ide-tape.c revision d554336514a63342c2e4b06b4287ad93c112b00f
1/*
2 * linux/drivers/ide/ide-tape.c		Version 1.19	Nov, 2003
3 *
4 * Copyright (C) 1995 - 1999 Gadi Oxman <gadio@netvision.net.il>
5 *
6 * $Header$
7 *
8 * This driver was constructed as a student project in the software laboratory
9 * of the faculty of electrical engineering in the Technion - Israel's
10 * Institute Of Technology, with the guide of Avner Lottem and Dr. Ilana David.
11 *
12 * It is hereby placed under the terms of the GNU general public license.
13 * (See linux/COPYING).
14 */
15
16/*
17 * IDE ATAPI streaming tape driver.
18 *
19 * This driver is a part of the Linux ide driver and works in co-operation
20 * with linux/drivers/block/ide.c.
21 *
22 * The driver, in co-operation with ide.c, basically traverses the
23 * request-list for the block device interface. The character device
24 * interface, on the other hand, creates new requests, adds them
25 * to the request-list of the block device, and waits for their completion.
26 *
27 * Pipelined operation mode is now supported on both reads and writes.
28 *
29 * The block device major and minor numbers are determined from the
30 * tape's relative position in the ide interfaces, as explained in ide.c.
31 *
32 * The character device interface consists of the following devices:
33 *
34 * ht0		major 37, minor 0	first  IDE tape, rewind on close.
35 * ht1		major 37, minor 1	second IDE tape, rewind on close.
36 * ...
37 * nht0		major 37, minor 128	first  IDE tape, no rewind on close.
38 * nht1		major 37, minor 129	second IDE tape, no rewind on close.
39 * ...
40 *
41 * Run linux/scripts/MAKEDEV.ide to create the above entries.
42 *
43 * The general magnetic tape commands compatible interface, as defined by
44 * include/linux/mtio.h, is accessible through the character device.
45 *
46 * General ide driver configuration options, such as the interrupt-unmask
47 * flag, can be configured by issuing an ioctl to the block device interface,
48 * as any other ide device.
49 *
50 * Our own ide-tape ioctl's can be issued to either the block device or
51 * the character device interface.
52 *
53 * Maximal throughput with minimal bus load will usually be achieved in the
54 * following scenario:
55 *
56 *	1.	ide-tape is operating in the pipelined operation mode.
57 *	2.	No buffering is performed by the user backup program.
58 *
59 * Testing was done with a 2 GB CONNER CTMA 4000 IDE ATAPI Streaming Tape Drive.
60 *
61 * Ver 0.1   Nov  1 95   Pre-working code :-)
62 * Ver 0.2   Nov 23 95   A short backup (few megabytes) and restore procedure
63 *                        was successful ! (Using tar cvf ... on the block
64 *                        device interface).
65 *                       A longer backup resulted in major swapping, bad
66 *                        overall Linux performance and eventually failed as
67 *                        we received non serial read-ahead requests from the
68 *                        buffer cache.
69 * Ver 0.3   Nov 28 95   Long backups are now possible, thanks to the
70 *                        character device interface. Linux's responsiveness
71 *                        and performance doesn't seem to be much affected
72 *                        from the background backup procedure.
73 *                       Some general mtio.h magnetic tape operations are
74 *                        now supported by our character device. As a result,
75 *                        popular tape utilities are starting to work with
76 *                        ide tapes :-)
77 *                       The following configurations were tested:
78 *                       	1. An IDE ATAPI TAPE shares the same interface
79 *                       	   and irq with an IDE ATAPI CDROM.
80 *                        	2. An IDE ATAPI TAPE shares the same interface
81 *                          	   and irq with a normal IDE disk.
82 *                        Both configurations seemed to work just fine !
83 *                        However, to be on the safe side, it is meanwhile
84 *                        recommended to give the IDE TAPE its own interface
85 *                        and irq.
86 *                       The one thing which needs to be done here is to
87 *                        add a "request postpone" feature to ide.c,
88 *                        so that we won't have to wait for the tape to finish
89 *                        performing a long media access (DSC) request (such
90 *                        as a rewind) before we can access the other device
91 *                        on the same interface. This effect doesn't disturb
92 *                        normal operation most of the time because read/write
93 *                        requests are relatively fast, and once we are
94 *                        performing one tape r/w request, a lot of requests
95 *                        from the other device can be queued and ide.c will
96 *			  service all of them after this single tape request.
97 * Ver 1.0   Dec 11 95   Integrated into Linux 1.3.46 development tree.
98 *                       On each read / write request, we now ask the drive
99 *                        if we can transfer a constant number of bytes
100 *                        (a parameter of the drive) only to its buffers,
101 *                        without causing actual media access. If we can't,
102 *                        we just wait until we can by polling the DSC bit.
103 *                        This ensures that while we are not transferring
104 *                        more bytes than the constant referred to above, the
105 *                        interrupt latency will not become too high and
106 *                        we won't cause an interrupt timeout, as happened
107 *                        occasionally in the previous version.
108 *                       While polling for DSC, the current request is
109 *                        postponed and ide.c is free to handle requests from
110 *                        the other device. This is handled transparently to
111 *                        ide.c. The hwgroup locking method which was used
112 *                        in the previous version was removed.
113 *                       Use of new general features which are provided by
114 *                        ide.c for use with atapi devices.
115 *                        (Programming done by Mark Lord)
116 *                       Few potential bug fixes (Again, suggested by Mark)
117 *                       Single character device data transfers are now
118 *                        not limited in size, as they were before.
119 *                       We are asking the tape about its recommended
120 *                        transfer unit and send a larger data transfer
121 *                        as several transfers of the above size.
122 *                        For best results, use an integral number of this
123 *                        basic unit (which is shown during driver
124 *                        initialization). I will soon add an ioctl to get
125 *                        this important parameter.
126 *                       Our data transfer buffer is allocated on startup,
127 *                        rather than before each data transfer. This should
128 *                        ensure that we will indeed have a data buffer.
129 * Ver 1.1   Dec 14 95   Fixed random problems which occurred when the tape
130 *                        shared an interface with another device.
131 *                        (poll_for_dsc was a complete mess).
132 *                       Removed some old (non-active) code which had
133 *                        to do with supporting buffer cache originated
134 *                        requests.
135 *                       The block device interface can now be opened, so
136 *                        that general ide driver features like the unmask
137 *                        interrupts flag can be selected with an ioctl.
138 *                        This is the only use of the block device interface.
139 *                       New fast pipelined operation mode (currently only on
140 *                        writes). When using the pipelined mode, the
141 *                        throughput can potentially reach the maximum
142 *                        tape supported throughput, regardless of the
143 *                        user backup program. On my tape drive, it sometimes
144 *                        boosted performance by a factor of 2. Pipelined
145 *                        mode is enabled by default, but since it has a few
146 *                        downfalls as well, you may want to disable it.
147 *                        A short explanation of the pipelined operation mode
148 *                        is available below.
149 * Ver 1.2   Jan  1 96   Eliminated pipelined mode race condition.
150 *                       Added pipeline read mode. As a result, restores
151 *                        are now as fast as backups.
152 *                       Optimized shared interface behavior. The new behavior
153 *                        typically results in better IDE bus efficiency and
154 *                        higher tape throughput.
155 *                       Pre-calculation of the expected read/write request
156 *                        service time, based on the tape's parameters. In
157 *                        the pipelined operation mode, this allows us to
158 *                        adjust our polling frequency to a much lower value,
159 *                        and thus to dramatically reduce our load on Linux,
160 *                        without any decrease in performance.
161 *                       Implemented additional mtio.h operations.
162 *                       The recommended user block size is returned by
163 *                        the MTIOCGET ioctl.
164 *                       Additional minor changes.
165 * Ver 1.3   Feb  9 96   Fixed pipelined read mode bug which prevented the
166 *                        use of some block sizes during a restore procedure.
167 *                       The character device interface will now present a
168 *                        continuous view of the media - any mix of block sizes
169 *                        during a backup/restore procedure is supported. The
170 *                        driver will buffer the requests internally and
171 *                        convert them to the tape's recommended transfer
172 *                        unit, making performance almost independent of the
173 *                        chosen user block size.
174 *                       Some improvements in error recovery.
175 *                       By cooperating with ide-dma.c, bus mastering DMA can
176 *                        now sometimes be used with IDE tape drives as well.
177 *                        Bus mastering DMA has the potential to dramatically
178 *                        reduce the CPU's overhead when accessing the device,
179 *                        and can be enabled by using hdparm -d1 on the tape's
180 *                        block device interface. For more info, read the
181 *                        comments in ide-dma.c.
182 * Ver 1.4   Mar 13 96   Fixed serialize support.
183 * Ver 1.5   Apr 12 96   Fixed shared interface operation, broken in 1.3.85.
184 *                       Fixed pipelined read mode inefficiency.
