) == NULL)
2577		return NULL;
2578	stage->next = NULL;
2579
2580	bh = stage->bh = (struct idetape_bh *)kmalloc(sizeof(struct idetape_bh), GFP_KERNEL);
2581	if (bh == NULL)
2582		goto abort;
2583	bh->b_reqnext = NULL;
2584	if ((bh->b_data = (char *) __get_free_page (GFP_KERNEL)) == NULL)
2585		goto abort;
2586	if (clear)
2587		memset(bh->b_data, 0, PAGE_SIZE);
2588	bh->b_size = PAGE_SIZE;
2589	atomic_set(&bh->b_count, full ? bh->b_size : 0);
2590
2591	while (--pages) {
2592		if ((b_data = (char *) __get_free_page (GFP_KERNEL)) == NULL)
2593			goto abort;
2594		if (clear)
2595			memset(b_data, 0, PAGE_SIZE);
2596		if (bh->b_data == b_data + PAGE_SIZE) {
2597			bh->b_size += PAGE_SIZE;
2598			bh->b_data -= PAGE_SIZE;
2599			if (full)
2600				atomic_add(PAGE_SIZE, &bh->b_count);
2601			continue;
2602		}
2603		if (b_data == bh->b_data + bh->b_size) {
2604			bh->b_size += PAGE_SIZE;
2605			if (full)
2606				atomic_add(PAGE_SIZE, &bh->b_count);
2607			continue;
2608		}
2609		prev_bh = bh;
2610		if ((bh = (struct idetape_bh *)kmalloc(sizeof(struct idetape_bh), GFP_KERNEL)) == NULL) {
2611			free_page((unsigned long) b_data);
2612			goto abort;
2613		}
2614		bh->b_reqnext = NULL;
2615		bh->b_data = b_data;
2616		bh->b_size = PAGE_SIZE;
2617		atomic_set(&bh->b_count, full ? bh->b_size : 0);
2618		prev_bh->b_reqnext = bh;
2619	}
2620	bh->b_size -= tape->excess_bh_size;
2621	if (full)
2622		atomic_sub(tape->excess_bh_size, &bh->b_count);
2623	return stage;
2624abort:
2625	__idetape_kfree_stage(stage);
2626	return NULL;
2627}
2628
2629static idetape_stage_t *idetape_kmalloc_stage (idetape_tape_t *tape)
2630{
2631	idetape_stage_t *cache_stage = tape->cache_stage;
2632
2633#if IDETAPE_DEBUG_LOG
2634	if (tape->debug_level >= 4)
2635		printk(KERN_INFO "ide-tape: Reached idetape_kmalloc_stage\n");
2636#endif /* IDETAPE_DEBUG_LOG */
2637
2638	if (tape->nr_stages >= tape->max_stages)
2639		return NULL;
2640	if (cache_stage != NULL) {
2641		tape->cache_stage = NULL;
2642		return cache_stage;
2643	}
2644	return __idetape_kmalloc_stage(tape, 0, 0);
2645}
2646
2647static void idetape_copy_stage_from_user (idetape_tape_t *tape, idetape_stage_t *stage, const char __user *buf, int n)
2648{
2649	struct idetape_bh *bh = tape->bh;
2650	int count;
2651
2652	while (n) {
2653#if IDETAPE_DEBUG_BUGS
2654		if (bh == NULL) {
2655			printk(KERN_ERR "ide-tape: bh == NULL in "
2656				"idetape_copy_stage_from_user\n");
2657			return;
2658		}
2659#endif /* IDETAPE_DEBUG_BUGS */
2660		count = min((unsigned int)(bh->b_size - atomic_read(&bh->b_count)), (unsigned int)n);
2661		copy_from_user(bh->b_data + atomic_read(&bh->b_count), buf, count);
2662		n -= count;
2663		atomic_add(count, &bh->b_count);
2664		buf += count;
2665		if (atomic_read(&bh->b_count) == bh->b_size) {
2666			bh = bh->b_reqnext;
2667			if (bh)
2668				atomic_set(&bh->b_count, 0);
2669		}
2670	}
2671	tape->bh = bh;
2672}
2673
2674static void idetape_copy_stage_to_user (idetape_tape_t *tape, char __user *buf, idetape_stage_t *stage, int n)
2675{
2676	struct idetape_bh *bh = tape->bh;
2677	int count;
2678
2679	while (n) {
2680#if IDETAPE_DEBUG_BUGS
2681		if (bh == NULL) {
2682			printk(KERN_ERR "ide-tape: bh == NULL in "
2683				"idetape_copy_stage_to_user\n");
2684			return;
2685		}
2686#endif /* IDETAPE_DEBUG_BUGS */
2687		count = min(tape->b_count, n);
2688		copy_to_user(buf, tape->b_data, count);
2689		n -= count;
2690		tape->b_data += count;
2691		tape->b_count -= count;
2692		buf += count;
2693		if (!tape->b_count) {
2694			tape->bh = bh = bh->b_reqnext;
2695			if (bh) {
2696				tape->b_data = bh->b_data;
2697				tape->b_count = atomic_read(&bh->b_count);
2698			}
2699		}
2700	}
2701}
2702
2703static void idetape_init_merge_stage (idetape_tape_t *tape)
2704{
2705	struct idetape_bh *bh = tape->merge_stage->bh;
2706
2707	tape->bh = bh;
2708	if (tape->chrdev_direction == idetape_direction_write)
2709		atomic_set(&bh->b_count, 0);
2710	else {
2711		tape->b_data = bh->b_data;
2712		tape->b_count = atomic_read(&bh->b_count);
2713	}
2714}
2715
2716static void idetape_switch_buffers (idetape_tape_t *tape, idetape_stage_t *stage)
2717{
2718	struct idetape_bh *tmp;
2719
2720	tmp = stage->bh;
2721	stage->bh = tape->merge_stage->bh;
2722	tape->merge_stage->bh = tmp;
2723	idetape_init_merge_stage(tape);
2724}
2725
2726/*
2727 *	idetape_add_stage_tail adds a new stage at the end of the pipeline.
2728 */
2729static void idetape_add_stage_tail (ide_drive_t *drive,idetape_stage_t *stage)
2730{
2731	idetape_tape_t *tape = drive->driver_data;
2732	unsigned long flags;
2733
2734#if IDETAPE_DEBUG_LOG
2735	if (tape->debug_level >= 4)
2736		printk (KERN_INFO "ide-tape: Reached idetape_add_stage_tail\n");
2737#endif /* IDETAPE_DEBUG_LOG */
2738	spin_lock_irqsave(&tape->spinlock, flags);
2739	stage->next = NULL;
2740	if (tape->last_stage != NULL)
2741		tape->last_stage->next=stage;
2742	else
2743		tape->first_stage = tape->next_stage=stage;
2744	tape->last_stage = stage;
2745	if (tape->next_stage == NULL)
2746		tape->next_stage = tape->last_stage;
2747	tape->nr_stages++;
2748	tape->nr_pending_stages++;
2749	spin_unlock_irqrestore(&tape->spinlock, flags);
2750}
2751
2752/*
2753 *	idetape_wait_for_request installs a completion in a pending request
2754 *	and sleeps until it is serviced.
2755 *
2756 *	The caller should ensure that the request will not be serviced
2757 *	before we install the completion (usually by disabling interrupts).
2758 */
2759static void idetape_wait_for_request (ide_drive_t *drive, struct request *rq)
2760{
2761	DECLARE_COMPLETION(wait);
2762	idetape_tape_t *tape = drive->driver_data;
2763
2764#if IDETAPE_DEBUG_BUGS
2765	if (rq == NULL || (rq->flags & REQ_SPECIAL) == 0) {
2766		printk (KERN_ERR "ide-tape: bug: Trying to sleep on non-valid request\n");
2767		return;
2768	}
2769#endif /* IDETAPE_DEBUG_BUGS */
2770	rq->waiting = &wait;
2771	rq->end_io = blk_end_sync_rq;
2772	spin_unlock_irq(&tape->spinlock);
2773	wait_for_completion(&wait);
2774	/* The stage and its struct request have been deallocated */
2775	spin_lock_irq(&tape->spinlock);
2776}
2777
2778static ide_startstop_t idetape_read_position_callback (ide_drive_t *drive)
2779{
2780	idetape_tape_t *tape = drive->driver_data;
2781	idetape_read_position_result_t *result;
2782
2783#if IDETAPE_DEBUG_LOG
2784	if (tape->debug_level >= 4)
2785		printk(KERN_INFO "ide-tape: Reached idetape_read_position_callback\n");
2786#endif /* IDETAPE_DEBUG_LOG */
2787
2788	if (!tape->pc->error) {
2789		result = (idetape_read_position_result_t *) tape->pc->buffer;
2790#if IDETAPE_DEBUG_LOG
2791		if (tape->debug_level >= 2)
2792			printk(KERN_INFO "ide-tape: BOP - %s\n",result->bop ? "Yes":"No");
2793		if (tape->debug_level >= 2)
2794			printk(KERN_INFO "ide-tape: EOP - %s\n",result->eop ? "Yes":"No");
2795#endif /* IDETAPE_DEBUG_LOG */
2796		if (result->bpu) {
2797			printk(KERN_INFO "ide-tape: Block location is unknown to the tape\n");
2798			clear_bit(IDETAPE_ADDRESS_VALID, &tape->flags);
2799			idetape_end_request(drive, 0, 0);
2800		} else {
2801#if IDETAPE_DEBUG_LOG
2802			if (tape->debug_level >= 2)
2803				printk(KERN_INFO "ide-tape: Block Location - %u\n", ntohl(result->first_block));
2804#endif /* IDETAPE_DEBUG_LOG */
2805			tape->partition = result->partition;
2806			tape->first_frame_position = ntohl(result->first_block);
2807			tape->last_frame_position = ntohl(result->last_block);
2808			tape->blocks_in_buffer = result->blocks_in_buffer[2];
2809			set_bit(IDETAPE_ADDRESS_VALID, &tape->flags);
2810			idetape_end_request(drive, 1, 0);
2811		}
2812	} else {
2813		idetape_end_request(drive, 0, 0);
2814	}
2815	return ide_stopped;
2816}
2817
2818/*
2819 *	idetape_create_write_filemark_cmd will:
2820 *
2821 *		1.	Write a filemark if write_filemark=1.
2822 *		2.	Flush the device buffers without writing a filemark
2823 *			if write_filemark=0.
2824 *
2825 */
2826static void idetape_create_write_filemark_cmd (ide_drive_t *drive, idetape_pc_t *pc,int write_filemark)
2827{
2828	idetape_init_pc(pc);
2829	pc->c[0] = IDETAPE_WRITE_FILEMARK_CMD;
2830	pc->c[4] = write_filemark;
2831	set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2832	pc->callback = &idetape_pc_callback;
2833}
2834
2835static void idetape_create_test_unit_ready_cmd(idetape_pc_t *pc)
2836{
2837	idetape_init_pc(pc);
2838	pc->c[0] = IDETAPE_TEST_UNIT_READY_CMD;
2839	pc->callback = &idetape_pc_callback;
2840}
2841
2842/*
2843 *	idetape_queue_pc_tail is based on the following functions:
2844 *
2845 *	ide_do_drive_cmd from ide.c
2846 *	cdrom_queue_request and cdrom_queue_packet_command from ide-cd.c
2847 *
2848 *	We add a special packet command request to the tail of the request
2849 *	queue, and wait for it to be serviced.
2850 *
2851 *	This is not to be called from within the request handling part
2852 *	of the driver ! We allocate here data in the stack, and it is valid
2853 *	until the request is finished. This is not the case for the bottom
2854 *	part of the driver, where we are always leaving the functions to wait
2855 *	for an interrupt or a timer event.
2856 *
2857 *	From the bottom part of the driver, we should allocate safe memory
2858 *	using idetape_next_pc_storage and idetape_next_rq_storage, and add
2859 *	the request to the request list without waiting for it to be serviced !
2860 *	In that case, we usually use idetape_queue_pc_head.
