ide-tape.c revision 8e7657ae0f56c14882e53ffdae8055c2b1624de1
1/*
2 * linux/drivers/ide/ide-tape.c		Version 1.19	Nov, 2003
3 *
4 * Copyright (C) 1995 - 1999 Gadi Oxman <gadio@netvision.net.il>
5 *
6 * $Header$
7 *
8 * This driver was constructed as a student project in the software laboratory
9 * of the faculty of electrical engineering in the Technion - Israel's
10 * Institute Of Technology, with the guide of Avner Lottem and Dr. Ilana David.
11 *
12 * It is hereby placed under the terms of the GNU general public license.
13 * (See linux/COPYING).
14 */
15
16/*
17 * IDE ATAPI streaming tape driver.
18 *
19 * This driver is a part of the Linux ide driver and works in co-operation
20 * with linux/drivers/block/ide.c.
21 *
22 * The driver, in co-operation with ide.c, basically traverses the
23 * request-list for the block device interface. The character device
24 * interface, on the other hand, creates new requests, adds them
25 * to the request-list of the block device, and waits for their completion.
26 *
27 * Pipelined operation mode is now supported on both reads and writes.
28 *
29 * The block device major and minor numbers are determined from the
30 * tape's relative position in the ide interfaces, as explained in ide.c.
31 *
32 * The character device interface consists of the following devices:
33 *
34 * ht0		major 37, minor 0	first  IDE tape, rewind on close.
35 * ht1		major 37, minor 1	second IDE tape, rewind on close.
36 * ...
37 * nht0		major 37, minor 128	first  IDE tape, no rewind on close.
38 * nht1		major 37, minor 129	second IDE tape, no rewind on close.
39 * ...
40 *
41 * Run linux/scripts/MAKEDEV.ide to create the above entries.
42 *
43 * The general magnetic tape commands compatible interface, as defined by
44 * include/linux/mtio.h, is accessible through the character device.
45 *
46 * General ide driver configuration options, such as the interrupt-unmask
47 * flag, can be configured by issuing an ioctl to the block device interface,
48 * as any other ide device.
49 *
50 * Our own ide-tape ioctl's can be issued to either the block device or
51 * the character device interface.
52 *
53 * Maximal throughput with minimal bus load will usually be achieved in the
54 * following scenario:
55 *
56 *	1.	ide-tape is operating in the pipelined operation mode.
57 *	2.	No buffering is performed by the user backup program.
58 *
59 * Testing was done with a 2 GB CONNER CTMA 4000 IDE ATAPI Streaming Tape Drive.
60 *
61 * Ver 0.1   Nov  1 95   Pre-working code :-)
62 * Ver 0.2   Nov 23 95   A short backup (few megabytes) and restore procedure
63 *                        was successful ! (Using tar cvf ... on the block
64 *                        device interface).
65 *                       A longer backup resulted in major swapping, bad
66 *                        overall Linux performance and eventually failed as
67 *                        we received non serial read-ahead requests from the
68 *                        buffer cache.
69 * Ver 0.3   Nov 28 95   Long backups are now possible, thanks to the
70 *                        character device interface. Linux's responsiveness
71 *                        and performance doesn't seem to be much affected
72 *                        from the background backup procedure.
73 *                       Some general mtio.h magnetic tape operations are
74 *                        now supported by our character device. As a result,
75 *                        popular tape utilities are starting to work with
76 *                        ide tapes :-)
77 *                       The following configurations were tested:
78 *                       	1. An IDE ATAPI TAPE shares the same interface
79 *                       	   and irq with an IDE ATAPI CDROM.
80 *                        	2. An IDE ATAPI TAPE shares the same interface
81 *                          	   and irq with a normal IDE disk.
82 *                        Both configurations seemed to work just fine !
83 *                        However, to be on the safe side, it is meanwhile
84 *                        recommended to give the IDE TAPE its own interface
85 *                        and irq.
86 *                       The one thing which needs to be done here is to
87 *                        add a "request postpone" feature to ide.c,
88 *                        so that we won't have to wait for the tape to finish
89 *                        performing a long media access (DSC) request (such
90 *                        as a rewind) before we can access the other device
91 *                        on the same interface. This effect doesn't disturb
92 *                        normal operation most of the time because read/write
93 *                        requests are relatively fast, and once we are
94 *                        performing one tape r/w request, a lot of requests
95 *                        from the other device can be queued and ide.c will
96 *			  service all of them after this single tape request.
97 * Ver 1.0   Dec 11 95   Integrated into Linux 1.3.46 development tree.
98 *                       On each read / write request, we now ask the drive
99 *                        if we can transfer a constant number of bytes
100 *                        (a parameter of the drive) only to its buffers,
101 *                        without causing actual media access. If we can't,
102 *                        we just wait until we can by polling the DSC bit.
103 *                        This ensures that while we are not transferring
104 *                        more bytes than the constant referred to above, the
105 *                        interrupt latency will not become too high and
106 *                        we won't cause an interrupt timeout, as happened
107 *                        occasionally in the previous version.
108 *                       While polling for DSC, the current request is
109 *                        postponed and ide.c is free to handle requests from
110 *                        the other device. This is handled transparently to
111 *                        ide.c. The hwgroup locking method which was used
112 *                        in the previous version was removed.
113 *                       Use of new general features which are provided by
114 *                        ide.c for use with atapi devices.
115 *                        (Programming done by Mark Lord)
116 *                       Few potential bug fixes (Again, suggested by Mark)
117 *                       Single character device data transfers are now
118 *                        not limited in size, as they were before.
119 *                       We are asking the tape about its recommended
120 *                        transfer unit and send a larger data transfer
121 *                        as several transfers of the above size.
122 *                        For best results, use an integral number of this
123 *                        basic unit (which is shown during driver
124 *                        initialization). I will soon add an ioctl to get
125 *                        this important parameter.
126 *                       Our data transfer buffer is allocated on startup,
127 *                        rather than before each data transfer. This should
128 *                        ensure that we will indeed have a data buffer.
129 * Ver 1.1   Dec 14 95   Fixed random problems which occurred when the tape
130 *                        shared an interface with another device.
131 *                        (poll_for_dsc was a complete mess).
132 *                       Removed some old (non-active) code which had
133 *                        to do with supporting buffer cache originated
134 *                        requests.
135 *                       The block device interface can now be opened, so
136 *                        that general ide driver features like the unmask
137 *                        interrupts flag can be selected with an ioctl.
138 *                        This is the only use of the block device interface.
139 *                       New fast pipelined operation mode (currently only on
140 *                        writes). When using the pipelined mode, the
141 *                        throughput can potentially reach the maximum
142 *                        tape supported throughput, regardless of the
143 *                        user backup program. On my tape drive, it sometimes
144 *                        boosted performance by a factor of 2. Pipelined
145 *                        mode is enabled by default, but since it has a few
146 *                        downfalls as well, you may want to disable it.
147 *                        A short explanation of the pipelined operation mode
148 *                        is available below.
149 * Ver 1.2   Jan  1 96   Eliminated pipelined mode race condition.
150 *                       Added pipeline read mode. As a result, restores
151 *                        are now as fast as backups.
152 *                       Optimized shared interface behavior. The new behavior
153 *                        typically results in better IDE bus efficiency and
154 *                        higher tape throughput.
155 *                       Pre-calculation of the expected read/write request
156 *                        service time, based on the tape's parameters. In
157 *                        the pipelined operation mode, this allows us to
158 *                        adjust our polling frequency to a much lower value,
159 *                        and thus to dramatically reduce our load on Linux,
160 *                        without any decrease in performance.
161 *                       Implemented additional mtio.h operations.
162 *                       The recommended user block size is returned by
163 *                        the MTIOCGET ioctl.
164 *                       Additional minor changes.
165 * Ver 1.3   Feb  9 96   Fixed pipelined read mode bug which prevented the
166 *                        use of some block sizes during a restore procedure.
167 *                       The character device interface will now present a
168 *                        continuous view of the media - any mix of block sizes
169 *                        during a backup/restore procedure is supported. The
170 *                        driver will buffer the requests internally and
171 *                        convert them to the tape's recommended transfer
172 *                        unit, making performance almost independent of the
173 *                        chosen user block size.
174 *                       Some improvements in error recovery.
175 *                       By cooperating with ide-dma.c, bus mastering DMA can
176 *                        now sometimes be used with IDE tape drives as well.
177 *                        Bus mastering DMA has the potential to dramatically
178 *                        reduce the CPU's overhead when accessing the device,
179 *                        and can be enabled by using hdparm -d1 on the tape's
180 *                        block device interface. For more info, read the
181 *                        comments in ide-dma.c.
182 * Ver 1.4   Mar 13 96   Fixed serialize support.
183 * Ver 1.5   Apr 12 96   Fixed shared interface operation, broken in 1.3.85.
184 *                       Fixed pipelined read mode inefficiency.
185 *                       Fixed nasty null dereferencing bug.
186 * Ver 1.6   Aug 16 96   Fixed FPU usage in the driver.
187 *                       Fixed end of media bug.
188 * Ver 1.7   Sep 10 96   Minor changes for the CONNER CTT8000-A model.
189 * Ver 1.8   Sep 26 96   Attempt to find a better balance between good
190 *                        interactive response and high system throughput.
191 * Ver 1.9   Nov  5 96   Automatically cross encountered filemarks rather
192 *                        than requiring an explicit FSF command.
193 *                       Abort pending requests at end of media.
194 *                       MTTELL was sometimes returning incorrect results.
195 *                       Return the real block size in the MTIOCGET ioctl.
196 *                       Some error recovery bug fixes.
197 * Ver 1.10  Nov  5 96   Major reorganization.
198 *                       Reduced CPU overhead a bit by eliminating internal
199 *                        bounce buffers.
200 *                       Added module support.
201 *                       Added multiple tape drives support.
202 *                       Added partition support.
203 *                       Rewrote DSC handling.
204 *                       Some portability fixes.
205 *                       Removed ide-tape.h.
206 *                       Additional minor changes.
207 * Ver 1.11  Dec  2 96   Bug fix in previous DSC timeout handling.
208 *                       Use ide_stall_queue() for DSC overlap.
209 *                       Use the maximum speed rather than the current speed
210 *                        to compute the request service time.
211 * Ver 1.12  Dec  7 97   Fix random memory overwriting and/or last block data
212 *                        corruption, which could occur if the total number
213 *                        of bytes written to the tape was not an integral
214 *                        number of tape blocks.
215 *                       Add support for INTERRUPT DRQ devices.
216 * Ver 1.13  Jan  2 98   Add "speed == 0" work-around for HP COLORADO 5GB
217 * Ver 1.14  Dec 30 98   Partial fixes for the Sony/AIWA tape drives.
218 *                       Replace cli()/sti() with hwgroup spinlocks.
219 * Ver 1.15  Mar 25 99   Fix SMP race condition by replacing hwgroup
220 *                        spinlock with private per-tape spinlock.
221 * Ver 1.16  Sep  1 99   Add OnStream tape support.
222 *                       Abort read pipeline on EOD.
223 *                       Wait for the tape to become ready in case it returns
224 *                        "in the process of becoming ready" on open().
225 *                       Fix zero padding of the last written block in
226 *                        case the tape block size is larger than PAGE_SIZE.
227 *                       Decrease the default disconnection time to tn.
228 * Ver 1.16e Oct  3 99   Minor fixes.
229 * Ver 1.16e1 Oct 13 99  Patches by Arnold Niessen,
230 *                          niessen@iae.nl / arnold.niessen@philips.com
231 *                   GO-1)  Undefined code in idetape_read_position
232 *				according to Gadi's email
233 *                   AJN-1) Minor fix asc == 11 should be asc == 0x11
234 *                               in idetape_issue_packet_command (did effect
235 *                               debugging output only)
236 *                   AJN-2) Added more debugging output, and
237 *                              added ide-tape: where missing. I would also
238 *				like to add tape->name where possible
239 *                   AJN-3) Added different debug_level's
240 *                              via /proc/ide/hdc/settings
241 * 				"debug_level" determines amount of debugging output;
242 * 				can be changed using /proc/ide/hdx/settings
243 * 				0 : almost no debugging output
244 * 				1 : 0+output errors only
245 * 				2 : 1+output all sensekey/asc
246 * 				3 : 2+follow all chrdev related procedures
247 * 				4 : 3+follow all procedures
248 * 				5 : 4+include pc_stack rq_stack info
249 * 				6 : 5+USE_COUNT updates
250 *                   AJN-4) Fixed timeout for retension in idetape_queue_pc_tail
251 *				from 5 to 10 minutes
252 *                   AJN-5) Changed maximum number of blocks to skip when
253 *                              reading tapes with multiple consecutive write
254 *                              errors from 100 to 1000 in idetape_get_logical_blk
255 *                   Proposed changes to code:
256 *                   1) output "logical_blk_num" via /proc
257 *                   2) output "current_operation" via /proc
258 *                   3) Either solve or document the fact that `mt rewind' is
259 *                      required after reading from /dev/nhtx to be
260 *			able to rmmod the idetape module;
261 *			Also, sometimes an application finishes but the
262 *			device remains `busy' for some time. Same cause ?
263 *                   Proposed changes to release-notes:
264 *		     4) write a simple `quickstart' section in the
265 *                      release notes; I volunteer if you don't want to
266 * 		     5) include a pointer to video4linux in the doc
267 *                      to stimulate video applications
268 *                   6) release notes lines 331 and 362: explain what happens
269 *			if the application data rate is higher than 1100 KB/s;
270 *			similar approach to lower-than-500 kB/s ?
271 *		     7) 6.6 Comparison; wouldn't it be better to allow different
272 *			strategies for read and write ?
273 *			Wouldn't it be better to control the tape buffer
274 *			contents instead of the bandwidth ?
275 *		     8) line 536: replace will by would (if I understand
276 *			this section correctly, a hypothetical and unwanted situation
277 *			 is being described)
278 * Ver 1.16f Dec 15 99   Change place of the secondary OnStream header frames.
279 * Ver 1.17  Nov 2000 / Jan 2001  Marcel Mol, marcel@mesa.nl
280 *			- Add idetape_onstream_mode_sense_tape_parameter_page
281 *			  function to get tape capacity in frames: tape->capacity.
282 *			- Add support for DI-50 drives( or any DI- drive).
283 *			- 'workaround' for read error/blank block around block 3000.
284 *			- Implement Early warning for end of media for Onstream.
285 *			- Cosmetic code changes for readability.
286 *			- Idetape_position_tape should not use SKIP bit during
287 *			  Onstream read recovery.
288 *			- Add capacity, logical_blk_num and first/last_frame_position
289 *			  to /proc/ide/hd?/settings.
290 *			- Module use count was gone in the Linux 2.4 driver.
291 * Ver 1.17a Apr 2001 Willem Riede osst@riede.org
292 * 			- Get drive's actual block size from mode sense block descriptor
293 * 			- Limit size of pipeline
294 * Ver 1.17b Oct 2002   Alan Stern <stern@rowland.harvard.edu>
295 *			Changed IDETAPE_MIN_PIPELINE_STAGES to 1 and actually used
296 *			 it in the code!
297 *			Actually removed aborted stages in idetape_abort_pipeline
298 *			 instead of just changing the command code.
299 *			Made the transfer byte count for Request Sense equal to the
300 *			 actual length of the data transfer.
301 *			Changed handling of partial data transfers: they do not
302 *			 cause DMA errors.
303 *			Moved initiation of DMA transfers to the correct place.
304 *			Removed reference to unallocated memory.
305 *			Made __idetape_discard_read_pipeline return the number of
306 *			 sectors skipped, not the number of stages.
307 *			Replaced errant kfree() calls with __idetape_kfree_stage().
308 *			Fixed off-by-one error in testing the pipeline length.
309 *			Fixed handling of filemarks in the read pipeline.
310 *			Small code optimization for MTBSF and MTBSFM ioctls.
311 *			Don't try to unlock the door during device close if is
312 *			 already unlocked!
313 *			Cosmetic fixes to miscellaneous debugging output messages.
314 *			Set the minimum /proc/ide/hd?/settings values for "pipeline",
315 *			 "pipeline_min", and "pipeline_max" to 1.
316 *
317 * Here are some words from the first releases of hd.c, which are quoted
318 * in ide.c and apply here as well:
319 *
320 * | Special care is recommended.  Have Fun!
321 *
322 */
323
324/*
325 * An overview of the pipelined operation mode.
326 *
327 * In the pipelined write mode, we will usually just add requests to our
328 * pipeline and return immediately, before we even start to service them. The
329 * user program will then have enough time to prepare the next request while
330 * we are still busy servicing previous requests. In the pipelined read mode,
331 * the situation is similar - we add read-ahead requests into the pipeline,
332 * before the user even requested them.
333 *
334 * The pipeline can be viewed as a "safety net" which will be activated when
335 * the system load is high and prevents the user backup program from keeping up
336 * with the current tape speed. At this point, the pipeline will get
337 * shorter and shorter but the tape will still be streaming at the same speed.
338 * Assuming we have enough pipeline stages, the system load will hopefully
339 * decrease before the pipeline is completely empty, and the backup program
340 * will be able to "catch up" and refill the pipeline again.
341 *
342 * When using the pipelined mode, it would be best to disable any type of
343 * buffering done by the user program, as ide-tape already provides all the
344 * benefits in the kernel, where it can be done in a more efficient way.
345 * As we will usually not block the user program on a request, the most
346 * efficient user code will then be a simple read-write-read-... cycle.
347 * Any additional logic will usually just slow down the backup process.
348 *
349 * Using the pipelined mode, I get a constant over 400 KBps throughput,
350 * which seems to be the maximum throughput supported by my tape.
351 *
352 * However, there are some downfalls:
353 *
354 *	1.	We use memory (for data buffers) in proportional to the number
355 *		of pipeline stages (each stage is about 26 KB with my tape).
356 *	2.	In the pipelined write mode, we cheat and postpone error codes
357 *		to the user task. In read mode, the actual tape position
358 *		will be a bit further than the last requested block.
359 *
360 * Concerning (1):
361 *
362 *	1.	We allocate stages dynamically only when we need them. When
363 *		we don't need them, we don't consume additional memory. In
364 *		case we can't allocate stages, we just manage without them
365 *		(at the expense of decreased throughput) so when Linux is
366 *		tight in memory, we will not pose additional difficulties.
367 *
368 *	2.	The maximum number of stages (which is, in fact, the maximum
369 *		amount of memory) which we allocate is limited by the compile
370 *		time parameter IDETAPE_MAX_PIPELINE_STAGES.
371 *
372 *	3.	The maximum number of stages is a controlled parameter - We
373 *		don't start from the user defined maximum number of stages
374 *		but from the lower IDETAPE_MIN_PIPELINE_STAGES (again, we
375 *		will not even allocate this amount of stages if the user
376 *		program can't handle the speed). We then implement a feedback
377 *		loop which checks if the pipeline is empty, and if it is, we
378 *		increase the maximum number of stages as necessary until we
379 *		reach the optimum value which just manages to keep the tape
380 *		busy with minimum allocated memory or until we reach
381 *		IDETAPE_MAX_PIPELINE_STAGES.
382 *
383 * Concerning (2):
384 *
385 *	In pipelined write mode, ide-tape can not return accurate error codes
386 *	to the user program since we usually just add the request to the
387 *      pipeline without waiting for it to be serviced. In case an error
388 *      occurs, I will report it on the next user request.
389 *
390 *	In the pipelined read mode, subsequent read requests or forward
391 *	filemark spacing will perform correctly, as we preserve all blocks
392 *	and filemarks which we encountered during our excess read-ahead.
393 *
394 *	For accurate tape positioning and error reporting, disabling
395 *	pipelined mode might be the best option.
396 *
397 * You can enable/disable/tune the pipelined operation mode by adjusting
398 * the compile time parameters below.
399 */
400
401/*
402 *	Possible improvements.
403 *
404 *	1.	Support for the ATAPI overlap protocol.
405 *
406 *		In order to maximize bus throughput, we currently use the DSC
407 *		overlap method which enables ide.c to service requests from the
408 *		other device while the tape is busy executing a command. The
409 *		DSC overlap method involves polling the tape's status register
410 *		for the DSC bit, and servicing the other device while the tape
411 *		isn't ready.
412 *
413 *		In the current QIC development standard (December 1995),
414 *		it is recommended that new tape drives will *in addition*
415 *		implement the ATAPI overlap protocol, which is used for the
416 *		same purpose - efficient use of the IDE bus, but is interrupt
417 *		driven and thus has much less CPU overhead.
418 *
419 *		ATAPI overlap is likely to be supported in most new ATAPI
420 *		devices, including new ATAPI cdroms, and thus provides us
421 *		a method by which we can achieve higher throughput when
422 *		sharing a (fast) ATA-2 disk with any (slow) new ATAPI device.
423 */
424
425#define IDETAPE_VERSION "1.19"
426
427#include <linux/module.h>
428#include <linux/types.h>
429#include <linux/string.h>
430#include <linux/kernel.h>
431#include <linux/delay.h>
432#include <linux/timer.h>
433#include <linux/mm.h>
434#include <linux/interrupt.h>
435#include <linux/jiffies.h>
436#include <linux/major.h>
437#include <linux/errno.h>
438#include <linux/genhd.h>
439#include <linux/slab.h>
440#include <linux/pci.h>
441#include <linux/ide.h>
442#include <linux/smp_lock.h>
443#include <linux/completion.h>
444#include <linux/bitops.h>
445#include <linux/mutex.h>
446
447#include <asm/byteorder.h>
448#include <asm/irq.h>
449#include <asm/uaccess.h>
450#include <asm/io.h>
451#include <asm/unaligned.h>
452
453/*
454 * partition
455 */
456typedef struct os_partition_s {
457	__u8	partition_num;
458	__u8	par_desc_ver;
459	__u16	wrt_pass_cntr;
460	__u32	first_frame_addr;
461	__u32	last_frame_addr;
462	__u32	eod_frame_addr;
463} os_partition_t;
464
465/*
466 * DAT entry
467 */
468typedef struct os_dat_entry_s {
469	__u32	blk_sz;
470	__u16	blk_cnt;
471	__u8	flags;
472	__u8	reserved;
473} os_dat_entry_t;
474
475/*
476 * DAT
477 */
478#define OS_DAT_FLAGS_DATA	(0xc)
479#define OS_DAT_FLAGS_MARK	(0x1)
480
481typedef struct os_dat_s {
482	__u8		dat_sz;
483	__u8		reserved1;
484	__u8		entry_cnt;
485	__u8		reserved3;
486	os_dat_entry_t	dat_list[16];
487} os_dat_t;
488
489#include <linux/mtio.h>
490
491/**************************** Tunable parameters *****************************/
492
493
494/*
495 *	Pipelined mode parameters.
496 *
497 *	We try to use the minimum number of stages which is enough to
498 *	keep the tape constantly streaming. To accomplish that, we implement
499 *	a feedback loop around the maximum number of stages:
500 *
501 *	We start from MIN maximum stages (we will not even use MIN stages
502 *      if we don't need them), increment it by RATE*(MAX-MIN)
503 *	whenever we sense that the pipeline is empty, until we reach
504 *	the optimum value or until we reach MAX.
505 *
506 *	Setting the following parameter to 0 is illegal: the pipelined mode
507 *	cannot be disabled (calculate_speeds() divides by tape->max_stages.)
508 */
509#define IDETAPE_MIN_PIPELINE_STAGES	  1
510#define IDETAPE_MAX_PIPELINE_STAGES	400
511#define IDETAPE_INCREASE_STAGES_RATE	 20
512
513/*
514 *	The following are used to debug the driver:
515 *
516 *	Setting IDETAPE_DEBUG_INFO to 1 will report device capabilities.
517 *	Setting IDETAPE_DEBUG_LOG to 1 will log driver flow control.
518 *	Setting IDETAPE_DEBUG_BUGS to 1 will enable self-sanity checks in
519 *	some places.
520 *
521 *	Setting them to 0 will restore normal operation mode:
522 *
523 *		1.	Disable logging normal successful operations.
524 *		2.	Disable self-sanity checks.
525 *		3.	Errors will still be logged, of course.
526 *
527 *	All the #if DEBUG code will be removed some day, when the driver
528 *	is verified to be stable enough. This will make it much more
529 *	esthetic.
530 */
531#define IDETAPE_DEBUG_INFO		0
532#define IDETAPE_DEBUG_LOG		0
533#define IDETAPE_DEBUG_BUGS		1
534
535/*
536 *	After each failed packet command we issue a request sense command
537 *	and retry the packet command IDETAPE_MAX_PC_RETRIES times.
538 *
539 *	Setting IDETAPE_MAX_PC_RETRIES to 0 will disable retries.
540 */
541#define IDETAPE_MAX_PC_RETRIES		3
542
543/*
544 *	With each packet command, we allocate a buffer of
545 *	IDETAPE_PC_BUFFER_SIZE bytes. This is used for several packet
546 *	commands (Not for READ/WRITE commands).
547 */
548#define IDETAPE_PC_BUFFER_SIZE		256
549
550/*
551 *	In various places in the driver, we need to allocate storage
552 *	for packet commands and requests, which will remain valid while
553 *	we leave the driver to wait for an interrupt or a timeout event.
554 */
555#define IDETAPE_PC_STACK		(10 + IDETAPE_MAX_PC_RETRIES)
556
557/*
558 * Some drives (for example, Seagate STT3401A Travan) require a very long
559 * timeout, because they don't return an interrupt or clear their busy bit
560 * until after the command completes (even retension commands).
561 */
562#define IDETAPE_WAIT_CMD		(900*HZ)
563
564/*
565 *	The following parameter is used to select the point in the internal
566 *	tape fifo in which we will start to refill the buffer. Decreasing
567 *	the following parameter will improve the system's latency and
568 *	interactive response, while using a high value might improve system
569 *	throughput.
570 */
571#define IDETAPE_FIFO_THRESHOLD 		2
572
573/*
574 *	DSC polling parameters.
575 *
576 *	Polling for DSC (a single bit in the status register) is a very
577 *	important function in ide-tape. There are two cases in which we
578 *	poll for DSC:
579 *
580 *	1.	Before a read/write packet command, to ensure that we
581 *		can transfer data from/to the tape's data buffers, without
582 *		causing an actual media access. In case the tape is not
583 *		ready yet, we take out our request from the device
584 *		request queue, so that ide.c will service requests from
585 *		the other device on the same interface meanwhile.
586 *
587 *	2.	After the successful initialization of a "media access
588 *		packet command", which is a command which can take a long
589 *		time to complete (it can be several seconds or even an hour).
590 *
591 *		Again, we postpone our request in the middle to free the bus
592 *		for the other device. The polling frequency here should be
593 *		lower than the read/write frequency since those media access
594 *		commands are slow. We start from a "fast" frequency -
595 *		IDETAPE_DSC_MA_FAST (one second), and if we don't receive DSC
596 *		after IDETAPE_DSC_MA_THRESHOLD (5 minutes), we switch it to a
597 *		lower frequency - IDETAPE_DSC_MA_SLOW (1 minute).