185 *                       Fixed nasty null dereferencing bug.
186 * Ver 1.6   Aug 16 96   Fixed FPU usage in the driver.
187 *                       Fixed end of media bug.
188 * Ver 1.7   Sep 10 96   Minor changes for the CONNER CTT8000-A model.
189 * Ver 1.8   Sep 26 96   Attempt to find a better balance between good
190 *                        interactive response and high system throughput.
191 * Ver 1.9   Nov  5 96   Automatically cross encountered filemarks rather
192 *                        than requiring an explicit FSF command.
193 *                       Abort pending requests at end of media.
194 *                       MTTELL was sometimes returning incorrect results.
195 *                       Return the real block size in the MTIOCGET ioctl.
196 *                       Some error recovery bug fixes.
197 * Ver 1.10  Nov  5 96   Major reorganization.
198 *                       Reduced CPU overhead a bit by eliminating internal
199 *                        bounce buffers.
200 *                       Added module support.
201 *                       Added multiple tape drives support.
202 *                       Added partition support.
203 *                       Rewrote DSC handling.
204 *                       Some portability fixes.
205 *                       Removed ide-tape.h.
206 *                       Additional minor changes.
207 * Ver 1.11  Dec  2 96   Bug fix in previous DSC timeout handling.
208 *                       Use ide_stall_queue() for DSC overlap.
209 *                       Use the maximum speed rather than the current speed
210 *                        to compute the request service time.
211 * Ver 1.12  Dec  7 97   Fix random memory overwriting and/or last block data
212 *                        corruption, which could occur if the total number
213 *                        of bytes written to the tape was not an integral
214 *                        number of tape blocks.
215 *                       Add support for INTERRUPT DRQ devices.
216 * Ver 1.13  Jan  2 98   Add "speed == 0" work-around for HP COLORADO 5GB
217 * Ver 1.14  Dec 30 98   Partial fixes for the Sony/AIWA tape drives.
218 *                       Replace cli()/sti() with hwgroup spinlocks.
219 * Ver 1.15  Mar 25 99   Fix SMP race condition by replacing hwgroup
220 *                        spinlock with private per-tape spinlock.
221 * Ver 1.16  Sep  1 99   Add OnStream tape support.
222 *                       Abort read pipeline on EOD.
223 *                       Wait for the tape to become ready in case it returns
224 *                        "in the process of becoming ready" on open().
225 *                       Fix zero padding of the last written block in
226 *                        case the tape block size is larger than PAGE_SIZE.
227 *                       Decrease the default disconnection time to tn.
228 * Ver 1.16e Oct  3 99   Minor fixes.
229 * Ver 1.16e1 Oct 13 99  Patches by Arnold Niessen,
230 *                          niessen@iae.nl / arnold.niessen@philips.com
231 *                   GO-1)  Undefined code in idetape_read_position
232 *				according to Gadi's email
233 *                   AJN-1) Minor fix asc == 11 should be asc == 0x11
234 *                               in idetape_issue_packet_command (did effect
235 *                               debugging output only)
236 *                   AJN-2) Added more debugging output, and
237 *                              added ide-tape: where missing. I would also
238 *				like to add tape->name where possible
239 *                   AJN-3) Added different debug_level's
240 *                              via /proc/ide/hdc/settings
241 * 				"debug_level" determines amount of debugging output;
242 * 				can be changed using /proc/ide/hdx/settings
243 * 				0 : almost no debugging output
244 * 				1 : 0+output errors only
245 * 				2 : 1+output all sensekey/asc
246 * 				3 : 2+follow all chrdev related procedures
247 * 				4 : 3+follow all procedures
248 * 				5 : 4+include pc_stack rq_stack info
249 * 				6 : 5+USE_COUNT updates
250 *                   AJN-4) Fixed timeout for retension in idetape_queue_pc_tail
251 *				from 5 to 10 minutes
252 *                   AJN-5) Changed maximum number of blocks to skip when
253 *                              reading tapes with multiple consecutive write
254 *                              errors from 100 to 1000 in idetape_get_logical_blk
255 *                   Proposed changes to code:
256 *                   1) output "logical_blk_num" via /proc
257 *                   2) output "current_operation" via /proc
258 *                   3) Either solve or document the fact that `mt rewind' is
259 *                      required after reading from /dev/nhtx to be
260 *			able to rmmod the idetape module;
261 *			Also, sometimes an application finishes but the
262 *			device remains `busy' for some time. Same cause ?
263 *                   Proposed changes to release-notes:
264 *		     4) write a simple `quickstart' section in the
265 *                      release notes; I volunteer if you don't want to
266 * 		     5) include a pointer to video4linux in the doc
267 *                      to stimulate video applications
268 *                   6) release notes lines 331 and 362: explain what happens
269 *			if the application data rate is higher than 1100 KB/s;
270 *			similar approach to lower-than-500 kB/s ?
271 *		     7) 6.6 Comparison; wouldn't it be better to allow different
272 *			strategies for read and write ?
273 *			Wouldn't it be better to control the tape buffer
274 *			contents instead of the bandwidth ?
275 *		     8) line 536: replace will by would (if I understand
276 *			this section correctly, a hypothetical and unwanted situation
277 *			 is being described)
278 * Ver 1.16f Dec 15 99   Change place of the secondary OnStream header frames.
279 * Ver 1.17  Nov 2000 / Jan 2001  Marcel Mol, marcel@mesa.nl
280 *			- Add idetape_onstream_mode_sense_tape_parameter_page
281 *			  function to get tape capacity in frames: tape->capacity.
282 *			- Add support for DI-50 drives( or any DI- drive).
283 *			- 'workaround' for read error/blank block around block 3000.
284 *			- Implement Early warning for end of media for Onstream.
285 *			- Cosmetic code changes for readability.
286 *			- Idetape_position_tape should not use SKIP bit during
287 *			  Onstream read recovery.
288 *			- Add capacity, logical_blk_num and first/last_frame_position
289 *			  to /proc/ide/hd?/settings.
290 *			- Module use count was gone in the Linux 2.4 driver.
291 * Ver 1.17a Apr 2001 Willem Riede osst@riede.org
292 * 			- Get drive's actual block size from mode sense block descriptor
293 * 			- Limit size of pipeline
294 * Ver 1.17b Oct 2002   Alan Stern <stern@rowland.harvard.edu>
295 *			Changed IDETAPE_MIN_PIPELINE_STAGES to 1 and actually used
296 *			 it in the code!
297 *			Actually removed aborted stages in idetape_abort_pipeline
298 *			 instead of just changing the command code.
299 *			Made the transfer byte count for Request Sense equal to the
300 *			 actual length of the data transfer.
301 *			Changed handling of partial data transfers: they do not
302 *			 cause DMA errors.
303 *			Moved initiation of DMA transfers to the correct place.
304 *			Removed reference to unallocated memory.
305 *			Made __idetape_discard_read_pipeline return the number of
306 *			 sectors skipped, not the number of stages.
307 *			Replaced errant kfree() calls with __idetape_kfree_stage().
308 *			Fixed off-by-one error in testing the pipeline length.
309 *			Fixed handling of filemarks in the read pipeline.
310 *			Small code optimization for MTBSF and MTBSFM ioctls.
311 *			Don't try to unlock the door during device close if is
312 *			 already unlocked!
313 *			Cosmetic fixes to miscellaneous debugging output messages.
314 *			Set the minimum /proc/ide/hd?/settings values for "pipeline",
315 *			 "pipeline_min", and "pipeline_max" to 1.
316 *
317 * Here are some words from the first releases of hd.c, which are quoted
318 * in ide.c and apply here as well:
319 *
320 * | Special care is recommended.  Have Fun!
321 *
322 */
323
324/*
325 * An overview of the pipelined operation mode.
326 *
327 * In the pipelined write mode, we will usually just add requests to our
328 * pipeline and return immediately, before we even start to service them. The
329 * user program will then have enough time to prepare the next request while
330 * we are still busy servicing previous requests. In the pipelined read mode,
331 * the situation is similar - we add read-ahead requests into the pipeline,
332 * before the user even requested them.
333 *
334 * The pipeline can be viewed as a "safety net" which will be activated when
335 * the system load is high and prevents the user backup program from keeping up
336 * with the current tape speed. At this point, the pipeline will get
337 * shorter and shorter but the tape will still be streaming at the same speed.
338 * Assuming we have enough pipeline stages, the system load will hopefully
339 * decrease before the pipeline is completely empty, and the backup program
340 * will be able to "catch up" and refill the pipeline again.
341 *
342 * When using the pipelined mode, it would be best to disable any type of
343 * buffering done by the user program, as ide-tape already provides all the
344 * benefits in the kernel, where it can be done in a more efficient way.
345 * As we will usually not block the user program on a request, the most
346 * efficient user code will then be a simple read-write-read-... cycle.
347 * Any additional logic will usually just slow down the backup process.