2861 */
2862static int __idetape_queue_pc_tail (ide_drive_t *drive, idetape_pc_t *pc)
2863{
2864	struct ide_tape_obj *tape = drive->driver_data;
2865	struct request rq;
2866
2867	idetape_init_rq(&rq, REQ_IDETAPE_PC1);
2868	rq.buffer = (char *) pc;
2869	rq.rq_disk = tape->disk;
2870	return ide_do_drive_cmd(drive, &rq, ide_wait);
2871}
2872
2873static void idetape_create_load_unload_cmd (ide_drive_t *drive, idetape_pc_t *pc,int cmd)
2874{
2875	idetape_init_pc(pc);
2876	pc->c[0] = IDETAPE_LOAD_UNLOAD_CMD;
2877	pc->c[4] = cmd;
2878	set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2879	pc->callback = &idetape_pc_callback;
2880}
2881
2882static int idetape_wait_ready(ide_drive_t *drive, unsigned long timeout)
2883{
2884	idetape_tape_t *tape = drive->driver_data;
2885	idetape_pc_t pc;
2886	int load_attempted = 0;
2887
2888	/*
2889	 * Wait for the tape to become ready
2890	 */
2891	set_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags);
2892	timeout += jiffies;
2893	while (time_before(jiffies, timeout)) {
2894		idetape_create_test_unit_ready_cmd(&pc);
2895		if (!__idetape_queue_pc_tail(drive, &pc))
2896			return 0;
2897		if ((tape->sense_key == 2 && tape->asc == 4 && tape->ascq == 2)
2898		    || (tape->asc == 0x3A)) {	/* no media */
2899			if (load_attempted)
2900				return -ENOMEDIUM;
2901			idetape_create_load_unload_cmd(drive, &pc, IDETAPE_LU_LOAD_MASK);
2902			__idetape_queue_pc_tail(drive, &pc);
2903			load_attempted = 1;
2904		/* not about to be ready */
2905		} else if (!(tape->sense_key == 2 && tape->asc == 4 &&
2906			     (tape->ascq == 1 || tape->ascq == 8)))
2907			return -EIO;
2908		msleep(100);
2909	}
2910	return -EIO;
2911}
2912
2913static int idetape_queue_pc_tail (ide_drive_t *drive,idetape_pc_t *pc)
2914{
2915	return __idetape_queue_pc_tail(drive, pc);
2916}
2917
2918static int idetape_flush_tape_buffers (ide_drive_t *drive)
2919{
2920	idetape_pc_t pc;
2921	int rc;
2922
2923	idetape_create_write_filemark_cmd(drive, &pc, 0);
2924	if ((rc = idetape_queue_pc_tail(drive, &pc)))
2925		return rc;
2926	idetape_wait_ready(drive, 60 * 5 * HZ);
2927	return 0;
2928}
2929
2930static void idetape_create_read_position_cmd (idetape_pc_t *pc)
2931{
2932	idetape_init_pc(pc);
2933	pc->c[0] = IDETAPE_READ_POSITION_CMD;
2934	pc->request_transfer = 20;
2935	pc->callback = &idetape_read_position_callback;
2936}
2937
2938static int idetape_read_position (ide_drive_t *drive)
2939{
2940	idetape_tape_t *tape = drive->driver_data;
2941	idetape_pc_t pc;
2942	int position;
2943
2944#if IDETAPE_DEBUG_LOG
2945        if (tape->debug_level >= 4)
2946		printk(KERN_INFO "ide-tape: Reached idetape_read_position\n");
2947#endif /* IDETAPE_DEBUG_LOG */
2948
2949	idetape_create_read_position_cmd(&pc);
2950	if (idetape_queue_pc_tail(drive, &pc))
2951		return -1;
2952	position = tape->first_frame_position;
2953	return position;
2954}
2955
2956static void idetape_create_locate_cmd (ide_drive_t *drive, idetape_pc_t *pc, unsigned int block, u8 partition, int skip)
2957{
2958	idetape_init_pc(pc);
2959	pc->c[0] = IDETAPE_LOCATE_CMD;
2960	pc->c[1] = 2;
2961	put_unaligned(htonl(block), (unsigned int *) &pc->c[3]);
2962	pc->c[8] = partition;
2963	set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2964	pc->callback = &idetape_pc_callback;
2965}
2966
2967static int idetape_create_prevent_cmd (ide_drive_t *drive, idetape_pc_t *pc, int prevent)
2968{
2969	idetape_tape_t *tape = drive->driver_data;
2970
2971	if (!tape->capabilities.lock)
2972		return 0;
2973
2974	idetape_init_pc(pc);
2975	pc->c[0] = IDETAPE_PREVENT_CMD;
2976	pc->c[4] = prevent;
2977	pc->callback = &idetape_pc_callback;
2978	return 1;
2979}
2980
2981static int __idetape_discard_read_pipeline (ide_drive_t *drive)
2982{
2983	idetape_tape_t *tape = drive->driver_data;
2984	unsigned long flags;
2985	int cnt;
2986
2987	if (tape->chrdev_direction != idetape_direction_read)
2988		return 0;
2989
2990	/* Remove merge stage. */
2991	cnt = tape->merge_stage_size / tape->tape_block_size;
2992	if (test_and_clear_bit(IDETAPE_FILEMARK, &tape->flags))
2993		++cnt;		/* Filemarks count as 1 sector */
2994	tape->merge_stage_size = 0;
2995	if (tape->merge_stage != NULL) {
2996		__idetape_kfree_stage(tape->merge_stage);
2997		tape->merge_stage = NULL;
2998	}
2999
3000	/* Clear pipeline flags. */
3001	clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
3002	tape->chrdev_direction = idetape_direction_none;
3003
3004	/* Remove pipeline stages. */
3005	if (tape->first_stage == NULL)
3006		return 0;
3007
3008	spin_lock_irqsave(&tape->spinlock, flags);
3009	tape->next_stage = NULL;
3010	if (idetape_pipeline_active(tape))
3011		idetape_wait_for_request(drive, tape->active_data_request);
3012	spin_unlock_irqrestore(&tape->spinlock, flags);
3013
3014	while (tape->first_stage != NULL) {
3015		struct request *rq_ptr = &tape->first_stage->rq;
3016
3017		cnt += rq_ptr->nr_sectors - rq_ptr->current_nr_sectors;
3018		if (rq_ptr->errors == IDETAPE_ERROR_FILEMARK)
3019			++cnt;
3020		idetape_remove_stage_head(drive);
3021	}
3022	tape->nr_pending_stages = 0;
3023	tape->max_stages = tape->min_pipeline;
3024	return cnt;
3025}
3026
3027/*
3028 *	idetape_position_tape positions the tape to the requested block
3029 *	using the LOCATE packet command. A READ POSITION command is then
3030 *	issued to check where we are positioned.
3031 *
3032 *	Like all higher level operations, we queue the commands at the tail
3033 *	of the request queue and wait for their completion.
3034 *
3035 */
3036static int idetape_position_tape (ide_drive_t *drive, unsigned int block, u8 partition, int skip)
3037{
3038	idetape_tape_t *tape = drive->driver_data;
3039	int retval;
3040	idetape_pc_t pc;
3041
3042	if (tape->chrdev_direction == idetape_direction_read)
3043		__idetape_discard_read_pipeline(drive);
3044	idetape_wait_ready(drive, 60 * 5 * HZ);
3045	idetape_create_locate_cmd(drive, &pc, block, partition, skip);
3046	retval = idetape_queue_pc_tail(drive, &pc);
3047	if (retval)
3048		return (retval);
3049
3050	idetape_create_read_position_cmd(&pc);
3051	return (idetape_queue_pc_tail(drive, &pc));
3052}
3053
3054static void idetape_discard_read_pipeline (ide_drive_t *drive, int restore_position)
3055{
3056	idetape_tape_t *tape = drive->driver_data;
3057	int cnt;
3058	int seek, position;
3059
3060	cnt = __idetape_discard_read_pipeline(drive);
3061	if (restore_position) {
3062		position = idetape_read_position(drive);
3063		seek = position > cnt ? position - cnt : 0;
3064		if (idetape_position_tape(drive, seek, 0, 0)) {
3065			printk(KERN_INFO "ide-tape: %s: position_tape failed in discard_pipeline()\n", tape->name);
3066			return;
3067		}
3068	}
3069}
3070
3071/*
3072 * idetape_queue_rw_tail generates a read/write request for the block
3073 * device interface and wait for it to be serviced.
3074 */
3075static int idetape_queue_rw_tail(ide_drive_t *drive, int cmd, int blocks, struct idetape_bh *bh)
3076{
3077	idetape_tape_t *tape = drive->driver_data;
3078	struct request rq;
3079
3080#if IDETAPE_DEBUG_LOG
3081	if (tape->debug_level >= 2)
3082		printk(KERN_INFO "ide-tape: idetape_queue_rw_tail: cmd=%d\n",cmd);
3083#endif /* IDETAPE_DEBUG_LOG */
3084#if IDETAPE_DEBUG_BUGS
3085	if (idetape_pipeline_active(tape)) {
3086		printk(KERN_ERR "ide-tape: bug: the pipeline is active in idetape_queue_rw_tail\n");
3087		return (0);
3088	}
3089#endif /* IDETAPE_DEBUG_BUGS */
3090
3091	idetape_init_rq(&rq, cmd);
3092	rq.rq_disk = tape->disk;
3093	rq.special = (void *)bh;
3094	rq.sector = tape->first_frame_position;
3095	rq.nr_sectors = rq.current_nr_sectors = blocks;
3096	(void) ide_do_drive_cmd(drive, &rq, ide_wait);
3097
3098	if ((cmd & (REQ_IDETAPE_READ | REQ_IDETAPE_WRITE)) == 0)
3099		return 0;
3100
3101	if (tape->merge_stage)
3102		idetape_init_merge_stage(tape);
3103	if (rq.errors == IDETAPE_ERROR_GENERAL)
3104		return -EIO;
3105	return (tape->tape_block_size * (blocks-rq.current_nr_sectors));
3106}
3107
3108/*
3109 *	idetape_insert_pipeline_into_queue is used to start servicing the
3110 *	pipeline stages, starting from tape->next_stage.
3111 */
3112static void idetape_insert_pipeline_into_queue (ide_drive_t *drive)
3113{
3114	idetape_tape_t *tape = drive->driver_data;
3115
3116	if (tape->next_stage == NULL)
3117		return;
3118	if (!idetape_pipeline_active(tape)) {
3119		set_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
3120		idetape_active_next_stage(drive);
3121		(void) ide_do_drive_cmd(drive, tape->active_data_request, ide_end);
3122	}
3123}
3124
3125static void idetape_create_inquiry_cmd (idetape_pc_t *pc)
3126{
3127	idetape_init_pc(pc);
3128	pc->c[0] = IDETAPE_INQUIRY_CMD;
3129	pc->c[4] = pc->request_transfer = 254;
3130	pc->callback = &idetape_pc_callback;
3131}
3132
3133static void idetape_create_rewind_cmd (ide_drive_t *drive, idetape_pc_t *pc)
3134{
3135	idetape_init_pc(pc);
3136	pc->c[0] = IDETAPE_REWIND_CMD;
3137	set_bit(PC_WAIT_FOR_DSC, &pc->flags);
3138	pc->callback = &idetape_pc_callback;
3139}
3140
3141#if 0
3142static void idetape_create_mode_select_cmd (idetape_pc_t *pc, int length)
3143{
3144	idetape_init_pc(pc);
3145	set_bit(PC_WRITING, &pc->flags);
3146	pc->c[0] = IDETAPE_MODE_SELECT_CMD;
3147	pc->c[1] = 0x10;
3148	put_unaligned(htons(length), (unsigned short *) &pc->c[3]);
3149	pc->request_transfer = 255;
3150	pc->callback = &idetape_pc_callback;
3151}
3152#endif
3153
3154static void idetape_create_erase_cmd (idetape_pc_t *pc)
3155{
3156	idetape_init_pc(pc);
3157	pc->c[0] = IDETAPE_ERASE_CMD;
3158	pc->c[1] = 1;
3159	set_bit(PC_WAIT_FOR_DSC, &pc->flags);
3160	pc->callback = &idetape_pc_callback;
3161}
3162
3163static void idetape_create_space_cmd (idetape_pc_t *pc,int count, u8 cmd)
3164{
3165	idetape_init_pc(pc);
3166	pc->c[0] = IDETAPE_SPACE_CMD;
3167	put_unaligned(htonl(count), (unsigned int *) &pc->c[1]);
3168	pc->c[1] = cmd;
3169	set_bit(PC_WAIT_FOR_DSC, &pc->flags);
3170	pc->callback = &idetape_pc_callback;
3171}
3172
3173static void idetape_wait_first_stage (ide_drive_t *drive)
3174{
3175	idetape_tape_t *tape = drive->driver_data;
3176	unsigned long flags;
3177
3178	if (tape->first_stage == NULL)
3179		return;
3180	spin_lock_irqsave(&tape->spinlock, flags);
3181	if (tape->active_stage == tape->first_stage)
3182		idetape_wait_for_request(drive, tape->active_data_request);
3183	spin_unlock_irqrestore(&tape->spinlock, flags);
3184}
3185
3186/*
3187 *	idetape_add_chrdev_write_request tries to add a character device
3188 *	originated write request to our pipeline. In case we don't succeed,
3189 *	we revert to non-pipelined operation mode for this request.
3190 *
3191 *	1.	Try to allocate a new pipeline stage.
3192 *	2.	If we can't, wait for more and more requests to be serviced
3193 *		and try again each time.
3194 *	3.	If we still can't allocate a stage, fallback to
3195 *		non-pipelined operation mode for this request.
3196 */
3197static int idetape_add_chrdev_write_request (ide_drive_t *drive, int blocks)
3198{
3199	idetape_tape_t *tape = drive->driver_data;
3200	idetape_stage_t *new_stage;
3201	unsigned long flags;
3202	struct request *rq;
3203
3204#if IDETAPE_DEBUG_LOG
3205	if (tape->debug_level >= 3)
3206		printk(KERN_INFO "ide-tape: Reached idetape_add_chrdev_write_request\n");
3207#endif /* IDETAPE_DEBUG_LOG */
3208
3209     	/*
3210     	 *	Attempt to allocate a new stage.
3211	 *	Pay special attention to possible race conditions.
3212	 */
3213	while ((new_stage = idetape_kmalloc_stage(tape)) == NULL) {
3214		spin_lock_irqsave(&tape->spinlock, flags);
3215		if (idetape_pipeline_active(tape)) {
3216			idetape_wait_for_request(drive, tape->active_data_request);
3217			spin_unlock_irqrestore(&tape->spinlock, flags);
3218		} else {
3219			spin_unlock_irqrestore(&tape->spinlock, flags);
3220			idetape_insert_pipeline_into_queue(drive);
3221			if (idetape_pipeline_active(tape))
3222				continue;
3223			/*
3224			 *	Linux is short on memory. Fallback to
3225			 *	non-pipelined operation mode for this request.