598 *
599 *	We also set a timeout for the timer, in case something goes wrong.
600 *	The timeout should be longer then the maximum execution time of a
601 *	tape operation.
602 */
603
604/*
605 *	DSC timings.
606 */
607#define IDETAPE_DSC_RW_MIN		5*HZ/100	/* 50 msec */
608#define IDETAPE_DSC_RW_MAX		40*HZ/100	/* 400 msec */
609#define IDETAPE_DSC_RW_TIMEOUT		2*60*HZ		/* 2 minutes */
610#define IDETAPE_DSC_MA_FAST		2*HZ		/* 2 seconds */
611#define IDETAPE_DSC_MA_THRESHOLD	5*60*HZ		/* 5 minutes */
612#define IDETAPE_DSC_MA_SLOW		30*HZ		/* 30 seconds */
613#define IDETAPE_DSC_MA_TIMEOUT		2*60*60*HZ	/* 2 hours */
614
615/*************************** End of tunable parameters ***********************/
616
617/*
618 *	Read/Write error simulation
619 */
620#define SIMULATE_ERRORS			0
621
622/*
623 *	For general magnetic tape device compatibility.
624 */
625typedef enum {
626	idetape_direction_none,
627	idetape_direction_read,
628	idetape_direction_write
629} idetape_chrdev_direction_t;
630
631struct idetape_bh {
632	u32 b_size;
633	atomic_t b_count;
634	struct idetape_bh *b_reqnext;
635	char *b_data;
636};
637
638/*
639 *	Our view of a packet command.
640 */
641typedef struct idetape_packet_command_s {
642	u8 c[12];				/* Actual packet bytes */
643	int retries;				/* On each retry, we increment retries */
644	int error;				/* Error code */
645	int request_transfer;			/* Bytes to transfer */
646	int actually_transferred;		/* Bytes actually transferred */
647	int buffer_size;			/* Size of our data buffer */
648	struct idetape_bh *bh;
649	char *b_data;
650	int b_count;
651	u8 *buffer;				/* Data buffer */
652	u8 *current_position;			/* Pointer into the above buffer */
653	ide_startstop_t (*callback) (ide_drive_t *);	/* Called when this packet command is completed */
654	u8 pc_buffer[IDETAPE_PC_BUFFER_SIZE];	/* Temporary buffer */
655	unsigned long flags;			/* Status/Action bit flags: long for set_bit */
656} idetape_pc_t;
657
658/*
659 *	Packet command flag bits.
660 */
661/* Set when an error is considered normal - We won't retry */
662#define	PC_ABORT			0
663/* 1 When polling for DSC on a media access command */
664#define PC_WAIT_FOR_DSC			1
665/* 1 when we prefer to use DMA if possible */
666#define PC_DMA_RECOMMENDED		2
667/* 1 while DMA in progress */
668#define	PC_DMA_IN_PROGRESS		3
669/* 1 when encountered problem during DMA */
670#define	PC_DMA_ERROR			4
671/* Data direction */
672#define	PC_WRITING			5
673
674/*
675 *	Capabilities and Mechanical Status Page
676 */
677typedef struct {
678	unsigned	page_code	:6;	/* Page code - Should be 0x2a */
679	__u8		reserved0_6	:1;
680	__u8		ps		:1;	/* parameters saveable */
681	__u8		page_length;		/* Page Length - Should be 0x12 */
682	__u8		reserved2, reserved3;
683	unsigned	ro		:1;	/* Read Only Mode */
684	unsigned	reserved4_1234	:4;
685	unsigned	sprev		:1;	/* Supports SPACE in the reverse direction */
686	unsigned	reserved4_67	:2;
687	unsigned	reserved5_012	:3;
688	unsigned	efmt		:1;	/* Supports ERASE command initiated formatting */
689	unsigned	reserved5_4	:1;
690	unsigned	qfa		:1;	/* Supports the QFA two partition formats */
691	unsigned	reserved5_67	:2;
692	unsigned	lock		:1;	/* Supports locking the volume */
693	unsigned	locked		:1;	/* The volume is locked */
694	unsigned	prevent		:1;	/* The device defaults in the prevent state after power up */
695	unsigned	eject		:1;	/* The device can eject the volume */
696	__u8		disconnect	:1;	/* The device can break request > ctl */
697	__u8		reserved6_5	:1;
698	unsigned	ecc		:1;	/* Supports error correction */
699	unsigned	cmprs		:1;	/* Supports data compression */
700	unsigned	reserved7_0	:1;
701	unsigned	blk512		:1;	/* Supports 512 bytes block size */
702	unsigned	blk1024		:1;	/* Supports 1024 bytes block size */
703	unsigned	reserved7_3_6	:4;
704	unsigned	blk32768	:1;	/* slowb - the device restricts the byte count for PIO */
705						/* transfers for slow buffer memory ??? */
706						/* Also 32768 block size in some cases */
707	__u16		max_speed;		/* Maximum speed supported in KBps */
708	__u8		reserved10, reserved11;
709	__u16		ctl;			/* Continuous Transfer Limit in blocks */
710	__u16		speed;			/* Current Speed, in KBps */
711	__u16		buffer_size;		/* Buffer Size, in 512 bytes */
712	__u8		reserved18, reserved19;
713} idetape_capabilities_page_t;
714
715/*
716 *	Block Size Page
717 */
718typedef struct {
719	unsigned	page_code	:6;	/* Page code - Should be 0x30 */
720	unsigned	reserved1_6	:1;
721	unsigned	ps		:1;
722	__u8		page_length;		/* Page Length - Should be 2 */
723	__u8		reserved2;
724	unsigned	play32		:1;
725	unsigned	play32_5	:1;
726	unsigned	reserved2_23	:2;
727	unsigned	record32	:1;
728	unsigned	record32_5	:1;
729	unsigned	reserved2_6	:1;
730	unsigned	one		:1;
731} idetape_block_size_page_t;
732
733/*
734 *	A pipeline stage.
735 */
736typedef struct idetape_stage_s {
737	struct request rq;			/* The corresponding request */
738	struct idetape_bh *bh;			/* The data buffers */
739	struct idetape_stage_s *next;		/* Pointer to the next stage */
740} idetape_stage_t;
741
742/*
743 *	REQUEST SENSE packet command result - Data Format.
744 */
745typedef struct {
746	unsigned	error_code	:7;	/* Current of deferred errors */
747	unsigned	valid		:1;	/* The information field conforms to QIC-157C */
748	__u8		reserved1	:8;	/* Segment Number - Reserved */
749	unsigned	sense_key	:4;	/* Sense Key */
750	unsigned	reserved2_4	:1;	/* Reserved */
751	unsigned	ili		:1;	/* Incorrect Length Indicator */
752	unsigned	eom		:1;	/* End Of Medium */
753	unsigned	filemark 	:1;	/* Filemark */
754	__u32		information __attribute__ ((packed));
755	__u8		asl;			/* Additional sense length (n-7) */
756	__u32		command_specific;	/* Additional command specific information */
757	__u8		asc;			/* Additional Sense Code */
758	__u8		ascq;			/* Additional Sense Code Qualifier */
759	__u8		replaceable_unit_code;	/* Field Replaceable Unit Code */
760	unsigned	sk_specific1 	:7;	/* Sense Key Specific */
761	unsigned	sksv		:1;	/* Sense Key Specific information is valid */
762	__u8		sk_specific2;		/* Sense Key Specific */
763	__u8		sk_specific3;		/* Sense Key Specific */
764	__u8		pad[2];			/* Padding to 20 bytes */
765} idetape_request_sense_result_t;
766
767
768/*
769 *	Most of our global data which we need to save even as we leave the
770 *	driver due to an interrupt or a timer event is stored in a variable
771 *	of type idetape_tape_t, defined below.
772 */
773typedef struct ide_tape_obj {
774	ide_drive_t	*drive;
775	ide_driver_t	*driver;
776	struct gendisk	*disk;
777	struct kref	kref;
778
779	/*
780	 *	Since a typical character device operation requires more
781	 *	than one packet command, we provide here enough memory
782	 *	for the maximum of interconnected packet commands.
783	 *	The packet commands are stored in the circular array pc_stack.
784	 *	pc_stack_index points to the last used entry, and warps around
785	 *	to the start when we get to the last array entry.
786	 *
787	 *	pc points to the current processed packet command.
788	 *
789	 *	failed_pc points to the last failed packet command, or contains
790	 *	NULL if we do not need to retry any packet command. This is
791	 *	required since an additional packet command is needed before the
792	 *	retry, to get detailed information on what went wrong.
793	 */
794	/* Current packet command */
795	idetape_pc_t *pc;
796	/* Last failed packet command */
797	idetape_pc_t *failed_pc;
798	/* Packet command stack */
799	idetape_pc_t pc_stack[IDETAPE_PC_STACK];
800	/* Next free packet command storage space */
801	int pc_stack_index;
802	struct request rq_stack[IDETAPE_PC_STACK];
803	/* We implement a circular array */
804	int rq_stack_index;
805
806	/*
807	 *	DSC polling variables.
808	 *
809	 *	While polling for DSC we use postponed_rq to postpone the
810	 *	current request so that ide.c will be able to service
811	 *	pending requests on the other device. Note that at most
812	 *	we will have only one DSC (usually data transfer) request
813	 *	in the device request queue. Additional requests can be
814	 *	queued in our internal pipeline, but they will be visible
815	 *	to ide.c only one at a time.
816	 */
817	struct request *postponed_rq;
818	/* The time in which we started polling for DSC */
819	unsigned long dsc_polling_start;
820	/* Timer used to poll for dsc */
821	struct timer_list dsc_timer;
822	/* Read/Write dsc polling frequency */
823	unsigned long best_dsc_rw_frequency;
824	/* The current polling frequency */
825	unsigned long dsc_polling_frequency;
826	/* Maximum waiting time */
827	unsigned long dsc_timeout;
828
829	/*
830	 *	Read position information
831	 */
832	u8 partition;
833	/* Current block */
834	unsigned int first_frame_position;
835	unsigned int last_frame_position;
836	unsigned int blocks_in_buffer;
837
838	/*
839	 *	Last error information
840	 */
841	u8 sense_key, asc, ascq;
842
843	/*
844	 *	Character device operation
845	 */
846	unsigned int minor;
847	/* device name */
848	char name[4];
849	/* Current character device data transfer direction */
850	idetape_chrdev_direction_t chrdev_direction;
851
852	/*
853	 *	Device information
854	 */
855	/* Usually 512 or 1024 bytes */
856	unsigned short tape_block_size;
857	int user_bs_factor;
858	/* Copy of the tape's Capabilities and Mechanical Page */
859	idetape_capabilities_page_t capabilities;
860
861	/*
862	 *	Active data transfer request parameters.
863	 *
864	 *	At most, there is only one ide-tape originated data transfer
865	 *	request in the device request queue. This allows ide.c to
866	 *	easily service requests from the other device when we
867	 *	postpone our active request. In the pipelined operation
868	 *	mode, we use our internal pipeline structure to hold
869	 *	more data requests.
870	 *
871	 *	The data buffer size is chosen based on the tape's
872	 *	recommendation.
873	 */
874	/* Pointer to the request which is waiting in the device request queue */
875	struct request *active_data_request;
876	/* Data buffer size (chosen based on the tape's recommendation */
877	int stage_size;
878	idetape_stage_t *merge_stage;
879	int merge_stage_size;
880	struct idetape_bh *bh;
881	char *b_data;
882	int b_count;
883
884	/*
885	 *	Pipeline parameters.
886	 *
887	 *	To accomplish non-pipelined mode, we simply set the following
888	 *	variables to zero (or NULL, where appropriate).
889	 */
890	/* Number of currently used stages */
891	int nr_stages;
892	/* Number of pending stages */
893	int nr_pending_stages;
894	/* We will not allocate more than this number of stages */
895	int max_stages, min_pipeline, max_pipeline;
896	/* The first stage which will be removed from the pipeline */
897	idetape_stage_t *first_stage;
898	/* The currently active stage */
899	idetape_stage_t *active_stage;
900	/* Will be serviced after the currently active request */
901	idetape_stage_t *next_stage;
902	/* New requests will be added to the pipeline here */
903	idetape_stage_t *last_stage;
904	/* Optional free stage which we can use */
905	idetape_stage_t *cache_stage;
906	int pages_per_stage;
907	/* Wasted space in each stage */
908	int excess_bh_size;
909
910	/* Status/Action flags: long for set_bit */
911	unsigned long flags;
912	/* protects the ide-tape queue */
913	spinlock_t spinlock;
914
915	/*
916	 * Measures average tape speed
917	 */
918	unsigned long avg_time;
919	int avg_size;
920	int avg_speed;
921
922	/* last sense information */
923	idetape_request_sense_result_t sense;
924
925	char vendor_id[10];
926	char product_id[18];
927	char firmware_revision[6];
928	int firmware_revision_num;
929
930	/* the door is currently locked */
931	int door_locked;
932	/* the tape hardware is write protected */
933	char drv_write_prot;
934	/* the tape is write protected (hardware or opened as read-only) */
935	char write_prot;
936
937	/*
938	 * Limit the number of times a request can
939	 * be postponed, to avoid an infinite postpone
940	 * deadlock.
941	 */
942	/* request postpone count limit */
943	int postpone_cnt;
944
945	/*
946	 * Measures number of frames:
947	 *
948	 * 1. written/read to/from the driver pipeline (pipeline_head).
949	 * 2. written/read to/from the tape buffers (idetape_bh).
950	 * 3. written/read by the tape to/from the media (tape_head).
951	 */
952	int pipeline_head;
953	int buffer_head;
954	int tape_head;
955	int last_tape_head;
956
957	/*
958	 * Speed control at the tape buffers input/output
959	 */
960	unsigned long insert_time;
961	int insert_size;
962	int insert_speed;
963	int max_insert_speed;
964	int measure_insert_time;
965
966	/*
967	 * Measure tape still time, in milliseconds
968	 */
969	unsigned long tape_still_time_begin;
970	int tape_still_time;
971
972	/*
973	 * Speed regulation negative feedback loop
974	 */
975	int speed_control;
976	int pipeline_head_speed;
977	int controlled_pipeline_head_speed;
978	int uncontrolled_pipeline_head_speed;
979	int controlled_last_pipeline_head;
980	int uncontrolled_last_pipeline_head;
981	unsigned long uncontrolled_pipeline_head_time;
982	unsigned long controlled_pipeline_head_time;
983	int controlled_previous_pipeline_head;
984	int uncontrolled_previous_pipeline_head;
985	unsigned long controlled_previous_head_time;
986	unsigned long uncontrolled_previous_head_time;
987	int restart_speed_control_req;
988
989        /*
990         * Debug_level determines amount of debugging output;
991         * can be changed using /proc/ide/hdx/settings
992         * 0 : almost no debugging output
993         * 1 : 0+output errors only
994         * 2 : 1+output all sensekey/asc
995         * 3 : 2+follow all chrdev related procedures
996         * 4 : 3+follow all procedures
997         * 5 : 4+include pc_stack rq_stack info
998         * 6 : 5+USE_COUNT updates
999         */
1000         int debug_level;
1001} idetape_tape_t;
1002
1003static DEFINE_MUTEX(idetape_ref_mutex);
1004
1005static struct class *idetape_sysfs_class;
1006
1007#define to_ide_tape(obj) container_of(obj, struct ide_tape_obj, kref)
1008
1009#define ide_tape_g(disk) \
1010	container_of((disk)->private_data, struct ide_tape_obj, driver)
1011
1012static struct ide_tape_obj *ide_tape_get(struct gendisk *disk)
1013{
1014	struct ide_tape_obj *tape = NULL;
1015
1016	mutex_lock(&idetape_ref_mutex);
1017	tape = ide_tape_g(disk);
1018	if (tape)
1019		kref_get(&tape->kref);
1020	mutex_unlock(&idetape_ref_mutex);
1021	return tape;
1022}
1023
1024static void ide_tape_release(struct kref *);
1025
1026static void ide_tape_put(struct ide_tape_obj *tape)
1027{
1028	mutex_lock(&idetape_ref_mutex);
1029	kref_put(&tape->kref, ide_tape_release);
1030	mutex_unlock(&idetape_ref_mutex);
1031}
1032
1033/*
1034 *	Tape door status
1035 */
1036#define DOOR_UNLOCKED			0
1037#define DOOR_LOCKED			1
1038#define DOOR_EXPLICITLY_LOCKED		2
1039
1040/*
1041 *	Tape flag bits values.
1042 */
1043#define IDETAPE_IGNORE_DSC		0
1044#define IDETAPE_ADDRESS_VALID		1	/* 0 When the tape position is unknown */
1045#define IDETAPE_BUSY			2	/* Device already opened */
1046#define IDETAPE_PIPELINE_ERROR		3	/* Error detected in a pipeline stage */
1047#define IDETAPE_DETECT_BS		4	/* Attempt to auto-detect the current user block size */
1048#define IDETAPE_FILEMARK		5	/* Currently on a filemark */
1049#define IDETAPE_DRQ_INTERRUPT		6	/* DRQ interrupt device */
1050#define IDETAPE_READ_ERROR		7
1051#define IDETAPE_PIPELINE_ACTIVE		8	/* pipeline active */
1052/* 0 = no tape is loaded, so we don't rewind after ejecting */
1053#define IDETAPE_MEDIUM_PRESENT		9
1054
1055/*
1056 *	Supported ATAPI tape drives packet commands
1057 */
1058#define IDETAPE_TEST_UNIT_READY_CMD	0x00
1059#define IDETAPE_REWIND_CMD		0x01
1060#define IDETAPE_REQUEST_SENSE_CMD	0x03
1061#define IDETAPE_READ_CMD		0x08
1062#define IDETAPE_WRITE_CMD		0x0a
1063#define IDETAPE_WRITE_FILEMARK_CMD	0x10
1064#define IDETAPE_SPACE_CMD		0x11
1065#define IDETAPE_INQUIRY_CMD		0x12
1066#define IDETAPE_ERASE_CMD		0x19
1067#define IDETAPE_MODE_SENSE_CMD		0x1a
1068#define IDETAPE_MODE_SELECT_CMD		0x15
1069#define IDETAPE_LOAD_UNLOAD_CMD		0x1b
1070#define IDETAPE_PREVENT_CMD		0x1e
1071#define IDETAPE_LOCATE_CMD		0x2b
1072#define IDETAPE_READ_POSITION_CMD	0x34
1073#define IDETAPE_READ_BUFFER_CMD		0x3c
1074#define IDETAPE_SET_SPEED_CMD		0xbb
1075
1076/*
1077 *	Some defines for the READ BUFFER command
1078 */
1079#define IDETAPE_RETRIEVE_FAULTY_BLOCK	6
1080
1081/*
1082 *	Some defines for the SPACE command
1083 */
1084#define IDETAPE_SPACE_OVER_FILEMARK	1
1085#define IDETAPE_SPACE_TO_EOD		3
1086
1087/*
1088 *	Some defines for the LOAD UNLOAD command
1089 */
1090#define IDETAPE_LU_LOAD_MASK		1
1091#define IDETAPE_LU_RETENSION_MASK	2
1092#define IDETAPE_LU_EOT_MASK		4
1093
1094/*
1095 *	Special requests for our block device strategy routine.
1096 *
1097 *	In order to service a character device command, we add special
1098 *	requests to the tail of our block device request queue and wait
1099 *	for their completion.
1100 */
1101
1102enum {
1103	REQ_IDETAPE_PC1		= (1 << 0), /* packet command (first stage) */
1104	REQ_IDETAPE_PC2		= (1 << 1), /* packet command (second stage) */
1105	REQ_IDETAPE_READ	= (1 << 2),
1106	REQ_IDETAPE_WRITE	= (1 << 3),
1107	REQ_IDETAPE_READ_BUFFER	= (1 << 4),
1108};
1109
1110/*
1111 *	Error codes which are returned in rq->errors to the higher part
1112 *	of the driver.
1113 */
1114#define	IDETAPE_ERROR_GENERAL		101
1115#define	IDETAPE_ERROR_FILEMARK		102
1116#define	IDETAPE_ERROR_EOD		103
1117
1118/*
1119 *	The following is used to format the general configuration word of
1120 *	the ATAPI IDENTIFY DEVICE command.
1121 */
1122struct idetape_id_gcw {
1123	unsigned packet_size		:2;	/* Packet Size */
1124	unsigned reserved234		:3;	/* Reserved */
1125	unsigned drq_type		:2;	/* Command packet DRQ type */
1126	unsigned removable		:1;	/* Removable media */
1127	unsigned device_type		:5;	/* Device type */
1128	unsigned reserved13		:1;	/* Reserved */
1129	unsigned protocol		:2;	/* Protocol type */
1130};
1131
1132/*
1133 *	INQUIRY packet command - Data Format (From Table 6-8 of QIC-157C)
1134 */
1135typedef struct {
1136	unsigned	device_type	:5;	/* Peripheral Device Type */
1137	unsigned	reserved0_765	:3;	/* Peripheral Qualifier - Reserved */
1138	unsigned	reserved1_6t0	:7;	/* Reserved */
1139	unsigned	rmb		:1;	/* Removable Medium Bit */
1140	unsigned	ansi_version	:3;	/* ANSI Version */
1141	unsigned	ecma_version	:3;	/* ECMA Version */
1142	unsigned	iso_version	:2;	/* ISO Version */
1143	unsigned	response_format :4;	/* Response Data Format */
1144	unsigned	reserved3_45	:2;	/* Reserved */
1145	unsigned	reserved3_6	:1;	/* TrmIOP - Reserved */
1146	unsigned	reserved3_7	:1;	/* AENC - Reserved */
1147	__u8		additional_length;	/* Additional Length (total_length-4) */
1148	__u8		rsv5, rsv6, rsv7;	/* Reserved */
1149	__u8		vendor_id[8];		/* Vendor Identification */
1150	__u8		product_id[16];		/* Product Identification */
1151	__u8		revision_level[4];	/* Revision Level */
1152	__u8		vendor_specific[20];	/* Vendor Specific - Optional */
1153	__u8		reserved56t95[40];	/* Reserved - Optional */
1154						/* Additional information may be returned */
1155} idetape_inquiry_result_t;
1156
1157/*
1158 *	READ POSITION packet command - Data Format (From Table 6-57)
1159 */
1160typedef struct {
1161	unsigned	reserved0_10	:2;	/* Reserved */
1162	unsigned	bpu		:1;	/* Block Position Unknown */
1163	unsigned	reserved0_543	:3;	/* Reserved */
1164	unsigned	eop		:1;	/* End Of Partition */
1165	unsigned	bop		:1;	/* Beginning Of Partition */
1166	u8		partition;		/* Partition Number */
1167	u8		reserved2, reserved3;	/* Reserved */
1168	u32		first_block;		/* First Block Location */
1169	u32		last_block;		/* Last Block Location (Optional) */
1170	u8		reserved12;		/* Reserved */
1171	u8		blocks_in_buffer[3];	/* Blocks In Buffer - (Optional) */
1172	u32		bytes_in_buffer;	/* Bytes In Buffer (Optional) */
1173} idetape_read_position_result_t;
1174
1175/*
1176 *	Follows structures which are related to the SELECT SENSE / MODE SENSE
1177 *	packet commands. Those packet commands are still not supported
1178 *	by ide-tape.
1179 */
1180#define IDETAPE_BLOCK_DESCRIPTOR	0
1181#define	IDETAPE_CAPABILITIES_PAGE	0x2a
1182#define IDETAPE_PARAMTR_PAGE		0x2b   /* Onstream DI-x0 only */
1183#define IDETAPE_BLOCK_SIZE_PAGE		0x30
1184#define IDETAPE_BUFFER_FILLING_PAGE	0x33
1185
1186/*
1187 *	Mode Parameter Header for the MODE SENSE packet command
1188 */
1189typedef struct {
1190	__u8	mode_data_length;	/* Length of the following data transfer */
1191	__u8	medium_type;		/* Medium Type */
1192	__u8	dsp;			/* Device Specific Parameter */
1193	__u8	bdl;			/* Block Descriptor Length */
1194#if 0
1195	/* data transfer page */
1196	__u8	page_code	:6;
1197	__u8	reserved0_6	:1;
1198	__u8	ps		:1;	/* parameters saveable */
1199	__u8	page_length;		/* page Length == 0x02 */
1200	__u8	reserved2;
1201	__u8	read32k		:1;	/* 32k blk size (data only) */
1202	__u8	read32k5	:1;	/* 32.5k blk size (data&AUX) */
1203	__u8	reserved3_23	:2;
1204	__u8	write32k	:1;	/* 32k blk size (data only) */
1205	__u8	write32k5	:1;	/* 32.5k blk size (data&AUX) */
1206	__u8	reserved3_6	:1;
1207	__u8	streaming	:1;	/* streaming mode enable */
1208#endif
1209} idetape_mode_parameter_header_t;
1210
1211/*
1212 *	Mode Parameter Block Descriptor the MODE SENSE packet command
1213 *
1214 *	Support for block descriptors is optional.
1215 */
1216typedef struct {
1217	__u8		density_code;		/* Medium density code */
1218	__u8		blocks[3];		/* Number of blocks */
1219	__u8		reserved4;		/* Reserved */
1220	__u8		length[3];		/* Block Length */
1221} idetape_parameter_block_descriptor_t;
1222
1223/*
1224 *	The Data Compression Page, as returned by the MODE SENSE packet command.
1225 */
1226typedef struct {
1227	unsigned	page_code	:6;	/* Page Code - Should be 0xf */
1228	unsigned	reserved0	:1;	/* Reserved */
1229	unsigned	ps		:1;
1230	__u8		page_length;		/* Page Length - Should be 14 */
1231	unsigned	reserved2	:6;	/* Reserved */
1232	unsigned	dcc		:1;	/* Data Compression Capable */
1233	unsigned	dce		:1;	/* Data Compression Enable */
1234	unsigned	reserved3	:5;	/* Reserved */
1235	unsigned	red		:2;	/* Report Exception on Decompression */
1236	unsigned	dde		:1;	/* Data Decompression Enable */
1237	__u32		ca;			/* Compression Algorithm */
1238	__u32		da;			/* Decompression Algorithm */
1239	__u8		reserved[4];		/* Reserved */
1240} idetape_data_compression_page_t;
1241
1242/*
1243 *	The Medium Partition Page, as returned by the MODE SENSE packet command.
1244 */
1245typedef struct {
1246	unsigned	page_code	:6;	/* Page Code - Should be 0x11 */
1247	unsigned	reserved1_6	:1;	/* Reserved */
1248	unsigned	ps		:1;
1249	__u8		page_length;		/* Page Length - Should be 6 */
1250	__u8		map;			/* Maximum Additional Partitions - Should be 0 */
1251	__u8		apd;			/* Additional Partitions Defined - Should be 0 */
1252	unsigned	reserved4_012	:3;	/* Reserved */
1253	unsigned	psum		:2;	/* Should be 0 */
1254	unsigned	idp		:1;	/* Should be 0 */
1255	unsigned	sdp		:1;	/* Should be 0 */
1256	unsigned	fdp		:1;	/* Fixed Data Partitions */
1257	__u8		mfr;			/* Medium Format Recognition */
1258	__u8		reserved[2];		/* Reserved */
1259} idetape_medium_partition_page_t;
1260
1261/*
1262 *	Run time configurable parameters.