348 *
349 * Using the pipelined mode, I get a constant over 400 KBps throughput,
350 * which seems to be the maximum throughput supported by my tape.
351 *
352 * However, there are some downfalls:
353 *
354 *	1.	We use memory (for data buffers) in proportional to the number
355 *		of pipeline stages (each stage is about 26 KB with my tape).
356 *	2.	In the pipelined write mode, we cheat and postpone error codes
357 *		to the user task. In read mode, the actual tape position
358 *		will be a bit further than the last requested block.
359 *
360 * Concerning (1):
361 *
362 *	1.	We allocate stages dynamically only when we need them. When
363 *		we don't need them, we don't consume additional memory. In
364 *		case we can't allocate stages, we just manage without them
365 *		(at the expense of decreased throughput) so when Linux is
366 *		tight in memory, we will not pose additional difficulties.
367 *
368 *	2.	The maximum number of stages (which is, in fact, the maximum
369 *		amount of memory) which we allocate is limited by the compile
370 *		time parameter IDETAPE_MAX_PIPELINE_STAGES.
371 *
372 *	3.	The maximum number of stages is a controlled parameter - We
373 *		don't start from the user defined maximum number of stages
374 *		but from the lower IDETAPE_MIN_PIPELINE_STAGES (again, we
375 *		will not even allocate this amount of stages if the user
376 *		program can't handle the speed). We then implement a feedback
377 *		loop which checks if the pipeline is empty, and if it is, we
378 *		increase the maximum number of stages as necessary until we
379 *		reach the optimum value which just manages to keep the tape
380 *		busy with minimum allocated memory or until we reach
381 *		IDETAPE_MAX_PIPELINE_STAGES.
382 *
383 * Concerning (2):
384 *
385 *	In pipelined write mode, ide-tape can not return accurate error codes
386 *	to the user program since we usually just add the request to the
387 *      pipeline without waiting for it to be serviced. In case an error
388 *      occurs, I will report it on the next user request.
389 *
390 *	In the pipelined read mode, subsequent read requests or forward
391 *	filemark spacing will perform correctly, as we preserve all blocks
392 *	and filemarks which we encountered during our excess read-ahead.
393 *
394 *	For accurate tape positioning and error reporting, disabling
395 *	pipelined mode might be the best option.
396 *
397 * You can enable/disable/tune the pipelined operation mode by adjusting
398 * the compile time parameters below.
399 */
400
401/*
402 *	Possible improvements.
403 *
404 *	1.	Support for the ATAPI overlap protocol.
405 *
406 *		In order to maximize bus throughput, we currently use the DSC
407 *		overlap method which enables ide.c to service requests from the
408 *		other device while the tape is busy executing a command. The
409 *		DSC overlap method involves polling the tape's status register
410 *		for the DSC bit, and servicing the other device while the tape
411 *		isn't ready.
412 *
413 *		In the current QIC development standard (December 1995),
414 *		it is recommended that new tape drives will *in addition*
415 *		implement the ATAPI overlap protocol, which is used for the
416 *		same purpose - efficient use of the IDE bus, but is interrupt
417 *		driven and thus has much less CPU overhead.
418 *
419 *		ATAPI overlap is likely to be supported in most new ATAPI
420 *		devices, including new ATAPI cdroms, and thus provides us
421 *		a method by which we can achieve higher throughput when
422 *		sharing a (fast) ATA-2 disk with any (slow) new ATAPI device.
423 */
424
425#define IDETAPE_VERSION "1.19"
426
427#include <linux/module.h>
428#include <linux/types.h>
429#include <linux/string.h>
430#include <linux/kernel.h>
431#include <linux/delay.h>
432#include <linux/timer.h>
433#include <linux/mm.h>
434#include <linux/interrupt.h>
435#include <linux/jiffies.h>
436#include <linux/major.h>
437#include <linux/errno.h>
438#include <linux/genhd.h>
439#include <linux/slab.h>
440#include <linux/pci.h>
441#include <linux/ide.h>
442#include <linux/smp_lock.h>
443#include <linux/completion.h>
444#include <linux/bitops.h>
445#include <linux/mutex.h>
446
447#include <asm/byteorder.h>
448#include <asm/irq.h>
449#include <asm/uaccess.h>
450#include <asm/io.h>
451#include <asm/unaligned.h>
452
453/*
454 * partition
455 */
456typedef struct os_partition_s {
457	__u8	partition_num;
458	__u8	par_desc_ver;
459	__u16	wrt_pass_cntr;
460	__u32	first_frame_addr;
461	__u32	last_frame_addr;
462	__u32	eod_frame_addr;
463} os_partition_t;
464
465/*
466 * DAT entry
467 */
468typedef struct os_dat_entry_s {
469	__u32	blk_sz;
470	__u16	blk_cnt;
471	__u8	flags;
472	__u8	reserved;
473} os_dat_entry_t;
474
475/*
476 * DAT
477 */
478#define OS_DAT_FLAGS_DATA	(0xc)
479#define OS_DAT_FLAGS_MARK	(0x1)
480
481typedef struct os_dat_s {
482	__u8		dat_sz;
483	__u8		reserved1;
484	__u8		entry_cnt;
485	__u8		reserved3;
486	os_dat_entry_t	dat_list[16];
487} os_dat_t;
488
489#include <linux/mtio.h>
490
491/**************************** Tunable parameters *****************************/
492
493
494/*
495 *	Pipelined mode parameters.
496 *
497 *	We try to use the minimum number of stages which is enough to
498 *	keep the tape constantly streaming. To accomplish that, we implement
499 *	a feedback loop around the maximum number of stages:
500 *
501 *	We start from MIN maximum stages (we will not even use MIN stages
502 *      if we don't need them), increment it by RATE*(MAX-MIN)
503 *	whenever we sense that the pipeline is empty, until we reach
504 *	the optimum value or until we reach MAX.
505 *
506 *	Setting the following parameter to 0 is illegal: the pipelined mode
507 *	cannot be disabled (calculate_speeds() divides by tape->max_stages.)
508 */
509#define IDETAPE_MIN_PIPELINE_STAGES	  1
510#define IDETAPE_MAX_PIPELINE_STAGES	400
511#define IDETAPE_INCREASE_STAGES_RATE	 20
512
513/*
514 *	The following are used to debug the driver:
515 *
516 *	Setting IDETAPE_DEBUG_INFO to 1 will report device capabilities.
517 *	Setting IDETAPE_DEBUG_LOG to 1 will log driver flow control.
518 *	Setting IDETAPE_DEBUG_BUGS to 1 will enable self-sanity checks in
519 *	some places.
520 *
521 *	Setting them to 0 will restore normal operation mode:
522 *
523 *		1.	Disable logging normal successful operations.
524 *		2.	Disable self-sanity checks.
525 *		3.	Errors will still be logged, of course.
526 *
527 *	All the #if DEBUG code will be removed some day, when the driver
528 *	is verified to be stable enough. This will make it much more
529 *	esthetic.
530 */
531#define IDETAPE_DEBUG_INFO		0
532#define IDETAPE_DEBUG_LOG		0
533#define IDETAPE_DEBUG_BUGS		1
534
535/*
536 *	After each failed packet command we issue a request sense command
537 *	and retry the packet command IDETAPE_MAX_PC_RETRIES times.
538 *
539 *	Setting IDETAPE_MAX_PC_RETRIES to 0 will disable retries.
540 */
541#define IDETAPE_MAX_PC_RETRIES		3
542
543/*
544 *	With each packet command, we allocate a buffer of
545 *	IDETAPE_PC_BUFFER_SIZE bytes. This is used for several packet
546 *	commands (Not for READ/WRITE commands).
547 */
548#define IDETAPE_PC_BUFFER_SIZE		256
549
550/*
551 *	In various places in the driver, we need to allocate storage
552 *	for packet commands and requests, which will remain valid while
553 *	we leave the driver to wait for an interrupt or a timeout event.
554 */
555#define IDETAPE_PC_STACK		(10 + IDETAPE_MAX_PC_RETRIES)
556
557/*
558 * Some drives (for example, Seagate STT3401A Travan) require a very long
559 * timeout, because they don't return an interrupt or clear their busy bit
560 * until after the command completes (even retension commands).
561 */
562#define IDETAPE_WAIT_CMD		(900*HZ)
563
564/*
565 *	The following parameter is used to select the point in the internal
566 *	tape fifo in which we will start to refill the buffer. Decreasing
567 *	the following parameter will improve the system's latency and
568 *	interactive response, while using a high value might improve system
569 *	throughput.
570 */
571#define IDETAPE_FIFO_THRESHOLD 		2
572
573/*
574 *	DSC polling parameters.