3226			 */
3227			return idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, blocks, tape->merge_stage->bh);
3228		}
3229	}
3230	rq = &new_stage->rq;
3231	idetape_init_rq(rq, REQ_IDETAPE_WRITE);
3232	/* Doesn't actually matter - We always assume sequential access */
3233	rq->sector = tape->first_frame_position;
3234	rq->nr_sectors = rq->current_nr_sectors = blocks;
3235
3236	idetape_switch_buffers(tape, new_stage);
3237	idetape_add_stage_tail(drive, new_stage);
3238	tape->pipeline_head++;
3239#if USE_IOTRACE
3240	IO_trace(IO_IDETAPE_FIFO, tape->pipeline_head, tape->buffer_head, tape->tape_head, tape->minor);
3241#endif
3242	calculate_speeds(drive);
3243
3244	/*
3245	 *	Estimate whether the tape has stopped writing by checking
3246	 *	if our write pipeline is currently empty. If we are not
3247	 *	writing anymore, wait for the pipeline to be full enough
3248	 *	(90%) before starting to service requests, so that we will
3249	 *	be able to keep up with the higher speeds of the tape.
3250	 */
3251	if (!idetape_pipeline_active(tape)) {
3252		if (tape->nr_stages >= tape->max_stages * 9 / 10 ||
3253		    tape->nr_stages >= tape->max_stages - tape->uncontrolled_pipeline_head_speed * 3 * 1024 / tape->tape_block_size) {
3254			tape->measure_insert_time = 1;
3255			tape->insert_time = jiffies;
3256			tape->insert_size = 0;
3257			tape->insert_speed = 0;
3258			idetape_insert_pipeline_into_queue(drive);
3259		}
3260	}
3261	if (test_and_clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags))
3262		/* Return a deferred error */
3263		return -EIO;
3264	return blocks;
3265}
3266
3267/*
3268 *	idetape_wait_for_pipeline will wait until all pending pipeline
3269 *	requests are serviced. Typically called on device close.
3270 */
3271static void idetape_wait_for_pipeline (ide_drive_t *drive)
3272{
3273	idetape_tape_t *tape = drive->driver_data;
3274	unsigned long flags;
3275
3276	while (tape->next_stage || idetape_pipeline_active(tape)) {
3277		idetape_insert_pipeline_into_queue(drive);
3278		spin_lock_irqsave(&tape->spinlock, flags);
3279		if (idetape_pipeline_active(tape))
3280			idetape_wait_for_request(drive, tape->active_data_request);
3281		spin_unlock_irqrestore(&tape->spinlock, flags);
3282	}
3283}
3284
3285static void idetape_empty_write_pipeline (ide_drive_t *drive)
3286{
3287	idetape_tape_t *tape = drive->driver_data;
3288	int blocks, min;
3289	struct idetape_bh *bh;
3290
3291#if IDETAPE_DEBUG_BUGS
3292	if (tape->chrdev_direction != idetape_direction_write) {
3293		printk(KERN_ERR "ide-tape: bug: Trying to empty write pipeline, but we are not writing.\n");
3294		return;
3295	}
3296	if (tape->merge_stage_size > tape->stage_size) {
3297		printk(KERN_ERR "ide-tape: bug: merge_buffer too big\n");
3298		tape->merge_stage_size = tape->stage_size;
3299	}
3300#endif /* IDETAPE_DEBUG_BUGS */
3301	if (tape->merge_stage_size) {
3302		blocks = tape->merge_stage_size / tape->tape_block_size;
3303		if (tape->merge_stage_size % tape->tape_block_size) {
3304			unsigned int i;
3305
3306			blocks++;
3307			i = tape->tape_block_size - tape->merge_stage_size % tape->tape_block_size;
3308			bh = tape->bh->b_reqnext;
3309			while (bh) {
3310				atomic_set(&bh->b_count, 0);
3311				bh = bh->b_reqnext;
3312			}
3313			bh = tape->bh;
3314			while (i) {
3315				if (bh == NULL) {
3316
3317					printk(KERN_INFO "ide-tape: bug, bh NULL\n");
3318					break;
3319				}
3320				min = min(i, (unsigned int)(bh->b_size - atomic_read(&bh->b_count)));
3321				memset(bh->b_data + atomic_read(&bh->b_count), 0, min);
3322				atomic_add(min, &bh->b_count);
3323				i -= min;
3324				bh = bh->b_reqnext;
3325			}
3326		}
3327		(void) idetape_add_chrdev_write_request(drive, blocks);
3328		tape->merge_stage_size = 0;
3329	}
3330	idetape_wait_for_pipeline(drive);
3331	if (tape->merge_stage != NULL) {
3332		__idetape_kfree_stage(tape->merge_stage);
3333		tape->merge_stage = NULL;
3334	}
3335	clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
3336	tape->chrdev_direction = idetape_direction_none;
3337
3338	/*
3339	 *	On the next backup, perform the feedback loop again.
3340	 *	(I don't want to keep sense information between backups,
3341	 *	 as some systems are constantly on, and the system load
3342	 *	 can be totally different on the next backup).
3343	 */
3344	tape->max_stages = tape->min_pipeline;
3345#if IDETAPE_DEBUG_BUGS
3346	if (tape->first_stage != NULL ||
3347	    tape->next_stage != NULL ||
3348	    tape->last_stage != NULL ||
3349	    tape->nr_stages != 0) {
3350		printk(KERN_ERR "ide-tape: ide-tape pipeline bug, "
3351			"first_stage %p, next_stage %p, "
3352			"last_stage %p, nr_stages %d\n",
3353			tape->first_stage, tape->next_stage,
3354			tape->last_stage, tape->nr_stages);
3355	}
3356#endif /* IDETAPE_DEBUG_BUGS */
3357}
3358
3359static void idetape_restart_speed_control (ide_drive_t *drive)
3360{
3361	idetape_tape_t *tape = drive->driver_data;
3362
3363	tape->restart_speed_control_req = 0;
3364	tape->pipeline_head = 0;
3365	tape->controlled_last_pipeline_head = tape->uncontrolled_last_pipeline_head = 0;
3366	tape->controlled_previous_pipeline_head = tape->uncontrolled_previous_pipeline_head = 0;
3367	tape->pipeline_head_speed = tape->controlled_pipeline_head_speed = 5000;
3368	tape->uncontrolled_pipeline_head_speed = 0;
3369	tape->controlled_pipeline_head_time = tape->uncontrolled_pipeline_head_time = jiffies;
3370	tape->controlled_previous_head_time = tape->uncontrolled_previous_head_time = jiffies;
3371}
3372
3373static int idetape_initiate_read (ide_drive_t *drive, int max_stages)
3374{
3375	idetape_tape_t *tape = drive->driver_data;
3376	idetape_stage_t *new_stage;
3377	struct request rq;
3378	int bytes_read;
3379	int blocks = tape->capabilities.ctl;
3380
3381	/* Initialize read operation */
3382	if (tape->chrdev_direction != idetape_direction_read) {
3383		if (tape->chrdev_direction == idetape_direction_write) {
3384			idetape_empty_write_pipeline(drive);
3385			idetape_flush_tape_buffers(drive);
3386		}
3387#if IDETAPE_DEBUG_BUGS
3388		if (tape->merge_stage || tape->merge_stage_size) {
3389			printk (KERN_ERR "ide-tape: merge_stage_size should be 0 now\n");
3390			tape->merge_stage_size = 0;
3391		}
3392#endif /* IDETAPE_DEBUG_BUGS */
3393		if ((tape->merge_stage = __idetape_kmalloc_stage(tape, 0, 0)) == NULL)
3394			return -ENOMEM;
3395		tape->chrdev_direction = idetape_direction_read;
3396
3397		/*
3398		 *	Issue a read 0 command to ensure that DSC handshake
3399		 *	is switched from completion mode to buffer available
3400		 *	mode.
3401		 *	No point in issuing this if DSC overlap isn't supported,
3402		 *	some drives (Seagate STT3401A) will return an error.
3403		 */
3404		if (drive->dsc_overlap) {
3405			bytes_read = idetape_queue_rw_tail(drive, REQ_IDETAPE_READ, 0, tape->merge_stage->bh);
3406			if (bytes_read < 0) {
3407				__idetape_kfree_stage(tape->merge_stage);
3408				tape->merge_stage = NULL;
3409				tape->chrdev_direction = idetape_direction_none;
3410				return bytes_read;
3411			}
3412		}
3413	}
3414	if (tape->restart_speed_control_req)
3415		idetape_restart_speed_control(drive);
3416	idetape_init_rq(&rq, REQ_IDETAPE_READ);
3417	rq.sector = tape->first_frame_position;
3418	rq.nr_sectors = rq.current_nr_sectors = blocks;
3419	if (!test_bit(IDETAPE_PIPELINE_ERROR, &tape->flags) &&
3420	    tape->nr_stages < max_stages) {
3421		new_stage = idetape_kmalloc_stage(tape);
3422		while (new_stage != NULL) {
3423			new_stage->rq = rq;
3424			idetape_add_stage_tail(drive, new_stage);
3425			if (tape->nr_stages >= max_stages)
3426				break;
3427			new_stage = idetape_kmalloc_stage(tape);
3428		}
3429	}
3430	if (!idetape_pipeline_active(tape)) {
3431		if (tape->nr_pending_stages >= 3 * max_stages / 4) {
3432			tape->measure_insert_time = 1;
3433			tape->insert_time = jiffies;
3434			tape->insert_size = 0;
3435			tape->insert_speed = 0;
3436			idetape_insert_pipeline_into_queue(drive);
3437		}
3438	}
3439	return 0;
3440}
3441
3442/*
3443 *	idetape_add_chrdev_read_request is called from idetape_chrdev_read
3444 *	to service a character device read request and add read-ahead
3445 *	requests to our pipeline.
3446 */
3447static int idetape_add_chrdev_read_request (ide_drive_t *drive,int blocks)
3448{
3449	idetape_tape_t *tape = drive->driver_data;
3450	unsigned long flags;
3451	struct request *rq_ptr;
3452	int bytes_read;
3453
3454#if IDETAPE_DEBUG_LOG
3455	if (tape->debug_level >= 4)
3456		printk(KERN_INFO "ide-tape: Reached idetape_add_chrdev_read_request, %d blocks\n", blocks);
3457#endif /* IDETAPE_DEBUG_LOG */
3458
3459	/*
3460	 * If we are at a filemark, return a read length of 0
3461	 */
3462	if (test_bit(IDETAPE_FILEMARK, &tape->flags))
3463		return 0;
3464
3465	/*
3466	 * Wait for the next block to be available at the head
3467	 * of the pipeline
3468	 */
3469	idetape_initiate_read(drive, tape->max_stages);
3470	if (tape->first_stage == NULL) {
3471		if (test_bit(IDETAPE_PIPELINE_ERROR, &tape->flags))
3472			return 0;
3473		return idetape_queue_rw_tail(drive, REQ_IDETAPE_READ, blocks, tape->merge_stage->bh);
3474	}
3475	idetape_wait_first_stage(drive);
3476	rq_ptr = &tape->first_stage->rq;
3477	bytes_read = tape->tape_block_size * (rq_ptr->nr_sectors - rq_ptr->current_nr_sectors);
3478	rq_ptr->nr_sectors = rq_ptr->current_nr_sectors = 0;
3479
3480
3481	if (rq_ptr->errors == IDETAPE_ERROR_EOD)
3482		return 0;
3483	else {
3484		idetape_switch_buffers(tape, tape->first_stage);
3485		if (rq_ptr->errors == IDETAPE_ERROR_FILEMARK)
3486			set_bit(IDETAPE_FILEMARK, &tape->flags);
3487		spin_lock_irqsave(&tape->spinlock, flags);
3488		idetape_remove_stage_head(drive);
3489		spin_unlock_irqrestore(&tape->spinlock, flags);
3490		tape->pipeline_head++;
3491#if USE_IOTRACE
3492		IO_trace(IO_IDETAPE_FIFO, tape->pipeline_head, tape->buffer_head, tape->tape_head, tape->minor);
3493#endif
3494		calculate_speeds(drive);
3495	}
3496#if IDETAPE_DEBUG_BUGS
3497	if (bytes_read > blocks * tape->tape_block_size) {
3498		printk(KERN_ERR "ide-tape: bug: trying to return more bytes than requested\n");
3499		bytes_read = blocks * tape->tape_block_size;
3500	}
3501#endif /* IDETAPE_DEBUG_BUGS */
3502	return (bytes_read);
3503}
3504
3505static void idetape_pad_zeros (ide_drive_t *drive, int bcount)
3506{
3507	idetape_tape_t *tape = drive->driver_data;
3508	struct idetape_bh *bh;
3509	int blocks;
3510
3511	while (bcount) {
3512		unsigned int count;
3513
3514		bh = tape->merge_stage->bh;
3515		count = min(tape->stage_size, bcount);
3516		bcount -= count;
3517		blocks = count / tape->tape_block_size;
3518		while (count) {
3519			atomic_set(&bh->b_count, min(count, (unsigned int)bh->b_size));
3520			memset(bh->b_data, 0, atomic_read(&bh->b_count));
3521			count -= atomic_read(&bh->b_count);
3522			bh = bh->b_reqnext;
3523		}
3524		idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, blocks, tape->merge_stage->bh);
3525	}
3526}
3527
3528static int idetape_pipeline_size (ide_drive_t *drive)
3529{
3530	idetape_tape_t *tape = drive->driver_data;
3531	idetape_stage_t *stage;
3532	struct request *rq;
3533	int size = 0;
3534
3535	idetape_wait_for_pipeline(drive);
3536	stage = tape->first_stage;
3537	while (stage != NULL) {
3538		rq = &stage->rq;
3539		size += tape->tape_block_size * (rq->nr_sectors-rq->current_nr_sectors);
3540		if (rq->errors == IDETAPE_ERROR_FILEMARK)
3541			size += tape->tape_block_size;
3542		stage = stage->next;
3543	}
3544	size += tape->merge_stage_size;
3545	return size;
3546}
3547
3548/*
3549 *	Rewinds the tape to the Beginning Of the current Partition (BOP).