1263 */
1264typedef struct {
1265	int	dsc_rw_frequency;
1266	int	dsc_media_access_frequency;
1267	int	nr_stages;
1268} idetape_config_t;
1269
1270/*
1271 *	The variables below are used for the character device interface.
1272 *	Additional state variables are defined in our ide_drive_t structure.
1273 */
1274static struct ide_tape_obj * idetape_devs[MAX_HWIFS * MAX_DRIVES];
1275
1276#define ide_tape_f(file) ((file)->private_data)
1277
1278static struct ide_tape_obj *ide_tape_chrdev_get(unsigned int i)
1279{
1280	struct ide_tape_obj *tape = NULL;
1281
1282	mutex_lock(&idetape_ref_mutex);
1283	tape = idetape_devs[i];
1284	if (tape)
1285		kref_get(&tape->kref);
1286	mutex_unlock(&idetape_ref_mutex);
1287	return tape;
1288}
1289
1290/*
1291 *      Function declarations
1292 *
1293 */
1294static int idetape_chrdev_release (struct inode *inode, struct file *filp);
1295static void idetape_write_release (ide_drive_t *drive, unsigned int minor);
1296
1297/*
1298 * Too bad. The drive wants to send us data which we are not ready to accept.
1299 * Just throw it away.
1300 */
1301static void idetape_discard_data (ide_drive_t *drive, unsigned int bcount)
1302{
1303	while (bcount--)
1304		(void) HWIF(drive)->INB(IDE_DATA_REG);
1305}
1306
1307static void idetape_input_buffers (ide_drive_t *drive, idetape_pc_t *pc, unsigned int bcount)
1308{
1309	struct idetape_bh *bh = pc->bh;
1310	int count;
1311
1312	while (bcount) {
1313#if IDETAPE_DEBUG_BUGS
1314		if (bh == NULL) {
1315			printk(KERN_ERR "ide-tape: bh == NULL in "
1316				"idetape_input_buffers\n");
1317			idetape_discard_data(drive, bcount);
1318			return;
1319		}
1320#endif /* IDETAPE_DEBUG_BUGS */
1321		count = min((unsigned int)(bh->b_size - atomic_read(&bh->b_count)), bcount);
1322		HWIF(drive)->atapi_input_bytes(drive, bh->b_data + atomic_read(&bh->b_count), count);
1323		bcount -= count;
1324		atomic_add(count, &bh->b_count);
1325		if (atomic_read(&bh->b_count) == bh->b_size) {
1326			bh = bh->b_reqnext;
1327			if (bh)
1328				atomic_set(&bh->b_count, 0);
1329		}
1330	}
1331	pc->bh = bh;
1332}
1333
1334static void idetape_output_buffers (ide_drive_t *drive, idetape_pc_t *pc, unsigned int bcount)
1335{
1336	struct idetape_bh *bh = pc->bh;
1337	int count;
1338
1339	while (bcount) {
1340#if IDETAPE_DEBUG_BUGS
1341		if (bh == NULL) {
1342			printk(KERN_ERR "ide-tape: bh == NULL in "
1343				"idetape_output_buffers\n");
1344			return;
1345		}
1346#endif /* IDETAPE_DEBUG_BUGS */
1347		count = min((unsigned int)pc->b_count, (unsigned int)bcount);
1348		HWIF(drive)->atapi_output_bytes(drive, pc->b_data, count);
1349		bcount -= count;
1350		pc->b_data += count;
1351		pc->b_count -= count;
1352		if (!pc->b_count) {
1353			pc->bh = bh = bh->b_reqnext;
1354			if (bh) {
1355				pc->b_data = bh->b_data;
1356				pc->b_count = atomic_read(&bh->b_count);
1357			}
1358		}
1359	}
1360}
1361
1362static void idetape_update_buffers (idetape_pc_t *pc)
1363{
1364	struct idetape_bh *bh = pc->bh;
1365	int count;
1366	unsigned int bcount = pc->actually_transferred;
1367
1368	if (test_bit(PC_WRITING, &pc->flags))
1369		return;
1370	while (bcount) {
1371#if IDETAPE_DEBUG_BUGS
1372		if (bh == NULL) {
1373			printk(KERN_ERR "ide-tape: bh == NULL in "
1374				"idetape_update_buffers\n");
1375			return;
1376		}
1377#endif /* IDETAPE_DEBUG_BUGS */
1378		count = min((unsigned int)bh->b_size, (unsigned int)bcount);
1379		atomic_set(&bh->b_count, count);
1380		if (atomic_read(&bh->b_count) == bh->b_size)
1381			bh = bh->b_reqnext;
1382		bcount -= count;
1383	}
1384	pc->bh = bh;
1385}
1386
1387/*
1388 *	idetape_next_pc_storage returns a pointer to a place in which we can
1389 *	safely store a packet command, even though we intend to leave the
1390 *	driver. A storage space for a maximum of IDETAPE_PC_STACK packet
1391 *	commands is allocated at initialization time.
1392 */
1393static idetape_pc_t *idetape_next_pc_storage (ide_drive_t *drive)
1394{
1395	idetape_tape_t *tape = drive->driver_data;
1396
1397#if IDETAPE_DEBUG_LOG
1398	if (tape->debug_level >= 5)
1399		printk(KERN_INFO "ide-tape: pc_stack_index=%d\n",
1400			tape->pc_stack_index);
1401#endif /* IDETAPE_DEBUG_LOG */
1402	if (tape->pc_stack_index == IDETAPE_PC_STACK)
1403		tape->pc_stack_index=0;
1404	return (&tape->pc_stack[tape->pc_stack_index++]);
1405}
1406
1407/*
1408 *	idetape_next_rq_storage is used along with idetape_next_pc_storage.
1409 *	Since we queue packet commands in the request queue, we need to
1410 *	allocate a request, along with the allocation of a packet command.
1411 */
1412
1413/**************************************************************
1414 *                                                            *
1415 *  This should get fixed to use kmalloc(.., GFP_ATOMIC)      *
1416 *  followed later on by kfree().   -ml                       *
1417 *                                                            *
1418 **************************************************************/
1419
1420static struct request *idetape_next_rq_storage (ide_drive_t *drive)
1421{
1422	idetape_tape_t *tape = drive->driver_data;
1423
1424#if IDETAPE_DEBUG_LOG
1425	if (tape->debug_level >= 5)
1426		printk(KERN_INFO "ide-tape: rq_stack_index=%d\n",
1427			tape->rq_stack_index);
1428#endif /* IDETAPE_DEBUG_LOG */
1429	if (tape->rq_stack_index == IDETAPE_PC_STACK)
1430		tape->rq_stack_index=0;
1431	return (&tape->rq_stack[tape->rq_stack_index++]);
1432}
1433
1434/*
1435 *	idetape_init_pc initializes a packet command.
1436 */
1437static void idetape_init_pc (idetape_pc_t *pc)
1438{
1439	memset(pc->c, 0, 12);
1440	pc->retries = 0;
1441	pc->flags = 0;
1442	pc->request_transfer = 0;
1443	pc->buffer = pc->pc_buffer;
1444	pc->buffer_size = IDETAPE_PC_BUFFER_SIZE;
1445	pc->bh = NULL;
1446	pc->b_data = NULL;
1447}
1448
1449/*
1450 *	idetape_analyze_error is called on each failed packet command retry
1451 *	to analyze the request sense. We currently do not utilize this
1452 *	information.
1453 */
1454static void idetape_analyze_error (ide_drive_t *drive, idetape_request_sense_result_t *result)
1455{
1456	idetape_tape_t *tape = drive->driver_data;
1457	idetape_pc_t *pc = tape->failed_pc;
1458
1459	tape->sense     = *result;
1460	tape->sense_key = result->sense_key;
1461	tape->asc       = result->asc;
1462	tape->ascq      = result->ascq;
1463#if IDETAPE_DEBUG_LOG
1464	/*
1465	 *	Without debugging, we only log an error if we decided to
1466	 *	give up retrying.
1467	 */
1468	if (tape->debug_level >= 1)
1469		printk(KERN_INFO "ide-tape: pc = %x, sense key = %x, "
1470			"asc = %x, ascq = %x\n",
1471			pc->c[0], result->sense_key,
1472			result->asc, result->ascq);
1473#endif /* IDETAPE_DEBUG_LOG */
1474
1475	/*
1476	 *	Correct pc->actually_transferred by asking the tape.
1477	 */
1478	if (test_bit(PC_DMA_ERROR, &pc->flags)) {
1479		pc->actually_transferred = pc->request_transfer - tape->tape_block_size * ntohl(get_unaligned(&result->information));
1480		idetape_update_buffers(pc);
1481	}
1482
1483	/*
1484	 * If error was the result of a zero-length read or write command,
1485	 * with sense key=5, asc=0x22, ascq=0, let it slide.  Some drives
1486	 * (i.e. Seagate STT3401A Travan) don't support 0-length read/writes.
1487	 */
1488	if ((pc->c[0] == IDETAPE_READ_CMD || pc->c[0] == IDETAPE_WRITE_CMD)
1489	    && pc->c[4] == 0 && pc->c[3] == 0 && pc->c[2] == 0) { /* length==0 */
1490		if (result->sense_key == 5) {
1491			/* don't report an error, everything's ok */
1492			pc->error = 0;
1493			/* don't retry read/write */
1494			set_bit(PC_ABORT, &pc->flags);
1495		}
1496	}
1497	if (pc->c[0] == IDETAPE_READ_CMD && result->filemark) {
1498		pc->error = IDETAPE_ERROR_FILEMARK;
1499		set_bit(PC_ABORT, &pc->flags);
1500	}
1501	if (pc->c[0] == IDETAPE_WRITE_CMD) {
1502		if (result->eom ||
1503		    (result->sense_key == 0xd && result->asc == 0x0 &&
1504		     result->ascq == 0x2)) {
1505			pc->error = IDETAPE_ERROR_EOD;
1506			set_bit(PC_ABORT, &pc->flags);
1507		}
1508	}
1509	if (pc->c[0] == IDETAPE_READ_CMD || pc->c[0] == IDETAPE_WRITE_CMD) {
1510		if (result->sense_key == 8) {
1511			pc->error = IDETAPE_ERROR_EOD;
1512			set_bit(PC_ABORT, &pc->flags);
1513		}
1514		if (!test_bit(PC_ABORT, &pc->flags) &&
1515		    pc->actually_transferred)
1516			pc->retries = IDETAPE_MAX_PC_RETRIES + 1;
1517	}
1518}
1519
1520/*
1521 * idetape_active_next_stage will declare the next stage as "active".
1522 */
1523static void idetape_active_next_stage (ide_drive_t *drive)
1524{
1525	idetape_tape_t *tape = drive->driver_data;
1526	idetape_stage_t *stage = tape->next_stage;
1527	struct request *rq = &stage->rq;
1528
1529#if IDETAPE_DEBUG_LOG
1530	if (tape->debug_level >= 4)
1531		printk(KERN_INFO "ide-tape: Reached idetape_active_next_stage\n");
1532#endif /* IDETAPE_DEBUG_LOG */
1533#if IDETAPE_DEBUG_BUGS
1534	if (stage == NULL) {
1535		printk(KERN_ERR "ide-tape: bug: Trying to activate a non existing stage\n");
1536		return;
1537	}
1538#endif /* IDETAPE_DEBUG_BUGS */
1539
1540	rq->rq_disk = tape->disk;
1541	rq->buffer = NULL;
1542	rq->special = (void *)stage->bh;
1543	tape->active_data_request = rq;
1544	tape->active_stage = stage;
1545	tape->next_stage = stage->next;
1546}
1547
1548/*
1549 *	idetape_increase_max_pipeline_stages is a part of the feedback
1550 *	loop which tries to find the optimum number of stages. In the
1551 *	feedback loop, we are starting from a minimum maximum number of
1552 *	stages, and if we sense that the pipeline is empty, we try to
1553 *	increase it, until we reach the user compile time memory limit.
1554 */
1555static void idetape_increase_max_pipeline_stages (ide_drive_t *drive)
1556{
1557	idetape_tape_t *tape = drive->driver_data;
1558	int increase = (tape->max_pipeline - tape->min_pipeline) / 10;
1559
1560#if IDETAPE_DEBUG_LOG
1561	if (tape->debug_level >= 4)
1562		printk (KERN_INFO "ide-tape: Reached idetape_increase_max_pipeline_stages\n");
1563#endif /* IDETAPE_DEBUG_LOG */
1564
1565	tape->max_stages += max(increase, 1);
1566	tape->max_stages = max(tape->max_stages, tape->min_pipeline);
1567	tape->max_stages = min(tape->max_stages, tape->max_pipeline);
1568}
1569
1570/*
1571 *	idetape_kfree_stage calls kfree to completely free a stage, along with
1572 *	its related buffers.
1573 */
1574static void __idetape_kfree_stage (idetape_stage_t *stage)
1575{
1576	struct idetape_bh *prev_bh, *bh = stage->bh;
1577	int size;
1578
1579	while (bh != NULL) {
1580		if (bh->b_data != NULL) {
1581			size = (int) bh->b_size;
1582			while (size > 0) {
1583				free_page((unsigned long) bh->b_data);
1584				size -= PAGE_SIZE;
1585				bh->b_data += PAGE_SIZE;
1586			}
1587		}
1588		prev_bh = bh;
1589		bh = bh->b_reqnext;
1590		kfree(prev_bh);
1591	}
1592	kfree(stage);
1593}
1594
1595static void idetape_kfree_stage (idetape_tape_t *tape, idetape_stage_t *stage)
1596{
1597	__idetape_kfree_stage(stage);
1598}
1599
1600/*
1601 *	idetape_remove_stage_head removes tape->first_stage from the pipeline.
1602 *	The caller should avoid race conditions.
1603 */
1604static void idetape_remove_stage_head (ide_drive_t *drive)
1605{
1606	idetape_tape_t *tape = drive->driver_data;
1607	idetape_stage_t *stage;
1608
1609#if IDETAPE_DEBUG_LOG
1610	if (tape->debug_level >= 4)
1611		printk(KERN_INFO "ide-tape: Reached idetape_remove_stage_head\n");
1612#endif /* IDETAPE_DEBUG_LOG */
1613#if IDETAPE_DEBUG_BUGS
1614	if (tape->first_stage == NULL) {
1615		printk(KERN_ERR "ide-tape: bug: tape->first_stage is NULL\n");
1616		return;
1617	}
1618	if (tape->active_stage == tape->first_stage) {
1619		printk(KERN_ERR "ide-tape: bug: Trying to free our active pipeline stage\n");
1620		return;
1621	}
1622#endif /* IDETAPE_DEBUG_BUGS */
1623	stage = tape->first_stage;
1624	tape->first_stage = stage->next;
1625	idetape_kfree_stage(tape, stage);
1626	tape->nr_stages--;
1627	if (tape->first_stage == NULL) {
1628		tape->last_stage = NULL;
1629#if IDETAPE_DEBUG_BUGS
1630		if (tape->next_stage != NULL)
1631			printk(KERN_ERR "ide-tape: bug: tape->next_stage != NULL\n");
1632		if (tape->nr_stages)
1633			printk(KERN_ERR "ide-tape: bug: nr_stages should be 0 now\n");
1634#endif /* IDETAPE_DEBUG_BUGS */
1635	}
1636}
1637
1638/*
1639 * This will free all the pipeline stages starting from new_last_stage->next
1640 * to the end of the list, and point tape->last_stage to new_last_stage.
1641 */
1642static void idetape_abort_pipeline(ide_drive_t *drive,
1643				   idetape_stage_t *new_last_stage)
1644{
1645	idetape_tape_t *tape = drive->driver_data;
1646	idetape_stage_t *stage = new_last_stage->next;
1647	idetape_stage_t *nstage;
1648
1649#if IDETAPE_DEBUG_LOG
1650	if (tape->debug_level >= 4)
1651		printk(KERN_INFO "ide-tape: %s: idetape_abort_pipeline called\n", tape->name);
1652#endif
1653	while (stage) {
1654		nstage = stage->next;
1655		idetape_kfree_stage(tape, stage);
1656		--tape->nr_stages;
1657		--tape->nr_pending_stages;
1658		stage = nstage;
1659	}
1660	if (new_last_stage)
1661		new_last_stage->next = NULL;
1662	tape->last_stage = new_last_stage;
1663	tape->next_stage = NULL;
1664}
1665
1666/*
1667 *	idetape_end_request is used to finish servicing a request, and to
1668 *	insert a pending pipeline request into the main device queue.
1669 */
1670static int idetape_end_request(ide_drive_t *drive, int uptodate, int nr_sects)
1671{
1672	struct request *rq = HWGROUP(drive)->rq;
1673	idetape_tape_t *tape = drive->driver_data;
1674	unsigned long flags;
1675	int error;
1676	int remove_stage = 0;
1677	idetape_stage_t *active_stage;
1678
1679#if IDETAPE_DEBUG_LOG
1680        if (tape->debug_level >= 4)
1681	printk(KERN_INFO "ide-tape: Reached idetape_end_request\n");
1682#endif /* IDETAPE_DEBUG_LOG */
1683
1684	switch (uptodate) {
1685		case 0:	error = IDETAPE_ERROR_GENERAL; break;
1686		case 1: error = 0; break;
1687		default: error = uptodate;
1688	}
1689	rq->errors = error;
1690	if (error)
1691		tape->failed_pc = NULL;
1692
1693	spin_lock_irqsave(&tape->spinlock, flags);
1694
1695	/* The request was a pipelined data transfer request */
1696	if (tape->active_data_request == rq) {
1697		active_stage = tape->active_stage;
1698		tape->active_stage = NULL;
1699		tape->active_data_request = NULL;
1700		tape->nr_pending_stages--;
1701		if (rq->cmd[0] & REQ_IDETAPE_WRITE) {
1702			remove_stage = 1;
1703			if (error) {
1704				set_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
1705				if (error == IDETAPE_ERROR_EOD)
1706					idetape_abort_pipeline(drive, active_stage);
1707			}
1708		} else if (rq->cmd[0] & REQ_IDETAPE_READ) {
1709			if (error == IDETAPE_ERROR_EOD) {
1710				set_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
1711				idetape_abort_pipeline(drive, active_stage);
1712			}
1713		}
1714		if (tape->next_stage != NULL) {
1715			idetape_active_next_stage(drive);
1716
1717			/*
1718			 * Insert the next request into the request queue.
1719			 */
1720			(void) ide_do_drive_cmd(drive, tape->active_data_request, ide_end);
1721		} else if (!error) {
1722				idetape_increase_max_pipeline_stages(drive);
1723		}
1724	}
1725	ide_end_drive_cmd(drive, 0, 0);
1726//	blkdev_dequeue_request(rq);
1727//	drive->rq = NULL;
1728//	end_that_request_last(rq);
1729
1730	if (remove_stage)
1731		idetape_remove_stage_head(drive);
1732	if (tape->active_data_request == NULL)
1733		clear_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
1734	spin_unlock_irqrestore(&tape->spinlock, flags);
1735	return 0;
1736}
1737
1738static ide_startstop_t idetape_request_sense_callback (ide_drive_t *drive)
1739{
1740	idetape_tape_t *tape = drive->driver_data;
1741
1742#if IDETAPE_DEBUG_LOG
1743	if (tape->debug_level >= 4)
1744		printk(KERN_INFO "ide-tape: Reached idetape_request_sense_callback\n");
1745#endif /* IDETAPE_DEBUG_LOG */
1746	if (!tape->pc->error) {
1747		idetape_analyze_error(drive, (idetape_request_sense_result_t *) tape->pc->buffer);
1748		idetape_end_request(drive, 1, 0);
1749	} else {
1750		printk(KERN_ERR "ide-tape: Error in REQUEST SENSE itself - Aborting request!\n");
1751		idetape_end_request(drive, 0, 0);
1752	}
1753	return ide_stopped;
1754}
1755
1756static void idetape_create_request_sense_cmd (idetape_pc_t *pc)
1757{
1758	idetape_init_pc(pc);
1759	pc->c[0] = IDETAPE_REQUEST_SENSE_CMD;
1760	pc->c[4] = 20;
1761	pc->request_transfer = 20;
1762	pc->callback = &idetape_request_sense_callback;
1763}
1764
1765static void idetape_init_rq(struct request *rq, u8 cmd)
1766{
1767	memset(rq, 0, sizeof(*rq));
1768	rq->cmd_type = REQ_TYPE_SPECIAL;
1769	rq->cmd[0] = cmd;
1770}
1771
1772/*
1773 *	idetape_queue_pc_head generates a new packet command request in front
1774 *	of the request queue, before the current request, so that it will be
1775 *	processed immediately, on the next pass through the driver.
1776 *
1777 *	idetape_queue_pc_head is called from the request handling part of
1778 *	the driver (the "bottom" part). Safe storage for the request should
1779 *	be allocated with idetape_next_pc_storage and idetape_next_rq_storage
1780 *	before calling idetape_queue_pc_head.
1781 *
1782 *	Memory for those requests is pre-allocated at initialization time, and
1783 *	is limited to IDETAPE_PC_STACK requests. We assume that we have enough
1784 *	space for the maximum possible number of inter-dependent packet commands.
1785 *
1786 *	The higher level of the driver - The ioctl handler and the character
1787 *	device handling functions should queue request to the lower level part
1788 *	and wait for their completion using idetape_queue_pc_tail or
1789 *	idetape_queue_rw_tail.
1790 */
1791static void idetape_queue_pc_head (ide_drive_t *drive, idetape_pc_t *pc,struct request *rq)
1792{
1793	struct ide_tape_obj *tape = drive->driver_data;
1794
1795	idetape_init_rq(rq, REQ_IDETAPE_PC1);
1796	rq->buffer = (char *) pc;
1797	rq->rq_disk = tape->disk;
1798	(void) ide_do_drive_cmd(drive, rq, ide_preempt);
1799}
1800
1801/*
1802 *	idetape_retry_pc is called when an error was detected during the
1803 *	last packet command. We queue a request sense packet command in
1804 *	the head of the request list.
1805 */
1806static ide_startstop_t idetape_retry_pc (ide_drive_t *drive)
1807{
1808	idetape_tape_t *tape = drive->driver_data;
1809	idetape_pc_t *pc;
1810	struct request *rq;
1811
1812	(void)drive->hwif->INB(IDE_ERROR_REG);
1813	pc = idetape_next_pc_storage(drive);
1814	rq = idetape_next_rq_storage(drive);
1815	idetape_create_request_sense_cmd(pc);
1816	set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
1817	idetape_queue_pc_head(drive, pc, rq);
1818	return ide_stopped;
1819}
1820
1821/*
1822 *	idetape_postpone_request postpones the current request so that
1823 *	ide.c will be able to service requests from another device on
1824 *	the same hwgroup while we are polling for DSC.
1825 */
1826static void idetape_postpone_request (ide_drive_t *drive)
1827{
1828	idetape_tape_t *tape = drive->driver_data;
1829
1830#if IDETAPE_DEBUG_LOG
1831	if (tape->debug_level >= 4)
1832		printk(KERN_INFO "ide-tape: idetape_postpone_request\n");
1833#endif
1834	tape->postponed_rq = HWGROUP(drive)->rq;
1835	ide_stall_queue(drive, tape->dsc_polling_frequency);
1836}
1837
1838/*
1839 *	idetape_pc_intr is the usual interrupt handler which will be called
1840 *	during a packet command. We will transfer some of the data (as
1841 *	requested by the drive) and will re-point interrupt handler to us.
1842 *	When data transfer is finished, we will act according to the
1843 *	algorithm described before idetape_issue_packet_command.
1844 *
1845 */
1846static ide_startstop_t idetape_pc_intr (ide_drive_t *drive)
1847{
1848	ide_hwif_t *hwif = drive->hwif;
1849	idetape_tape_t *tape = drive->driver_data;
1850	idetape_pc_t *pc = tape->pc;
1851	unsigned int temp;
1852#if SIMULATE_ERRORS
1853	static int error_sim_count = 0;
1854#endif
1855	u16 bcount;
1856	u8 stat, ireason;
1857
1858#if IDETAPE_DEBUG_LOG
1859	if (tape->debug_level >= 4)
1860		printk(KERN_INFO "ide-tape: Reached idetape_pc_intr "
1861				"interrupt handler\n");
1862#endif /* IDETAPE_DEBUG_LOG */
1863
1864	/* Clear the interrupt */
1865	stat = hwif->INB(IDE_STATUS_REG);
1866
1867	if (test_bit(PC_DMA_IN_PROGRESS, &pc->flags)) {
1868		if (hwif->ide_dma_end(drive) || (stat & ERR_STAT)) {
1869			/*
1870			 * A DMA error is sometimes expected. For example,
1871			 * if the tape is crossing a filemark during a
1872			 * READ command, it will issue an irq and position
1873			 * itself before the filemark, so that only a partial
1874			 * data transfer will occur (which causes the DMA
1875			 * error). In that case, we will later ask the tape
1876			 * how much bytes of the original request were
1877			 * actually transferred (we can't receive that
1878			 * information from the DMA engine on most chipsets).
1879			 */
1880
1881			/*
1882			 * On the contrary, a DMA error is never expected;
1883			 * it usually indicates a hardware error or abort.
1884			 * If the tape crosses a filemark during a READ
1885			 * command, it will issue an irq and position itself
1886			 * after the filemark (not before). Only a partial
1887			 * data transfer will occur, but no DMA error.