575 *
576 *	Polling for DSC (a single bit in the status register) is a very
577 *	important function in ide-tape. There are two cases in which we
578 *	poll for DSC:
579 *
580 *	1.	Before a read/write packet command, to ensure that we
581 *		can transfer data from/to the tape's data buffers, without
582 *		causing an actual media access. In case the tape is not
583 *		ready yet, we take out our request from the device
584 *		request queue, so that ide.c will service requests from
585 *		the other device on the same interface meanwhile.
586 *
587 *	2.	After the successful initialization of a "media access
588 *		packet command", which is a command which can take a long
589 *		time to complete (it can be several seconds or even an hour).
590 *
591 *		Again, we postpone our request in the middle to free the bus
592 *		for the other device. The polling frequency here should be
593 *		lower than the read/write frequency since those media access
594 *		commands are slow. We start from a "fast" frequency -
595 *		IDETAPE_DSC_MA_FAST (one second), and if we don't receive DSC
596 *		after IDETAPE_DSC_MA_THRESHOLD (5 minutes), we switch it to a
597 *		lower frequency - IDETAPE_DSC_MA_SLOW (1 minute).
598 *
599 *	We also set a timeout for the timer, in case something goes wrong.
600 *	The timeout should be longer then the maximum execution time of a
601 *	tape operation.
602 */
603
604/*
605 *	DSC timings.
606 */
607#define IDETAPE_DSC_RW_MIN		5*HZ/100	/* 50 msec */
608#define IDETAPE_DSC_RW_MAX		40*HZ/100	/* 400 msec */
609#define IDETAPE_DSC_RW_TIMEOUT		2*60*HZ		/* 2 minutes */
610#define IDETAPE_DSC_MA_FAST		2*HZ		/* 2 seconds */
611#define IDETAPE_DSC_MA_THRESHOLD	5*60*HZ		/* 5 minutes */
612#define IDETAPE_DSC_MA_SLOW		30*HZ		/* 30 seconds */
613#define IDETAPE_DSC_MA_TIMEOUT		2*60*60*HZ	/* 2 hours */
614
615/*************************** End of tunable parameters ***********************/
616
617/*
618 *	Read/Write error simulation
619 */
620#define SIMULATE_ERRORS			0
621
622/*
623 *	For general magnetic tape device compatibility.
624 */
625typedef enum {
626	idetape_direction_none,
627	idetape_direction_read,
628	idetape_direction_write
629} idetape_chrdev_direction_t;
630
631struct idetape_bh {
632	u32 b_size;
633	atomic_t b_count;
634	struct idetape_bh *b_reqnext;
635	char *b_data;
636};
637
638/*
639 *	Our view of a packet command.
640 */
641typedef struct idetape_packet_command_s {
642	u8 c[12];				/* Actual packet bytes */
643	int retries;				/* On each retry, we increment retries */
644	int error;				/* Error code */
645	int request_transfer;			/* Bytes to transfer */
646	int actually_transferred;		/* Bytes actually transferred */
647	int buffer_size;			/* Size of our data buffer */
648	struct idetape_bh *bh;
649	char *b_data;
650	int b_count;
651	u8 *buffer;				/* Data buffer */
652	u8 *current_position;			/* Pointer into the above buffer */
653	ide_startstop_t (*callback) (ide_drive_t *);	/* Called when this packet command is completed */
654	u8 pc_buffer[IDETAPE_PC_BUFFER_SIZE];	/* Temporary buffer */
655	unsigned long flags;			/* Status/Action bit flags: long for set_bit */
656} idetape_pc_t;
657
658/*
659 *	Packet command flag bits.
660 */
661/* Set when an error is considered normal - We won't retry */
662#define	PC_ABORT			0
663/* 1 When polling for DSC on a media access command */
664#define PC_WAIT_FOR_DSC			1
665/* 1 when we prefer to use DMA if possible */
666#define PC_DMA_RECOMMENDED		2
667/* 1 while DMA in progress */
668#define	PC_DMA_IN_PROGRESS		3
669/* 1 when encountered problem during DMA */
670#define	PC_DMA_ERROR			4
671/* Data direction */
672#define	PC_WRITING			5
673
674/*
675 *	Capabilities and Mechanical Status Page
676 */
677typedef struct {
678	unsigned	page_code	:6;	/* Page code - Should be 0x2a */
679	__u8		reserved0_6	:1;
680	__u8		ps		:1;	/* parameters saveable */
681	__u8		page_length;		/* Page Length - Should be 0x12 */
682	__u8		reserved2, reserved3;
683	unsigned	ro		:1;	/* Read Only Mode */
684	unsigned	reserved4_1234	:4;
685	unsigned	sprev		:1;	/* Supports SPACE in the reverse direction */
686	unsigned	reserved4_67	:2;
687	unsigned	reserved5_012	:3;
688	unsigned	efmt		:1;	/* Supports ERASE command initiated formatting */
689	unsigned	reserved5_4	:1;
690	unsigned	qfa		:1;	/* Supports the QFA two partition formats */
691	unsigned	reserved5_67	:2;
692	unsigned	lock		:1;	/* Supports locking the volume */
693	unsigned	locked		:1;	/* The volume is locked */
694	unsigned	prevent		:1;	/* The device defaults in the prevent state after power up */
695	unsigned	eject		:1;	/* The device can eject the volume */
696	__u8		disconnect	:1;	/* The device can break request > ctl */
697	__u8		reserved6_5	:1;
698	unsigned	ecc		:1;	/* Supports error correction */
699	unsigned	cmprs		:1;	/* Supports data compression */
700	unsigned	reserved7_0	:1;
701	unsigned	blk512		:1;	/* Supports 512 bytes block size */
702	unsigned	blk1024		:1;	/* Supports 1024 bytes block size */
703	unsigned	reserved7_3_6	:4;
704	unsigned	blk32768	:1;	/* slowb - the device restricts the byte count for PIO */
705						/* transfers for slow buffer memory ??? */
706						/* Also 32768 block size in some cases */
707	__u16		max_speed;		/* Maximum speed supported in KBps */
708	__u8		reserved10, reserved11;
709	__u16		ctl;			/* Continuous Transfer Limit in blocks */
710	__u16		speed;			/* Current Speed, in KBps */
711	__u16		buffer_size;		/* Buffer Size, in 512 bytes */
712	__u8		reserved18, reserved19;
713} idetape_capabilities_page_t;
714
715/*
716 *	Block Size Page
717 */
718typedef struct {
719	unsigned	page_code	:6;	/* Page code - Should be 0x30 */
720	unsigned	reserved1_6	:1;
721	unsigned	ps		:1;
722	__u8		page_length;		/* Page Length - Should be 2 */
723	__u8		reserved2;
724	unsigned	play32		:1;
725	unsigned	play32_5	:1;
726	unsigned	reserved2_23	:2;
727	unsigned	record32	:1;
728	unsigned	record32_5	:1;
729	unsigned	reserved2_6	:1;
730	unsigned	one		:1;
731} idetape_block_size_page_t;
732
733/*
734 *	A pipeline stage.
735 */
736typedef struct idetape_stage_s {
737	struct request rq;			/* The corresponding request */
738	struct idetape_bh *bh;			/* The data buffers */
739	struct idetape_stage_s *next;		/* Pointer to the next stage */
740} idetape_stage_t;
741
742/*
743 *	REQUEST SENSE packet command result - Data Format.
744 */
745typedef struct {
746	unsigned	error_code	:7;	/* Current of deferred errors */
747	unsigned	valid		:1;	/* The information field conforms to QIC-157C */
748	__u8		reserved1	:8;	/* Segment Number - Reserved */
749	unsigned	sense_key	:4;	/* Sense Key */
750	unsigned	reserved2_4	:1;	/* Reserved */
751	unsigned	ili		:1;	/* Incorrect Length Indicator */
752	unsigned	eom		:1;	/* End Of Medium */
753	unsigned	filemark 	:1;	/* Filemark */
754	__u32		information __attribute__ ((packed));
755	__u8		asl;			/* Additional sense length (n-7) */
756	__u32		command_specific;	/* Additional command specific information */
757	__u8		asc;			/* Additional Sense Code */
758	__u8		ascq;			/* Additional Sense Code Qualifier */
759	__u8		replaceable_unit_code;	/* Field Replaceable Unit Code */
760	unsigned	sk_specific1 	:7;	/* Sense Key Specific */
761	unsigned	sksv		:1;	/* Sense Key Specific information is valid */
762	__u8		sk_specific2;		/* Sense Key Specific */
763	__u8		sk_specific3;		/* Sense Key Specific */
764	__u8		pad[2];			/* Padding to 20 bytes */
765} idetape_request_sense_result_t;
766
767
768/*
769 *	Most of our global data which we need to save even as we leave the
770 *	driver due to an interrupt or a timer event is stored in a variable
771 *	of type idetape_tape_t, defined below.