3550 *
3551 *	We currently support only one partition.
3552 */
3553static int idetape_rewind_tape (ide_drive_t *drive)
3554{
3555	int retval;
3556	idetape_pc_t pc;
3557#if IDETAPE_DEBUG_LOG
3558	idetape_tape_t *tape = drive->driver_data;
3559	if (tape->debug_level >= 2)
3560		printk(KERN_INFO "ide-tape: Reached idetape_rewind_tape\n");
3561#endif /* IDETAPE_DEBUG_LOG */
3562
3563	idetape_create_rewind_cmd(drive, &pc);
3564	retval = idetape_queue_pc_tail(drive, &pc);
3565	if (retval)
3566		return retval;
3567
3568	idetape_create_read_position_cmd(&pc);
3569	retval = idetape_queue_pc_tail(drive, &pc);
3570	if (retval)
3571		return retval;
3572	return 0;
3573}
3574
3575/*
3576 *	Our special ide-tape ioctl's.
3577 *
3578 *	Currently there aren't any ioctl's.
3579 *	mtio.h compatible commands should be issued to the character device
3580 *	interface.
3581 */
3582static int idetape_blkdev_ioctl(ide_drive_t *drive, unsigned int cmd, unsigned long arg)
3583{
3584	idetape_tape_t *tape = drive->driver_data;
3585	idetape_config_t config;
3586	void __user *argp = (void __user *)arg;
3587
3588#if IDETAPE_DEBUG_LOG
3589	if (tape->debug_level >= 4)
3590		printk(KERN_INFO "ide-tape: Reached idetape_blkdev_ioctl\n");
3591#endif /* IDETAPE_DEBUG_LOG */
3592	switch (cmd) {
3593		case 0x0340:
3594			if (copy_from_user(&config, argp, sizeof (idetape_config_t)))
3595				return -EFAULT;
3596			tape->best_dsc_rw_frequency = config.dsc_rw_frequency;
3597			tape->max_stages = config.nr_stages;
3598			break;
3599		case 0x0350:
3600			config.dsc_rw_frequency = (int) tape->best_dsc_rw_frequency;
3601			config.nr_stages = tape->max_stages;
3602			if (copy_to_user(argp, &config, sizeof (idetape_config_t)))
3603				return -EFAULT;
3604			break;
3605		default:
3606			return -EIO;
3607	}
3608	return 0;
3609}
3610
3611/*
3612 *	idetape_space_over_filemarks is now a bit more complicated than just
3613 *	passing the command to the tape since we may have crossed some
3614 *	filemarks during our pipelined read-ahead mode.
3615 *
3616 *	As a minor side effect, the pipeline enables us to support MTFSFM when
3617 *	the filemark is in our internal pipeline even if the tape doesn't
3618 *	support spacing over filemarks in the reverse direction.
3619 */
3620static int idetape_space_over_filemarks (ide_drive_t *drive,short mt_op,int mt_count)
3621{
3622	idetape_tape_t *tape = drive->driver_data;
3623	idetape_pc_t pc;
3624	unsigned long flags;
3625	int retval,count=0;
3626
3627	if (mt_count == 0)
3628		return 0;
3629	if (MTBSF == mt_op || MTBSFM == mt_op) {
3630		if (!tape->capabilities.sprev)
3631			return -EIO;
3632		mt_count = - mt_count;
3633	}
3634
3635	if (tape->chrdev_direction == idetape_direction_read) {
3636		/*
3637		 *	We have a read-ahead buffer. Scan it for crossed
3638		 *	filemarks.
3639		 */
3640		tape->merge_stage_size = 0;
3641		if (test_and_clear_bit(IDETAPE_FILEMARK, &tape->flags))
3642			++count;
3643		while (tape->first_stage != NULL) {
3644			if (count == mt_count) {
3645				if (mt_op == MTFSFM)
3646					set_bit(IDETAPE_FILEMARK, &tape->flags);
3647				return 0;
3648			}
3649			spin_lock_irqsave(&tape->spinlock, flags);
3650			if (tape->first_stage == tape->active_stage) {
3651				/*
3652				 *	We have reached the active stage in the read pipeline.
3653				 *	There is no point in allowing the drive to continue
3654				 *	reading any farther, so we stop the pipeline.
3655				 *
3656				 *	This section should be moved to a separate subroutine,
3657				 *	because a similar function is performed in
3658				 *	__idetape_discard_read_pipeline(), for example.
3659				 */
3660				tape->next_stage = NULL;
3661				spin_unlock_irqrestore(&tape->spinlock, flags);
3662				idetape_wait_first_stage(drive);
3663				tape->next_stage = tape->first_stage->next;
3664			} else
3665				spin_unlock_irqrestore(&tape->spinlock, flags);
3666			if (tape->first_stage->rq.errors == IDETAPE_ERROR_FILEMARK)
3667				++count;
3668			idetape_remove_stage_head(drive);
3669		}
3670		idetape_discard_read_pipeline(drive, 0);
3671	}
3672
3673	/*
3674	 *	The filemark was not found in our internal pipeline.
3675	 *	Now we can issue the space command.
3676	 */
3677	switch (mt_op) {
3678		case MTFSF:
3679		case MTBSF:
3680			idetape_create_space_cmd(&pc,mt_count-count,IDETAPE_SPACE_OVER_FILEMARK);
3681			return (idetape_queue_pc_tail(drive, &pc));
3682		case MTFSFM:
3683		case MTBSFM:
3684			if (!tape->capabilities.sprev)
3685				return (-EIO);
3686			retval = idetape_space_over_filemarks(drive, MTFSF, mt_count-count);
3687			if (retval) return (retval);
3688			count = (MTBSFM == mt_op ? 1 : -1);
3689			return (idetape_space_over_filemarks(drive, MTFSF, count));
3690		default:
3691			printk(KERN_ERR "ide-tape: MTIO operation %d not supported\n",mt_op);
3692			return (-EIO);
3693	}
3694}
3695
3696
3697/*
3698 *	Our character device read / write functions.
3699 *
3700 *	The tape is optimized to maximize throughput when it is transferring
3701 *	an integral number of the "continuous transfer limit", which is
3702 *	a parameter of the specific tape (26 KB on my particular tape).
3703 *      (32 kB for Onstream)
3704 *
3705 *	As of version 1.3 of the driver, the character device provides an
3706 *	abstract continuous view of the media - any mix of block sizes (even 1
3707 *	byte) on the same backup/restore procedure is supported. The driver
3708 *	will internally convert the requests to the recommended transfer unit,
3709 *	so that an unmatch between the user's block size to the recommended
3710 *	size will only result in a (slightly) increased driver overhead, but
3711 *	will no longer hit performance.
3712 *      This is not applicable to Onstream.
3713 */
3714static ssize_t idetape_chrdev_read (struct file *file, char __user *buf,
3715				    size_t count, loff_t *ppos)
3716{
3717	struct ide_tape_obj *tape = ide_tape_f(file);
3718	ide_drive_t *drive = tape->drive;
3719	ssize_t bytes_read,temp, actually_read = 0, rc;
3720
3721#if IDETAPE_DEBUG_LOG
3722	if (tape->debug_level >= 3)
3723		printk(KERN_INFO "ide-tape: Reached idetape_chrdev_read, count %Zd\n", count);
3724#endif /* IDETAPE_DEBUG_LOG */
3725
3726	if (tape->chrdev_direction != idetape_direction_read) {
3727		if (test_bit(IDETAPE_DETECT_BS, &tape->flags))
3728			if (count > tape->tape_block_size &&
3729			    (count % tape->tape_block_size) == 0)
3730				tape->user_bs_factor = count / tape->tape_block_size;
3731	}
3732	if ((rc = idetape_initiate_read(drive, tape->max_stages)) < 0)
3733		return rc;
3734	if (count == 0)
3735		return (0);
3736	if (tape->merge_stage_size) {
3737		actually_read = min((unsigned int)(tape->merge_stage_size), (unsigned int)count);
3738		idetape_copy_stage_to_user(tape, buf, tape->merge_stage, actually_read);
3739		buf += actually_read;
3740		tape->merge_stage_size -= actually_read;
3741		count -= actually_read;
3742	}
3743	while (count >= tape->stage_size) {
3744		bytes_read = idetape_add_chrdev_read_request(drive, tape->capabilities.ctl);
3745		if (bytes_read <= 0)
3746			goto finish;
3747		idetape_copy_stage_to_user(tape, buf, tape->merge_stage, bytes_read);
3748		buf += bytes_read;
3749		count -= bytes_read;
3750		actually_read += bytes_read;
3751	}
3752	if (count) {
3753		bytes_read = idetape_add_chrdev_read_request(drive, tape->capabilities.ctl);
3754		if (bytes_read <= 0)
3755			goto finish;
3756		temp = min((unsigned long)count, (unsigned long)bytes_read);
3757		idetape_copy_stage_to_user(tape, buf, tape->merge_stage, temp);
3758		actually_read += temp;
3759		tape->merge_stage_size = bytes_read-temp;
3760	}
3761finish:
3762	if (!actually_read && test_bit(IDETAPE_FILEMARK, &tape->flags)) {
3763#if IDETAPE_DEBUG_LOG
3764		if (tape->debug_level >= 2)
3765			printk(KERN_INFO "ide-tape: %s: spacing over filemark\n", tape->name);
3766#endif
3767		idetape_space_over_filemarks(drive, MTFSF, 1);
3768		return 0;
3769	}
3770	return actually_read;
3771}
3772
3773static ssize_t idetape_chrdev_write (struct file *file, const char __user *buf,
3774				     size_t count, loff_t *ppos)
3775{
3776	struct ide_tape_obj *tape = ide_tape_f(file);
3777	ide_drive_t *drive = tape->drive;
3778	ssize_t retval, actually_written = 0;
3779
3780	/* The drive is write protected. */
3781	if (tape->write_prot)
3782		return -EACCES;
3783
3784#if IDETAPE_DEBUG_LOG
3785	if (tape->debug_level >= 3)
3786		printk(KERN_INFO "ide-tape: Reached idetape_chrdev_write, "
3787			"count %Zd\n", count);
3788#endif /* IDETAPE_DEBUG_LOG */
3789
3790	/* Initialize write operation */
3791	if (tape->chrdev_direction != idetape_direction_write) {
3792		if (tape->chrdev_direction == idetape_direction_read)
3793			idetape_discard_read_pipeline(drive, 1);
3794#if IDETAPE_DEBUG_BUGS
3795		if (tape->merge_stage || tape->merge_stage_size) {
3796			printk(KERN_ERR "ide-tape: merge_stage_size "
3797				"should be 0 now\n");
3798			tape->merge_stage_size = 0;
3799		}
3800#endif /* IDETAPE_DEBUG_BUGS */
3801		if ((tape->merge_stage = __idetape_kmalloc_stage(tape, 0, 0)) == NULL)
3802			return -ENOMEM;
3803		tape->chrdev_direction = idetape_direction_write;
3804		idetape_init_merge_stage(tape);
3805
3806		/*
3807		 *	Issue a write 0 command to ensure that DSC handshake
3808		 *	is switched from completion mode to buffer available
3809		 *	mode.
3810		 *	No point in issuing this if DSC overlap isn't supported,
3811		 *	some drives (Seagate STT3401A) will return an error.