1888			 * (AS, 19 Apr 2001)
1889			 */
1890			set_bit(PC_DMA_ERROR, &pc->flags);
1891		} else {
1892			pc->actually_transferred = pc->request_transfer;
1893			idetape_update_buffers(pc);
1894		}
1895#if IDETAPE_DEBUG_LOG
1896		if (tape->debug_level >= 4)
1897			printk(KERN_INFO "ide-tape: DMA finished\n");
1898#endif /* IDETAPE_DEBUG_LOG */
1899	}
1900
1901	/* No more interrupts */
1902	if ((stat & DRQ_STAT) == 0) {
1903#if IDETAPE_DEBUG_LOG
1904		if (tape->debug_level >= 2)
1905			printk(KERN_INFO "ide-tape: Packet command completed, %d bytes transferred\n", pc->actually_transferred);
1906#endif /* IDETAPE_DEBUG_LOG */
1907		clear_bit(PC_DMA_IN_PROGRESS, &pc->flags);
1908
1909		local_irq_enable();
1910
1911#if SIMULATE_ERRORS
1912		if ((pc->c[0] == IDETAPE_WRITE_CMD ||
1913		     pc->c[0] == IDETAPE_READ_CMD) &&
1914		    (++error_sim_count % 100) == 0) {
1915			printk(KERN_INFO "ide-tape: %s: simulating error\n",
1916				tape->name);
1917			stat |= ERR_STAT;
1918		}
1919#endif
1920		if ((stat & ERR_STAT) && pc->c[0] == IDETAPE_REQUEST_SENSE_CMD)
1921			stat &= ~ERR_STAT;
1922		if ((stat & ERR_STAT) || test_bit(PC_DMA_ERROR, &pc->flags)) {
1923			/* Error detected */
1924#if IDETAPE_DEBUG_LOG
1925			if (tape->debug_level >= 1)
1926				printk(KERN_INFO "ide-tape: %s: I/O error\n",
1927					tape->name);
1928#endif /* IDETAPE_DEBUG_LOG */
1929			if (pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) {
1930				printk(KERN_ERR "ide-tape: I/O error in request sense command\n");
1931				return ide_do_reset(drive);
1932			}
1933#if IDETAPE_DEBUG_LOG
1934			if (tape->debug_level >= 1)
1935				printk(KERN_INFO "ide-tape: [cmd %x]: check condition\n", pc->c[0]);
1936#endif
1937			/* Retry operation */
1938			return idetape_retry_pc(drive);
1939		}
1940		pc->error = 0;
1941		if (test_bit(PC_WAIT_FOR_DSC, &pc->flags) &&
1942		    (stat & SEEK_STAT) == 0) {
1943			/* Media access command */
1944			tape->dsc_polling_start = jiffies;
1945			tape->dsc_polling_frequency = IDETAPE_DSC_MA_FAST;
1946			tape->dsc_timeout = jiffies + IDETAPE_DSC_MA_TIMEOUT;
1947			/* Allow ide.c to handle other requests */
1948			idetape_postpone_request(drive);
1949			return ide_stopped;
1950		}
1951		if (tape->failed_pc == pc)
1952			tape->failed_pc = NULL;
1953		/* Command finished - Call the callback function */
1954		return pc->callback(drive);
1955	}
1956	if (test_and_clear_bit(PC_DMA_IN_PROGRESS, &pc->flags)) {
1957		printk(KERN_ERR "ide-tape: The tape wants to issue more "
1958				"interrupts in DMA mode\n");
1959		printk(KERN_ERR "ide-tape: DMA disabled, reverting to PIO\n");
1960		ide_dma_off(drive);
1961		return ide_do_reset(drive);
1962	}
1963	/* Get the number of bytes to transfer on this interrupt. */
1964	bcount = (hwif->INB(IDE_BCOUNTH_REG) << 8) |
1965		  hwif->INB(IDE_BCOUNTL_REG);
1966
1967	ireason = hwif->INB(IDE_IREASON_REG);
1968
1969	if (ireason & CD) {
1970		printk(KERN_ERR "ide-tape: CoD != 0 in idetape_pc_intr\n");
1971		return ide_do_reset(drive);
1972	}
1973	if (((ireason & IO) == IO) == test_bit(PC_WRITING, &pc->flags)) {
1974		/* Hopefully, we will never get here */
1975		printk(KERN_ERR "ide-tape: We wanted to %s, ",
1976				(ireason & IO) ? "Write" : "Read");
1977		printk(KERN_ERR "ide-tape: but the tape wants us to %s !\n",
1978				(ireason & IO) ? "Read" : "Write");
1979		return ide_do_reset(drive);
1980	}
1981	if (!test_bit(PC_WRITING, &pc->flags)) {
1982		/* Reading - Check that we have enough space */
1983		temp = pc->actually_transferred + bcount;
1984		if (temp > pc->request_transfer) {
1985			if (temp > pc->buffer_size) {
1986				printk(KERN_ERR "ide-tape: The tape wants to send us more data than expected - discarding data\n");
1987				idetape_discard_data(drive, bcount);
1988				ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
1989				return ide_started;
1990			}
1991#if IDETAPE_DEBUG_LOG
1992			if (tape->debug_level >= 2)
1993				printk(KERN_NOTICE "ide-tape: The tape wants to send us more data than expected - allowing transfer\n");
1994#endif /* IDETAPE_DEBUG_LOG */
1995		}
1996	}
1997	if (test_bit(PC_WRITING, &pc->flags)) {
1998		if (pc->bh != NULL)
1999			idetape_output_buffers(drive, pc, bcount);
2000		else
2001			/* Write the current buffer */
2002			hwif->atapi_output_bytes(drive, pc->current_position,
2003						 bcount);
2004	} else {
2005		if (pc->bh != NULL)
2006			idetape_input_buffers(drive, pc, bcount);
2007		else
2008			/* Read the current buffer */
2009			hwif->atapi_input_bytes(drive, pc->current_position,
2010						bcount);
2011	}
2012	/* Update the current position */
2013	pc->actually_transferred += bcount;
2014	pc->current_position += bcount;
2015#if IDETAPE_DEBUG_LOG
2016	if (tape->debug_level >= 2)
2017		printk(KERN_INFO "ide-tape: [cmd %x] transferred %d bytes "
2018				 "on that interrupt\n", pc->c[0], bcount);
2019#endif
2020	/* And set the interrupt handler again */
2021	ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
2022	return ide_started;
2023}
2024
2025/*
2026 *	Packet Command Interface
2027 *
2028 *	The current Packet Command is available in tape->pc, and will not
2029 *	change until we finish handling it. Each packet command is associated
2030 *	with a callback function that will be called when the command is
2031 *	finished.
2032 *
2033 *	The handling will be done in three stages:
2034 *
2035 *	1.	idetape_issue_packet_command will send the packet command to the
2036 *		drive, and will set the interrupt handler to idetape_pc_intr.
2037 *
2038 *	2.	On each interrupt, idetape_pc_intr will be called. This step
2039 *		will be repeated until the device signals us that no more
2040 *		interrupts will be issued.
2041 *
2042 *	3.	ATAPI Tape media access commands have immediate status with a
2043 *		delayed process. In case of a successful initiation of a
2044 *		media access packet command, the DSC bit will be set when the
2045 *		actual execution of the command is finished.
2046 *		Since the tape drive will not issue an interrupt, we have to
2047 *		poll for this event. In this case, we define the request as
2048 *		"low priority request" by setting rq_status to
2049 *		IDETAPE_RQ_POSTPONED, 	set a timer to poll for DSC and exit
2050 *		the driver.
2051 *
2052 *		ide.c will then give higher priority to requests which
2053 *		originate from the other device, until will change rq_status
2054 *		to RQ_ACTIVE.
2055 *
2056 *	4.	When the packet command is finished, it will be checked for errors.
2057 *
2058 *	5.	In case an error was found, we queue a request sense packet
2059 *		command in front of the request queue and retry the operation
2060 *		up to IDETAPE_MAX_PC_RETRIES times.
2061 *
2062 *	6.	In case no error was found, or we decided to give up and not
2063 *		to retry again, the callback function will be called and then
2064 *		we will handle the next request.
2065 *
2066 */
2067static ide_startstop_t idetape_transfer_pc(ide_drive_t *drive)
2068{
2069	ide_hwif_t *hwif = drive->hwif;
2070	idetape_tape_t *tape = drive->driver_data;
2071	idetape_pc_t *pc = tape->pc;
2072	int retries = 100;
2073	ide_startstop_t startstop;
2074	u8 ireason;
2075
2076	if (ide_wait_stat(&startstop,drive,DRQ_STAT,BUSY_STAT,WAIT_READY)) {
2077		printk(KERN_ERR "ide-tape: Strange, packet command initiated yet DRQ isn't asserted\n");
2078		return startstop;
2079	}
2080	ireason = hwif->INB(IDE_IREASON_REG);
2081	while (retries-- && ((ireason & CD) == 0 || (ireason & IO))) {
2082		printk(KERN_ERR "ide-tape: (IO,CoD != (0,1) while issuing "
2083				"a packet command, retrying\n");
2084		udelay(100);
2085		ireason = hwif->INB(IDE_IREASON_REG);
2086		if (retries == 0) {
2087			printk(KERN_ERR "ide-tape: (IO,CoD != (0,1) while "
2088					"issuing a packet command, ignoring\n");
2089			ireason |= CD;
2090			ireason &= ~IO;
2091		}
2092	}
2093	if ((ireason & CD) == 0 || (ireason & IO)) {
2094		printk(KERN_ERR "ide-tape: (IO,CoD) != (0,1) while issuing "
2095				"a packet command\n");
2096		return ide_do_reset(drive);
2097	}
2098	/* Set the interrupt routine */
2099	ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
2100#ifdef CONFIG_BLK_DEV_IDEDMA
2101	/* Begin DMA, if necessary */
2102	if (test_bit(PC_DMA_IN_PROGRESS, &pc->flags))
2103		hwif->dma_start(drive);
2104#endif
2105	/* Send the actual packet */
2106	HWIF(drive)->atapi_output_bytes(drive, pc->c, 12);
2107	return ide_started;
2108}
2109
2110static ide_startstop_t idetape_issue_packet_command (ide_drive_t *drive, idetape_pc_t *pc)
2111{
2112	ide_hwif_t *hwif = drive->hwif;
2113	idetape_tape_t *tape = drive->driver_data;
2114	int dma_ok = 0;
2115	u16 bcount;
2116
2117#if IDETAPE_DEBUG_BUGS
2118	if (tape->pc->c[0] == IDETAPE_REQUEST_SENSE_CMD &&
2119	    pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) {
2120		printk(KERN_ERR "ide-tape: possible ide-tape.c bug - "
2121			"Two request sense in serial were issued\n");
2122	}
2123#endif /* IDETAPE_DEBUG_BUGS */
2124
2125	if (tape->failed_pc == NULL && pc->c[0] != IDETAPE_REQUEST_SENSE_CMD)
2126		tape->failed_pc = pc;
2127	/* Set the current packet command */
2128	tape->pc = pc;
2129
2130	if (pc->retries > IDETAPE_MAX_PC_RETRIES ||
2131	    test_bit(PC_ABORT, &pc->flags)) {
2132		/*
2133		 *	We will "abort" retrying a packet command in case
2134		 *	a legitimate error code was received (crossing a
2135		 *	filemark, or end of the media, for example).
2136		 */
2137		if (!test_bit(PC_ABORT, &pc->flags)) {
2138			if (!(pc->c[0] == IDETAPE_TEST_UNIT_READY_CMD &&
2139			      tape->sense_key == 2 && tape->asc == 4 &&
2140			     (tape->ascq == 1 || tape->ascq == 8))) {
2141				printk(KERN_ERR "ide-tape: %s: I/O error, "
2142						"pc = %2x, key = %2x, "
2143						"asc = %2x, ascq = %2x\n",
2144						tape->name, pc->c[0],
2145						tape->sense_key, tape->asc,
2146						tape->ascq);
2147			}
2148			/* Giving up */
2149			pc->error = IDETAPE_ERROR_GENERAL;
2150		}
2151		tape->failed_pc = NULL;
2152		return pc->callback(drive);
2153	}
2154#if IDETAPE_DEBUG_LOG
2155	if (tape->debug_level >= 2)
2156		printk(KERN_INFO "ide-tape: Retry number - %d, cmd = %02X\n", pc->retries, pc->c[0]);
2157#endif /* IDETAPE_DEBUG_LOG */
2158
2159	pc->retries++;
2160	/* We haven't transferred any data yet */
2161	pc->actually_transferred = 0;
2162	pc->current_position = pc->buffer;
2163	/* Request to transfer the entire buffer at once */
2164	bcount = pc->request_transfer;
2165
2166	if (test_and_clear_bit(PC_DMA_ERROR, &pc->flags)) {
2167		printk(KERN_WARNING "ide-tape: DMA disabled, "
2168				"reverting to PIO\n");
2169		ide_dma_off(drive);
2170	}
2171	if (test_bit(PC_DMA_RECOMMENDED, &pc->flags) && drive->using_dma)
2172		dma_ok = !hwif->dma_setup(drive);
2173
2174	if (IDE_CONTROL_REG)
2175		hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
2176	hwif->OUTB(dma_ok ? 1 : 0, IDE_FEATURE_REG);	/* Use PIO/DMA */
2177	hwif->OUTB((bcount >> 8) & 0xff, IDE_BCOUNTH_REG);
2178	hwif->OUTB(bcount & 0xff, IDE_BCOUNTL_REG);
2179	hwif->OUTB(drive->select.all, IDE_SELECT_REG);
2180	if (dma_ok)			/* Will begin DMA later */
2181		set_bit(PC_DMA_IN_PROGRESS, &pc->flags);
2182	if (test_bit(IDETAPE_DRQ_INTERRUPT, &tape->flags)) {
2183		ide_set_handler(drive, &idetape_transfer_pc, IDETAPE_WAIT_CMD, NULL);
2184		hwif->OUTB(WIN_PACKETCMD, IDE_COMMAND_REG);
2185		return ide_started;
2186	} else {
2187		hwif->OUTB(WIN_PACKETCMD, IDE_COMMAND_REG);
2188		return idetape_transfer_pc(drive);
2189	}
2190}
2191
2192/*
2193 *	General packet command callback function.
2194 */
2195static ide_startstop_t idetape_pc_callback (ide_drive_t *drive)
2196{
2197	idetape_tape_t *tape = drive->driver_data;
2198
2199#if IDETAPE_DEBUG_LOG
2200	if (tape->debug_level >= 4)
2201		printk(KERN_INFO "ide-tape: Reached idetape_pc_callback\n");
2202#endif /* IDETAPE_DEBUG_LOG */
2203
2204	idetape_end_request(drive, tape->pc->error ? 0 : 1, 0);
2205	return ide_stopped;
2206}
2207
2208/*
2209 *	A mode sense command is used to "sense" tape parameters.
2210 */
2211static void idetape_create_mode_sense_cmd (idetape_pc_t *pc, u8 page_code)
2212{
2213	idetape_init_pc(pc);
2214	pc->c[0] = IDETAPE_MODE_SENSE_CMD;
2215	if (page_code != IDETAPE_BLOCK_DESCRIPTOR)
2216		pc->c[1] = 8;	/* DBD = 1 - Don't return block descriptors */
2217	pc->c[2] = page_code;
2218	/*
2219	 * Changed pc->c[3] to 0 (255 will at best return unused info).
2220	 *
2221	 * For SCSI this byte is defined as subpage instead of high byte
2222	 * of length and some IDE drives seem to interpret it this way
2223	 * and return an error when 255 is used.
2224	 */
2225	pc->c[3] = 0;
2226	pc->c[4] = 255;		/* (We will just discard data in that case) */
2227	if (page_code == IDETAPE_BLOCK_DESCRIPTOR)
2228		pc->request_transfer = 12;
2229	else if (page_code == IDETAPE_CAPABILITIES_PAGE)
2230		pc->request_transfer = 24;
2231	else
2232		pc->request_transfer = 50;
2233	pc->callback = &idetape_pc_callback;
2234}
2235
2236static void calculate_speeds(ide_drive_t *drive)
2237{
2238	idetape_tape_t *tape = drive->driver_data;
2239	int full = 125, empty = 75;
2240
2241	if (time_after(jiffies, tape->controlled_pipeline_head_time + 120 * HZ)) {
2242		tape->controlled_previous_pipeline_head = tape->controlled_last_pipeline_head;
2243		tape->controlled_previous_head_time = tape->controlled_pipeline_head_time;
2244		tape->controlled_last_pipeline_head = tape->pipeline_head;
2245		tape->controlled_pipeline_head_time = jiffies;
2246	}
2247	if (time_after(jiffies, tape->controlled_pipeline_head_time + 60 * HZ))
2248		tape->controlled_pipeline_head_speed = (tape->pipeline_head - tape->controlled_last_pipeline_head) * 32 * HZ / (jiffies - tape->controlled_pipeline_head_time);
2249	else if (time_after(jiffies, tape->controlled_previous_head_time))
2250		tape->controlled_pipeline_head_speed = (tape->pipeline_head - tape->controlled_previous_pipeline_head) * 32 * HZ / (jiffies - tape->controlled_previous_head_time);
2251
2252	if (tape->nr_pending_stages < tape->max_stages /*- 1 */) {
2253		/* -1 for read mode error recovery */
2254		if (time_after(jiffies, tape->uncontrolled_previous_head_time + 10 * HZ)) {
2255			tape->uncontrolled_pipeline_head_time = jiffies;
2256			tape->uncontrolled_pipeline_head_speed = (tape->pipeline_head - tape->uncontrolled_previous_pipeline_head) * 32 * HZ / (jiffies - tape->uncontrolled_previous_head_time);
2257		}
2258	} else {
2259		tape->uncontrolled_previous_head_time = jiffies;
2260		tape->uncontrolled_previous_pipeline_head = tape->pipeline_head;
2261		if (time_after(jiffies, tape->uncontrolled_pipeline_head_time + 30 * HZ)) {
2262			tape->uncontrolled_pipeline_head_time = jiffies;
2263		}
2264	}
2265	tape->pipeline_head_speed = max(tape->uncontrolled_pipeline_head_speed, tape->controlled_pipeline_head_speed);
2266	if (tape->speed_control == 0) {
2267		tape->max_insert_speed = 5000;
2268	} else if (tape->speed_control == 1) {
2269		if (tape->nr_pending_stages >= tape->max_stages / 2)
2270			tape->max_insert_speed = tape->pipeline_head_speed +
2271				(1100 - tape->pipeline_head_speed) * 2 * (tape->nr_pending_stages - tape->max_stages / 2) / tape->max_stages;
2272		else
2273			tape->max_insert_speed = 500 +
2274				(tape->pipeline_head_speed - 500) * 2 * tape->nr_pending_stages / tape->max_stages;
2275		if (tape->nr_pending_stages >= tape->max_stages * 99 / 100)
2276			tape->max_insert_speed = 5000;
2277	} else if (tape->speed_control == 2) {
2278		tape->max_insert_speed = tape->pipeline_head_speed * empty / 100 +
2279			(tape->pipeline_head_speed * full / 100 - tape->pipeline_head_speed * empty / 100) * tape->nr_pending_stages / tape->max_stages;
2280	} else
2281		tape->max_insert_speed = tape->speed_control;
2282	tape->max_insert_speed = max(tape->max_insert_speed, 500);
2283}
2284
2285static ide_startstop_t idetape_media_access_finished (ide_drive_t *drive)
2286{
2287	idetape_tape_t *tape = drive->driver_data;
2288	idetape_pc_t *pc = tape->pc;
2289	u8 stat;
2290
2291	stat = drive->hwif->INB(IDE_STATUS_REG);
2292	if (stat & SEEK_STAT) {
2293		if (stat & ERR_STAT) {
2294			/* Error detected */
2295			if (pc->c[0] != IDETAPE_TEST_UNIT_READY_CMD)
2296				printk(KERN_ERR "ide-tape: %s: I/O error, ",
2297						tape->name);
2298			/* Retry operation */
2299			return idetape_retry_pc(drive);
2300		}
2301		pc->error = 0;
2302		if (tape->failed_pc == pc)
2303			tape->failed_pc = NULL;
2304	} else {
2305		pc->error = IDETAPE_ERROR_GENERAL;
2306		tape->failed_pc = NULL;
2307	}
2308	return pc->callback(drive);
2309}
2310
2311static ide_startstop_t idetape_rw_callback (ide_drive_t *drive)
2312{
2313	idetape_tape_t *tape = drive->driver_data;
2314	struct request *rq = HWGROUP(drive)->rq;
2315	int blocks = tape->pc->actually_transferred / tape->tape_block_size;
2316
2317	tape->avg_size += blocks * tape->tape_block_size;
2318	tape->insert_size += blocks * tape->tape_block_size;
2319	if (tape->insert_size > 1024 * 1024)
2320		tape->measure_insert_time = 1;
2321	if (tape->measure_insert_time) {
2322		tape->measure_insert_time = 0;
2323		tape->insert_time = jiffies;
2324		tape->insert_size = 0;
2325	}
2326	if (time_after(jiffies, tape->insert_time))
2327		tape->insert_speed = tape->insert_size / 1024 * HZ / (jiffies - tape->insert_time);
2328	if (time_after_eq(jiffies, tape->avg_time + HZ)) {
2329		tape->avg_speed = tape->avg_size * HZ / (jiffies - tape->avg_time) / 1024;
2330		tape->avg_size = 0;
2331		tape->avg_time = jiffies;
2332	}
2333
2334#if IDETAPE_DEBUG_LOG
2335	if (tape->debug_level >= 4)
2336		printk(KERN_INFO "ide-tape: Reached idetape_rw_callback\n");
2337#endif /* IDETAPE_DEBUG_LOG */
2338
2339	tape->first_frame_position += blocks;
2340	rq->current_nr_sectors -= blocks;
2341
2342	if (!tape->pc->error)
2343		idetape_end_request(drive, 1, 0);
2344	else
2345		idetape_end_request(drive, tape->pc->error, 0);
2346	return ide_stopped;
2347}
2348
2349static void idetape_create_read_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
2350{
2351	idetape_init_pc(pc);
2352	pc->c[0] = IDETAPE_READ_CMD;
2353	put_unaligned(htonl(length), (unsigned int *) &pc->c[1]);
2354	pc->c[1] = 1;
2355	pc->callback = &idetape_rw_callback;
2356	pc->bh = bh;
2357	atomic_set(&bh->b_count, 0);
2358	pc->buffer = NULL;
2359	pc->request_transfer = pc->buffer_size = length * tape->tape_block_size;
2360	if (pc->request_transfer == tape->stage_size)
2361		set_bit(PC_DMA_RECOMMENDED, &pc->flags);
2362}
2363
2364static void idetape_create_read_buffer_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
2365{
2366	int size = 32768;
2367	struct idetape_bh *p = bh;
2368
2369	idetape_init_pc(pc);
2370	pc->c[0] = IDETAPE_READ_BUFFER_CMD;
2371	pc->c[1] = IDETAPE_RETRIEVE_FAULTY_BLOCK;
2372	pc->c[7] = size >> 8;
2373	pc->c[8] = size & 0xff;
2374	pc->callback = &idetape_pc_callback;
2375	pc->bh = bh;
2376	atomic_set(&bh->b_count, 0);
2377	pc->buffer = NULL;
2378	while (p) {
2379		atomic_set(&p->b_count, 0);
2380		p = p->b_reqnext;
2381	}
2382	pc->request_transfer = pc->buffer_size = size;
2383}
2384
2385static void idetape_create_write_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
2386{
2387	idetape_init_pc(pc);
2388	pc->c[0] = IDETAPE_WRITE_CMD;
2389	put_unaligned(htonl(length), (unsigned int *) &pc->c[1]);
2390	pc->c[1] = 1;
2391	pc->callback = &idetape_rw_callback;
2392	set_bit(PC_WRITING, &pc->flags);
2393	pc->bh = bh;
2394	pc->b_data = bh->b_data;
2395	pc->b_count = atomic_read(&bh->b_count);
2396	pc->buffer = NULL;
2397	pc->request_transfer = pc->buffer_size = length * tape->tape_block_size;
2398	if (pc->request_transfer == tape->stage_size)
2399		set_bit(PC_DMA_RECOMMENDED, &pc->flags);
2400}
2401
2402/*
2403 * idetape_do_request is our request handling function.
2404 */
2405static ide_startstop_t idetape_do_request(ide_drive_t *drive,
2406					  struct request *rq, sector_t block)
2407{
2408	idetape_tape_t *tape = drive->driver_data;
2409	idetape_pc_t *pc = NULL;
2410	struct request *postponed_rq = tape->postponed_rq;
2411	u8 stat;
2412
2413#if IDETAPE_DEBUG_LOG
2414#if 0
2415	if (tape->debug_level >= 5)
2416		printk(KERN_INFO "ide-tape:  %d, "
2417			"dev: %s, cmd: %ld, errors: %d\n",
2418			 rq->rq_disk->disk_name, rq->cmd[0], rq->errors);
2419#endif
2420	if (tape->debug_level >= 2)
2421		printk(KERN_INFO "ide-tape: sector: %ld, "
2422			"nr_sectors: %ld, current_nr_sectors: %d\n",
2423			rq->sector, rq->nr_sectors, rq->current_nr_sectors);
2424#endif /* IDETAPE_DEBUG_LOG */
2425
2426	if (!blk_special_request(rq)) {
2427		/*
2428		 * We do not support buffer cache originated requests.
2429		 */
2430		printk(KERN_NOTICE "ide-tape: %s: Unsupported request in "
2431			"request queue (%d)\n", drive->name, rq->cmd_type);
2432		ide_end_request(drive, 0, 0);
2433		return ide_stopped;
2434	}
2435
2436	/*
2437	 *	Retry a failed packet command
2438	 */
2439	if (tape->failed_pc != NULL &&
2440	    tape->pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) {
2441		return idetape_issue_packet_command(drive, tape->failed_pc);
2442	}
2443#if IDETAPE_DEBUG_BUGS
2444	if (postponed_rq != NULL)
2445		if (rq != postponed_rq) {
2446			printk(KERN_ERR "ide-tape: ide-tape.c bug - "
2447					"Two DSC requests were queued\n");
2448			idetape_end_request(drive, 0, 0);
2449			return ide_stopped;
2450		}
2451#endif /* IDETAPE_DEBUG_BUGS */
2452
2453	tape->postponed_rq = NULL;
2454
2455	/*
2456	 * If the tape is still busy, postpone our request and service
2457	 * the other device meanwhile.