772 */
773typedef struct ide_tape_obj {
774	ide_drive_t	*drive;
775	ide_driver_t	*driver;
776	struct gendisk	*disk;
777	struct kref	kref;
778
779	/*
780	 *	Since a typical character device operation requires more
781	 *	than one packet command, we provide here enough memory
782	 *	for the maximum of interconnected packet commands.
783	 *	The packet commands are stored in the circular array pc_stack.
784	 *	pc_stack_index points to the last used entry, and warps around
785	 *	to the start when we get to the last array entry.
786	 *
787	 *	pc points to the current processed packet command.
788	 *
789	 *	failed_pc points to the last failed packet command, or contains
790	 *	NULL if we do not need to retry any packet command. This is
791	 *	required since an additional packet command is needed before the
792	 *	retry, to get detailed information on what went wrong.
793	 */
794	/* Current packet command */
795	idetape_pc_t *pc;
796	/* Last failed packet command */
797	idetape_pc_t *failed_pc;
798	/* Packet command stack */
799	idetape_pc_t pc_stack[IDETAPE_PC_STACK];
800	/* Next free packet command storage space */
801	int pc_stack_index;
802	struct request rq_stack[IDETAPE_PC_STACK];
803	/* We implement a circular array */
804	int rq_stack_index;
805
806	/*
807	 *	DSC polling variables.
808	 *
809	 *	While polling for DSC we use postponed_rq to postpone the
810	 *	current request so that ide.c will be able to service
811	 *	pending requests on the other device. Note that at most
812	 *	we will have only one DSC (usually data transfer) request
813	 *	in the device request queue. Additional requests can be
814	 *	queued in our internal pipeline, but they will be visible
815	 *	to ide.c only one at a time.
816	 */
817	struct request *postponed_rq;
818	/* The time in which we started polling for DSC */
819	unsigned long dsc_polling_start;
820	/* Timer used to poll for dsc */
821	struct timer_list dsc_timer;
822	/* Read/Write dsc polling frequency */
823	unsigned long best_dsc_rw_frequency;
824	/* The current polling frequency */
825	unsigned long dsc_polling_frequency;
826	/* Maximum waiting time */
827	unsigned long dsc_timeout;
828
829	/*
830	 *	Read position information
831	 */
832	u8 partition;
833	/* Current block */
834	unsigned int first_frame_position;
835	unsigned int last_frame_position;
836	unsigned int blocks_in_buffer;
837
838	/*
839	 *	Last error information
840	 */
841	u8 sense_key, asc, ascq;
842
843	/*
844	 *	Character device operation
845	 */
846	unsigned int minor;
847	/* device name */
848	char name[4];
849	/* Current character device data transfer direction */
850	idetape_chrdev_direction_t chrdev_direction;
851
852	/*
853	 *	Device information
854	 */
855	/* Usually 512 or 1024 bytes */
856	unsigned short tape_block_size;
857	int user_bs_factor;
858	/* Copy of the tape's Capabilities and Mechanical Page */
859	idetape_capabilities_page_t capabilities;
860
861	/*
862	 *	Active data transfer request parameters.
863	 *
864	 *	At most, there is only one ide-tape originated data transfer
865	 *	request in the device request queue. This allows ide.c to
866	 *	easily service requests from the other device when we
867	 *	postpone our active request. In the pipelined operation
868	 *	mode, we use our internal pipeline structure to hold
869	 *	more data requests.
870	 *
871	 *	The data buffer size is chosen based on the tape's
872	 *	recommendation.
873	 */
874	/* Pointer to the request which is waiting in the device request queue */
875	struct request *active_data_request;
876	/* Data buffer size (chosen based on the tape's recommendation */
877	int stage_size;
878	idetape_stage_t *merge_stage;
879	int merge_stage_size;
880	struct idetape_bh *bh;
881	char *b_data;
882	int b_count;
883
884	/*
885	 *	Pipeline parameters.
886	 *
887	 *	To accomplish non-pipelined mode, we simply set the following
888	 *	variables to zero (or NULL, where appropriate).
889	 */
890	/* Number of currently used stages */
891	int nr_stages;
892	/* Number of pending stages */
893	int nr_pending_stages;
894	/* We will not allocate more than this number of stages */
895	int max_stages, min_pipeline, max_pipeline;
896	/* The first stage which will be removed from the pipeline */
897	idetape_stage_t *first_stage;
898	/* The currently active stage */
899	idetape_stage_t *active_stage;
900	/* Will be serviced after the currently active request */
901	idetape_stage_t *next_stage;
902	/* New requests will be added to the pipeline here */
903	idetape_stage_t *last_stage;
904	/* Optional free stage which we can use */
905	idetape_stage_t *cache_stage;
906	int pages_per_stage;
907	/* Wasted space in each stage */
908	int excess_bh_size;
909
910	/* Status/Action flags: long for set_bit */
911	unsigned long flags;
912	/* protects the ide-tape queue */
913	spinlock_t spinlock;
914
915	/*
916	 * Measures average tape speed
917	 */
918	unsigned long avg_time;
919	int avg_size;
920	int avg_speed;
921
922	/* last sense information */
923	idetape_request_sense_result_t sense;
924
925	char vendor_id[10];
926	char product_id[18];
927	char firmware_revision[6];
928	int firmware_revision_num;
929
930	/* the door is currently locked */
931	int door_locked;
932	/* the tape hardware is write protected */
933	char drv_write_prot;
934	/* the tape is write protected (hardware or opened as read-only) */
935	char write_prot;
936
937	/*
938	 * Limit the number of times a request can
939	 * be postponed, to avoid an infinite postpone
940	 * deadlock.
941	 */
942	/* request postpone count limit */
943	int postpone_cnt;
944
945	/*
946	 * Measures number of frames:
947	 *
948	 * 1. written/read to/from the driver pipeline (pipeline_head).
949	 * 2. written/read to/from the tape buffers (idetape_bh).
950	 * 3. written/read by the tape to/from the media (tape_head).
951	 */
952	int pipeline_head;
953	int buffer_head;
954	int tape_head;
955	int last_tape_head;
956
957	/*
958	 * Speed control at the tape buffers input/output
959	 */
960	unsigned long insert_time;
961	int insert_size;
962	int insert_speed;
963	int max_insert_speed;
964	int measure_insert_time;
965
966	/*
967	 * Measure tape still time, in milliseconds
968	 */
969	unsigned long tape_still_time_begin;
970	int tape_still_time;
971
972	/*
973	 * Speed regulation negative feedback loop
974	 */
975	int speed_control;
976	int pipeline_head_speed;
977	int controlled_pipeline_head_speed;
978	int uncontrolled_pipeline_head_speed;
979	int controlled_last_pipeline_head;
980	int uncontrolled_last_pipeline_head;
981	unsigned long uncontrolled_pipeline_head_time;
982	unsigned long controlled_pipeline_head_time;
983	int controlled_previous_pipeline_head;
984	int uncontrolled_previous_pipeline_head;
985	unsigned long controlled_previous_head_time;
986	unsigned long uncontrolled_previous_head_time;
987	int restart_speed_control_req;
988
989        /*
990         * Debug_level determines amount of debugging output;
991         * can be changed using /proc/ide/hdx/settings
992         * 0 : almost no debugging output
993         * 1 : 0+output errors only
994         * 2 : 1+output all sensekey/asc
995         * 3 : 2+follow all chrdev related procedures
996         * 4 : 3+follow all procedures
997         * 5 : 4+include pc_stack rq_stack info
998         * 6 : 5+USE_COUNT updates
999         */
1000         int debug_level;
1001} idetape_tape_t;
1002
1003static DEFINE_MUTEX(idetape_ref_mutex);
1004
1005static struct class *idetape_sysfs_class;
1006
1007#define to_ide_tape(obj) container_of(obj, struct ide_tape_obj, kref)
1008
1009#define ide_tape_g(disk) \
1010	container_of((disk)->private_data, struct ide_tape_obj, driver)
1011
1012static struct ide_tape_obj *ide_tape_get(struct gendisk *disk)
1013{
1014	struct ide_tape_obj *tape = NULL;
1015
1016	mutex_lock(&idetape_ref_mutex);
1017	tape = ide_tape_g(disk);
1018	if (tape)
1019		kref_get(&tape->kref);
1020	mutex_unlock(&idetape_ref_mutex);
1021	return tape;
1022}
1023
1024static void ide_tape_release(struct kref *);
1025
1026static void ide_tape_put(struct ide_tape_obj *tape)
1027{
1028	mutex_lock(&idetape_ref_mutex);
1029	kref_put(&tape->kref, ide_tape_release);
1030	mutex_unlock(&idetape_ref_mutex);
1031}
1032
1033/*
1034 *	Tape door status
1035 */
1036#define DOOR_UNLOCKED			0
1037#define DOOR_LOCKED			1
1038#define DOOR_EXPLICITLY_LOCKED		2
1039
1040/*
1041 *	Tape flag bits values.