3812		 */
3813		if (drive->dsc_overlap) {
3814			retval = idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, 0, tape->merge_stage->bh);
3815			if (retval < 0) {
3816				__idetape_kfree_stage(tape->merge_stage);
3817				tape->merge_stage = NULL;
3818				tape->chrdev_direction = idetape_direction_none;
3819				return retval;
3820			}
3821		}
3822	}
3823	if (count == 0)
3824		return (0);
3825	if (tape->restart_speed_control_req)
3826		idetape_restart_speed_control(drive);
3827	if (tape->merge_stage_size) {
3828#if IDETAPE_DEBUG_BUGS
3829		if (tape->merge_stage_size >= tape->stage_size) {
3830			printk(KERN_ERR "ide-tape: bug: merge buffer too big\n");
3831			tape->merge_stage_size = 0;
3832		}
3833#endif /* IDETAPE_DEBUG_BUGS */
3834		actually_written = min((unsigned int)(tape->stage_size - tape->merge_stage_size), (unsigned int)count);
3835		idetape_copy_stage_from_user(tape, tape->merge_stage, buf, actually_written);
3836		buf += actually_written;
3837		tape->merge_stage_size += actually_written;
3838		count -= actually_written;
3839
3840		if (tape->merge_stage_size == tape->stage_size) {
3841			tape->merge_stage_size = 0;
3842			retval = idetape_add_chrdev_write_request(drive, tape->capabilities.ctl);
3843			if (retval <= 0)
3844				return (retval);
3845		}
3846	}
3847	while (count >= tape->stage_size) {
3848		idetape_copy_stage_from_user(tape, tape->merge_stage, buf, tape->stage_size);
3849		buf += tape->stage_size;
3850		count -= tape->stage_size;
3851		retval = idetape_add_chrdev_write_request(drive, tape->capabilities.ctl);
3852		actually_written += tape->stage_size;
3853		if (retval <= 0)
3854			return (retval);
3855	}
3856	if (count) {
3857		actually_written += count;
3858		idetape_copy_stage_from_user(tape, tape->merge_stage, buf, count);
3859		tape->merge_stage_size += count;
3860	}
3861	return (actually_written);
3862}
3863
3864static int idetape_write_filemark (ide_drive_t *drive)
3865{
3866	idetape_pc_t pc;
3867
3868	/* Write a filemark */
3869	idetape_create_write_filemark_cmd(drive, &pc, 1);
3870	if (idetape_queue_pc_tail(drive, &pc)) {
3871		printk(KERN_ERR "ide-tape: Couldn't write a filemark\n");
3872		return -EIO;
3873	}
3874	return 0;
3875}
3876
3877/*
3878 *	idetape_mtioctop is called from idetape_chrdev_ioctl when
3879 *	the general mtio MTIOCTOP ioctl is requested.
3880 *
3881 *	We currently support the following mtio.h operations:
3882 *
3883 *	MTFSF	-	Space over mt_count filemarks in the positive direction.
3884 *			The tape is positioned after the last spaced filemark.
3885 *
3886 *	MTFSFM	-	Same as MTFSF, but the tape is positioned before the
3887 *			last filemark.
3888 *
3889 *	MTBSF	-	Steps background over mt_count filemarks, tape is
3890 *			positioned before the last filemark.
3891 *
3892 *	MTBSFM	-	Like MTBSF, only tape is positioned after the last filemark.
3893 *
3894 *	Note:
3895 *
3896 *		MTBSF and MTBSFM are not supported when the tape doesn't
3897 *		support spacing over filemarks in the reverse direction.
3898 *		In this case, MTFSFM is also usually not supported (it is
3899 *		supported in the rare case in which we crossed the filemark
3900 *		during our read-ahead pipelined operation mode).
3901 *
3902 *	MTWEOF	-	Writes mt_count filemarks. Tape is positioned after
3903 *			the last written filemark.
3904 *
3905 *	MTREW	-	Rewinds tape.
3906 *
3907 *	MTLOAD	-	Loads the tape.
3908 *
3909 *	MTOFFL	-	Puts the tape drive "Offline": Rewinds the tape and
3910 *	MTUNLOAD	prevents further access until the media is replaced.
3911 *
3912 *	MTNOP	-	Flushes tape buffers.
3913 *
3914 *	MTRETEN	-	Retension media. This typically consists of one end
3915 *			to end pass on the media.
3916 *
3917 *	MTEOM	-	Moves to the end of recorded data.
3918 *
3919 *	MTERASE	-	Erases tape.
3920 *
3921 *	MTSETBLK - 	Sets the user block size to mt_count bytes. If
3922 *			mt_count is 0, we will attempt to autodetect
3923 *			the block size.
3924 *
3925 *	MTSEEK	-	Positions the tape in a specific block number, where
3926 *			each block is assumed to contain which user_block_size
3927 *			bytes.
3928 *
3929 *	MTSETPART - 	Switches to another tape partition.
3930 *
3931 *	MTLOCK - 	Locks the tape door.
3932 *
3933 *	MTUNLOCK - 	Unlocks the tape door.
3934 *
3935 *	The following commands are currently not supported:
3936 *
3937 *	MTFSS, MTBSS, MTWSM, MTSETDENSITY,
3938 *	MTSETDRVBUFFER, MT_ST_BOOLEANS, MT_ST_WRITE_THRESHOLD.
3939 */
3940static int idetape_mtioctop (ide_drive_t *drive,short mt_op,int mt_count)
3941{
3942	idetape_tape_t *tape = drive->driver_data;
3943	idetape_pc_t pc;
3944	int i,retval;
3945
3946#if IDETAPE_DEBUG_LOG
3947	if (tape->debug_level >= 1)
3948		printk(KERN_INFO "ide-tape: Handling MTIOCTOP ioctl: "
3949			"mt_op=%d, mt_count=%d\n", mt_op, mt_count);
3950#endif /* IDETAPE_DEBUG_LOG */
3951	/*
3952	 *	Commands which need our pipelined read-ahead stages.
3953	 */
3954	switch (mt_op) {
3955		case MTFSF:
3956		case MTFSFM:
3957		case MTBSF:
3958		case MTBSFM:
3959			if (!mt_count)
3960				return (0);
3961			return (idetape_space_over_filemarks(drive,mt_op,mt_count));
3962		default:
3963			break;
3964	}
3965	switch (mt_op) {
3966		case MTWEOF:
3967			if (tape->write_prot)
3968				return -EACCES;
3969			idetape_discard_read_pipeline(drive, 1);
3970			for (i = 0; i < mt_count; i++) {
3971				retval = idetape_write_filemark(drive);
3972				if (retval)
3973					return retval;
3974			}
3975			return (0);
3976		case MTREW:
3977			idetape_discard_read_pipeline(drive, 0);
3978			if (idetape_rewind_tape(drive))
3979				return -EIO;
3980			return 0;
3981		case MTLOAD:
3982			idetape_discard_read_pipeline(drive, 0);
3983			idetape_create_load_unload_cmd(drive, &pc, IDETAPE_LU_LOAD_MASK);
3984			return (idetape_queue_pc_tail(drive, &pc));
3985		case MTUNLOAD:
3986		case MTOFFL:
3987			/*
3988			 * If door is locked, attempt to unlock before
3989			 * attempting to eject.
3990			 */
3991			if (tape->door_locked) {
3992				if (idetape_create_prevent_cmd(drive, &pc, 0))
3993					if (!idetape_queue_pc_tail(drive, &pc))
3994						tape->door_locked = DOOR_UNLOCKED;
3995			}
3996			idetape_discard_read_pipeline(drive, 0);
3997			idetape_create_load_unload_cmd(drive, &pc,!IDETAPE_LU_LOAD_MASK);
3998			retval = idetape_queue_pc_tail(drive, &pc);
3999			if (!retval)
4000				clear_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags);
4001			return retval;
4002		case MTNOP:
4003			idetape_discard_read_pipeline(drive, 0);
4004			return (idetape_flush_tape_buffers(drive));
4005		case MTRETEN:
4006			idetape_discard_read_pipeline(drive, 0);
4007			idetape_create_load_unload_cmd(drive, &pc,IDETAPE_LU_RETENSION_MASK | IDETAPE_LU_LOAD_MASK);
4008			return (idetape_queue_pc_tail(drive, &pc));
4009		case MTEOM:
4010			idetape_create_space_cmd(&pc, 0, IDETAPE_SPACE_TO_EOD);
4011			return (idetape_queue_pc_tail(drive, &pc));
4012		case MTERASE:
4013			(void) idetape_rewind_tape(drive);
4014			idetape_create_erase_cmd(&pc);
4015			return (idetape_queue_pc_tail(drive, &pc));
4016		case MTSETBLK:
4017			if (mt_count) {
4018				if (mt_count < tape->tape_block_size || mt_count % tape->tape_block_size)
4019					return -EIO;
4020				tape->user_bs_factor = mt_count / tape->tape_block_size;
4021				clear_bit(IDETAPE_DETECT_BS, &tape->flags);
4022			} else
4023				set_bit(IDETAPE_DETECT_BS, &tape->flags);
4024			return 0;
4025		case MTSEEK:
4026			idetape_discard_read_pipeline(drive, 0);
4027			return idetape_position_tape(drive, mt_count * tape->user_bs_factor, tape->partition, 0);
4028		case MTSETPART:
4029			idetape_discard_read_pipeline(drive, 0);
4030			return (idetape_position_tape(drive, 0, mt_count, 0));
4031		case MTFSR:
4032		case MTBSR:
4033		case MTLOCK:
4034			if (!idetape_create_prevent_cmd(drive, &pc, 1))
4035				return 0;
4036			retval = idetape_queue_pc_tail(drive, &pc);
4037			if (retval) return retval;
4038			tape->door_locked = DOOR_EXPLICITLY_LOCKED;
4039			return 0;
4040		case MTUNLOCK:
4041			if (!idetape_create_prevent_cmd(drive, &pc, 0))
4042				return 0;
4043			retval = idetape_queue_pc_tail(drive, &pc);
4044			if (retval) return retval;
4045			tape->door_locked = DOOR_UNLOCKED;
4046			return 0;
4047		default:
4048			printk(KERN_ERR "ide-tape: MTIO operation %d not "
4049				"supported\n", mt_op);
4050			return (-EIO);
4051	}
4052}
4053
4054/*
4055 *	Our character device ioctls.
4056 *
4057 *	General mtio.h magnetic io commands are supported here, and not in
4058 *	the corresponding block interface.
4059 *
4060 *	The following ioctls are supported:
4061 *
4062 *	MTIOCTOP -	Refer to idetape_mtioctop for detailed description.
4063 *
4064 *	MTIOCGET - 	The mt_dsreg field in the returned mtget structure
4065 *			will be set to (user block size in bytes <<
4066 *			MT_ST_BLKSIZE_SHIFT) & MT_ST_BLKSIZE_MASK.
4067 *
4068 *			The mt_blkno is set to the current user block number.
4069 *			The other mtget fields are not supported.
4070 *
4071 *	MTIOCPOS -	The current tape "block position" is returned. We
4072 *			assume that each block contains user_block_size
4073 *			bytes.
4074 *
4075 *	Our own ide-tape ioctls are supported on both interfaces.
4076 */
4077static int idetape_chrdev_ioctl (struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
4078{
4079	struct ide_tape_obj *tape = ide_tape_f(file);
4080	ide_drive_t *drive = tape->drive;
4081	struct mtop mtop;
4082	struct mtget mtget;
4083	struct mtpos mtpos;
4084	int block_offset = 0, position = tape->first_frame_position;
4085	void __user *argp = (void __user *)arg;
4086
4087#if IDETAPE_DEBUG_LOG
4088	if (tape->debug_level >= 3)
4089		printk(KERN_INFO "ide-tape: Reached idetape_chrdev_ioctl, "
4090			"cmd=%u\n", cmd);
4091#endif /* IDETAPE_DEBUG_LOG */
4092
4093	tape->restart_speed_control_req = 1;
4094	if (tape->chrdev_direction == idetape_direction_write) {
4095		idetape_empty_write_pipeline(drive);
4096		idetape_flush_tape_buffers(drive);
4097	}
4098	if (cmd == MTIOCGET || cmd == MTIOCPOS) {
4099		block_offset = idetape_pipeline_size(drive) / (tape->tape_block_size * tape->user_bs_factor);
4100		if ((position = idetape_read_position(drive)) < 0)
4101			return -EIO;
4102	}
4103	switch (cmd) {
4104		case MTIOCTOP:
4105			if (copy_from_user(&mtop, argp, sizeof (struct mtop)))
4106				return -EFAULT;
4107			return (idetape_mtioctop(drive,mtop.mt_op,mtop.mt_count));
4108		case MTIOCGET:
4109			memset(&mtget, 0, sizeof (struct mtget));
4110			mtget.mt_type = MT_ISSCSI2;
4111			mtget.mt_blkno = position / tape->user_bs_factor - block_offset;
4112			mtget.mt_dsreg = ((tape->tape_block_size * tape->user_bs_factor) << MT_ST_BLKSIZE_SHIFT) & MT_ST_BLKSIZE_MASK;
4113			if (tape->drv_write_prot) {
4114				mtget.mt_gstat |= GMT_WR_PROT(0xffffffff);
4115			}
4116			if (copy_to_user(argp, &mtget, sizeof(struct mtget)))
4117				return -EFAULT;
4118			return 0;
4119		case MTIOCPOS:
4120			mtpos.mt_blkno = position / tape->user_bs_factor - block_offset;
4121			if (copy_to_user(argp, &mtpos, sizeof(struct mtpos)))
4122				return -EFAULT;
4123			return 0;
4124		default:
4125			if (tape->chrdev_direction == idetape_direction_read)
4126				idetape_discard_read_pipeline(drive, 1);
4127			return idetape_blkdev_ioctl(drive, cmd, arg);
4128	}
4129}
4130
4131static void idetape_get_blocksize_from_block_descriptor(ide_drive_t *drive);
4132
4133/*
4134 *	Our character device open function.
4135 */
4136static int idetape_chrdev_open (struct inode *inode, struct file *filp)
4137{
4138	unsigned int minor = iminor(inode), i = minor & ~0xc0;
4139	ide_drive_t *drive;
4140	idetape_tape_t *tape;
4141	idetape_pc_t pc;
4142	int retval;
4143
4144	/*
4145	 * We really want to do nonseekable_open(inode, filp); here, but some
4146	 * versions of tar incorrectly call lseek on tapes and bail out if that
4147	 * fails.  So we disallow pread() and pwrite(), but permit lseeks.