2458	 */
2459	stat = drive->hwif->INB(IDE_STATUS_REG);
2460
2461	if (!drive->dsc_overlap && !(rq->cmd[0] & REQ_IDETAPE_PC2))
2462		set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
2463
2464	if (drive->post_reset == 1) {
2465		set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
2466		drive->post_reset = 0;
2467	}
2468
2469	if (tape->tape_still_time > 100 && tape->tape_still_time < 200)
2470		tape->measure_insert_time = 1;
2471	if (time_after(jiffies, tape->insert_time))
2472		tape->insert_speed = tape->insert_size / 1024 * HZ / (jiffies - tape->insert_time);
2473	calculate_speeds(drive);
2474	if (!test_and_clear_bit(IDETAPE_IGNORE_DSC, &tape->flags) &&
2475	    (stat & SEEK_STAT) == 0) {
2476		if (postponed_rq == NULL) {
2477			tape->dsc_polling_start = jiffies;
2478			tape->dsc_polling_frequency = tape->best_dsc_rw_frequency;
2479			tape->dsc_timeout = jiffies + IDETAPE_DSC_RW_TIMEOUT;
2480		} else if (time_after(jiffies, tape->dsc_timeout)) {
2481			printk(KERN_ERR "ide-tape: %s: DSC timeout\n",
2482				tape->name);
2483			if (rq->cmd[0] & REQ_IDETAPE_PC2) {
2484				idetape_media_access_finished(drive);
2485				return ide_stopped;
2486			} else {
2487				return ide_do_reset(drive);
2488			}
2489		} else if (time_after(jiffies, tape->dsc_polling_start + IDETAPE_DSC_MA_THRESHOLD))
2490			tape->dsc_polling_frequency = IDETAPE_DSC_MA_SLOW;
2491		idetape_postpone_request(drive);
2492		return ide_stopped;
2493	}
2494	if (rq->cmd[0] & REQ_IDETAPE_READ) {
2495		tape->buffer_head++;
2496		tape->postpone_cnt = 0;
2497		pc = idetape_next_pc_storage(drive);
2498		idetape_create_read_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
2499		goto out;
2500	}
2501	if (rq->cmd[0] & REQ_IDETAPE_WRITE) {
2502		tape->buffer_head++;
2503		tape->postpone_cnt = 0;
2504		pc = idetape_next_pc_storage(drive);
2505		idetape_create_write_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
2506		goto out;
2507	}
2508	if (rq->cmd[0] & REQ_IDETAPE_READ_BUFFER) {
2509		tape->postpone_cnt = 0;
2510		pc = idetape_next_pc_storage(drive);
2511		idetape_create_read_buffer_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
2512		goto out;
2513	}
2514	if (rq->cmd[0] & REQ_IDETAPE_PC1) {
2515		pc = (idetape_pc_t *) rq->buffer;
2516		rq->cmd[0] &= ~(REQ_IDETAPE_PC1);
2517		rq->cmd[0] |= REQ_IDETAPE_PC2;
2518		goto out;
2519	}
2520	if (rq->cmd[0] & REQ_IDETAPE_PC2) {
2521		idetape_media_access_finished(drive);
2522		return ide_stopped;
2523	}
2524	BUG();
2525out:
2526	return idetape_issue_packet_command(drive, pc);
2527}
2528
2529/*
2530 *	Pipeline related functions
2531 */
2532static inline int idetape_pipeline_active (idetape_tape_t *tape)
2533{
2534	int rc1, rc2;
2535
2536	rc1 = test_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
2537	rc2 = (tape->active_data_request != NULL);
2538	return rc1;
2539}
2540
2541/*
2542 *	idetape_kmalloc_stage uses __get_free_page to allocate a pipeline
2543 *	stage, along with all the necessary small buffers which together make
2544 *	a buffer of size tape->stage_size (or a bit more). We attempt to
2545 *	combine sequential pages as much as possible.
2546 *
2547 *	Returns a pointer to the new allocated stage, or NULL if we
2548 *	can't (or don't want to) allocate a stage.
2549 *
2550 *	Pipeline stages are optional and are used to increase performance.
2551 *	If we can't allocate them, we'll manage without them.
2552 */
2553static idetape_stage_t *__idetape_kmalloc_stage (idetape_tape_t *tape, int full, int clear)
2554{
2555	idetape_stage_t *stage;
2556	struct idetape_bh *prev_bh, *bh;
2557	int pages = tape->pages_per_stage;
2558	char *b_data = NULL;
2559
2560	if ((stage = kmalloc(sizeof (idetape_stage_t),GFP_KERNEL)) == NULL)
2561		return NULL;
2562	stage->next = NULL;
2563
2564	bh = stage->bh = kmalloc(sizeof(struct idetape_bh), GFP_KERNEL);
2565	if (bh == NULL)
2566		goto abort;
2567	bh->b_reqnext = NULL;
2568	if ((bh->b_data = (char *) __get_free_page (GFP_KERNEL)) == NULL)
2569		goto abort;
2570	if (clear)
2571		memset(bh->b_data, 0, PAGE_SIZE);
2572	bh->b_size = PAGE_SIZE;
2573	atomic_set(&bh->b_count, full ? bh->b_size : 0);
2574
2575	while (--pages) {
2576		if ((b_data = (char *) __get_free_page (GFP_KERNEL)) == NULL)
2577			goto abort;
2578		if (clear)
2579			memset(b_data, 0, PAGE_SIZE);
2580		if (bh->b_data == b_data + PAGE_SIZE) {
2581			bh->b_size += PAGE_SIZE;
2582			bh->b_data -= PAGE_SIZE;
2583			if (full)
2584				atomic_add(PAGE_SIZE, &bh->b_count);
2585			continue;
2586		}
2587		if (b_data == bh->b_data + bh->b_size) {
2588			bh->b_size += PAGE_SIZE;
2589			if (full)
2590				atomic_add(PAGE_SIZE, &bh->b_count);
2591			continue;
2592		}
2593		prev_bh = bh;
2594		if ((bh = kmalloc(sizeof(struct idetape_bh), GFP_KERNEL)) == NULL) {
2595			free_page((unsigned long) b_data);
2596			goto abort;
2597		}
2598		bh->b_reqnext = NULL;
2599		bh->b_data = b_data;
2600		bh->b_size = PAGE_SIZE;
2601		atomic_set(&bh->b_count, full ? bh->b_size : 0);
2602		prev_bh->b_reqnext = bh;
2603	}
2604	bh->b_size -= tape->excess_bh_size;
2605	if (full)
2606		atomic_sub(tape->excess_bh_size, &bh->b_count);
2607	return stage;
2608abort:
2609	__idetape_kfree_stage(stage);
2610	return NULL;
2611}
2612
2613static idetape_stage_t *idetape_kmalloc_stage (idetape_tape_t *tape)
2614{
2615	idetape_stage_t *cache_stage = tape->cache_stage;
2616
2617#if IDETAPE_DEBUG_LOG
2618	if (tape->debug_level >= 4)
2619		printk(KERN_INFO "ide-tape: Reached idetape_kmalloc_stage\n");
2620#endif /* IDETAPE_DEBUG_LOG */
2621
2622	if (tape->nr_stages >= tape->max_stages)
2623		return NULL;
2624	if (cache_stage != NULL) {
2625		tape->cache_stage = NULL;
2626		return cache_stage;
2627	}
2628	return __idetape_kmalloc_stage(tape, 0, 0);
2629}
2630
2631static int idetape_copy_stage_from_user (idetape_tape_t *tape, idetape_stage_t *stage, const char __user *buf, int n)
2632{
2633	struct idetape_bh *bh = tape->bh;
2634	int count;
2635	int ret = 0;
2636
2637	while (n) {
2638#if IDETAPE_DEBUG_BUGS
2639		if (bh == NULL) {
2640			printk(KERN_ERR "ide-tape: bh == NULL in "
2641				"idetape_copy_stage_from_user\n");
2642			return 1;
2643		}
2644#endif /* IDETAPE_DEBUG_BUGS */
2645		count = min((unsigned int)(bh->b_size - atomic_read(&bh->b_count)), (unsigned int)n);
2646		if (copy_from_user(bh->b_data + atomic_read(&bh->b_count), buf, count))
2647			ret = 1;
2648		n -= count;
2649		atomic_add(count, &bh->b_count);
2650		buf += count;
2651		if (atomic_read(&bh->b_count) == bh->b_size) {
2652			bh = bh->b_reqnext;
2653			if (bh)
2654				atomic_set(&bh->b_count, 0);
2655		}
2656	}
2657	tape->bh = bh;
2658	return ret;
2659}
2660
2661static int idetape_copy_stage_to_user (idetape_tape_t *tape, char __user *buf, idetape_stage_t *stage, int n)
2662{
2663	struct idetape_bh *bh = tape->bh;
2664	int count;
2665	int ret = 0;
2666
2667	while (n) {
2668#if IDETAPE_DEBUG_BUGS
2669		if (bh == NULL) {
2670			printk(KERN_ERR "ide-tape: bh == NULL in "
2671				"idetape_copy_stage_to_user\n");
2672			return 1;
2673		}
2674#endif /* IDETAPE_DEBUG_BUGS */
2675		count = min(tape->b_count, n);
2676		if  (copy_to_user(buf, tape->b_data, count))
2677			ret = 1;
2678		n -= count;
2679		tape->b_data += count;
2680		tape->b_count -= count;
2681		buf += count;
2682		if (!tape->b_count) {
2683			tape->bh = bh = bh->b_reqnext;
2684			if (bh) {
2685				tape->b_data = bh->b_data;
2686				tape->b_count = atomic_read(&bh->b_count);
2687			}
2688		}
2689	}
2690	return ret;
2691}
2692
2693static void idetape_init_merge_stage (idetape_tape_t *tape)
2694{
2695	struct idetape_bh *bh = tape->merge_stage->bh;
2696
2697	tape->bh = bh;
2698	if (tape->chrdev_direction == idetape_direction_write)
2699		atomic_set(&bh->b_count, 0);
2700	else {
2701		tape->b_data = bh->b_data;
2702		tape->b_count = atomic_read(&bh->b_count);
2703	}
2704}
2705
2706static void idetape_switch_buffers (idetape_tape_t *tape, idetape_stage_t *stage)
2707{
2708	struct idetape_bh *tmp;
2709
2710	tmp = stage->bh;
2711	stage->bh = tape->merge_stage->bh;
2712	tape->merge_stage->bh = tmp;
2713	idetape_init_merge_stage(tape);
2714}
2715
2716/*
2717 *	idetape_add_stage_tail adds a new stage at the end of the pipeline.
2718 */
2719static void idetape_add_stage_tail (ide_drive_t *drive,idetape_stage_t *stage)
2720{
2721	idetape_tape_t *tape = drive->driver_data;
2722	unsigned long flags;
2723
2724#if IDETAPE_DEBUG_LOG
2725	if (tape->debug_level >= 4)
2726		printk (KERN_INFO "ide-tape: Reached idetape_add_stage_tail\n");
2727#endif /* IDETAPE_DEBUG_LOG */
2728	spin_lock_irqsave(&tape->spinlock, flags);
2729	stage->next = NULL;
2730	if (tape->last_stage != NULL)
2731		tape->last_stage->next=stage;
2732	else
2733		tape->first_stage = tape->next_stage=stage;
2734	tape->last_stage = stage;
2735	if (tape->next_stage == NULL)
2736		tape->next_stage = tape->last_stage;
2737	tape->nr_stages++;
2738	tape->nr_pending_stages++;
2739	spin_unlock_irqrestore(&tape->spinlock, flags);
2740}
2741
2742/*
2743 *	idetape_wait_for_request installs a completion in a pending request
2744 *	and sleeps until it is serviced.
2745 *
2746 *	The caller should ensure that the request will not be serviced
2747 *	before we install the completion (usually by disabling interrupts).
2748 */
2749static void idetape_wait_for_request (ide_drive_t *drive, struct request *rq)
2750{
2751	DECLARE_COMPLETION_ONSTACK(wait);
2752	idetape_tape_t *tape = drive->driver_data;
2753
2754#if IDETAPE_DEBUG_BUGS
2755	if (rq == NULL || !blk_special_request(rq)) {
2756		printk (KERN_ERR "ide-tape: bug: Trying to sleep on non-valid request\n");
2757		return;
2758	}
2759#endif /* IDETAPE_DEBUG_BUGS */
2760	rq->end_io_data = &wait;
2761	rq->end_io = blk_end_sync_rq;
2762	spin_unlock_irq(&tape->spinlock);
2763	wait_for_completion(&wait);
2764	/* The stage and its struct request have been deallocated */
2765	spin_lock_irq(&tape->spinlock);
2766}
2767
2768static ide_startstop_t idetape_read_position_callback (ide_drive_t *drive)
2769{
2770	idetape_tape_t *tape = drive->driver_data;
2771	idetape_read_position_result_t *result;
2772
2773#if IDETAPE_DEBUG_LOG
2774	if (tape->debug_level >= 4)
2775		printk(KERN_INFO "ide-tape: Reached idetape_read_position_callback\n");
2776#endif /* IDETAPE_DEBUG_LOG */
2777
2778	if (!tape->pc->error) {
2779		result = (idetape_read_position_result_t *) tape->pc->buffer;
2780#if IDETAPE_DEBUG_LOG
2781		if (tape->debug_level >= 2)
2782			printk(KERN_INFO "ide-tape: BOP - %s\n",result->bop ? "Yes":"No");
2783		if (tape->debug_level >= 2)
2784			printk(KERN_INFO "ide-tape: EOP - %s\n",result->eop ? "Yes":"No");
2785#endif /* IDETAPE_DEBUG_LOG */
2786		if (result->bpu) {
2787			printk(KERN_INFO "ide-tape: Block location is unknown to the tape\n");
2788			clear_bit(IDETAPE_ADDRESS_VALID, &tape->flags);
2789			idetape_end_request(drive, 0, 0);
2790		} else {
2791#if IDETAPE_DEBUG_LOG
2792			if (tape->debug_level >= 2)
2793				printk(KERN_INFO "ide-tape: Block Location - %u\n", ntohl(result->first_block));
2794#endif /* IDETAPE_DEBUG_LOG */
2795			tape->partition = result->partition;
2796			tape->first_frame_position = ntohl(result->first_block);
2797			tape->last_frame_position = ntohl(result->last_block);
2798			tape->blocks_in_buffer = result->blocks_in_buffer[2];
2799			set_bit(IDETAPE_ADDRESS_VALID, &tape->flags);
2800			idetape_end_request(drive, 1, 0);
2801		}
2802	} else {
2803		idetape_end_request(drive, 0, 0);
2804	}
2805	return ide_stopped;
2806}
2807
2808/*
2809 *	idetape_create_write_filemark_cmd will:
2810 *
2811 *		1.	Write a filemark if write_filemark=1.
2812 *		2.	Flush the device buffers without writing a filemark
2813 *			if write_filemark=0.
2814 *
2815 */
2816static void idetape_create_write_filemark_cmd (ide_drive_t *drive, idetape_pc_t *pc,int write_filemark)
2817{
2818	idetape_init_pc(pc);
2819	pc->c[0] = IDETAPE_WRITE_FILEMARK_CMD;
2820	pc->c[4] = write_filemark;
2821	set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2822	pc->callback = &idetape_pc_callback;
2823}
2824
2825static void idetape_create_test_unit_ready_cmd(idetape_pc_t *pc)
2826{
2827	idetape_init_pc(pc);
2828	pc->c[0] = IDETAPE_TEST_UNIT_READY_CMD;
2829	pc->callback = &idetape_pc_callback;
2830}
2831
2832/*
2833 *	idetape_queue_pc_tail is based on the following functions:
2834 *
2835 *	ide_do_drive_cmd from ide.c
2836 *	cdrom_queue_request and cdrom_queue_packet_command from ide-cd.c
2837 *
2838 *	We add a special packet command request to the tail of the request
2839 *	queue, and wait for it to be serviced.
2840 *
2841 *	This is not to be called from within the request handling part
2842 *	of the driver ! We allocate here data in the stack, and it is valid
2843 *	until the request is finished. This is not the case for the bottom
2844 *	part of the driver, where we are always leaving the functions to wait
2845 *	for an interrupt or a timer event.
2846 *
2847 *	From the bottom part of the driver, we should allocate safe memory
2848 *	using idetape_next_pc_storage and idetape_next_rq_storage, and add
2849 *	the request to the request list without waiting for it to be serviced !
2850 *	In that case, we usually use idetape_queue_pc_head.
2851 */
2852static int __idetape_queue_pc_tail (ide_drive_t *drive, idetape_pc_t *pc)
2853{
2854	struct ide_tape_obj *tape = drive->driver_data;
2855	struct request rq;
2856
2857	idetape_init_rq(&rq, REQ_IDETAPE_PC1);
2858	rq.buffer = (char *) pc;
2859	rq.rq_disk = tape->disk;
2860	return ide_do_drive_cmd(drive, &rq, ide_wait);
2861}
2862
2863static void idetape_create_load_unload_cmd (ide_drive_t *drive, idetape_pc_t *pc,int cmd)
2864{
2865	idetape_init_pc(pc);
2866	pc->c[0] = IDETAPE_LOAD_UNLOAD_CMD;
2867	pc->c[4] = cmd;
2868	set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2869	pc->callback = &idetape_pc_callback;
2870}
2871
2872static int idetape_wait_ready(ide_drive_t *drive, unsigned long timeout)
2873{
2874	idetape_tape_t *tape = drive->driver_data;
2875	idetape_pc_t pc;
2876	int load_attempted = 0;
2877
2878	/*
2879	 * Wait for the tape to become ready
2880	 */
2881	set_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags);
2882	timeout += jiffies;
2883	while (time_before(jiffies, timeout)) {
2884		idetape_create_test_unit_ready_cmd(&pc);
2885		if (!__idetape_queue_pc_tail(drive, &pc))
2886			return 0;
2887		if ((tape->sense_key == 2 && tape->asc == 4 && tape->ascq == 2)
2888		    || (tape->asc == 0x3A)) {	/* no media */
2889			if (load_attempted)
2890				return -ENOMEDIUM;
2891			idetape_create_load_unload_cmd(drive, &pc, IDETAPE_LU_LOAD_MASK);
2892			__idetape_queue_pc_tail(drive, &pc);
2893			load_attempted = 1;
2894		/* not about to be ready */
2895		} else if (!(tape->sense_key == 2 && tape->asc == 4 &&
2896			     (tape->ascq == 1 || tape->ascq == 8)))
2897			return -EIO;
2898		msleep(100);
2899	}
2900	return -EIO;
2901}
2902
2903static int idetape_queue_pc_tail (ide_drive_t *drive,idetape_pc_t *pc)
2904{
2905	return __idetape_queue_pc_tail(drive, pc);
2906}
2907
2908static int idetape_flush_tape_buffers (ide_drive_t *drive)
2909{
2910	idetape_pc_t pc;
2911	int rc;
2912
2913	idetape_create_write_filemark_cmd(drive, &pc, 0);
2914	if ((rc = idetape_queue_pc_tail(drive, &pc)))
2915		return rc;
2916	idetape_wait_ready(drive, 60 * 5 * HZ);
2917	return 0;
2918}
2919
2920static void idetape_create_read_position_cmd (idetape_pc_t *pc)
2921{
2922	idetape_init_pc(pc);
2923	pc->c[0] = IDETAPE_READ_POSITION_CMD;
2924	pc->request_transfer = 20;
2925	pc->callback = &idetape_read_position_callback;
2926}
2927
2928static int idetape_read_position (ide_drive_t *drive)
2929{
2930	idetape_tape_t *tape = drive->driver_data;
2931	idetape_pc_t pc;
2932	int position;
2933
2934#if IDETAPE_DEBUG_LOG
2935        if (tape->debug_level >= 4)
2936		printk(KERN_INFO "ide-tape: Reached idetape_read_position\n");
2937#endif /* IDETAPE_DEBUG_LOG */
2938
2939	idetape_create_read_position_cmd(&pc);
2940	if (idetape_queue_pc_tail(drive, &pc))
2941		return -1;
2942	position = tape->first_frame_position;
2943	return position;
2944}
2945
2946static void idetape_create_locate_cmd (ide_drive_t *drive, idetape_pc_t *pc, unsigned int block, u8 partition, int skip)
2947{
2948	idetape_init_pc(pc);
2949	pc->c[0] = IDETAPE_LOCATE_CMD;
2950	pc->c[1] = 2;
2951	put_unaligned(htonl(block), (unsigned int *) &pc->c[3]);
2952	pc->c[8] = partition;
2953	set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2954	pc->callback = &idetape_pc_callback;
2955}
2956
2957static int idetape_create_prevent_cmd (ide_drive_t *drive, idetape_pc_t *pc, int prevent)
2958{
2959	idetape_tape_t *tape = drive->driver_data;
2960
2961	if (!tape->capabilities.lock)
2962		return 0;
2963
2964	idetape_init_pc(pc);
2965	pc->c[0] = IDETAPE_PREVENT_CMD;
2966	pc->c[4] = prevent;
2967	pc->callback = &idetape_pc_callback;
2968	return 1;
2969}
2970
2971static int __idetape_discard_read_pipeline (ide_drive_t *drive)
2972{
2973	idetape_tape_t *tape = drive->driver_data;
2974	unsigned long flags;
2975	int cnt;
2976
2977	if (tape->chrdev_direction != idetape_direction_read)
2978		return 0;
2979
2980	/* Remove merge stage. */
2981	cnt = tape->merge_stage_size / tape->tape_block_size;
2982	if (test_and_clear_bit(IDETAPE_FILEMARK, &tape->flags))
2983		++cnt;		/* Filemarks count as 1 sector */
2984	tape->merge_stage_size = 0;
2985	if (tape->merge_stage != NULL) {
2986		__idetape_kfree_stage(tape->merge_stage);
2987		tape->merge_stage = NULL;
2988	}
2989
2990	/* Clear pipeline flags. */
2991	clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
2992	tape->chrdev_direction = idetape_direction_none;
2993
2994	/* Remove pipeline stages. */
2995	if (tape->first_stage == NULL)
2996		return 0;
2997
2998	spin_lock_irqsave(&tape->spinlock, flags);
2999	tape->next_stage = NULL;
3000	if (idetape_pipeline_active(tape))
3001		idetape_wait_for_request(drive, tape->active_data_request);
3002	spin_unlock_irqrestore(&tape->spinlock, flags);
3003
3004	while (tape->first_stage != NULL) {
3005		struct request *rq_ptr = &tape->first_stage->rq;
3006
3007		cnt += rq_ptr->nr_sectors - rq_ptr->current_nr_sectors;
3008		if (rq_ptr->errors == IDETAPE_ERROR_FILEMARK)
3009			++cnt;
3010		idetape_remove_stage_head(drive);
3011	}
3012	tape->nr_pending_stages = 0;
3013	tape->max_stages = tape->min_pipeline;
3014	return cnt;
3015}
3016
3017/*
3018 *	idetape_position_tape positions the tape to the requested block
3019 *	using the LOCATE packet command. A READ POSITION command is then
3020 *	issued to check where we are positioned.
3021 *
3022 *	Like all higher level operations, we queue the commands at the tail
3023 *	of the request queue and wait for their completion.
3024 *
3025 */
3026static int idetape_position_tape (ide_drive_t *drive, unsigned int block, u8 partition, int skip)
3027{
3028	idetape_tape_t *tape = drive->driver_data;
3029	int retval;
3030	idetape_pc_t pc;
3031
3032	if (tape->chrdev_direction == idetape_direction_read)
3033		__idetape_discard_read_pipeline(drive);
3034	idetape_wait_ready(drive, 60 * 5 * HZ);
3035	idetape_create_locate_cmd(drive, &pc, block, partition, skip);
3036	retval = idetape_queue_pc_tail(drive, &pc);
3037	if (retval)
3038		return (retval);
3039
3040	idetape_create_read_position_cmd(&pc);
3041	return (idetape_queue_pc_tail(drive, &pc));
3042}
3043
3044static void idetape_discard_read_pipeline (ide_drive_t *drive, int restore_position)
3045{
3046	idetape_tape_t *tape = drive->driver_data;
3047	int cnt;
3048	int seek, position;
3049
3050	cnt = __idetape_discard_read_pipeline(drive);
3051	if (restore_position) {
3052		position = idetape_read_position(drive);
3053		seek = position > cnt ? position - cnt : 0;
3054		if (idetape_position_tape(drive, seek, 0, 0)) {
3055			printk(KERN_INFO "ide-tape: %s: position_tape failed in discard_pipeline()\n", tape->name);
3056			return;
3057		}
3058	}
3059}
3060
3061/*
3062 * idetape_queue_rw_tail generates a read/write request for the block
3063 * device interface and wait for it to be serviced.
3064 */
3065static int idetape_queue_rw_tail(ide_drive_t *drive, int cmd, int blocks, struct idetape_bh *bh)
3066{
3067	idetape_tape_t *tape = drive->driver_data;
3068	struct request rq;
3069
3070#if IDETAPE_DEBUG_LOG
3071	if (tape->debug_level >= 2)
3072		printk(KERN_INFO "ide-tape: idetape_queue_rw_tail: cmd=%d\n",cmd);
3073#endif /* IDETAPE_DEBUG_LOG */
3074#if IDETAPE_DEBUG_BUGS
3075	if (idetape_pipeline_active(tape)) {
3076		printk(KERN_ERR "ide-tape: bug: the pipeline is active in idetape_queue_rw_tail\n");
3077		return (0);
3078	}
3079#endif /* IDETAPE_DEBUG_BUGS */
3080
3081	idetape_init_rq(&rq, cmd);
3082	rq.rq_disk = tape->disk;
3083	rq.special = (void *)bh;
3084	rq.sector = tape->first_frame_position;
3085	rq.nr_sectors = rq.current_nr_sectors = blocks;
3086	(void) ide_do_drive_cmd(drive, &rq, ide_wait);
3087
3088	if ((cmd & (REQ_IDETAPE_READ | REQ_IDETAPE_WRITE)) == 0)
3089		return 0;
3090
3091	if (tape->merge_stage)
3092		idetape_init_merge_stage(tape);
3093	if (rq.errors == IDETAPE_ERROR_GENERAL)
3094		return -EIO;
3095	return (tape->tape_block_size * (blocks-rq.current_nr_sectors));
3096}
3097
3098/*
3099 *	idetape_insert_pipeline_into_queue is used to start servicing the
3100 *	pipeline stages, starting from tape->next_stage.
3101 */
3102static void idetape_insert_pipeline_into_queue (ide_drive_t *drive)
3103{
3104	idetape_tape_t *tape = drive->driver_data;
3105
3106	if (tape->next_stage == NULL)
3107		return;
3108	if (!idetape_pipeline_active(tape)) {
3109		set_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
3110		idetape_active_next_stage(drive);
3111		(void) ide_do_drive_cmd(drive, tape->active_data_request, ide_end);
3112	}
3113}
3114
3115static void idetape_create_inquiry_cmd (idetape_pc_t *pc)
3116{
3117	idetape_init_pc(pc);
3118	pc->c[0] = IDETAPE_INQUIRY_CMD;
3119	pc->c[4] = pc->request_transfer = 254;
3120	pc->callback = &idetape_pc_callback;
3121}
3122
3123static void idetape_create_rewind_cmd (ide_drive_t *drive, idetape_pc_t *pc)
3124{
3125	idetape_init_pc(pc);
3126	pc->c[0] = IDETAPE_REWIND_CMD;
3127	set_bit(PC_WAIT_FOR_DSC, &pc->flags);
3128	pc->callback = &idetape_pc_callback;
3129}
3130
3131#if 0
3132static void idetape_create_mode_select_cmd (idetape_pc_t *pc, int length)
3133{
3134	idetape_init_pc(pc);
3135	set_bit(PC_WRITING, &pc->flags);
3136	pc->c[0] = IDETAPE_MODE_SELECT_CMD;
3137	pc->c[1] = 0x10;
3138	put_unaligned(htons(length), (unsigned short *) &pc->c[3]);
3139	pc->request_transfer = 255;
3140	pc->callback = &idetape_pc_callback;
3141}
3142#endif
3143
3144static void idetape_create_erase_cmd (idetape_pc_t *pc)
3145{
3146	idetape_init_pc(pc);
3147	pc->c[0] = IDETAPE_ERASE_CMD;
3148	pc->c[1] = 1;
3149	set_bit(PC_WAIT_FOR_DSC, &pc->flags);
3150	pc->callback = &idetape_pc_callback;
3151}
3152
3153static void idetape_create_space_cmd (idetape_pc_t *pc,int count, u8 cmd)
3154{
3155	idetape_init_pc(pc);
3156	pc->c[0] = IDETAPE_SPACE_CMD;
3157	put_unaligned(htonl(count), (unsigned int *) &pc->c[1]);
3158	pc->c[1] = cmd;
3159	set_bit(PC_WAIT_FOR_DSC, &pc->flags);
3160	pc->callback = &idetape_pc_callback;
3161}
3162
3163static void idetape_wait_first_stage (ide_drive_t *drive)
3164{
3165	idetape_tape_t *tape = drive->driver_data;
3166	unsigned long flags;
3167
3168	if (tape->first_stage == NULL)
3169		return;
3170	spin_lock_irqsave(&tape->spinlock, flags);
3171	if (tape->active_stage == tape->first_stage)
3172		idetape_wait_for_request(drive, tape->active_data_request);
3173	spin_unlock_irqrestore(&tape->spinlock, flags);
3174}
3175
3176/*
3177 *	idetape_add_chrdev_write_request tries to add a character device
3178 *	originated write request to our pipeline. In case we don't succeed,
3179 *	we revert to non-pipelined operation mode for this request.