1042 */
1043#define IDETAPE_IGNORE_DSC		0
1044#define IDETAPE_ADDRESS_VALID		1	/* 0 When the tape position is unknown */
1045#define IDETAPE_BUSY			2	/* Device already opened */
1046#define IDETAPE_PIPELINE_ERROR		3	/* Error detected in a pipeline stage */
1047#define IDETAPE_DETECT_BS		4	/* Attempt to auto-detect the current user block size */
1048#define IDETAPE_FILEMARK		5	/* Currently on a filemark */
1049#define IDETAPE_DRQ_INTERRUPT		6	/* DRQ interrupt device */
1050#define IDETAPE_READ_ERROR		7
1051#define IDETAPE_PIPELINE_ACTIVE		8	/* pipeline active */
1052/* 0 = no tape is loaded, so we don't rewind after ejecting */
1053#define IDETAPE_MEDIUM_PRESENT		9
1054
1055/*
1056 *	Supported ATAPI tape drives packet commands
1057 */
1058#define IDETAPE_TEST_UNIT_READY_CMD	0x00
1059#define IDETAPE_REWIND_CMD		0x01
1060#define IDETAPE_REQUEST_SENSE_CMD	0x03
1061#define IDETAPE_READ_CMD		0x08
1062#define IDETAPE_WRITE_CMD		0x0a
1063#define IDETAPE_WRITE_FILEMARK_CMD	0x10
1064#define IDETAPE_SPACE_CMD		0x11
1065#define IDETAPE_INQUIRY_CMD		0x12
1066#define IDETAPE_ERASE_CMD		0x19
1067#define IDETAPE_MODE_SENSE_CMD		0x1a
1068#define IDETAPE_MODE_SELECT_CMD		0x15
1069#define IDETAPE_LOAD_UNLOAD_CMD		0x1b
1070#define IDETAPE_PREVENT_CMD		0x1e
1071#define IDETAPE_LOCATE_CMD		0x2b
1072#define IDETAPE_READ_POSITION_CMD	0x34
1073#define IDETAPE_READ_BUFFER_CMD		0x3c
1074#define IDETAPE_SET_SPEED_CMD		0xbb
1075
1076/*
1077 *	Some defines for the READ BUFFER command
1078 */
1079#define IDETAPE_RETRIEVE_FAULTY_BLOCK	6
1080
1081/*
1082 *	Some defines for the SPACE command
1083 */
1084#define IDETAPE_SPACE_OVER_FILEMARK	1
1085#define IDETAPE_SPACE_TO_EOD		3
1086
1087/*
1088 *	Some defines for the LOAD UNLOAD command
1089 */
1090#define IDETAPE_LU_LOAD_MASK		1
1091#define IDETAPE_LU_RETENSION_MASK	2
1092#define IDETAPE_LU_EOT_MASK		4
1093
1094/*
1095 *	Special requests for our block device strategy routine.
1096 *
1097 *	In order to service a character device command, we add special
1098 *	requests to the tail of our block device request queue and wait
1099 *	for their completion.
1100 */
1101
1102enum {
1103	REQ_IDETAPE_PC1		= (1 << 0), /* packet command (first stage) */
1104	REQ_IDETAPE_PC2		= (1 << 1), /* packet command (second stage) */
1105	REQ_IDETAPE_READ	= (1 << 2),
1106	REQ_IDETAPE_WRITE	= (1 << 3),
1107	REQ_IDETAPE_READ_BUFFER	= (1 << 4),
1108};
1109
1110/*
1111 *	Error codes which are returned in rq->errors to the higher part
1112 *	of the driver.
1113 */
1114#define	IDETAPE_ERROR_GENERAL		101
1115#define	IDETAPE_ERROR_FILEMARK		102
1116#define	IDETAPE_ERROR_EOD		103
1117
1118/*
1119 *	The following is used to format the general configuration word of
1120 *	the ATAPI IDENTIFY DEVICE command.
1121 */
1122struct idetape_id_gcw {
1123	unsigned packet_size		:2;	/* Packet Size */
1124	unsigned reserved234		:3;	/* Reserved */
1125	unsigned drq_type		:2;	/* Command packet DRQ type */
1126	unsigned removable		:1;	/* Removable media */
1127	unsigned device_type		:5;	/* Device type */
1128	unsigned reserved13		:1;	/* Reserved */
1129	unsigned protocol		:2;	/* Protocol type */
1130};
1131
1132/*
1133 *	INQUIRY packet command - Data Format (From Table 6-8 of QIC-157C)
1134 */
1135typedef struct {
1136	unsigned	device_type	:5;	/* Peripheral Device Type */
1137	unsigned	reserved0_765	:3;	/* Peripheral Qualifier - Reserved */
1138	unsigned	reserved1_6t0	:7;	/* Reserved */
1139	unsigned	rmb		:1;	/* Removable Medium Bit */
1140	unsigned	ansi_version	:3;	/* ANSI Version */
1141	unsigned	ecma_version	:3;	/* ECMA Version */
1142	unsigned	iso_version	:2;	/* ISO Version */
1143	unsigned	response_format :4;	/* Response Data Format */
1144	unsigned	reserved3_45	:2;	/* Reserved */
1145	unsigned	reserved3_6	:1;	/* TrmIOP - Reserved */
1146	unsigned	reserved3_7	:1;	/* AENC - Reserved */
1147	__u8		additional_length;	/* Additional Length (total_length-4) */
1148	__u8		rsv5, rsv6, rsv7;	/* Reserved */
1149	__u8		vendor_id[8];		/* Vendor Identification */
1150	__u8		product_id[16];		/* Product Identification */
1151	__u8		revision_level[4];	/* Revision Level */
1152	__u8		vendor_specific[20];	/* Vendor Specific - Optional */
1153	__u8		reserved56t95[40];	/* Reserved - Optional */
1154						/* Additional information may be returned */
1155} idetape_inquiry_result_t;
1156
1157/*
1158 *	READ POSITION packet command - Data Format (From Table 6-57)
1159 */
1160typedef struct {
1161	unsigned	reserved0_10	:2;	/* Reserved */
1162	unsigned	bpu		:1;	/* Block Position Unknown */
1163	unsigned	reserved0_543	:3;	/* Reserved */
1164	unsigned	eop		:1;	/* End Of Partition */
1165	unsigned	bop		:1;	/* Beginning Of Partition */
1166	u8		partition;		/* Partition Number */
1167	u8		reserved2, reserved3;	/* Reserved */
1168	u32		first_block;		/* First Block Location */
1169	u32		last_block;		/* Last Block Location (Optional) */
1170	u8		reserved12;		/* Reserved */
1171	u8		blocks_in_buffer[3];	/* Blocks In Buffer - (Optional) */
1172	u32		bytes_in_buffer;	/* Bytes In Buffer (Optional) */
1173} idetape_read_position_result_t;
1174
1175/*
1176 *	Follows structures which are related to the SELECT SENSE / MODE SENSE
1177 *	packet commands. Those packet commands are still not supported
1178 *	by ide-tape.
1179 */
1180#define IDETAPE_BLOCK_DESCRIPTOR	0
1181#define	IDETAPE_CAPABILITIES_PAGE	0x2a
1182#define IDETAPE_PARAMTR_PAGE		0x2b   /* Onstream DI-x0 only */
1183#define IDETAPE_BLOCK_SIZE_PAGE		0x30
1184#define IDETAPE_BUFFER_FILLING_PAGE	0x33
1185
1186/*
1187 *	Mode Parameter Header for the MODE SENSE packet command
1188 */
1189typedef struct {
1190	__u8	mode_data_length;	/* Length of the following data transfer */
1191	__u8	medium_type;		/* Medium Type */
1192	__u8	dsp;			/* Device Specific Parameter */
1193	__u8	bdl;			/* Block Descriptor Length */
1194#if 0
1195	/* data transfer page */
1196	__u8	page_code	:6;
1197	__u8	reserved0_6	:1;
1198	__u8	ps		:1;	/* parameters saveable */
1199	__u8	page_length;		/* page Length == 0x02 */
1200	__u8	reserved2;
1201	__u8	read32k		:1;	/* 32k blk size (data only) */
1202	__u8	read32k5	:1;	/* 32.5k blk size (data&AUX) */
1203	__u8	reserved3_23	:2;
1204	__u8	write32k	:1;	/* 32k blk size (data only) */
1205	__u8	write32k5	:1;	/* 32.5k blk size (data&AUX) */
1206	__u8	reserved3_6	:1;
1207	__u8	streaming	:1;	/* streaming mode enable */
1208#endif
1209} idetape_mode_parameter_header_t;
1210
1211/*
1212 *	Mode Parameter Block Descriptor the MODE SENSE packet command
1213 *
1214 *	Support for block descriptors is optional.