4148	 */
4149	filp->f_mode &= ~(FMODE_PREAD | FMODE_PWRITE);
4150
4151#if IDETAPE_DEBUG_LOG
4152	printk(KERN_INFO "ide-tape: Reached idetape_chrdev_open\n");
4153#endif /* IDETAPE_DEBUG_LOG */
4154
4155	if (i >= MAX_HWIFS * MAX_DRIVES)
4156		return -ENXIO;
4157
4158	if (!(tape = ide_tape_chrdev_get(i)))
4159		return -ENXIO;
4160
4161	drive = tape->drive;
4162
4163	filp->private_data = tape;
4164
4165	if (test_and_set_bit(IDETAPE_BUSY, &tape->flags)) {
4166		retval = -EBUSY;
4167		goto out_put_tape;
4168	}
4169
4170	retval = idetape_wait_ready(drive, 60 * HZ);
4171	if (retval) {
4172		clear_bit(IDETAPE_BUSY, &tape->flags);
4173		printk(KERN_ERR "ide-tape: %s: drive not ready\n", tape->name);
4174		goto out_put_tape;
4175	}
4176
4177	idetape_read_position(drive);
4178	if (!test_bit(IDETAPE_ADDRESS_VALID, &tape->flags))
4179		(void)idetape_rewind_tape(drive);
4180
4181	if (tape->chrdev_direction != idetape_direction_read)
4182		clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
4183
4184	/* Read block size and write protect status from drive. */
4185	idetape_get_blocksize_from_block_descriptor(drive);
4186
4187	/* Set write protect flag if device is opened as read-only. */
4188	if ((filp->f_flags & O_ACCMODE) == O_RDONLY)
4189		tape->write_prot = 1;
4190	else
4191		tape->write_prot = tape->drv_write_prot;
4192
4193	/* Make sure drive isn't write protected if user wants to write. */
4194	if (tape->write_prot) {
4195		if ((filp->f_flags & O_ACCMODE) == O_WRONLY ||
4196		    (filp->f_flags & O_ACCMODE) == O_RDWR) {
4197			clear_bit(IDETAPE_BUSY, &tape->flags);
4198			retval = -EROFS;
4199			goto out_put_tape;
4200		}
4201	}
4202
4203	/*
4204	 * Lock the tape drive door so user can't eject.
4205	 */
4206	if (tape->chrdev_direction == idetape_direction_none) {
4207		if (idetape_create_prevent_cmd(drive, &pc, 1)) {
4208			if (!idetape_queue_pc_tail(drive, &pc)) {
4209				if (tape->door_locked != DOOR_EXPLICITLY_LOCKED)
4210					tape->door_locked = DOOR_LOCKED;
4211			}
4212		}
4213	}
4214	idetape_restart_speed_control(drive);
4215	tape->restart_speed_control_req = 0;
4216	return 0;
4217
4218out_put_tape:
4219	ide_tape_put(tape);
4220	return retval;
4221}
4222
4223static void idetape_write_release (ide_drive_t *drive, unsigned int minor)
4224{
4225	idetape_tape_t *tape = drive->driver_data;
4226
4227	idetape_empty_write_pipeline(drive);
4228	tape->merge_stage = __idetape_kmalloc_stage(tape, 1, 0);
4229	if (tape->merge_stage != NULL) {
4230		idetape_pad_zeros(drive, tape->tape_block_size * (tape->user_bs_factor - 1));
4231		__idetape_kfree_stage(tape->merge_stage);
4232		tape->merge_stage = NULL;
4233	}
4234	idetape_write_filemark(drive);
4235	idetape_flush_tape_buffers(drive);
4236	idetape_flush_tape_buffers(drive);
4237}
4238
4239/*
4240 *	Our character device release function.
4241 */
4242static int idetape_chrdev_release (struct inode *inode, struct file *filp)
4243{
4244	struct ide_tape_obj *tape = ide_tape_f(filp);
4245	ide_drive_t *drive = tape->drive;
4246	idetape_pc_t pc;
4247	unsigned int minor = iminor(inode);
4248
4249	lock_kernel();
4250	tape = drive->driver_data;
4251#if IDETAPE_DEBUG_LOG
4252	if (tape->debug_level >= 3)
4253		printk(KERN_INFO "ide-tape: Reached idetape_chrdev_release\n");
4254#endif /* IDETAPE_DEBUG_LOG */
4255
4256	if (tape->chrdev_direction == idetape_direction_write)
4257		idetape_write_release(drive, minor);
4258	if (tape->chrdev_direction == idetape_direction_read) {
4259		if (minor < 128)
4260			idetape_discard_read_pipeline(drive, 1);
4261		else
4262			idetape_wait_for_pipeline(drive);
4263	}
4264	if (tape->cache_stage != NULL) {
4265		__idetape_kfree_stage(tape->cache_stage);
4266		tape->cache_stage = NULL;
4267	}
4268	if (minor < 128 && test_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags))
4269		(void) idetape_rewind_tape(drive);
4270	if (tape->chrdev_direction == idetape_direction_none) {
4271		if (tape->door_locked == DOOR_LOCKED) {
4272			if (idetape_create_prevent_cmd(drive, &pc, 0)) {
4273				if (!idetape_queue_pc_tail(drive, &pc))
4274					tape->door_locked = DOOR_UNLOCKED;
4275			}
4276		}
4277	}
4278	clear_bit(IDETAPE_BUSY, &tape->flags);
4279	ide_tape_put(tape);
4280	unlock_kernel();
4281	return 0;
4282}
4283
4284/*
4285 *	idetape_identify_device is called to check the contents of the
4286 *	ATAPI IDENTIFY command results. We return:
4287 *
4288 *	1	If the tape can be supported by us, based on the information
4289 *		we have so far.
4290 *
4291 *	0 	If this tape driver is not currently supported by us.
4292 */
4293static int idetape_identify_device (ide_drive_t *drive)
4294{
4295	struct idetape_id_gcw gcw;
4296	struct hd_driveid *id = drive->id;
4297#if IDETAPE_DEBUG_INFO
4298	unsigned short mask,i;
4299#endif /* IDETAPE_DEBUG_INFO */
4300
4301	if (drive->id_read == 0)
4302		return 1;
4303
4304	*((unsigned short *) &gcw) = id->config;
4305
4306#if IDETAPE_DEBUG_INFO
4307	printk(KERN_INFO "ide-tape: Dumping ATAPI Identify Device tape parameters\n");
4308	printk(KERN_INFO "ide-tape: Protocol Type: ");
4309	switch (gcw.protocol) {
4310		case 0: case 1: printk("ATA\n");break;
4311		case 2:	printk("ATAPI\n");break;
4312		case 3: printk("Reserved (Unknown to ide-tape)\n");break;
4313	}
4314	printk(KERN_INFO "ide-tape: Device Type: %x - ",gcw.device_type);
4315	switch (gcw.device_type) {
4316		case 0: printk("Direct-access Device\n");break;
4317		case 1: printk("Streaming Tape Device\n");break;
4318		case 2: case 3: case 4: printk("Reserved\n");break;
4319		case 5: printk("CD-ROM Device\n");break;
4320		case 6: printk("Reserved\n");
4321		case 7: printk("Optical memory Device\n");break;
4322		case 0x1f: printk("Unknown or no Device type\n");break;
4323		default: printk("Reserved\n");
4324	}
4325	printk(KERN_INFO "ide-tape: Removable: %s",gcw.removable ? "Yes\n":"No\n");
4326	printk(KERN_INFO "ide-tape: Command Packet DRQ Type: ");
4327	switch (gcw.drq_type) {
4328		case 0: printk("Microprocessor DRQ\n");break;
4329		case 1: printk("Interrupt DRQ\n");break;
4330		case 2: printk("Accelerated DRQ\n");break;
4331		case 3: printk("Reserved\n");break;
4332	}
4333	printk(KERN_INFO "ide-tape: Command Packet Size: ");
4334	switch (gcw.packet_size) {
4335		case 0: printk("12 bytes\n");break;
4336		case 1: printk("16 bytes\n");break;
4337		default: printk("Reserved\n");break;
4338	}
4339	printk(KERN_INFO "ide-tape: Model: %.40s\n",id->model);
4340	printk(KERN_INFO "ide-tape: Firmware Revision: %.8s\n",id->fw_rev);
4341	printk(KERN_INFO "ide-tape: Serial Number: %.20s\n",id->serial_no);
4342	printk(KERN_INFO "ide-tape: Write buffer size: %d bytes\n",id->buf_size*512);
4343	printk(KERN_INFO "ide-tape: DMA: %s",id->capability & 0x01 ? "Yes\n":"No\n");
4344	printk(KERN_INFO "ide-tape: LBA: %s",id->capability & 0x02 ? "Yes\n":"No\n");
4345	printk(KERN_INFO "ide-tape: IORDY can be disabled: %s",id->capability & 0x04 ? "Yes\n":"No\n");
4346	printk(KERN_INFO "ide-tape: IORDY supported: %s",id->capability & 0x08 ? "Yes\n":"Unknown\n");
4347	printk(KERN_INFO "ide-tape: ATAPI overlap supported: %s",id->capability & 0x20 ? "Yes\n":"No\n");
4348	printk(KERN_INFO "ide-tape: PIO Cycle Timing Category: %d\n",id->tPIO);
4349	printk(KERN_INFO "ide-tape: DMA Cycle Timing Category: %d\n",id->tDMA);
4350	printk(KERN_INFO "ide-tape: Single Word DMA supported modes: ");
4351	for (i=0,mask=1;i<8;i++,mask=mask << 1) {
4352		if (id->dma_1word & mask)
4353			printk("%d ",i);
4354		if (id->dma_1word & (mask << 8))
4355			printk("(active) ");
4356	}
4357	printk("\n");
4358	printk(KERN_INFO "ide-tape: Multi Word DMA supported modes: ");
4359	for (i=0,mask=1;i<8;i++,mask=mask << 1) {
4360		if (id->dma_mword & mask)
4361			printk("%d ",i);
4362		if (id->dma_mword & (mask << 8))
4363			printk("(active) ");
4364	}
4365	printk("\n");
4366	if (id->field_valid & 0x0002) {
4367		printk(KERN_INFO "ide-tape: Enhanced PIO Modes: %s\n",
4368			id->eide_pio_modes & 1 ? "Mode 3":"None");
4369		printk(KERN_INFO "ide-tape: Minimum Multi-word DMA cycle per word: ");
4370		if (id->eide_dma_min == 0)
4371			printk("Not supported\n");
4372		else
4373			printk("%d ns\n",id->eide_dma_min);
4374
4375		printk(KERN_INFO "ide-tape: Manufacturer\'s Recommended Multi-word cycle: ");
4376		if (id->eide_dma_time == 0)
4377			printk("Not supported\n");
4378		else
4379			printk("%d ns\n",id->eide_dma_time);
4380
4381		printk(KERN_INFO "ide-tape: Minimum PIO cycle without IORDY: ");
4382		if (id->eide_pio == 0)
4383			printk("Not supported\n");
4384		else
4385			printk("%d ns\n",id->eide_pio);
4386
4387		printk(KERN_INFO "ide-tape: Minimum PIO cycle with IORDY: ");
4388		if (id->eide_pio_iordy == 0)
4389			printk("Not supported\n");
4390		else
4391			printk("%d ns\n",id->eide_pio_iordy);
4392
4393	} else
4394		printk(KERN_INFO "ide-tape: According to the device, fields 64-70 are not valid.\n");
4395#endif /* IDETAPE_DEBUG_INFO */
4396
4397	/* Check that we can support this device */
4398
4399	if (gcw.protocol !=2 )
4400		printk(KERN_ERR "ide-tape: Protocol is not ATAPI\n");
4401	else if (gcw.device_type != 1)
4402		printk(KERN_ERR "ide-tape: Device type is not set to tape\n");
4403	else if (!gcw.removable)
4404		printk(KERN_ERR "ide-tape: The removable flag is not set\n");
4405	else if (gcw.packet_size != 0) {
4406		printk(KERN_ERR "ide-tape: Packet size is not 12 bytes long\n");
4407		if (gcw.packet_size == 1)
4408			printk(KERN_ERR "ide-tape: Sorry, padding to 16 bytes is still not supported\n");
4409	} else
4410		return 1;
4411	return 0;
4412}
4413
4414/*
4415 * Use INQUIRY to get the firmware revision
4416 */
4417static void idetape_get_inquiry_results (ide_drive_t *drive)
4418{
4419	char *r;
4420	idetape_tape_t *tape = drive->driver_data;
4421	idetape_pc_t pc;
4422	idetape_inquiry_result_t *inquiry;
4423
4424	idetape_create_inquiry_cmd(&pc);
4425	if (idetape_queue_pc_tail(drive, &pc)) {
4426		printk(KERN_ERR "ide-tape: %s: can't get INQUIRY results\n", tape->name);
4427		return;
4428	}
4429	inquiry = (idetape_inquiry_result_t *) pc.buffer;
4430	memcpy(tape->vendor_id, inquiry->vendor_id, 8);
4431	memcpy(tape->product_id, inquiry->product_id, 16);
4432	memcpy(tape->firmware_revision, inquiry->revision_level, 4);
4433	ide_fixstring(tape->vendor_id, 10, 0);
4434	ide_fixstring(tape->product_id, 18, 0);
4435	ide_fixstring(tape->firmware_revision, 6, 0);
4436	r = tape->firmware_revision;
4437	if (*(r + 1) == '.')