3180 *
3181 *	1.	Try to allocate a new pipeline stage.
3182 *	2.	If we can't, wait for more and more requests to be serviced
3183 *		and try again each time.
3184 *	3.	If we still can't allocate a stage, fallback to
3185 *		non-pipelined operation mode for this request.
3186 */
3187static int idetape_add_chrdev_write_request (ide_drive_t *drive, int blocks)
3188{
3189	idetape_tape_t *tape = drive->driver_data;
3190	idetape_stage_t *new_stage;
3191	unsigned long flags;
3192	struct request *rq;
3193
3194#if IDETAPE_DEBUG_LOG
3195	if (tape->debug_level >= 3)
3196		printk(KERN_INFO "ide-tape: Reached idetape_add_chrdev_write_request\n");
3197#endif /* IDETAPE_DEBUG_LOG */
3198
3199     	/*
3200     	 *	Attempt to allocate a new stage.
3201	 *	Pay special attention to possible race conditions.
3202	 */
3203	while ((new_stage = idetape_kmalloc_stage(tape)) == NULL) {
3204		spin_lock_irqsave(&tape->spinlock, flags);
3205		if (idetape_pipeline_active(tape)) {
3206			idetape_wait_for_request(drive, tape->active_data_request);
3207			spin_unlock_irqrestore(&tape->spinlock, flags);
3208		} else {
3209			spin_unlock_irqrestore(&tape->spinlock, flags);
3210			idetape_insert_pipeline_into_queue(drive);
3211			if (idetape_pipeline_active(tape))
3212				continue;
3213			/*
3214			 *	Linux is short on memory. Fallback to
3215			 *	non-pipelined operation mode for this request.
3216			 */
3217			return idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, blocks, tape->merge_stage->bh);
3218		}
3219	}
3220	rq = &new_stage->rq;
3221	idetape_init_rq(rq, REQ_IDETAPE_WRITE);
3222	/* Doesn't actually matter - We always assume sequential access */
3223	rq->sector = tape->first_frame_position;
3224	rq->nr_sectors = rq->current_nr_sectors = blocks;
3225
3226	idetape_switch_buffers(tape, new_stage);
3227	idetape_add_stage_tail(drive, new_stage);
3228	tape->pipeline_head++;
3229	calculate_speeds(drive);
3230
3231	/*
3232	 *	Estimate whether the tape has stopped writing by checking
3233	 *	if our write pipeline is currently empty. If we are not
3234	 *	writing anymore, wait for the pipeline to be full enough
3235	 *	(90%) before starting to service requests, so that we will
3236	 *	be able to keep up with the higher speeds of the tape.
3237	 */
3238	if (!idetape_pipeline_active(tape)) {
3239		if (tape->nr_stages >= tape->max_stages * 9 / 10 ||
3240		    tape->nr_stages >= tape->max_stages - tape->uncontrolled_pipeline_head_speed * 3 * 1024 / tape->tape_block_size) {
3241			tape->measure_insert_time = 1;
3242			tape->insert_time = jiffies;
3243			tape->insert_size = 0;
3244			tape->insert_speed = 0;
3245			idetape_insert_pipeline_into_queue(drive);
3246		}
3247	}
3248	if (test_and_clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags))
3249		/* Return a deferred error */
3250		return -EIO;
3251	return blocks;
3252}
3253
3254/*
3255 *	idetape_wait_for_pipeline will wait until all pending pipeline
3256 *	requests are serviced. Typically called on device close.
3257 */
3258static void idetape_wait_for_pipeline (ide_drive_t *drive)
3259{
3260	idetape_tape_t *tape = drive->driver_data;
3261	unsigned long flags;
3262
3263	while (tape->next_stage || idetape_pipeline_active(tape)) {
3264		idetape_insert_pipeline_into_queue(drive);
3265		spin_lock_irqsave(&tape->spinlock, flags);
3266		if (idetape_pipeline_active(tape))
3267			idetape_wait_for_request(drive, tape->active_data_request);
3268		spin_unlock_irqrestore(&tape->spinlock, flags);
3269	}
3270}
3271
3272static void idetape_empty_write_pipeline (ide_drive_t *drive)
3273{
3274	idetape_tape_t *tape = drive->driver_data;
3275	int blocks, min;
3276	struct idetape_bh *bh;
3277
3278#if IDETAPE_DEBUG_BUGS
3279	if (tape->chrdev_direction != idetape_direction_write) {
3280		printk(KERN_ERR "ide-tape: bug: Trying to empty write pipeline, but we are not writing.\n");
3281		return;
3282	}
3283	if (tape->merge_stage_size > tape->stage_size) {
3284		printk(KERN_ERR "ide-tape: bug: merge_buffer too big\n");
3285		tape->merge_stage_size = tape->stage_size;
3286	}
3287#endif /* IDETAPE_DEBUG_BUGS */
3288	if (tape->merge_stage_size) {
3289		blocks = tape->merge_stage_size / tape->tape_block_size;
3290		if (tape->merge_stage_size % tape->tape_block_size) {
3291			unsigned int i;
3292
3293			blocks++;
3294			i = tape->tape_block_size - tape->merge_stage_size % tape->tape_block_size;
3295			bh = tape->bh->b_reqnext;
3296			while (bh) {
3297				atomic_set(&bh->b_count, 0);
3298				bh = bh->b_reqnext;
3299			}
3300			bh = tape->bh;
3301			while (i) {
3302				if (bh == NULL) {
3303
3304					printk(KERN_INFO "ide-tape: bug, bh NULL\n");
3305					break;
3306				}
3307				min = min(i, (unsigned int)(bh->b_size - atomic_read(&bh->b_count)));
3308				memset(bh->b_data + atomic_read(&bh->b_count), 0, min);
3309				atomic_add(min, &bh->b_count);
3310				i -= min;
3311				bh = bh->b_reqnext;
3312			}
3313		}
3314		(void) idetape_add_chrdev_write_request(drive, blocks);
3315		tape->merge_stage_size = 0;
3316	}
3317	idetape_wait_for_pipeline(drive);
3318	if (tape->merge_stage != NULL) {
3319		__idetape_kfree_stage(tape->merge_stage);
3320		tape->merge_stage = NULL;
3321	}
3322	clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
3323	tape->chrdev_direction = idetape_direction_none;
3324
3325	/*
3326	 *	On the next backup, perform the feedback loop again.
3327	 *	(I don't want to keep sense information between backups,
3328	 *	 as some systems are constantly on, and the system load
3329	 *	 can be totally different on the next backup).
3330	 */
3331	tape->max_stages = tape->min_pipeline;
3332#if IDETAPE_DEBUG_BUGS
3333	if (tape->first_stage != NULL ||
3334	    tape->next_stage != NULL ||
3335	    tape->last_stage != NULL ||
3336	    tape->nr_stages != 0) {
3337		printk(KERN_ERR "ide-tape: ide-tape pipeline bug, "
3338			"first_stage %p, next_stage %p, "
3339			"last_stage %p, nr_stages %d\n",
3340			tape->first_stage, tape->next_stage,
3341			tape->last_stage, tape->nr_stages);
3342	}
3343#endif /* IDETAPE_DEBUG_BUGS */
3344}
3345
3346static void idetape_restart_speed_control (ide_drive_t *drive)
3347{
3348	idetape_tape_t *tape = drive->driver_data;
3349
3350	tape->restart_speed_control_req = 0;
3351	tape->pipeline_head = 0;
3352	tape->controlled_last_pipeline_head = tape->uncontrolled_last_pipeline_head = 0;
3353	tape->controlled_previous_pipeline_head = tape->uncontrolled_previous_pipeline_head = 0;
3354	tape->pipeline_head_speed = tape->controlled_pipeline_head_speed = 5000;
3355	tape->uncontrolled_pipeline_head_speed = 0;
3356	tape->controlled_pipeline_head_time = tape->uncontrolled_pipeline_head_time = jiffies;
3357	tape->controlled_previous_head_time = tape->uncontrolled_previous_head_time = jiffies;
3358}
3359
3360static int idetape_initiate_read (ide_drive_t *drive, int max_stages)
3361{
3362	idetape_tape_t *tape = drive->driver_data;
3363	idetape_stage_t *new_stage;
3364	struct request rq;
3365	int bytes_read;
3366	int blocks = tape->capabilities.ctl;
3367
3368	/* Initialize read operation */
3369	if (tape->chrdev_direction != idetape_direction_read) {
3370		if (tape->chrdev_direction == idetape_direction_write) {
3371			idetape_empty_write_pipeline(drive);
3372			idetape_flush_tape_buffers(drive);
3373		}
3374#if IDETAPE_DEBUG_BUGS
3375		if (tape->merge_stage || tape->merge_stage_size) {
3376			printk (KERN_ERR "ide-tape: merge_stage_size should be 0 now\n");
3377			tape->merge_stage_size = 0;
3378		}
3379#endif /* IDETAPE_DEBUG_BUGS */
3380		if ((tape->merge_stage = __idetape_kmalloc_stage(tape, 0, 0)) == NULL)
3381			return -ENOMEM;
3382		tape->chrdev_direction = idetape_direction_read;
3383
3384		/*
3385		 *	Issue a read 0 command to ensure that DSC handshake
3386		 *	is switched from completion mode to buffer available
3387		 *	mode.
3388		 *	No point in issuing this if DSC overlap isn't supported,
3389		 *	some drives (Seagate STT3401A) will return an error.
3390		 */
3391		if (drive->dsc_overlap) {
3392			bytes_read = idetape_queue_rw_tail(drive, REQ_IDETAPE_READ, 0, tape->merge_stage->bh);
3393			if (bytes_read < 0) {
3394				__idetape_kfree_stage(tape->merge_stage);
3395				tape->merge_stage = NULL;
3396				tape->chrdev_direction = idetape_direction_none;
3397				return bytes_read;
3398			}
3399		}
3400	}
3401	if (tape->restart_speed_control_req)
3402		idetape_restart_speed_control(drive);
3403	idetape_init_rq(&rq, REQ_IDETAPE_READ);
3404	rq.sector = tape->first_frame_position;
3405	rq.nr_sectors = rq.current_nr_sectors = blocks;
3406	if (!test_bit(IDETAPE_PIPELINE_ERROR, &tape->flags) &&
3407	    tape->nr_stages < max_stages) {
3408		new_stage = idetape_kmalloc_stage(tape);
3409		while (new_stage != NULL) {
3410			new_stage->rq = rq;
3411			idetape_add_stage_tail(drive, new_stage);
3412			if (tape->nr_stages >= max_stages)
3413				break;
3414			new_stage = idetape_kmalloc_stage(tape);
3415		}
3416	}
3417	if (!idetape_pipeline_active(tape)) {
3418		if (tape->nr_pending_stages >= 3 * max_stages / 4) {
3419			tape->measure_insert_time = 1;
3420			tape->insert_time = jiffies;
3421			tape->insert_size = 0;
3422			tape->insert_speed = 0;
3423			idetape_insert_pipeline_into_queue(drive);
3424		}
3425	}
3426	return 0;
3427}
3428
3429/*
3430 *	idetape_add_chrdev_read_request is called from idetape_chrdev_read
3431 *	to service a character device read request and add read-ahead
3432 *	requests to our pipeline.
3433 */
3434static int idetape_add_chrdev_read_request (ide_drive_t *drive,int blocks)
3435{
3436	idetape_tape_t *tape = drive->driver_data;
3437	unsigned long flags;
3438	struct request *rq_ptr;
3439	int bytes_read;
3440
3441#if IDETAPE_DEBUG_LOG
3442	if (tape->debug_level >= 4)
3443		printk(KERN_INFO "ide-tape: Reached idetape_add_chrdev_read_request, %d blocks\n", blocks);
3444#endif /* IDETAPE_DEBUG_LOG */
3445
3446	/*
3447	 * If we are at a filemark, return a read length of 0
3448	 */
3449	if (test_bit(IDETAPE_FILEMARK, &tape->flags))
3450		return 0;
3451
3452	/*
3453	 * Wait for the next block to be available at the head
3454	 * of the pipeline
3455	 */
3456	idetape_initiate_read(drive, tape->max_stages);
3457	if (tape->first_stage == NULL) {
3458		if (test_bit(IDETAPE_PIPELINE_ERROR, &tape->flags))
3459			return 0;
3460		return idetape_queue_rw_tail(drive, REQ_IDETAPE_READ, blocks, tape->merge_stage->bh);
3461	}
3462	idetape_wait_first_stage(drive);
3463	rq_ptr = &tape->first_stage->rq;
3464	bytes_read = tape->tape_block_size * (rq_ptr->nr_sectors - rq_ptr->current_nr_sectors);
3465	rq_ptr->nr_sectors = rq_ptr->current_nr_sectors = 0;
3466
3467
3468	if (rq_ptr->errors == IDETAPE_ERROR_EOD)
3469		return 0;
3470	else {
3471		idetape_switch_buffers(tape, tape->first_stage);
3472		if (rq_ptr->errors == IDETAPE_ERROR_FILEMARK)
3473			set_bit(IDETAPE_FILEMARK, &tape->flags);
3474		spin_lock_irqsave(&tape->spinlock, flags);
3475		idetape_remove_stage_head(drive);
3476		spin_unlock_irqrestore(&tape->spinlock, flags);
3477		tape->pipeline_head++;
3478		calculate_speeds(drive);
3479	}
3480#if IDETAPE_DEBUG_BUGS
3481	if (bytes_read > blocks * tape->tape_block_size) {
3482		printk(KERN_ERR "ide-tape: bug: trying to return more bytes than requested\n");
3483		bytes_read = blocks * tape->tape_block_size;
3484	}
3485#endif /* IDETAPE_DEBUG_BUGS */
3486	return (bytes_read);
3487}
3488
3489static void idetape_pad_zeros (ide_drive_t *drive, int bcount)
3490{
3491	idetape_tape_t *tape = drive->driver_data;
3492	struct idetape_bh *bh;
3493	int blocks;
3494
3495	while (bcount) {
3496		unsigned int count;
3497
3498		bh = tape->merge_stage->bh;
3499		count = min(tape->stage_size, bcount);
3500		bcount -= count;
3501		blocks = count / tape->tape_block_size;
3502		while (count) {
3503			atomic_set(&bh->b_count, min(count, (unsigned int)bh->b_size));
3504			memset(bh->b_data, 0, atomic_read(&bh->b_count));
3505			count -= atomic_read(&bh->b_count);
3506			bh = bh->b_reqnext;
3507		}
3508		idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, blocks, tape->merge_stage->bh);
3509	}
3510}
3511
3512static int idetape_pipeline_size (ide_drive_t *drive)
3513{
3514	idetape_tape_t *tape = drive->driver_data;
3515	idetape_stage_t *stage;
3516	struct request *rq;
3517	int size = 0;
3518
3519	idetape_wait_for_pipeline(drive);
3520	stage = tape->first_stage;
3521	while (stage != NULL) {
3522		rq = &stage->rq;
3523		size += tape->tape_block_size * (rq->nr_sectors-rq->current_nr_sectors);
3524		if (rq->errors == IDETAPE_ERROR_FILEMARK)
3525			size += tape->tape_block_size;
3526		stage = stage->next;
3527	}
3528	size += tape->merge_stage_size;
3529	return size;
3530}
3531
3532/*
3533 *	Rewinds the tape to the Beginning Of the current Partition (BOP).
3534 *
3535 *	We currently support only one partition.
3536 */
3537static int idetape_rewind_tape (ide_drive_t *drive)
3538{
3539	int retval;
3540	idetape_pc_t pc;
3541#if IDETAPE_DEBUG_LOG
3542	idetape_tape_t *tape = drive->driver_data;
3543	if (tape->debug_level >= 2)
3544		printk(KERN_INFO "ide-tape: Reached idetape_rewind_tape\n");
3545#endif /* IDETAPE_DEBUG_LOG */
3546
3547	idetape_create_rewind_cmd(drive, &pc);
3548	retval = idetape_queue_pc_tail(drive, &pc);
3549	if (retval)
3550		return retval;
3551
3552	idetape_create_read_position_cmd(&pc);
3553	retval = idetape_queue_pc_tail(drive, &pc);
3554	if (retval)
3555		return retval;
3556	return 0;
3557}
3558
3559/*
3560 *	Our special ide-tape ioctl's.
3561 *
3562 *	Currently there aren't any ioctl's.
3563 *	mtio.h compatible commands should be issued to the character device
3564 *	interface.
3565 */
3566static int idetape_blkdev_ioctl(ide_drive_t *drive, unsigned int cmd, unsigned long arg)
3567{
3568	idetape_tape_t *tape = drive->driver_data;
3569	idetape_config_t config;
3570	void __user *argp = (void __user *)arg;
3571
3572#if IDETAPE_DEBUG_LOG
3573	if (tape->debug_level >= 4)
3574		printk(KERN_INFO "ide-tape: Reached idetape_blkdev_ioctl\n");
3575#endif /* IDETAPE_DEBUG_LOG */
3576	switch (cmd) {
3577		case 0x0340:
3578			if (copy_from_user(&config, argp, sizeof (idetape_config_t)))
3579				return -EFAULT;
3580			tape->best_dsc_rw_frequency = config.dsc_rw_frequency;
3581			tape->max_stages = config.nr_stages;
3582			break;
3583		case 0x0350:
3584			config.dsc_rw_frequency = (int) tape->best_dsc_rw_frequency;
3585			config.nr_stages = tape->max_stages;
3586			if (copy_to_user(argp, &config, sizeof (idetape_config_t)))
3587				return -EFAULT;
3588			break;
3589		default:
3590			return -EIO;
3591	}
3592	return 0;
3593}
3594
3595/*
3596 *	idetape_space_over_filemarks is now a bit more complicated than just
3597 *	passing the command to the tape since we may have crossed some
3598 *	filemarks during our pipelined read-ahead mode.
3599 *
3600 *	As a minor side effect, the pipeline enables us to support MTFSFM when
3601 *	the filemark is in our internal pipeline even if the tape doesn't
3602 *	support spacing over filemarks in the reverse direction.
3603 */
3604static int idetape_space_over_filemarks (ide_drive_t *drive,short mt_op,int mt_count)
3605{
3606	idetape_tape_t *tape = drive->driver_data;
3607	idetape_pc_t pc;
3608	unsigned long flags;
3609	int retval,count=0;
3610
3611	if (mt_count == 0)
3612		return 0;
3613	if (MTBSF == mt_op || MTBSFM == mt_op) {
3614		if (!tape->capabilities.sprev)
3615			return -EIO;
3616		mt_count = - mt_count;
3617	}
3618
3619	if (tape->chrdev_direction == idetape_direction_read) {
3620		/*
3621		 *	We have a read-ahead buffer. Scan it for crossed
3622		 *	filemarks.
3623		 */
3624		tape->merge_stage_size = 0;
3625		if (test_and_clear_bit(IDETAPE_FILEMARK, &tape->flags))
3626			++count;
3627		while (tape->first_stage != NULL) {
3628			if (count == mt_count) {
3629				if (mt_op == MTFSFM)
3630					set_bit(IDETAPE_FILEMARK, &tape->flags);
3631				return 0;
3632			}
3633			spin_lock_irqsave(&tape->spinlock, flags);
3634			if (tape->first_stage == tape->active_stage) {
3635				/*
3636				 *	We have reached the active stage in the read pipeline.
3637				 *	There is no point in allowing the drive to continue
3638				 *	reading any farther, so we stop the pipeline.
3639				 *
3640				 *	This section should be moved to a separate subroutine,
3641				 *	because a similar function is performed in
3642				 *	__idetape_discard_read_pipeline(), for example.
3643				 */
3644				tape->next_stage = NULL;
3645				spin_unlock_irqrestore(&tape->spinlock, flags);
3646				idetape_wait_first_stage(drive);
3647				tape->next_stage = tape->first_stage->next;
3648			} else
3649				spin_unlock_irqrestore(&tape->spinlock, flags);
3650			if (tape->first_stage->rq.errors == IDETAPE_ERROR_FILEMARK)
3651				++count;
3652			idetape_remove_stage_head(drive);
3653		}
3654		idetape_discard_read_pipeline(drive, 0);
3655	}
3656
3657	/*
3658	 *	The filemark was not found in our internal pipeline.
3659	 *	Now we can issue the space command.
3660	 */
3661	switch (mt_op) {
3662		case MTFSF:
3663		case MTBSF:
3664			idetape_create_space_cmd(&pc,mt_count-count,IDETAPE_SPACE_OVER_FILEMARK);
3665			return (idetape_queue_pc_tail(drive, &pc));
3666		case MTFSFM:
3667		case MTBSFM:
3668			if (!tape->capabilities.sprev)
3669				return (-EIO);
3670			retval = idetape_space_over_filemarks(drive, MTFSF, mt_count-count);
3671			if (retval) return (retval);
3672			count = (MTBSFM == mt_op ? 1 : -1);
3673			return (idetape_space_over_filemarks(drive, MTFSF, count));
3674		default:
3675			printk(KERN_ERR "ide-tape: MTIO operation %d not supported\n",mt_op);
3676			return (-EIO);
3677	}
3678}
3679
3680
3681/*
3682 *	Our character device read / write functions.
3683 *
3684 *	The tape is optimized to maximize throughput when it is transferring
3685 *	an integral number of the "continuous transfer limit", which is
3686 *	a parameter of the specific tape (26 KB on my particular tape).
3687 *      (32 kB for Onstream)
3688 *
3689 *	As of version 1.3 of the driver, the character device provides an
3690 *	abstract continuous view of the media - any mix of block sizes (even 1
3691 *	byte) on the same backup/restore procedure is supported. The driver
3692 *	will internally convert the requests to the recommended transfer unit,
3693 *	so that an unmatch between the user's block size to the recommended
3694 *	size will only result in a (slightly) increased driver overhead, but
3695 *	will no longer hit performance.
3696 *      This is not applicable to Onstream.
3697 */
3698static ssize_t idetape_chrdev_read (struct file *file, char __user *buf,
3699				    size_t count, loff_t *ppos)
3700{
3701	struct ide_tape_obj *tape = ide_tape_f(file);
3702	ide_drive_t *drive = tape->drive;
3703	ssize_t bytes_read,temp, actually_read = 0, rc;
3704	ssize_t ret = 0;
3705
3706#if IDETAPE_DEBUG_LOG
3707	if (tape->debug_level >= 3)
3708		printk(KERN_INFO "ide-tape: Reached idetape_chrdev_read, count %Zd\n", count);
3709#endif /* IDETAPE_DEBUG_LOG */
3710
3711	if (tape->chrdev_direction != idetape_direction_read) {
3712		if (test_bit(IDETAPE_DETECT_BS, &tape->flags))
3713			if (count > tape->tape_block_size &&
3714			    (count % tape->tape_block_size) == 0)
3715				tape->user_bs_factor = count / tape->tape_block_size;
3716	}
3717	if ((rc = idetape_initiate_read(drive, tape->max_stages)) < 0)
3718		return rc;
3719	if (count == 0)
3720		return (0);
3721	if (tape->merge_stage_size) {
3722		actually_read = min((unsigned int)(tape->merge_stage_size), (unsigned int)count);
3723		if (idetape_copy_stage_to_user(tape, buf, tape->merge_stage, actually_read))
3724			ret = -EFAULT;
3725		buf += actually_read;
3726		tape->merge_stage_size -= actually_read;
3727		count -= actually_read;
3728	}
3729	while (count >= tape->stage_size) {
3730		bytes_read = idetape_add_chrdev_read_request(drive, tape->capabilities.ctl);
3731		if (bytes_read <= 0)
3732			goto finish;
3733		if (idetape_copy_stage_to_user(tape, buf, tape->merge_stage, bytes_read))
3734			ret = -EFAULT;
3735		buf += bytes_read;
3736		count -= bytes_read;
3737		actually_read += bytes_read;
3738	}
3739	if (count) {
3740		bytes_read = idetape_add_chrdev_read_request(drive, tape->capabilities.ctl);
3741		if (bytes_read <= 0)
3742			goto finish;
3743		temp = min((unsigned long)count, (unsigned long)bytes_read);
3744		if (idetape_copy_stage_to_user(tape, buf, tape->merge_stage, temp))
3745			ret = -EFAULT;
3746		actually_read += temp;
3747		tape->merge_stage_size = bytes_read-temp;
3748	}
3749finish:
3750	if (!actually_read && test_bit(IDETAPE_FILEMARK, &tape->flags)) {
3751#if IDETAPE_DEBUG_LOG
3752		if (tape->debug_level >= 2)
3753			printk(KERN_INFO "ide-tape: %s: spacing over filemark\n", tape->name);
3754#endif
3755		idetape_space_over_filemarks(drive, MTFSF, 1);
3756		return 0;
3757	}
3758
3759	return (ret) ? ret : actually_read;
3760}
3761
3762static ssize_t idetape_chrdev_write (struct file *file, const char __user *buf,
3763				     size_t count, loff_t *ppos)
3764{
3765	struct ide_tape_obj *tape = ide_tape_f(file);
3766	ide_drive_t *drive = tape->drive;
3767	ssize_t actually_written = 0;
3768	ssize_t ret = 0;
3769
3770	/* The drive is write protected. */
3771	if (tape->write_prot)
3772		return -EACCES;
3773
3774#if IDETAPE_DEBUG_LOG
3775	if (tape->debug_level >= 3)
3776		printk(KERN_INFO "ide-tape: Reached idetape_chrdev_write, "
3777			"count %Zd\n", count);
3778#endif /* IDETAPE_DEBUG_LOG */
3779
3780	/* Initialize write operation */
3781	if (tape->chrdev_direction != idetape_direction_write) {
3782		if (tape->chrdev_direction == idetape_direction_read)
3783			idetape_discard_read_pipeline(drive, 1);
3784#if IDETAPE_DEBUG_BUGS
3785		if (tape->merge_stage || tape->merge_stage_size) {
3786			printk(KERN_ERR "ide-tape: merge_stage_size "
3787				"should be 0 now\n");
3788			tape->merge_stage_size = 0;
3789		}
3790#endif /* IDETAPE_DEBUG_BUGS */
3791		if ((tape->merge_stage = __idetape_kmalloc_stage(tape, 0, 0)) == NULL)
3792			return -ENOMEM;
3793		tape->chrdev_direction = idetape_direction_write;
3794		idetape_init_merge_stage(tape);
3795
3796		/*
3797		 *	Issue a write 0 command to ensure that DSC handshake
3798		 *	is switched from completion mode to buffer available
3799		 *	mode.