1215 */
1216typedef struct {
1217	__u8		density_code;		/* Medium density code */
1218	__u8		blocks[3];		/* Number of blocks */
1219	__u8		reserved4;		/* Reserved */
1220	__u8		length[3];		/* Block Length */
1221} idetape_parameter_block_descriptor_t;
1222
1223/*
1224 *	The Data Compression Page, as returned by the MODE SENSE packet command.
1225 */
1226typedef struct {
1227	unsigned	page_code	:6;	/* Page Code - Should be 0xf */
1228	unsigned	reserved0	:1;	/* Reserved */
1229	unsigned	ps		:1;
1230	__u8		page_length;		/* Page Length - Should be 14 */
1231	unsigned	reserved2	:6;	/* Reserved */
1232	unsigned	dcc		:1;	/* Data Compression Capable */
1233	unsigned	dce		:1;	/* Data Compression Enable */
1234	unsigned	reserved3	:5;	/* Reserved */
1235	unsigned	red		:2;	/* Report Exception on Decompression */
1236	unsigned	dde		:1;	/* Data Decompression Enable */
1237	__u32		ca;			/* Compression Algorithm */
1238	__u32		da;			/* Decompression Algorithm */
1239	__u8		reserved[4];		/* Reserved */
1240} idetape_data_compression_page_t;
1241
1242/*
1243 *	The Medium Partition Page, as returned by the MODE SENSE packet command.
1244 */
1245typedef struct {
1246	unsigned	page_code	:6;	/* Page Code - Should be 0x11 */
1247	unsigned	reserved1_6	:1;	/* Reserved */
1248	unsigned	ps		:1;
1249	__u8		page_length;		/* Page Length - Should be 6 */
1250	__u8		map;			/* Maximum Additional Partitions - Should be 0 */
1251	__u8		apd;			/* Additional Partitions Defined - Should be 0 */
1252	unsigned	reserved4_012	:3;	/* Reserved */
1253	unsigned	psum		:2;	/* Should be 0 */
1254	unsigned	idp		:1;	/* Should be 0 */
1255	unsigned	sdp		:1;	/* Should be 0 */
1256	unsigned	fdp		:1;	/* Fixed Data Partitions */
1257	__u8		mfr;			/* Medium Format Recognition */
1258	__u8		reserved[2];		/* Reserved */
1259} idetape_medium_partition_page_t;
1260
1261/*
1262 *	Run time configurable parameters.
1263 */
1264typedef struct {
1265	int	dsc_rw_frequency;
1266	int	dsc_media_access_frequency;
1267	int	nr_stages;
1268} idetape_config_t;
1269
1270/*
1271 *	The variables below are used for the character device interface.
1272 *	Additional state variables are defined in our ide_drive_t structure.
1273 */
1274static struct ide_tape_obj * idetape_devs[MAX_HWIFS * MAX_DRIVES];
1275
1276#define ide_tape_f(file) ((file)->private_data)
1277
1278static struct ide_tape_obj *ide_tape_chrdev_get(unsigned int i)
1279{
1280	struct ide_tape_obj *tape = NULL;
1281
1282	mutex_lock(&idetape_ref_mutex);
1283	tape = idetape_devs[i];
1284	if (tape)
1285		kref_get(&tape->kref);
1286	mutex_unlock(&idetape_ref_mutex);
1287	return tape;
1288}
1289
1290/*
1291 *      Function declarations
1292 *
1293 */
1294static int idetape_chrdev_release (struct inode *inode, struct file *filp);
1295static void idetape_write_release (ide_drive_t *drive, unsigned int minor);
1296
1297/*
1298 * Too bad. The drive wants to send us data which we are not ready to accept.
1299 * Just throw it away.
1300 */
1301static void idetape_discard_data (ide_drive_t *drive, unsigned int bcount)
1302{
1303	while (bcount--)
1304		(void) HWIF(drive)->INB(IDE_DATA_REG);
1305}
1306
1307static void idetape_input_buffers (ide_drive_t *drive, idetape_pc_t *pc, unsigned int bcount)
1308{
1309	struct idetape_bh *bh = pc->bh;
1310	int count;
1311
1312	while (bcount) {
1313#if IDETAPE_DEBUG_BUGS
1314		if (bh == NULL) {
1315			printk(KERN_ERR "ide-tape: bh == NULL in "
1316				"idetape_input_buffers\n");
1317			idetape_discard_data(drive, bcount);
1318			return;
1319		}
1320#endif /* IDETAPE_DEBUG_BUGS */
1321		count = min((unsigned int)(bh->b_size - atomic_read(&bh->b_count)), bcount);
1322		HWIF(drive)->atapi_input_bytes(drive, bh->b_data + atomic_read(&bh->b_count), count);
1323		bcount -= count;
1324		atomic_add(count, &bh->b_count);
1325		if (atomic_read(&bh->b_count) == bh->b_size) {
1326			bh = bh->b_reqnext;
1327			if (bh)
1328				atomic_set(&bh->b_count, 0);
1329		}
1330	}
1331	pc->bh = bh;
1332}
1333
1334static void idetape_output_buffers (ide_drive_t *drive, idetape_pc_t *pc, unsigned int bcount)
1335{
1336	struct idetape_bh *bh = pc->bh;
1337	int count;
1338
1339	while (bcount) {
1340#if IDETAPE_DEBUG_BUGS
1341		if (bh == NULL) {
1342			printk(KERN_ERR "ide-tape: bh == NULL in "
1343				"idetape_output_buffers\n");
1344			return;
1345		}
1346#endif /* IDETAPE_DEBUG_BUGS */
1347		count = min((unsigned int)pc->b_count, (unsigned int)bcount);
1348		HWIF(drive)->atapi_output_bytes(drive, pc->b_data, count);
1349		bcount -= count;
1350		pc->b_data += count;
1351		pc->b_count -= count;
1352		if (!pc->b_count) {
1353			pc->bh = bh = bh->b_reqnext;
1354			if (bh) {
1355				pc->b_data = bh->b_data;
1356				pc->b_count = atomic_read(&bh->b_count);
1357			}
1358		}
1359	}
1360}
1361
1362static void idetape_update_buffers (idetape_pc_t *pc)
1363{
1364	struct idetape_bh *bh = pc->bh;
1365	int count;
1366	unsigned int bcount = pc->actually_transferred;
1367
1368	if (test_bit(PC_WRITING, &pc->flags))
1369		return;
1370	while (bcount) {
1371#if IDETAPE_DEBUG_BUGS
1372		if (bh == NULL) {
1373			printk(KERN_ERR "ide-tape: bh == NULL in "
1374				"idetape_update_buffers\n");
1375			return;
1376		}
1377#endif /* IDETAPE_DEBUG_BUGS */
1378		count = min((unsigned int)bh->b_size, (unsigned int)bcount);
1379		atomic_set(&bh->b_count, count);
1380		if (atomic_read(&bh->b_count) == bh->b_size)
1381			bh = bh->b_reqnext;
1382		bcount -= count;
1383	}
1384	pc->bh = bh;
1385}
1386
1387/*
1388 *	idetape_next_pc_storage returns a pointer to a place in which we can
1389 *	safely store a packet command, even though we intend to leave the
1390 *	driver. A storage space for a maximum of IDETAPE_PC_STACK packet
1391 *	commands is allocated at initialization time.
1392 */
1393static idetape_pc_t *idetape_next_pc_storage (ide_drive_t *drive)
1394{
1395	idetape_tape_t *tape = drive->driver_data;
1396
1397#if IDETAPE_DEBUG_LOG
1398	if (tape->debug_level >= 5)
1399		printk(KERN_INFO "ide-tape: pc_stack_index=%d\n",
1400			tape->pc_stack_index);
1401#endif /* IDETAPE_DEBUG_LOG */
1402	if (tape->pc_stack_index == IDETAPE_PC_STACK)
1403		tape->pc_stack_index=0;
1404	return (&tape->pc_stack[tape->pc_stack_index++]);
1405}
1406
1407/*
1408 *	idetape_next_rq_storage is used along with idetape_next_pc_storage.
1409 *	Since we queue packet commands in the request queue, we need to
1410 *	allocate a request, along with the allocation of a packet command.
1411 */
1412
1413/**************************************************************
1414 *                                                            *
1415 *  This should get fixed to use kmalloc(.., GFP_ATOMIC)      *
1416 *  followed later on by kfree().   -ml                       *
1417 *                                                            *
1418 **************************************************************/
1419
1420static struct request *idetape_next_rq_storage (ide_drive_t *drive)
1421{
1422	idetape_tape_t *tape = drive->driver_data;
1423
1424#if IDETAPE_DEBUG_LOG
1425	if (tape->debug_level >= 5)
1426		printk(KERN_INFO "ide-tape: rq_stack_index=%d\n",
1427			tape->rq_stack_index);
1428#endif /* IDETAPE_DEBUG_LOG */
1429	if (tape->rq_stack_index == IDETAPE_PC_STACK)
1430		tape->rq_stack_index=0;
1431	return (&tape->rq_stack[tape->rq_stack_index++]);
1432}
1433
1434/*
1435 *	idetape_init_pc initializes a packet command.