4438		tape->firmware_revision_num = (*r - '0') * 100 + (*(r + 2) - '0') * 10 + *(r + 3) - '0';
4439	printk(KERN_INFO "ide-tape: %s <-> %s: %s %s rev %s\n", drive->name, tape->name, tape->vendor_id, tape->product_id, tape->firmware_revision);
4440}
4441
4442/*
4443 *	idetape_get_mode_sense_results asks the tape about its various
4444 *	parameters. In particular, we will adjust our data transfer buffer
4445 *	size to the recommended value as returned by the tape.
4446 */
4447static void idetape_get_mode_sense_results (ide_drive_t *drive)
4448{
4449	idetape_tape_t *tape = drive->driver_data;
4450	idetape_pc_t pc;
4451	idetape_mode_parameter_header_t *header;
4452	idetape_capabilities_page_t *capabilities;
4453
4454	idetape_create_mode_sense_cmd(&pc, IDETAPE_CAPABILITIES_PAGE);
4455	if (idetape_queue_pc_tail(drive, &pc)) {
4456		printk(KERN_ERR "ide-tape: Can't get tape parameters - assuming some default values\n");
4457		tape->tape_block_size = 512;
4458		tape->capabilities.ctl = 52;
4459		tape->capabilities.speed = 450;
4460		tape->capabilities.buffer_size = 6 * 52;
4461		return;
4462	}
4463	header = (idetape_mode_parameter_header_t *) pc.buffer;
4464	capabilities = (idetape_capabilities_page_t *) (pc.buffer + sizeof(idetape_mode_parameter_header_t) + header->bdl);
4465
4466	capabilities->max_speed = ntohs(capabilities->max_speed);
4467	capabilities->ctl = ntohs(capabilities->ctl);
4468	capabilities->speed = ntohs(capabilities->speed);
4469	capabilities->buffer_size = ntohs(capabilities->buffer_size);
4470
4471	if (!capabilities->speed) {
4472		printk(KERN_INFO "ide-tape: %s: overriding capabilities->speed (assuming 650KB/sec)\n", drive->name);
4473		capabilities->speed = 650;
4474	}
4475	if (!capabilities->max_speed) {
4476		printk(KERN_INFO "ide-tape: %s: overriding capabilities->max_speed (assuming 650KB/sec)\n", drive->name);
4477		capabilities->max_speed = 650;
4478	}
4479
4480	tape->capabilities = *capabilities;		/* Save us a copy */
4481	if (capabilities->blk512)
4482		tape->tape_block_size = 512;
4483	else if (capabilities->blk1024)
4484		tape->tape_block_size = 1024;
4485
4486#if IDETAPE_DEBUG_INFO
4487	printk(KERN_INFO "ide-tape: Dumping the results of the MODE SENSE packet command\n");
4488	printk(KERN_INFO "ide-tape: Mode Parameter Header:\n");
4489	printk(KERN_INFO "ide-tape: Mode Data Length - %d\n",header->mode_data_length);
4490	printk(KERN_INFO "ide-tape: Medium Type - %d\n",header->medium_type);
4491	printk(KERN_INFO "ide-tape: Device Specific Parameter - %d\n",header->dsp);
4492	printk(KERN_INFO "ide-tape: Block Descriptor Length - %d\n",header->bdl);
4493
4494	printk(KERN_INFO "ide-tape: Capabilities and Mechanical Status Page:\n");
4495	printk(KERN_INFO "ide-tape: Page code - %d\n",capabilities->page_code);
4496	printk(KERN_INFO "ide-tape: Page length - %d\n",capabilities->page_length);
4497	printk(KERN_INFO "ide-tape: Read only - %s\n",capabilities->ro ? "Yes":"No");
4498	printk(KERN_INFO "ide-tape: Supports reverse space - %s\n",capabilities->sprev ? "Yes":"No");
4499	printk(KERN_INFO "ide-tape: Supports erase initiated formatting - %s\n",capabilities->efmt ? "Yes":"No");
4500	printk(KERN_INFO "ide-tape: Supports QFA two Partition format - %s\n",capabilities->qfa ? "Yes":"No");
4501	printk(KERN_INFO "ide-tape: Supports locking the medium - %s\n",capabilities->lock ? "Yes":"No");
4502	printk(KERN_INFO "ide-tape: The volume is currently locked - %s\n",capabilities->locked ? "Yes":"No");
4503	printk(KERN_INFO "ide-tape: The device defaults in the prevent state - %s\n",capabilities->prevent ? "Yes":"No");
4504	printk(KERN_INFO "ide-tape: Supports ejecting the medium - %s\n",capabilities->eject ? "Yes":"No");
4505	printk(KERN_INFO "ide-tape: Supports error correction - %s\n",capabilities->ecc ? "Yes":"No");
4506	printk(KERN_INFO "ide-tape: Supports data compression - %s\n",capabilities->cmprs ? "Yes":"No");
4507	printk(KERN_INFO "ide-tape: Supports 512 bytes block size - %s\n",capabilities->blk512 ? "Yes":"No");
4508	printk(KERN_INFO "ide-tape: Supports 1024 bytes block size - %s\n",capabilities->blk1024 ? "Yes":"No");
4509	printk(KERN_INFO "ide-tape: Supports 32768 bytes block size / Restricted byte count for PIO transfers - %s\n",capabilities->blk32768 ? "Yes":"No");
4510	printk(KERN_INFO "ide-tape: Maximum supported speed in KBps - %d\n",capabilities->max_speed);
4511	printk(KERN_INFO "ide-tape: Continuous transfer limits in blocks - %d\n",capabilities->ctl);
4512	printk(KERN_INFO "ide-tape: Current speed in KBps - %d\n",capabilities->speed);
4513	printk(KERN_INFO "ide-tape: Buffer size - %d\n",capabilities->buffer_size*512);
4514#endif /* IDETAPE_DEBUG_INFO */
4515}
4516
4517/*
4518 *	ide_get_blocksize_from_block_descriptor does a mode sense page 0 with block descriptor
4519 *	and if it succeeds sets the tape block size with the reported value
4520 */
4521static void idetape_get_blocksize_from_block_descriptor(ide_drive_t *drive)
4522{
4523
4524	idetape_tape_t *tape = drive->driver_data;
4525	idetape_pc_t pc;
4526	idetape_mode_parameter_header_t *header;
4527	idetape_parameter_block_descriptor_t *block_descrp;
4528
4529	idetape_create_mode_sense_cmd(&pc, IDETAPE_BLOCK_DESCRIPTOR);
4530	if (idetape_queue_pc_tail(drive, &pc)) {
4531		printk(KERN_ERR "ide-tape: Can't get block descriptor\n");
4532		if (tape->tape_block_size == 0) {
4533			printk(KERN_WARNING "ide-tape: Cannot deal with zero block size, assume 32k\n");
4534			tape->tape_block_size =  32768;
4535		}
4536		return;
4537	}
4538	header = (idetape_mode_parameter_header_t *) pc.buffer;
4539	block_descrp = (idetape_parameter_block_descriptor_t *) (pc.buffer + sizeof(idetape_mode_parameter_header_t));
4540	tape->tape_block_size =( block_descrp->length[0]<<16) + (block_descrp->length[1]<<8) + block_descrp->length[2];
4541	tape->drv_write_prot = (header->dsp & 0x80) >> 7;
4542
4543#if IDETAPE_DEBUG_INFO
4544	printk(KERN_INFO "ide-tape: Adjusted block size - %d\n", tape->tape_block_size);
4545#endif /* IDETAPE_DEBUG_INFO */
4546}
4547static void idetape_add_settings (ide_drive_t *drive)
4548{
4549	idetape_tape_t *tape = drive->driver_data;
4550
4551/*
4552 *			drive	setting name	read/write	ioctl	ioctl		data type	min			max			mul_factor			div_factor			data pointer				set function
4553 */
4554	ide_add_setting(drive,	"buffer",	SETTING_READ,	-1,	-1,		TYPE_SHORT,	0,			0xffff,			1,				2,				&tape->capabilities.buffer_size,	NULL);
4555	ide_add_setting(drive,	"pipeline_min",	SETTING_RW,	-1,	-1,		TYPE_INT,	1,			0xffff,			tape->stage_size / 1024,	1,				&tape->min_pipeline,			NULL);
4556	ide_add_setting(drive,	"pipeline",	SETTING_RW,	-1,	-1,		TYPE_INT,	1,			0xffff,			tape->stage_size / 1024,	1,				&tape->max_stages,			NULL);
4557	ide_add_setting(drive,	"pipeline_max",	SETTING_RW,	-1,	-1,		TYPE_INT,	1,			0xffff,			tape->stage_size / 1024,	1,				&tape->max_pipeline,			NULL);
4558	ide_add_setting(drive,	"pipeline_used",SETTING_READ,	-1,	-1,		TYPE_INT,	0,			0xffff,			tape->stage_size / 1024,	1,				&tape->nr_stages,			NULL);
4559	ide_add_setting(drive,	"pipeline_pending",SETTING_READ,-1,	-1,		TYPE_INT,	0,			0xffff,			tape->stage_size / 1024,	1,				&tape->nr_pending_stages,		NULL);
4560	ide_add_setting(drive,	"speed",	SETTING_READ,	-1,	-1,		TYPE_SHORT,	0,			0xffff,			1,				1,				&tape->capabilities.speed,		NULL);
4561	ide_add_setting(drive,	"stage",	SETTING_READ,	-1,	-1,		TYPE_INT,	0,			0xffff,			1,				1024,				&tape->stage_size,			NULL);
4562	ide_add_setting(drive,	"tdsc",		SETTING_RW,	-1,	-1,		TYPE_INT,	IDETAPE_DSC_RW_MIN,	IDETAPE_DSC_RW_MAX,	1000,				HZ,				&tape->best_dsc_rw_frequency,		NULL);
4563	ide_add_setting(drive,	"dsc_overlap",	SETTING_RW,	-1,	-1,		TYPE_BYTE,	0,			1,			1,				1,				&drive->dsc_overlap,			NULL);
4564	ide_add_setting(drive,	"pipeline_head_speed_c",SETTING_READ,	-1,	-1,	TYPE_INT,	0,			0xffff,			1,				1,				&tape->controlled_pipeline_head_speed,	NULL);
4565	ide_add_setting(drive,	"pipeline_head_speed_u",SETTING_READ,	-1,	-1,	TYPE_INT,	0,			0xffff,			1,				1,				&tape->uncontrolled_pipeline_head_speed,	NULL);
4566	ide_add_setting(drive,	"avg_speed",	SETTING_READ,	-1,	-1,		TYPE_INT,	0,			0xffff,			1,				1,				&tape->avg_speed,		NULL);
4567	ide_add_setting(drive,	"debug_level",SETTING_RW,	-1,	-1,		TYPE_INT,	0,			0xffff,			1,				1,				&tape->debug_level,		NULL);
4568}
4569
4570/*
4571 *	ide_setup is called to:
4572 *
4573 *		1.	Initialize our various state variables.
4574 *		2.	Ask the tape for its capabilities.
4575 *		3.	Allocate a buffer which will be used for data
4576 *			transfer. The buffer size is chosen based on
4577 *			the recommendation which we received in step (2).
4578 *
4579 *	Note that at this point ide.c already assigned us an irq, so that
4580 *	we can queue requests here and wait for their completion.
4581 */
4582static void idetape_setup (ide_drive_t *drive, idetape_tape_t *tape, int minor)
4583{
4584	unsigned long t1, tmid, tn, t;
4585	int speed;
4586	struct idetape_id_gcw gcw;
4587	int stage_size;
4588	struct sysinfo si;
4589
4590	spin_lock_init(&tape->spinlock);
4591	drive->dsc_overlap = 1;
4592#ifdef CONFIG_BLK_DEV_IDEPCI
4593	if (HWIF(drive)->pci_dev != NULL) {
4594		/*
4595		 * These two ide-pci host adapters appear to need DSC overlap disabled.
4596		 * This probably needs further analysis.
4597		 */
4598		if ((HWIF(drive)->pci_dev->device == PCI_DEVICE_ID_ARTOP_ATP850UF) ||
4599		    (HWIF(drive)->pci_dev->device == PCI_DEVICE_ID_TTI_HPT343)) {
4600			printk(KERN_INFO "ide-tape: %s: disabling DSC overlap\n", tape->name);
4601		    	drive->dsc_overlap = 0;
4602		}
4603	}
4604#endif /* CONFIG_BLK_DEV_IDEPCI */
4605	/* Seagate Travan drives do not support DSC overlap. */
4606	if (strstr(drive->id->model, "Seagate STT3401"))
4607		drive->dsc_overlap = 0;
4608	tape->minor = minor;
4609	tape->name[0] = 'h';
4610	tape->name[1] = 't';
4611	tape->name[2] = '0' + minor;
4612	tape->chrdev_direction = idetape_direction_none;
4613	tape->pc = tape->pc_stack;
4614	tape->max_insert_speed = 10000;
4615	tape->speed_control = 1;
4616	*((unsigned short *) &gcw) = drive->id->config;
4617	if (gcw.drq_type == 1)
4618		set_bit(IDETAPE_DRQ_INTERRUPT, &tape->flags);
4619
4620	tape->min_pipeline = tape->max_pipeline = tape->max_stages = 10;
4621
4622	idetape_get_inquiry_results(drive);
4623	idetape_get_mode_sense_results(drive);
4624	idetape_get_blocksize_from_block_descriptor(drive);
4625	tape->user_bs_factor = 1;
4626	tape->stage_size = tape->capabilities.ctl * tape->tape_block_size;
4627	while (tape->stage_size > 0xffff) {
4628		printk(KERN_NOTICE "ide-tape: decreasing stage size\n");
4629		tape->capabilities.ctl /= 2;
4630		tape->stage_size = tape->capabilities.ctl * tape->tape_block_size;
4631	}
4632	stage_size = tape->stage_size;
4633	tape->pages_per_stage = stage_size / PAGE_SIZE;
4634	if (stage_size % PAGE_SIZE) {
4635		tape->pages_per_stage++;
4636		tape->excess_bh_size = PAGE_SIZE - stage_size % PAGE_SIZE;
4637	}
4638
4639	/*
4640	 *	Select the "best" DSC read/write polling frequency
4641	 *	and pipeline size.