3800		 *	No point in issuing this if DSC overlap isn't supported,
3801		 *	some drives (Seagate STT3401A) will return an error.
3802		 */
3803		if (drive->dsc_overlap) {
3804			ssize_t retval = idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, 0, tape->merge_stage->bh);
3805			if (retval < 0) {
3806				__idetape_kfree_stage(tape->merge_stage);
3807				tape->merge_stage = NULL;
3808				tape->chrdev_direction = idetape_direction_none;
3809				return retval;
3810			}
3811		}
3812	}
3813	if (count == 0)
3814		return (0);
3815	if (tape->restart_speed_control_req)
3816		idetape_restart_speed_control(drive);
3817	if (tape->merge_stage_size) {
3818#if IDETAPE_DEBUG_BUGS
3819		if (tape->merge_stage_size >= tape->stage_size) {
3820			printk(KERN_ERR "ide-tape: bug: merge buffer too big\n");
3821			tape->merge_stage_size = 0;
3822		}
3823#endif /* IDETAPE_DEBUG_BUGS */
3824		actually_written = min((unsigned int)(tape->stage_size - tape->merge_stage_size), (unsigned int)count);
3825		if (idetape_copy_stage_from_user(tape, tape->merge_stage, buf, actually_written))
3826				ret = -EFAULT;
3827		buf += actually_written;
3828		tape->merge_stage_size += actually_written;
3829		count -= actually_written;
3830
3831		if (tape->merge_stage_size == tape->stage_size) {
3832			ssize_t retval;
3833			tape->merge_stage_size = 0;
3834			retval = idetape_add_chrdev_write_request(drive, tape->capabilities.ctl);
3835			if (retval <= 0)
3836				return (retval);
3837		}
3838	}
3839	while (count >= tape->stage_size) {
3840		ssize_t retval;
3841		if (idetape_copy_stage_from_user(tape, tape->merge_stage, buf, tape->stage_size))
3842			ret = -EFAULT;
3843		buf += tape->stage_size;
3844		count -= tape->stage_size;
3845		retval = idetape_add_chrdev_write_request(drive, tape->capabilities.ctl);
3846		actually_written += tape->stage_size;
3847		if (retval <= 0)
3848			return (retval);
3849	}
3850	if (count) {
3851		actually_written += count;
3852		if (idetape_copy_stage_from_user(tape, tape->merge_stage, buf, count))
3853			ret = -EFAULT;
3854		tape->merge_stage_size += count;
3855	}
3856	return (ret) ? ret : actually_written;
3857}
3858
3859static int idetape_write_filemark (ide_drive_t *drive)
3860{
3861	idetape_pc_t pc;
3862
3863	/* Write a filemark */
3864	idetape_create_write_filemark_cmd(drive, &pc, 1);
3865	if (idetape_queue_pc_tail(drive, &pc)) {
3866		printk(KERN_ERR "ide-tape: Couldn't write a filemark\n");
3867		return -EIO;
3868	}
3869	return 0;
3870}
3871
3872/*
3873 *	idetape_mtioctop is called from idetape_chrdev_ioctl when
3874 *	the general mtio MTIOCTOP ioctl is requested.
3875 *
3876 *	We currently support the following mtio.h operations:
3877 *
3878 *	MTFSF	-	Space over mt_count filemarks in the positive direction.
3879 *			The tape is positioned after the last spaced filemark.
3880 *
3881 *	MTFSFM	-	Same as MTFSF, but the tape is positioned before the
3882 *			last filemark.
3883 *
3884 *	MTBSF	-	Steps background over mt_count filemarks, tape is
3885 *			positioned before the last filemark.
3886 *
3887 *	MTBSFM	-	Like MTBSF, only tape is positioned after the last filemark.
3888 *
3889 *	Note:
3890 *
3891 *		MTBSF and MTBSFM are not supported when the tape doesn't
3892 *		support spacing over filemarks in the reverse direction.
3893 *		In this case, MTFSFM is also usually not supported (it is
3894 *		supported in the rare case in which we crossed the filemark
3895 *		during our read-ahead pipelined operation mode).
3896 *
3897 *	MTWEOF	-	Writes mt_count filemarks. Tape is positioned after
3898 *			the last written filemark.
3899 *
3900 *	MTREW	-	Rewinds tape.
3901 *
3902 *	MTLOAD	-	Loads the tape.
3903 *
3904 *	MTOFFL	-	Puts the tape drive "Offline": Rewinds the tape and
3905 *	MTUNLOAD	prevents further access until the media is replaced.
3906 *
3907 *	MTNOP	-	Flushes tape buffers.
3908 *
3909 *	MTRETEN	-	Retension media. This typically consists of one end
3910 *			to end pass on the media.
3911 *
3912 *	MTEOM	-	Moves to the end of recorded data.
3913 *
3914 *	MTERASE	-	Erases tape.
3915 *
3916 *	MTSETBLK - 	Sets the user block size to mt_count bytes. If
3917 *			mt_count is 0, we will attempt to autodetect
3918 *			the block size.
3919 *
3920 *	MTSEEK	-	Positions the tape in a specific block number, where
3921 *			each block is assumed to contain which user_block_size
3922 *			bytes.
3923 *
3924 *	MTSETPART - 	Switches to another tape partition.
3925 *
3926 *	MTLOCK - 	Locks the tape door.
3927 *
3928 *	MTUNLOCK - 	Unlocks the tape door.
3929 *
3930 *	The following commands are currently not supported:
3931 *
3932 *	MTFSS, MTBSS, MTWSM, MTSETDENSITY,
3933 *	MTSETDRVBUFFER, MT_ST_BOOLEANS, MT_ST_WRITE_THRESHOLD.
3934 */
3935static int idetape_mtioctop (ide_drive_t *drive,short mt_op,int mt_count)
3936{
3937	idetape_tape_t *tape = drive->driver_data;
3938	idetape_pc_t pc;
3939	int i,retval;
3940
3941#if IDETAPE_DEBUG_LOG
3942	if (tape->debug_level >= 1)
3943		printk(KERN_INFO "ide-tape: Handling MTIOCTOP ioctl: "
3944			"mt_op=%d, mt_count=%d\n", mt_op, mt_count);
3945#endif /* IDETAPE_DEBUG_LOG */
3946	/*
3947	 *	Commands which need our pipelined read-ahead stages.
3948	 */
3949	switch (mt_op) {
3950		case MTFSF:
3951		case MTFSFM:
3952		case MTBSF:
3953		case MTBSFM:
3954			if (!mt_count)
3955				return (0);
3956			return (idetape_space_over_filemarks(drive,mt_op,mt_count));
3957		default:
3958			break;
3959	}
3960	switch (mt_op) {
3961		case MTWEOF:
3962			if (tape->write_prot)
3963				return -EACCES;
3964			idetape_discard_read_pipeline(drive, 1);
3965			for (i = 0; i < mt_count; i++) {
3966				retval = idetape_write_filemark(drive);
3967				if (retval)
3968					return retval;
3969			}
3970			return (0);
3971		case MTREW:
3972			idetape_discard_read_pipeline(drive, 0);
3973			if (idetape_rewind_tape(drive))
3974				return -EIO;
3975			return 0;
3976		case MTLOAD:
3977			idetape_discard_read_pipeline(drive, 0);
3978			idetape_create_load_unload_cmd(drive, &pc, IDETAPE_LU_LOAD_MASK);
3979			return (idetape_queue_pc_tail(drive, &pc));
3980		case MTUNLOAD:
3981		case MTOFFL:
3982			/*
3983			 * If door is locked, attempt to unlock before
3984			 * attempting to eject.
3985			 */
3986			if (tape->door_locked) {
3987				if (idetape_create_prevent_cmd(drive, &pc, 0))
3988					if (!idetape_queue_pc_tail(drive, &pc))
3989						tape->door_locked = DOOR_UNLOCKED;
3990			}
3991			idetape_discard_read_pipeline(drive, 0);
3992			idetape_create_load_unload_cmd(drive, &pc,!IDETAPE_LU_LOAD_MASK);
3993			retval = idetape_queue_pc_tail(drive, &pc);
3994			if (!retval)
3995				clear_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags);
3996			return retval;
3997		case MTNOP:
3998			idetape_discard_read_pipeline(drive, 0);
3999			return (idetape_flush_tape_buffers(drive));
4000		case MTRETEN:
4001			idetape_discard_read_pipeline(drive, 0);
4002			idetape_create_load_unload_cmd(drive, &pc,IDETAPE_LU_RETENSION_MASK | IDETAPE_LU_LOAD_MASK);
4003			return (idetape_queue_pc_tail(drive, &pc));
4004		case MTEOM:
4005			idetape_create_space_cmd(&pc, 0, IDETAPE_SPACE_TO_EOD);
4006			return (idetape_queue_pc_tail(drive, &pc));
4007		case MTERASE:
4008			(void) idetape_rewind_tape(drive);
4009			idetape_create_erase_cmd(&pc);
4010			return (idetape_queue_pc_tail(drive, &pc));
4011		case MTSETBLK:
4012			if (mt_count) {
4013				if (mt_count < tape->tape_block_size || mt_count % tape->tape_block_size)
4014					return -EIO;
4015				tape->user_bs_factor = mt_count / tape->tape_block_size;
4016				clear_bit(IDETAPE_DETECT_BS, &tape->flags);
4017			} else
4018				set_bit(IDETAPE_DETECT_BS, &tape->flags);
4019			return 0;
4020		case MTSEEK:
4021			idetape_discard_read_pipeline(drive, 0);
4022			return idetape_position_tape(drive, mt_count * tape->user_bs_factor, tape->partition, 0);
4023		case MTSETPART:
4024			idetape_discard_read_pipeline(drive, 0);
4025			return (idetape_position_tape(drive, 0, mt_count, 0));
4026		case MTFSR:
4027		case MTBSR:
4028		case MTLOCK:
4029			if (!idetape_create_prevent_cmd(drive, &pc, 1))
4030				return 0;
4031			retval = idetape_queue_pc_tail(drive, &pc);
4032			if (retval) return retval;
4033			tape->door_locked = DOOR_EXPLICITLY_LOCKED;
4034			return 0;
4035		case MTUNLOCK:
4036			if (!idetape_create_prevent_cmd(drive, &pc, 0))
4037				return 0;
4038			retval = idetape_queue_pc_tail(drive, &pc);
4039			if (retval) return retval;
4040			tape->door_locked = DOOR_UNLOCKED;
4041			return 0;
4042		default:
4043			printk(KERN_ERR "ide-tape: MTIO operation %d not "
4044				"supported\n", mt_op);
4045			return (-EIO);
4046	}
4047}
4048
4049/*
4050 *	Our character device ioctls.
4051 *
4052 *	General mtio.h magnetic io commands are supported here, and not in
4053 *	the corresponding block interface.
4054 *
4055 *	The following ioctls are supported:
4056 *
4057 *	MTIOCTOP -	Refer to idetape_mtioctop for detailed description.
4058 *
4059 *	MTIOCGET - 	The mt_dsreg field in the returned mtget structure
4060 *			will be set to (user block size in bytes <<
4061 *			MT_ST_BLKSIZE_SHIFT) & MT_ST_BLKSIZE_MASK.
4062 *
4063 *			The mt_blkno is set to the current user block number.
4064 *			The other mtget fields are not supported.
4065 *
4066 *	MTIOCPOS -	The current tape "block position" is returned. We
4067 *			assume that each block contains user_block_size
4068 *			bytes.
4069 *
4070 *	Our own ide-tape ioctls are supported on both interfaces.
4071 */
4072static int idetape_chrdev_ioctl (struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
4073{
4074	struct ide_tape_obj *tape = ide_tape_f(file);
4075	ide_drive_t *drive = tape->drive;
4076	struct mtop mtop;
4077	struct mtget mtget;
4078	struct mtpos mtpos;
4079	int block_offset = 0, position = tape->first_frame_position;
4080	void __user *argp = (void __user *)arg;
4081
4082#if IDETAPE_DEBUG_LOG
4083	if (tape->debug_level >= 3)
4084		printk(KERN_INFO "ide-tape: Reached idetape_chrdev_ioctl, "
4085			"cmd=%u\n", cmd);
4086#endif /* IDETAPE_DEBUG_LOG */
4087
4088	tape->restart_speed_control_req = 1;
4089	if (tape->chrdev_direction == idetape_direction_write) {
4090		idetape_empty_write_pipeline(drive);
4091		idetape_flush_tape_buffers(drive);
4092	}
4093	if (cmd == MTIOCGET || cmd == MTIOCPOS) {
4094		block_offset = idetape_pipeline_size(drive) / (tape->tape_block_size * tape->user_bs_factor);
4095		if ((position = idetape_read_position(drive)) < 0)
4096			return -EIO;
4097	}
4098	switch (cmd) {
4099		case MTIOCTOP:
4100			if (copy_from_user(&mtop, argp, sizeof (struct mtop)))
4101				return -EFAULT;
4102			return (idetape_mtioctop(drive,mtop.mt_op,mtop.mt_count));
4103		case MTIOCGET:
4104			memset(&mtget, 0, sizeof (struct mtget));
4105			mtget.mt_type = MT_ISSCSI2;
4106			mtget.mt_blkno = position / tape->user_bs_factor - block_offset;
4107			mtget.mt_dsreg = ((tape->tape_block_size * tape->user_bs_factor) << MT_ST_BLKSIZE_SHIFT) & MT_ST_BLKSIZE_MASK;
4108			if (tape->drv_write_prot) {
4109				mtget.mt_gstat |= GMT_WR_PROT(0xffffffff);
4110			}
4111			if (copy_to_user(argp, &mtget, sizeof(struct mtget)))
4112				return -EFAULT;
4113			return 0;
4114		case MTIOCPOS:
4115			mtpos.mt_blkno = position / tape->user_bs_factor - block_offset;
4116			if (copy_to_user(argp, &mtpos, sizeof(struct mtpos)))
4117				return -EFAULT;
4118			return 0;
4119		default:
4120			if (tape->chrdev_direction == idetape_direction_read)
4121				idetape_discard_read_pipeline(drive, 1);
4122			return idetape_blkdev_ioctl(drive, cmd, arg);
4123	}
4124}
4125
4126static void idetape_get_blocksize_from_block_descriptor(ide_drive_t *drive);
4127
4128/*
4129 *	Our character device open function.
4130 */
4131static int idetape_chrdev_open (struct inode *inode, struct file *filp)
4132{
4133	unsigned int minor = iminor(inode), i = minor & ~0xc0;
4134	ide_drive_t *drive;
4135	idetape_tape_t *tape;
4136	idetape_pc_t pc;
4137	int retval;
4138
4139	/*
4140	 * We really want to do nonseekable_open(inode, filp); here, but some
4141	 * versions of tar incorrectly call lseek on tapes and bail out if that
4142	 * fails.  So we disallow pread() and pwrite(), but permit lseeks.
4143	 */
4144	filp->f_mode &= ~(FMODE_PREAD | FMODE_PWRITE);
4145
4146#if IDETAPE_DEBUG_LOG
4147	printk(KERN_INFO "ide-tape: Reached idetape_chrdev_open\n");
4148#endif /* IDETAPE_DEBUG_LOG */
4149
4150	if (i >= MAX_HWIFS * MAX_DRIVES)
4151		return -ENXIO;
4152
4153	if (!(tape = ide_tape_chrdev_get(i)))
4154		return -ENXIO;
4155
4156	drive = tape->drive;
4157
4158	filp->private_data = tape;
4159
4160	if (test_and_set_bit(IDETAPE_BUSY, &tape->flags)) {
4161		retval = -EBUSY;
4162		goto out_put_tape;
4163	}
4164
4165	retval = idetape_wait_ready(drive, 60 * HZ);
4166	if (retval) {
4167		clear_bit(IDETAPE_BUSY, &tape->flags);
4168		printk(KERN_ERR "ide-tape: %s: drive not ready\n", tape->name);
4169		goto out_put_tape;
4170	}
4171
4172	idetape_read_position(drive);
4173	if (!test_bit(IDETAPE_ADDRESS_VALID, &tape->flags))
4174		(void)idetape_rewind_tape(drive);
4175
4176	if (tape->chrdev_direction != idetape_direction_read)
4177		clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
4178
4179	/* Read block size and write protect status from drive. */
4180	idetape_get_blocksize_from_block_descriptor(drive);
4181
4182	/* Set write protect flag if device is opened as read-only. */
4183	if ((filp->f_flags & O_ACCMODE) == O_RDONLY)
4184		tape->write_prot = 1;
4185	else
4186		tape->write_prot = tape->drv_write_prot;
4187
4188	/* Make sure drive isn't write protected if user wants to write. */
4189	if (tape->write_prot) {
4190		if ((filp->f_flags & O_ACCMODE) == O_WRONLY ||
4191		    (filp->f_flags & O_ACCMODE) == O_RDWR) {
4192			clear_bit(IDETAPE_BUSY, &tape->flags);
4193			retval = -EROFS;
4194			goto out_put_tape;
4195		}
4196	}
4197
4198	/*
4199	 * Lock the tape drive door so user can't eject.
4200	 */
4201	if (tape->chrdev_direction == idetape_direction_none) {
4202		if (idetape_create_prevent_cmd(drive, &pc, 1)) {
4203			if (!idetape_queue_pc_tail(drive, &pc)) {
4204				if (tape->door_locked != DOOR_EXPLICITLY_LOCKED)
4205					tape->door_locked = DOOR_LOCKED;
4206			}
4207		}
4208	}
4209	idetape_restart_speed_control(drive);
4210	tape->restart_speed_control_req = 0;
4211	return 0;
4212
4213out_put_tape:
4214	ide_tape_put(tape);
4215	return retval;
4216}
4217
4218static void idetape_write_release (ide_drive_t *drive, unsigned int minor)
4219{
4220	idetape_tape_t *tape = drive->driver_data;
4221
4222	idetape_empty_write_pipeline(drive);
4223	tape->merge_stage = __idetape_kmalloc_stage(tape, 1, 0);
4224	if (tape->merge_stage != NULL) {
4225		idetape_pad_zeros(drive, tape->tape_block_size * (tape->user_bs_factor - 1));
4226		__idetape_kfree_stage(tape->merge_stage);
4227		tape->merge_stage = NULL;
4228	}
4229	idetape_write_filemark(drive);
4230	idetape_flush_tape_buffers(drive);
4231	idetape_flush_tape_buffers(drive);
4232}
4233
4234/*
4235 *	Our character device release function.
4236 */
4237static int idetape_chrdev_release (struct inode *inode, struct file *filp)
4238{
4239	struct ide_tape_obj *tape = ide_tape_f(filp);
4240	ide_drive_t *drive = tape->drive;
4241	idetape_pc_t pc;
4242	unsigned int minor = iminor(inode);
4243
4244	lock_kernel();
4245	tape = drive->driver_data;
4246#if IDETAPE_DEBUG_LOG
4247	if (tape->debug_level >= 3)
4248		printk(KERN_INFO "ide-tape: Reached idetape_chrdev_release\n");
4249#endif /* IDETAPE_DEBUG_LOG */
4250
4251	if (tape->chrdev_direction == idetape_direction_write)
4252		idetape_write_release(drive, minor);
4253	if (tape->chrdev_direction == idetape_direction_read) {
4254		if (minor < 128)
4255			idetape_discard_read_pipeline(drive, 1);
4256		else
4257			idetape_wait_for_pipeline(drive);
4258	}
4259	if (tape->cache_stage != NULL) {
4260		__idetape_kfree_stage(tape->cache_stage);
4261		tape->cache_stage = NULL;
4262	}
4263	if (minor < 128 && test_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags))
4264		(void) idetape_rewind_tape(drive);
4265	if (tape->chrdev_direction == idetape_direction_none) {
4266		if (tape->door_locked == DOOR_LOCKED) {
4267			if (idetape_create_prevent_cmd(drive, &pc, 0)) {
4268				if (!idetape_queue_pc_tail(drive, &pc))
4269					tape->door_locked = DOOR_UNLOCKED;
4270			}
4271		}
4272	}
4273	clear_bit(IDETAPE_BUSY, &tape->flags);
4274	ide_tape_put(tape);
4275	unlock_kernel();
4276	return 0;
4277}
4278
4279/*
4280 *	idetape_identify_device is called to check the contents of the
4281 *	ATAPI IDENTIFY command results. We return:
4282 *
4283 *	1	If the tape can be supported by us, based on the information
4284 *		we have so far.
4285 *
4286 *	0 	If this tape driver is not currently supported by us.
4287 */
4288static int idetape_identify_device (ide_drive_t *drive)
4289{
4290	struct idetape_id_gcw gcw;
4291	struct hd_driveid *id = drive->id;
4292#if IDETAPE_DEBUG_INFO
4293	unsigned short mask,i;
4294#endif /* IDETAPE_DEBUG_INFO */
4295
4296	if (drive->id_read == 0)
4297		return 1;
4298
4299	*((unsigned short *) &gcw) = id->config;
4300
4301#if IDETAPE_DEBUG_INFO
4302	printk(KERN_INFO "ide-tape: Dumping ATAPI Identify Device tape parameters\n");
4303	printk(KERN_INFO "ide-tape: Protocol Type: ");
4304	switch (gcw.protocol) {
4305		case 0: case 1: printk("ATA\n");break;
4306		case 2:	printk("ATAPI\n");break;
4307		case 3: printk("Reserved (Unknown to ide-tape)\n");break;
4308	}
4309	printk(KERN_INFO "ide-tape: Device Type: %x - ",gcw.device_type);
4310	switch (gcw.device_type) {
4311		case 0: printk("Direct-access Device\n");break;
4312		case 1: printk("Streaming Tape Device\n");break;
4313		case 2: case 3: case 4: printk("Reserved\n");break;
4314		case 5: printk("CD-ROM Device\n");break;
4315		case 6: printk("Reserved\n");
4316		case 7: printk("Optical memory Device\n");break;
4317		case 0x1f: printk("Unknown or no Device type\n");break;
4318		default: printk("Reserved\n");
4319	}
4320	printk(KERN_INFO "ide-tape: Removable: %s",gcw.removable ? "Yes\n":"No\n");
4321	printk(KERN_INFO "ide-tape: Command Packet DRQ Type: ");
4322	switch (gcw.drq_type) {
4323		case 0: printk("Microprocessor DRQ\n");break;
4324		case 1: printk("Interrupt DRQ\n");break;
4325		case 2: printk("Accelerated DRQ\n");break;
4326		case 3: printk("Reserved\n");break;
4327	}
4328	printk(KERN_INFO "ide-tape: Command Packet Size: ");
4329	switch (gcw.packet_size) {
4330		case 0: printk("12 bytes\n");break;
4331		case 1: printk("16 bytes\n");break;
4332		default: printk("Reserved\n");break;
4333	}
4334	printk(KERN_INFO "ide-tape: Model: %.40s\n",id->model);
4335	printk(KERN_INFO "ide-tape: Firmware Revision: %.8s\n",id->fw_rev);
4336	printk(KERN_INFO "ide-tape: Serial Number: %.20s\n",id->serial_no);
4337	printk(KERN_INFO "ide-tape: Write buffer size: %d bytes\n",id->buf_size*512);
4338	printk(KERN_INFO "ide-tape: DMA: %s",id->capability & 0x01 ? "Yes\n":"No\n");
4339	printk(KERN_INFO "ide-tape: LBA: %s",id->capability & 0x02 ? "Yes\n":"No\n");
4340	printk(KERN_INFO "ide-tape: IORDY can be disabled: %s",id->capability & 0x04 ? "Yes\n":"No\n");
4341	printk(KERN_INFO "ide-tape: IORDY supported: %s",id->capability & 0x08 ? "Yes\n":"Unknown\n");
4342	printk(KERN_INFO "ide-tape: ATAPI overlap supported: %s",id->capability & 0x20 ? "Yes\n":"No\n");
4343	printk(KERN_INFO "ide-tape: PIO Cycle Timing Category: %d\n",id->tPIO);
4344	printk(KERN_INFO "ide-tape: DMA Cycle Timing Category: %d\n",id->tDMA);
4345	printk(KERN_INFO "ide-tape: Single Word DMA supported modes: ");
4346	for (i=0,mask=1;i<8;i++,mask=mask << 1) {
4347		if (id->dma_1word & mask)
4348			printk("%d ",i);
4349		if (id->dma_1word & (mask << 8))
4350			printk("(active) ");
4351	}
4352	printk("\n");
4353	printk(KERN_INFO "ide-tape: Multi Word DMA supported modes: ");
4354	for (i=0,mask=1;i<8;i++,mask=mask << 1) {
4355		if (id->dma_mword & mask)
4356			printk("%d ",i);
4357		if (id->dma_mword & (mask << 8))
4358			printk("(active) ");
4359	}
4360	printk("\n");
4361	if (id->field_valid & 0x0002) {
4362		printk(KERN_INFO "ide-tape: Enhanced PIO Modes: %s\n",
4363			id->eide_pio_modes & 1 ? "Mode 3":"None");
4364		printk(KERN_INFO "ide-tape: Minimum Multi-word DMA cycle per word: ");
4365		if (id->eide_dma_min == 0)
4366			printk("Not supported\n");
4367		else
4368			printk("%d ns\n",id->eide_dma_min);
4369
4370		printk(KERN_INFO "ide-tape: Manufacturer\'s Recommended Multi-word cycle: ");
4371		if (id->eide_dma_time == 0)
4372			printk("Not supported\n");
4373		else
4374			printk("%d ns\n",id->eide_dma_time);
4375
4376		printk(KERN_INFO "ide-tape: Minimum PIO cycle without IORDY: ");
4377		if (id->eide_pio == 0)
4378			printk("Not supported\n");
4379		else
4380			printk("%d ns\n",id->eide_pio);
4381
4382		printk(KERN_INFO "ide-tape: Minimum PIO cycle with IORDY: ");
4383		if (id->eide_pio_iordy == 0)
4384			printk("Not supported\n");
4385		else
4386			printk("%d ns\n",id->eide_pio_iordy);
4387
4388	} else
4389		printk(KERN_INFO "ide-tape: According to the device, fields 64-70 are not valid.\n");
4390#endif /* IDETAPE_DEBUG_INFO */
4391
4392	/* Check that we can support this device */
4393
4394	if (gcw.protocol !=2 )
4395		printk(KERN_ERR "ide-tape: Protocol is not ATAPI\n");
4396	else if (gcw.device_type != 1)
4397		printk(KERN_ERR "ide-tape: Device type is not set to tape\n");
4398	else if (!gcw.removable)
4399		printk(KERN_ERR "ide-tape: The removable flag is not set\n");
4400	else if (gcw.packet_size != 0) {
4401		printk(KERN_ERR "ide-tape: Packet size is not 12 bytes long\n");
4402		if (gcw.packet_size == 1)
4403			printk(KERN_ERR "ide-tape: Sorry, padding to 16 bytes is still not supported\n");
4404	} else
4405		return 1;
4406	return 0;
4407}
4408
4409/*
4410 * Use INQUIRY to get the firmware revision
4411 */
4412static void idetape_get_inquiry_results (ide_drive_t *drive)
4413{
4414	char *r;
4415	idetape_tape_t *tape = drive->driver_data;
4416	idetape_pc_t pc;
4417	idetape_inquiry_result_t *inquiry;
4418
4419	idetape_create_inquiry_cmd(&pc);
4420	if (idetape_queue_pc_tail(drive, &pc)) {
4421		printk(KERN_ERR "ide-tape: %s: can't get INQUIRY results\n", tape->name);
4422		return;
4423	}
4424	inquiry = (idetape_inquiry_result_t *) pc.buffer;
4425	memcpy(tape->vendor_id, inquiry->vendor_id, 8);
4426	memcpy(tape->product_id, inquiry->product_id, 16);
4427	memcpy(tape->firmware_revision, inquiry->revision_level, 4);
4428	ide_fixstring(tape->vendor_id, 10, 0);
4429	ide_fixstring(tape->product_id, 18, 0);
4430	ide_fixstring(tape->firmware_revision, 6, 0);
4431	r = tape->firmware_revision;
4432	if (*(r + 1) == '.')