4642	 */
4643	speed = max(tape->capabilities.speed, tape->capabilities.max_speed);
4644
4645	tape->max_stages = speed * 1000 * 10 / tape->stage_size;
4646
4647	/*
4648	 * 	Limit memory use for pipeline to 10% of physical memory
4649	 */
4650	si_meminfo(&si);
4651	if (tape->max_stages * tape->stage_size > si.totalram * si.mem_unit / 10)
4652		tape->max_stages = si.totalram * si.mem_unit / (10 * tape->stage_size);
4653	tape->max_stages   = min(tape->max_stages, IDETAPE_MAX_PIPELINE_STAGES);
4654	tape->min_pipeline = min(tape->max_stages, IDETAPE_MIN_PIPELINE_STAGES);
4655	tape->max_pipeline = min(tape->max_stages * 2, IDETAPE_MAX_PIPELINE_STAGES);
4656	if (tape->max_stages == 0)
4657		tape->max_stages = tape->min_pipeline = tape->max_pipeline = 1;
4658
4659	t1 = (tape->stage_size * HZ) / (speed * 1000);
4660	tmid = (tape->capabilities.buffer_size * 32 * HZ) / (speed * 125);
4661	tn = (IDETAPE_FIFO_THRESHOLD * tape->stage_size * HZ) / (speed * 1000);
4662
4663	if (tape->max_stages)
4664		t = tn;
4665	else
4666		t = t1;
4667
4668	/*
4669	 *	Ensure that the number we got makes sense; limit
4670	 *	it within IDETAPE_DSC_RW_MIN and IDETAPE_DSC_RW_MAX.
4671	 */
4672	tape->best_dsc_rw_frequency = max_t(unsigned long, min_t(unsigned long, t, IDETAPE_DSC_RW_MAX), IDETAPE_DSC_RW_MIN);
4673	printk(KERN_INFO "ide-tape: %s <-> %s: %dKBps, %d*%dkB buffer, "
4674		"%dkB pipeline, %lums tDSC%s\n",
4675		drive->name, tape->name, tape->capabilities.speed,
4676		(tape->capabilities.buffer_size * 512) / tape->stage_size,
4677		tape->stage_size / 1024,
4678		tape->max_stages * tape->stage_size / 1024,
4679		tape->best_dsc_rw_frequency * 1000 / HZ,
4680		drive->using_dma ? ", DMA":"");
4681
4682	idetape_add_settings(drive);
4683}
4684
4685static int ide_tape_remove(struct device *dev)
4686{
4687	ide_drive_t *drive = to_ide_device(dev);
4688	idetape_tape_t *tape = drive->driver_data;
4689
4690	ide_unregister_subdriver(drive, tape->driver);
4691
4692	ide_unregister_region(tape->disk);
4693
4694	ide_tape_put(tape);
4695
4696	return 0;
4697}
4698
4699static void ide_tape_release(struct kref *kref)
4700{
4701	struct ide_tape_obj *tape = to_ide_tape(kref);
4702	ide_drive_t *drive = tape->drive;
4703	struct gendisk *g = tape->disk;
4704
4705	BUG_ON(tape->first_stage != NULL || tape->merge_stage_size);
4706
4707	drive->dsc_overlap = 0;
4708	drive->driver_data = NULL;
4709	class_device_destroy(idetape_sysfs_class,
4710			MKDEV(IDETAPE_MAJOR, tape->minor));
4711	class_device_destroy(idetape_sysfs_class,
4712			MKDEV(IDETAPE_MAJOR, tape->minor + 128));
4713	devfs_remove("%s/mt", drive->devfs_name);
4714	devfs_remove("%s/mtn", drive->devfs_name);
4715	devfs_unregister_tape(g->number);
4716	idetape_devs[tape->minor] = NULL;
4717	g->private_data = NULL;
4718	put_disk(g);
4719	kfree(tape);
4720}
4721
4722#ifdef CONFIG_PROC_FS
4723
4724static int proc_idetape_read_name
4725	(char *page, char **start, off_t off, int count, int *eof, void *data)
4726{
4727	ide_drive_t	*drive = (ide_drive_t *) data;
4728	idetape_tape_t	*tape = drive->driver_data;
4729	char		*out = page;
4730	int		len;
4731
4732	len = sprintf(out, "%s\n", tape->name);
4733	PROC_IDE_READ_RETURN(page, start, off, count, eof, len);
4734}
4735
4736static ide_proc_entry_t idetape_proc[] = {
4737	{ "capacity",	S_IFREG|S_IRUGO,	proc_ide_read_capacity, NULL },
4738	{ "name",	S_IFREG|S_IRUGO,	proc_idetape_read_name,	NULL },
4739	{ NULL, 0, NULL, NULL }
4740};
4741
4742#else
4743
4744#define	idetape_proc	NULL
4745
4746#endif
4747
4748static int ide_tape_probe(struct device *);
4749
4750static ide_driver_t idetape_driver = {
4751	.gen_driver = {
4752		.owner		= THIS_MODULE,
4753		.name		= "ide-tape",
4754		.bus		= &ide_bus_type,
4755		.probe		= ide_tape_probe,
4756		.remove		= ide_tape_remove,
4757	},
4758	.version		= IDETAPE_VERSION,
4759	.media			= ide_tape,
4760	.supports_dsc_overlap 	= 1,
4761	.do_request		= idetape_do_request,
4762	.end_request		= idetape_end_request,
4763	.error			= __ide_error,
4764	.abort			= __ide_abort,
4765	.proc			= idetape_proc,
4766};
4767
4768/*
4769 *	Our character device supporting functions, passed to register_chrdev.
4770 */
4771static struct file_operations idetape_fops = {
4772	.owner		= THIS_MODULE,
4773	.read		= idetape_chrdev_read,
4774	.write		= idetape_chrdev_write,
4775	.ioctl		= idetape_chrdev_ioctl,
4776	.open		= idetape_chrdev_open,
4777	.release	= idetape_chrdev_release,
4778};
4779
4780static int idetape_open(struct inode *inode, struct file *filp)
4781{
4782	struct gendisk *disk = inode->i_bdev->bd_disk;
4783	struct ide_tape_obj *tape;
4784	ide_drive_t *drive;
4785
4786	if (!(tape = ide_tape_get(disk)))
4787		return -ENXIO;
4788
4789	drive = tape->drive;
4790
4791	drive->usage++;
4792
4793	return 0;
4794}
4795
4796static int idetape_release(struct inode *inode, struct file *filp)
4797{
4798	struct gendisk *disk = inode->i_bdev->bd_disk;
4799	struct ide_tape_obj *tape = ide_tape_g(disk);
4800	ide_drive_t *drive = tape->drive;
4801
4802	drive->usage--;
4803
4804	ide_tape_put(tape);
4805
4806	return 0;
4807}
4808
4809static int idetape_ioctl(struct inode *inode, struct file *file,
4810			unsigned int cmd, unsigned long arg)
4811{
4812	struct block_device *bdev = inode->i_bdev;
4813	struct ide_tape_obj *tape = ide_tape_g(bdev->bd_disk);
4814	ide_drive_t *drive = tape->drive;
4815	int err = generic_ide_ioctl(drive, file, bdev, cmd, arg);
4816	if (err == -EINVAL)
4817		err = idetape_blkdev_ioctl(drive, cmd, arg);
4818	return err;
4819}
4820
4821static struct block_device_operations idetape_block_ops = {
4822	.owner		= THIS_MODULE,
4823	.open		= idetape_open,
4824	.release	= idetape_release,
4825	.ioctl		= idetape_ioctl,
4826};
4827
4828static int ide_tape_probe(struct device *dev)
4829{
4830	ide_drive_t *drive = to_ide_device(dev);
4831	idetape_tape_t *tape;
4832	struct gendisk *g;
4833	int minor;
4834
4835	if (!strstr("ide-tape", drive->driver_req))
4836		goto failed;
4837	if (!drive->present)
4838		goto failed;
4839	if (drive->media != ide_tape)
4840		goto failed;
4841	if (!idetape_identify_device (drive)) {
4842		printk(KERN_ERR "ide-tape: %s: not supported by this version of ide-tape\n", drive->name);
4843		goto failed;
4844	}
4845	if (drive->scsi) {
4846		printk("ide-tape: passing drive %s to ide-scsi emulation.\n", drive->name);
4847		goto failed;
4848	}
4849	if (strstr(drive->id->model, "OnStream DI-")) {
4850		printk(KERN_WARNING "ide-tape: Use drive %s with ide-scsi emulation and osst.\n", drive->name);
4851		printk(KERN_WARNING "ide-tape: OnStream support will be removed soon from ide-tape!\n");
4852	}
4853	tape = (idetape_tape_t *) kzalloc (sizeof (idetape_tape_t), GFP_KERNEL);
4854	if (tape == NULL) {
4855		printk(KERN_ERR "ide-tape: %s: Can't allocate a tape structure\n", drive->name);
4856		goto failed;
4857	}
4858
4859	g = alloc_disk(1 << PARTN_BITS);
4860	if (!g)
4861		goto out_free_tape;
4862
4863	ide_init_disk(g, drive);
4864
4865	ide_register_subdriver(drive, &idetape_driver);
4866
4867	kref_init(&tape->kref);
4868
4869	tape->drive = drive;
4870	tape->driver = &idetape_driver;
4871	tape->disk = g;
4872
4873	g->private_data = &tape->driver;
4874
4875	drive->driver_data = tape;
4876
4877	down(&idetape_ref_sem);
4878	for (minor = 0; idetape_devs[minor]; minor++)
4879		;
4880	idetape_devs[minor] = tape;
4881	up(&idetape_ref_sem);
4882
4883	idetape_setup(drive, tape, minor);
4884
4885	class_device_create(idetape_sysfs_class, NULL,
4886			MKDEV(IDETAPE_MAJOR, minor), dev, "%s", tape->name);
4887	class_device_create(idetape_sysfs_class, NULL,
4888			MKDEV(IDETAPE_MAJOR, minor + 128), dev, "n%s", tape->name);
4889
4890	devfs_mk_cdev(MKDEV(HWIF(drive)->major, minor),
4891			S_IFCHR | S_IRUGO | S_IWUGO,
4892			"%s/mt", drive->devfs_name);
4893	devfs_mk_cdev(MKDEV(HWIF(drive)->major, minor + 128),
4894			S_IFCHR | S_IRUGO | S_IWUGO,
4895			"%s/mtn", drive->devfs_name);
4896
4897	g->number = devfs_register_tape(drive->devfs_name);
4898	g->fops = &idetape_block_ops;
4899	ide_register_region(g);
4900
4901	return 0;
4902
4903out_free_tape:
4904	kfree(tape);
4905failed:
4906	return -ENODEV;
4907}
4908
4909MODULE_DESCRIPTION("ATAPI Streaming TAPE Driver");
4910MODULE_LICENSE("GPL");
4911
4912static void __exit idetape_exit (void)
4913{
4914	driver_unregister(&idetape_driver.gen_driver);
4915	class_destroy(idetape_sysfs_class);
4916	unregister_chrdev(IDETAPE_MAJOR, "ht");
4917}
4918
4919/*
4920 *	idetape_init will register the driver for each tape.
4921 */
4922static int idetape_init (void)
4923{
4924	int error = 1;
4925	idetape_sysfs_class = class_create(THIS_MODULE, "ide_tape");
4926	if (IS_ERR(idetape_sysfs_class)) {
4927		idetape_sysfs_class = NULL;
4928		printk(KERN_ERR "Unable to create sysfs class for ide tapes\n");
4929		error = -EBUSY;
4930		goto out;
4931	}
4932
4933	if (register_chrdev(IDETAPE_MAJOR, "ht", &idetape_fops)) {
4934		printk(KERN_ERR "ide-tape: Failed to register character device interface\n");
4935		error = -EBUSY;
4936		goto out_free_class;
4937	}
4938
4939	error = driver_register(&idetape_driver.gen_driver);
4940	if (error)
4941		goto out_free_driver;
4942
4943	return 0;
4944
4945out_free_driver:
4946	driver_unregister(&idetape_driver.gen_driver);
4947out_free_class:
4948	class_destroy(idetape_sysfs_class);
4949out:
4950	return error;
4951}
4952
4953module_init(idetape_init);
4954module_exit(idetape_exit);
4955MODULE_ALIAS_CHARDEV_MAJOR(IDETAPE_MAJOR);
4956