4433		tape->firmware_revision_num = (*r - '0') * 100 + (*(r + 2) - '0') * 10 + *(r + 3) - '0';
4434	printk(KERN_INFO "ide-tape: %s <-> %s: %s %s rev %s\n", drive->name, tape->name, tape->vendor_id, tape->product_id, tape->firmware_revision);
4435}
4436
4437/*
4438 *	idetape_get_mode_sense_results asks the tape about its various
4439 *	parameters. In particular, we will adjust our data transfer buffer
4440 *	size to the recommended value as returned by the tape.
4441 */
4442static void idetape_get_mode_sense_results (ide_drive_t *drive)
4443{
4444	idetape_tape_t *tape = drive->driver_data;
4445	idetape_pc_t pc;
4446	idetape_mode_parameter_header_t *header;
4447	idetape_capabilities_page_t *capabilities;
4448
4449	idetape_create_mode_sense_cmd(&pc, IDETAPE_CAPABILITIES_PAGE);
4450	if (idetape_queue_pc_tail(drive, &pc)) {
4451		printk(KERN_ERR "ide-tape: Can't get tape parameters - assuming some default values\n");
4452		tape->tape_block_size = 512;
4453		tape->capabilities.ctl = 52;
4454		tape->capabilities.speed = 450;
4455		tape->capabilities.buffer_size = 6 * 52;
4456		return;
4457	}
4458	header = (idetape_mode_parameter_header_t *) pc.buffer;
4459	capabilities = (idetape_capabilities_page_t *) (pc.buffer + sizeof(idetape_mode_parameter_header_t) + header->bdl);
4460
4461	capabilities->max_speed = ntohs(capabilities->max_speed);
4462	capabilities->ctl = ntohs(capabilities->ctl);
4463	capabilities->speed = ntohs(capabilities->speed);
4464	capabilities->buffer_size = ntohs(capabilities->buffer_size);
4465
4466	if (!capabilities->speed) {
4467		printk(KERN_INFO "ide-tape: %s: overriding capabilities->speed (assuming 650KB/sec)\n", drive->name);
4468		capabilities->speed = 650;
4469	}
4470	if (!capabilities->max_speed) {
4471		printk(KERN_INFO "ide-tape: %s: overriding capabilities->max_speed (assuming 650KB/sec)\n", drive->name);
4472		capabilities->max_speed = 650;
4473	}
4474
4475	tape->capabilities = *capabilities;		/* Save us a copy */
4476	if (capabilities->blk512)
4477		tape->tape_block_size = 512;
4478	else if (capabilities->blk1024)
4479		tape->tape_block_size = 1024;
4480
4481#if IDETAPE_DEBUG_INFO
4482	printk(KERN_INFO "ide-tape: Dumping the results of the MODE SENSE packet command\n");
4483	printk(KERN_INFO "ide-tape: Mode Parameter Header:\n");
4484	printk(KERN_INFO "ide-tape: Mode Data Length - %d\n",header->mode_data_length);
4485	printk(KERN_INFO "ide-tape: Medium Type - %d\n",header->medium_type);
4486	printk(KERN_INFO "ide-tape: Device Specific Parameter - %d\n",header->dsp);
4487	printk(KERN_INFO "ide-tape: Block Descriptor Length - %d\n",header->bdl);
4488
4489	printk(KERN_INFO "ide-tape: Capabilities and Mechanical Status Page:\n");
4490	printk(KERN_INFO "ide-tape: Page code - %d\n",capabilities->page_code);
4491	printk(KERN_INFO "ide-tape: Page length - %d\n",capabilities->page_length);
4492	printk(KERN_INFO "ide-tape: Read only - %s\n",capabilities->ro ? "Yes":"No");
4493	printk(KERN_INFO "ide-tape: Supports reverse space - %s\n",capabilities->sprev ? "Yes":"No");
4494	printk(KERN_INFO "ide-tape: Supports erase initiated formatting - %s\n",capabilities->efmt ? "Yes":"No");
4495	printk(KERN_INFO "ide-tape: Supports QFA two Partition format - %s\n",capabilities->qfa ? "Yes":"No");
4496	printk(KERN_INFO "ide-tape: Supports locking the medium - %s\n",capabilities->lock ? "Yes":"No");
4497	printk(KERN_INFO "ide-tape: The volume is currently locked - %s\n",capabilities->locked ? "Yes":"No");
4498	printk(KERN_INFO "ide-tape: The device defaults in the prevent state - %s\n",capabilities->prevent ? "Yes":"No");
4499	printk(KERN_INFO "ide-tape: Supports ejecting the medium - %s\n",capabilities->eject ? "Yes":"No");
4500	printk(KERN_INFO "ide-tape: Supports error correction - %s\n",capabilities->ecc ? "Yes":"No");
4501	printk(KERN_INFO "ide-tape: Supports data compression - %s\n",capabilities->cmprs ? "Yes":"No");
4502	printk(KERN_INFO "ide-tape: Supports 512 bytes block size - %s\n",capabilities->blk512 ? "Yes":"No");
4503	printk(KERN_INFO "ide-tape: Supports 1024 bytes block size - %s\n",capabilities->blk1024 ? "Yes":"No");
4504	printk(KERN_INFO "ide-tape: Supports 32768 bytes block size / Restricted byte count for PIO transfers - %s\n",capabilities->blk32768 ? "Yes":"No");
4505	printk(KERN_INFO "ide-tape: Maximum supported speed in KBps - %d\n",capabilities->max_speed);
4506	printk(KERN_INFO "ide-tape: Continuous transfer limits in blocks - %d\n",capabilities->ctl);
4507	printk(KERN_INFO "ide-tape: Current speed in KBps - %d\n",capabilities->speed);
4508	printk(KERN_INFO "ide-tape: Buffer size - %d\n",capabilities->buffer_size*512);
4509#endif /* IDETAPE_DEBUG_INFO */
4510}
4511
4512/*
4513 *	ide_get_blocksize_from_block_descriptor does a mode sense page 0 with block descriptor
4514 *	and if it succeeds sets the tape block size with the reported value
4515 */
4516static void idetape_get_blocksize_from_block_descriptor(ide_drive_t *drive)
4517{
4518
4519	idetape_tape_t *tape = drive->driver_data;
4520	idetape_pc_t pc;
4521	idetape_mode_parameter_header_t *header;
4522	idetape_parameter_block_descriptor_t *block_descrp;
4523
4524	idetape_create_mode_sense_cmd(&pc, IDETAPE_BLOCK_DESCRIPTOR);
4525	if (idetape_queue_pc_tail(drive, &pc)) {
4526		printk(KERN_ERR "ide-tape: Can't get block descriptor\n");
4527		if (tape->tape_block_size == 0) {
4528			printk(KERN_WARNING "ide-tape: Cannot deal with zero block size, assume 32k\n");
4529			tape->tape_block_size =  32768;
4530		}
4531		return;
4532	}
4533	header = (idetape_mode_parameter_header_t *) pc.buffer;
4534	block_descrp = (idetape_parameter_block_descriptor_t *) (pc.buffer + sizeof(idetape_mode_parameter_header_t));
4535	tape->tape_block_size =( block_descrp->length[0]<<16) + (block_descrp->length[1]<<8) + block_descrp->length[2];
4536	tape->drv_write_prot = (header->dsp & 0x80) >> 7;
4537
4538#if IDETAPE_DEBUG_INFO
4539	printk(KERN_INFO "ide-tape: Adjusted block size - %d\n", tape->tape_block_size);
4540#endif /* IDETAPE_DEBUG_INFO */
4541}
4542
4543#ifdef CONFIG_IDE_PROC_FS
4544static void idetape_add_settings (ide_drive_t *drive)
4545{
4546	idetape_tape_t *tape = drive->driver_data;
4547
4548/*
4549 *			drive	setting name		read/write	data type	min			max			mul_factor			div_factor	data pointer				set function
4550 */
4551	ide_add_setting(drive,	"buffer",		SETTING_READ,	TYPE_SHORT,	0,			0xffff,			1,				2,		&tape->capabilities.buffer_size,	NULL);
4552	ide_add_setting(drive,	"pipeline_min",		SETTING_RW,	TYPE_INT,	1,			0xffff,			tape->stage_size / 1024,	1,		&tape->min_pipeline,			NULL);
4553	ide_add_setting(drive,	"pipeline",		SETTING_RW,	TYPE_INT,	1,			0xffff,			tape->stage_size / 1024,	1,		&tape->max_stages,			NULL);
4554	ide_add_setting(drive,	"pipeline_max",		SETTING_RW,	TYPE_INT,	1,			0xffff,			tape->stage_size / 1024,	1,		&tape->max_pipeline,			NULL);
4555	ide_add_setting(drive,	"pipeline_used",	SETTING_READ,	TYPE_INT,	0,			0xffff,			tape->stage_size / 1024,	1,		&tape->nr_stages,			NULL);
4556	ide_add_setting(drive,	"pipeline_pending",	SETTING_READ,	TYPE_INT,	0,			0xffff,			tape->stage_size / 1024,	1,		&tape->nr_pending_stages,		NULL);
4557	ide_add_setting(drive,	"speed",		SETTING_READ,	TYPE_SHORT,	0,			0xffff,			1,				1,		&tape->capabilities.speed,		NULL);
4558	ide_add_setting(drive,	"stage",		SETTING_READ,	TYPE_INT,	0,			0xffff,			1,				1024,		&tape->stage_size,			NULL);
4559	ide_add_setting(drive,	"tdsc",			SETTING_RW,	TYPE_INT,	IDETAPE_DSC_RW_MIN,	IDETAPE_DSC_RW_MAX,	1000,				HZ,		&tape->best_dsc_rw_frequency,		NULL);
4560	ide_add_setting(drive,	"dsc_overlap",		SETTING_RW,	TYPE_BYTE,	0,			1,			1,				1,		&drive->dsc_overlap,			NULL);
4561	ide_add_setting(drive,	"pipeline_head_speed_c",SETTING_READ,	TYPE_INT,	0,			0xffff,			1,				1,		&tape->controlled_pipeline_head_speed,	NULL);
4562	ide_add_setting(drive,	"pipeline_head_speed_u",SETTING_READ,	TYPE_INT,	0,			0xffff,			1,				1,		&tape->uncontrolled_pipeline_head_speed,NULL);
4563	ide_add_setting(drive,	"avg_speed",		SETTING_READ,	TYPE_INT,	0,			0xffff,			1,				1,		&tape->avg_speed,			NULL);
4564	ide_add_setting(drive,	"debug_level",		SETTING_RW,	TYPE_INT,	0,			0xffff,			1,				1,		&tape->debug_level,			NULL);
4565}
4566#else
4567static inline void idetape_add_settings(ide_drive_t *drive) { ; }
4568#endif
4569
4570/*
4571 *	ide_setup is called to:
4572 *
4573 *		1.	Initialize our various state variables.
4574 *		2.	Ask the tape for its capabilities.
4575 *		3.	Allocate a buffer which will be used for data
4576 *			transfer. The buffer size is chosen based on
4577 *			the recommendation which we received in step (2).
4578 *
4579 *	Note that at this point ide.c already assigned us an irq, so that
4580 *	we can queue requests here and wait for their completion.
4581 */
4582static void idetape_setup (ide_drive_t *drive, idetape_tape_t *tape, int minor)
4583{
4584	unsigned long t1, tmid, tn, t;
4585	int speed;
4586	struct idetape_id_gcw gcw;
4587	int stage_size;
4588	struct sysinfo si;
4589
4590	spin_lock_init(&tape->spinlock);
4591	drive->dsc_overlap = 1;
4592#ifdef CONFIG_BLK_DEV_IDEPCI
4593	if (HWIF(drive)->pci_dev != NULL) {
4594		/*
4595		 * These two ide-pci host adapters appear to need DSC overlap disabled.
4596		 * This probably needs further analysis.
4597		 */
4598		if ((HWIF(drive)->pci_dev->device == PCI_DEVICE_ID_ARTOP_ATP850UF) ||
4599		    (HWIF(drive)->pci_dev->device == PCI_DEVICE_ID_TTI_HPT343)) {
4600			printk(KERN_INFO "ide-tape: %s: disabling DSC overlap\n", tape->name);
4601		    	drive->dsc_overlap = 0;
4602		}
4603	}
4604#endif /* CONFIG_BLK_DEV_IDEPCI */
4605	/* Seagate Travan drives do not support DSC overlap. */
4606	if (strstr(drive->id->model, "Seagate STT3401"))
4607		drive->dsc_overlap = 0;
4608	tape->minor = minor;
4609	tape->name[0] = 'h';
4610	tape->name[1] = 't';
4611	tape->name[2] = '0' + minor;
4612	tape->chrdev_direction = idetape_direction_none;
4613	tape->pc = tape->pc_stack;
4614	tape->max_insert_speed = 10000;
4615	tape->speed_control = 1;
4616	*((unsigned short *) &gcw) = drive->id->config;
4617	if (gcw.drq_type == 1)
4618		set_bit(IDETAPE_DRQ_INTERRUPT, &tape->flags);
4619
4620	tape->min_pipeline = tape->max_pipeline = tape->max_stages = 10;
4621
4622	idetape_get_inquiry_results(drive);
4623	idetape_get_mode_sense_results(drive);
4624	idetape_get_blocksize_from_block_descriptor(drive);
4625	tape->user_bs_factor = 1;
4626	tape->stage_size = tape->capabilities.ctl * tape->tape_block_size;
4627	while (tape->stage_size > 0xffff) {
4628		printk(KERN_NOTICE "ide-tape: decreasing stage size\n");
4629		tape->capabilities.ctl /= 2;
4630		tape->stage_size = tape->capabilities.ctl * tape->tape_block_size;
4631	}
4632	stage_size = tape->stage_size;
4633	tape->pages_per_stage = stage_size / PAGE_SIZE;
4634	if (stage_size % PAGE_SIZE) {
4635		tape->pages_per_stage++;
4636		tape->excess_bh_size = PAGE_SIZE - stage_size % PAGE_SIZE;
4637	}
4638
4639	/*
4640	 *	Select the "best" DSC read/write polling frequency
4641	 *	and pipeline size.
4642	 */
4643	speed = max(tape->capabilities.speed, tape->capabilities.max_speed);
4644
4645	tape->max_stages = speed * 1000 * 10 / tape->stage_size;
4646
4647	/*
4648	 * 	Limit memory use for pipeline to 10% of physical memory
4649	 */
4650	si_meminfo(&si);
4651	if (tape->max_stages * tape->stage_size > si.totalram * si.mem_unit / 10)
4652		tape->max_stages = si.totalram * si.mem_unit / (10 * tape->stage_size);
4653	tape->max_stages   = min(tape->max_stages, IDETAPE_MAX_PIPELINE_STAGES);
4654	tape->min_pipeline = min(tape->max_stages, IDETAPE_MIN_PIPELINE_STAGES);
4655	tape->max_pipeline = min(tape->max_stages * 2, IDETAPE_MAX_PIPELINE_STAGES);
4656	if (tape->max_stages == 0)
4657		tape->max_stages = tape->min_pipeline = tape->max_pipeline = 1;
4658
4659	t1 = (tape->stage_size * HZ) / (speed * 1000);
4660	tmid = (tape->capabilities.buffer_size * 32 * HZ) / (speed * 125);
4661	tn = (IDETAPE_FIFO_THRESHOLD * tape->stage_size * HZ) / (speed * 1000);
4662
4663	if (tape->max_stages)
4664		t = tn;
4665	else
4666		t = t1;
4667
4668	/*
4669	 *	Ensure that the number we got makes sense; limit
4670	 *	it within IDETAPE_DSC_RW_MIN and IDETAPE_DSC_RW_MAX.
4671	 */
4672	tape->best_dsc_rw_frequency = max_t(unsigned long, min_t(unsigned long, t, IDETAPE_DSC_RW_MAX), IDETAPE_DSC_RW_MIN);
4673	printk(KERN_INFO "ide-tape: %s <-> %s: %dKBps, %d*%dkB buffer, "
4674		"%dkB pipeline, %lums tDSC%s\n",
4675		drive->name, tape->name, tape->capabilities.speed,
4676		(tape->capabilities.buffer_size * 512) / tape->stage_size,
4677		tape->stage_size / 1024,
4678		tape->max_stages * tape->stage_size / 1024,
4679		tape->best_dsc_rw_frequency * 1000 / HZ,
4680		drive->using_dma ? ", DMA":"");
4681
4682	idetape_add_settings(drive);
4683}
4684
4685static void ide_tape_remove(ide_drive_t *drive)
4686{
4687	idetape_tape_t *tape = drive->driver_data;
4688
4689	ide_proc_unregister_driver(drive, tape->driver);
4690
4691	ide_unregister_region(tape->disk);
4692
4693	ide_tape_put(tape);
4694}
4695
4696static void ide_tape_release(struct kref *kref)
4697{
4698	struct ide_tape_obj *tape = to_ide_tape(kref);
4699	ide_drive_t *drive = tape->drive;
4700	struct gendisk *g = tape->disk;
4701
4702	BUG_ON(tape->first_stage != NULL || tape->merge_stage_size);
4703
4704	drive->dsc_overlap = 0;
4705	drive->driver_data = NULL;
4706	device_destroy(idetape_sysfs_class, MKDEV(IDETAPE_MAJOR, tape->minor));
4707	device_destroy(idetape_sysfs_class, MKDEV(IDETAPE_MAJOR, tape->minor + 128));
4708	idetape_devs[tape->minor] = NULL;
4709	g->private_data = NULL;
4710	put_disk(g);
4711	kfree(tape);
4712}
4713
4714#ifdef CONFIG_IDE_PROC_FS
4715static int proc_idetape_read_name
4716	(char *page, char **start, off_t off, int count, int *eof, void *data)
4717{
4718	ide_drive_t	*drive = (ide_drive_t *) data;
4719	idetape_tape_t	*tape = drive->driver_data;
4720	char		*out = page;
4721	int		len;
4722
4723	len = sprintf(out, "%s\n", tape->name);
4724	PROC_IDE_READ_RETURN(page, start, off, count, eof, len);
4725}
4726
4727static ide_proc_entry_t idetape_proc[] = {
4728	{ "capacity",	S_IFREG|S_IRUGO,	proc_ide_read_capacity, NULL },
4729	{ "name",	S_IFREG|S_IRUGO,	proc_idetape_read_name,	NULL },
4730	{ NULL, 0, NULL, NULL }
4731};
4732#endif
4733
4734static int ide_tape_probe(ide_drive_t *);
4735
4736static ide_driver_t idetape_driver = {
4737	.gen_driver = {
4738		.owner		= THIS_MODULE,
4739		.name		= "ide-tape",
4740		.bus		= &ide_bus_type,
4741	},
4742	.probe			= ide_tape_probe,
4743	.remove			= ide_tape_remove,
4744	.version		= IDETAPE_VERSION,
4745	.media			= ide_tape,
4746	.supports_dsc_overlap 	= 1,
4747	.do_request		= idetape_do_request,
4748	.end_request		= idetape_end_request,
4749	.error			= __ide_error,
4750	.abort			= __ide_abort,
4751#ifdef CONFIG_IDE_PROC_FS
4752	.proc			= idetape_proc,
4753#endif
4754};
4755
4756/*
4757 *	Our character device supporting functions, passed to register_chrdev.
4758 */
4759static const struct file_operations idetape_fops = {
4760	.owner		= THIS_MODULE,
4761	.read		= idetape_chrdev_read,
4762	.write		= idetape_chrdev_write,
4763	.ioctl		= idetape_chrdev_ioctl,
4764	.open		= idetape_chrdev_open,
4765	.release	= idetape_chrdev_release,
4766};
4767
4768static int idetape_open(struct inode *inode, struct file *filp)
4769{
4770	struct gendisk *disk = inode->i_bdev->bd_disk;
4771	struct ide_tape_obj *tape;
4772
4773	if (!(tape = ide_tape_get(disk)))
4774		return -ENXIO;
4775
4776	return 0;
4777}
4778
4779static int idetape_release(struct inode *inode, struct file *filp)
4780{
4781	struct gendisk *disk = inode->i_bdev->bd_disk;
4782	struct ide_tape_obj *tape = ide_tape_g(disk);
4783
4784	ide_tape_put(tape);
4785
4786	return 0;
4787}
4788
4789static int idetape_ioctl(struct inode *inode, struct file *file,
4790			unsigned int cmd, unsigned long arg)
4791{
4792	struct block_device *bdev = inode->i_bdev;
4793	struct ide_tape_obj *tape = ide_tape_g(bdev->bd_disk);
4794	ide_drive_t *drive = tape->drive;
4795	int err = generic_ide_ioctl(drive, file, bdev, cmd, arg);
4796	if (err == -EINVAL)
4797		err = idetape_blkdev_ioctl(drive, cmd, arg);
4798	return err;
4799}
4800
4801static struct block_device_operations idetape_block_ops = {
4802	.owner		= THIS_MODULE,
4803	.open		= idetape_open,
4804	.release	= idetape_release,
4805	.ioctl		= idetape_ioctl,
4806};
4807
4808static int ide_tape_probe(ide_drive_t *drive)
4809{
4810	idetape_tape_t *tape;
4811	struct gendisk *g;
4812	int minor;
4813
4814	if (!strstr("ide-tape", drive->driver_req))
4815		goto failed;
4816	if (!drive->present)
4817		goto failed;
4818	if (drive->media != ide_tape)
4819		goto failed;
4820	if (!idetape_identify_device (drive)) {
4821		printk(KERN_ERR "ide-tape: %s: not supported by this version of ide-tape\n", drive->name);
4822		goto failed;
4823	}
4824	if (drive->scsi) {
4825		printk("ide-tape: passing drive %s to ide-scsi emulation.\n", drive->name);
4826		goto failed;
4827	}
4828	if (strstr(drive->id->model, "OnStream DI-")) {
4829		printk(KERN_WARNING "ide-tape: Use drive %s with ide-scsi emulation and osst.\n", drive->name);
4830		printk(KERN_WARNING "ide-tape: OnStream support will be removed soon from ide-tape!\n");
4831	}
4832	tape = kzalloc(sizeof (idetape_tape_t), GFP_KERNEL);
4833	if (tape == NULL) {
4834		printk(KERN_ERR "ide-tape: %s: Can't allocate a tape structure\n", drive->name);
4835		goto failed;
4836	}
4837
4838	g = alloc_disk(1 << PARTN_BITS);
4839	if (!g)
4840		goto out_free_tape;
4841
4842	ide_init_disk(g, drive);
4843
4844	ide_proc_register_driver(drive, &idetape_driver);
4845
4846	kref_init(&tape->kref);
4847
4848	tape->drive = drive;
4849	tape->driver = &idetape_driver;
4850	tape->disk = g;
4851
4852	g->private_data = &tape->driver;
4853
4854	drive->driver_data = tape;
4855
4856	mutex_lock(&idetape_ref_mutex);
4857	for (minor = 0; idetape_devs[minor]; minor++)
4858		;
4859	idetape_devs[minor] = tape;
4860	mutex_unlock(&idetape_ref_mutex);
4861
4862	idetape_setup(drive, tape, minor);
4863
4864	device_create(idetape_sysfs_class, &drive->gendev,
4865		      MKDEV(IDETAPE_MAJOR, minor), "%s", tape->name);
4866	device_create(idetape_sysfs_class, &drive->gendev,
4867			MKDEV(IDETAPE_MAJOR, minor + 128), "n%s", tape->name);
4868
4869	g->fops = &idetape_block_ops;
4870	ide_register_region(g);
4871
4872	return 0;
4873
4874out_free_tape:
4875	kfree(tape);
4876failed:
4877	return -ENODEV;
4878}
4879
4880MODULE_DESCRIPTION("ATAPI Streaming TAPE Driver");
4881MODULE_LICENSE("GPL");
4882
4883static void __exit idetape_exit (void)
4884{
4885	driver_unregister(&idetape_driver.gen_driver);
4886	class_destroy(idetape_sysfs_class);
4887	unregister_chrdev(IDETAPE_MAJOR, "ht");
4888}
4889
4890static int __init idetape_init(void)
4891{
4892	int error = 1;
4893	idetape_sysfs_class = class_create(THIS_MODULE, "ide_tape");
4894	if (IS_ERR(idetape_sysfs_class)) {
4895		idetape_sysfs_class = NULL;
4896		printk(KERN_ERR "Unable to create sysfs class for ide tapes\n");
4897		error = -EBUSY;
4898		goto out;
4899	}
4900
4901	if (register_chrdev(IDETAPE_MAJOR, "ht", &idetape_fops)) {
4902		printk(KERN_ERR "ide-tape: Failed to register character device interface\n");
4903		error = -EBUSY;
4904		goto out_free_class;
4905	}
4906
4907	error = driver_register(&idetape_driver.gen_driver);
4908	if (error)
4909		goto out_free_driver;
4910
4911	return 0;
4912
4913out_free_driver:
4914	driver_unregister(&idetape_driver.gen_driver);
4915out_free_class:
4916	class_destroy(idetape_sysfs_class);
4917out:
4918	return error;
4919}
4920
4921MODULE_ALIAS("ide:*m-tape*");
4922module_init(idetape_init);
4923module_exit(idetape_exit);
4924MODULE_ALIAS_CHARDEV_MAJOR(IDETAPE_MAJOR);
4925