1436 */
1437static void idetape_init_pc (idetape_pc_t *pc)
1438{
1439	memset(pc->c, 0, 12);
1440	pc->retries = 0;
1441	pc->flags = 0;
1442	pc->request_transfer = 0;
1443	pc->buffer = pc->pc_buffer;
1444	pc->buffer_size = IDETAPE_PC_BUFFER_SIZE;
1445	pc->bh = NULL;
1446	pc->b_data = NULL;
1447}
1448
1449/*
1450 *	idetape_analyze_error is called on each failed packet command retry
1451 *	to analyze the request sense. We currently do not utilize this
1452 *	information.
1453 */
1454static void idetape_analyze_error (ide_drive_t *drive, idetape_request_sense_result_t *result)
1455{
1456	idetape_tape_t *tape = drive->driver_data;
1457	idetape_pc_t *pc = tape->failed_pc;
1458
1459	tape->sense     = *result;
1460	tape->sense_key = result->sense_key;
1461	tape->asc       = result->asc;
1462	tape->ascq      = result->ascq;
1463#if IDETAPE_DEBUG_LOG
1464	/*
1465	 *	Without debugging, we only log an error if we decided to
1466	 *	give up retrying.
1467	 */
1468	if (tape->debug_level >= 1)
1469		printk(KERN_INFO "ide-tape: pc = %x, sense key = %x, "
1470			"asc = %x, ascq = %x\n",
1471			pc->c[0], result->sense_key,
1472			result->asc, result->ascq);
1473#endif /* IDETAPE_DEBUG_LOG */
1474
1475	/*
1476	 *	Correct pc->actually_transferred by asking the tape.
1477	 */
1478	if (test_bit(PC_DMA_ERROR, &pc->flags)) {
1479		pc->actually_transferred = pc->request_transfer - tape->tape_block_size * ntohl(get_unaligned(&result->information));
1480		idetape_update_buffers(pc);
1481	}
1482
1483	/*
1484	 * If error was the result of a zero-length read or write command,
1485	 * with sense key=5, asc=0x22, ascq=0, let it slide.  Some drives
1486	 * (i.e. Seagate STT3401A Travan) don't support 0-length read/writes.
1487	 */
1488	if ((pc->c[0] == IDETAPE_READ_CMD || pc->c[0] == IDETAPE_WRITE_CMD)
1489	    && pc->c[4] == 0 && pc->c[3] == 0 && pc->c[2] == 0) { /* length==0 */
1490		if (result->sense_key == 5) {
1491			/* don't report an error, everything's ok */
1492			pc->error = 0;
1493			/* don't retry read/write */
1494			set_bit(PC_ABORT, &pc->flags);
1495		}
1496	}
1497	if (pc->c[0] == IDETAPE_READ_CMD && result->filemark) {
1498		pc->error = IDETAPE_ERROR_FILEMARK;
1499		set_bit(PC_ABORT, &pc->flags);
1500	}
1501	if (pc->c[0] == IDETAPE_WRITE_CMD) {
1502		if (result->eom ||
1503		    (result->sense_key == 0xd && result->asc == 0x0 &&
1504		     result->ascq == 0x2)) {
1505			pc->error = IDETAPE_ERROR_EOD;
1506			set_bit(PC_ABORT, &pc->flags);
1507		}
1508	}
1509	if (pc->c[0] == IDETAPE_READ_CMD || pc->c[0] == IDETAPE_WRITE_CMD) {
1510		if (result->sense_key == 8) {
1511			pc->error = IDETAPE_ERROR_EOD;
1512			set_bit(PC_ABORT, &pc->flags);
1513		}
1514		if (!test_bit(PC_ABORT, &pc->flags) &&
1515		    pc->actually_transferred)
1516			pc->retries = IDETAPE_MAX_PC_RETRIES + 1;
1517	}
1518}
1519
1520/*
1521 * idetape_active_next_stage will declare the next stage as "active".
1522 */
1523static void idetape_active_next_stage (ide_drive_t *drive)
1524{
1525	idetape_tape_t *tape = drive->driver_data;
1526	idetape_stage_t *stage = tape->next_stage;
1527	struct request *rq = &stage->rq;
1528
1529#if IDETAPE_DEBUG_LOG
1530	if (tape->debug_level >= 4)
1531		printk(KERN_INFO "ide-tape: Reached idetape_active_next_stage\n");
1532#endif /* IDETAPE_DEBUG_LOG */
1533#if IDETAPE_DEBUG_BUGS
1534	if (stage == NULL) {
1535		printk(KERN_ERR "ide-tape: bug: Trying to activate a non existing stage\n");
1536		return;
1537	}
1538#endif /* IDETAPE_DEBUG_BUGS */
1539
1540	rq->rq_disk = tape->disk;
1541	rq->buffer = NULL;
1542	rq->special = (void *)stage->bh;
1543	tape->active_data_request = rq;
1544	tape->active_stage = stage;
1545	tape->next_stage = stage->next;
1546}
1547
1548/*
1549 *	idetape_increase_max_pipeline_stages is a part of the feedback
1550 *	loop which tries to find the optimum number of stages. In the
1551 *	feedback loop, we are starting from a minimum maximum number of
1552 *	stages, and if we sense that the pipeline is empty, we try to
1553 *	increase it, until we reach the user compile time memory limit.
1554 */
1555static void idetape_increase_max_pipeline_stages (ide_drive_t *drive)
1556{
1557	idetape_tape_t *tape = drive->driver_data;
1558	int increase = (tape->max_pipeline - tape->min_pipeline) / 10;
1559
1560#if IDETAPE_DEBUG_LOG
1561	if (tape->debug_level >= 4)
1562		printk (KERN_INFO "ide-tape: Reached idetape_increase_max_pipeline_stages\n");
1563#endif /* IDETAPE_DEBUG_LOG */
1564
1565	tape->max_stages += max(increase, 1);
1566	tape->max_stages = max(tape->max_stages, tape->min_pipeline);
1567	tape->max_stages = min(tape->max_stages, tape->max_pipeline);
1568}
1569
1570/*
1571 *	idetape_kfree_stage calls kfree to completely free a stage, along with
1572 *	its related buffers.
1573 */
1574static void __idetape_kfree_stage (idetape_stage_t *stage)
1575{
1576	struct idetape_bh *prev_bh, *bh = stage->bh;
1577	int size;
1578
1579	while (bh != NULL) {
1580		if (bh->b_data != NULL) {
1581			size = (int) bh->b_size;
1582			while (size > 0) {
1583				free_page((unsigned long) bh->b_data);
1584				size -= PAGE_SIZE;
1585				bh->b_data += PAGE_SIZE;
1586			}
1587		}
1588		prev_bh = bh;
1589		bh = bh->b_reqnext;
1590		kfree(prev_bh);
1591	}
1592	kfree(stage);
1593}
1594
1595static void idetape_kfree_stage (idetape_tape_t *tape, idetape_stage_t *stage)
1596{
1597	__idetape_kfree_stage(stage);
1598}
1599
1600/*
1601 *	idetape_remove_stage_head removes tape->first_stage from the pipeline.
1602 *	The caller should avoid race conditions.
1603 */
1604static void idetape_remove_stage_head (ide_drive_t *drive)
1605{
1606	idetape_tape_t *tape = drive->driver_data;
1607	idetape_stage_t *stage;
1608
1609#if IDETAPE_DEBUG_LOG
1610	if (tape->debug_level >= 4)
1611		printk(KERN_INFO "ide-tape: Reached idetape_remove_stage_head\n");
1612#endif /* IDETAPE_DEBUG_LOG */
1613#if IDETAPE_DEBUG_BUGS
1614	if (tape->first_stage == NULL) {
1615		printk(KERN_ERR "ide-tape: bug: tape->first_stage is NULL\n");
1616		return;
1617	}
1618	if (tape->active_stage == tape->first_stage) {
1619		printk(KERN_ERR "ide-tape: bug: Trying to free our active pipeline stage\n");
1620		return;
1621	}
1622#endif /* IDETAPE_DEBUG_BUGS */
1623	stage = tape->first_stage;
1624	tape->first_stage = stage->next;
1625	idetape_kfree_stage(tape, stage);
1626	tape->nr_stages--;
1627	if (tape->first_stage == NULL) {
1628		tape->last_stage = NULL;
1629#if IDETAPE_DEBUG_BUGS
1630		if (tape->next_stage != NULL)
1631			printk(KERN_ERR "ide-tape: bug: tape->next_stage != NULL\n");
1632		if (tape->nr_stages)
1633			printk(KERN_ERR "ide-tape: bug: nr_stages should be 0 now\n");
1634#endif /* IDETAPE_DEBUG_BUGS */
1635	}
1636}
1637
1638/*
1639 * This will free all the pipeline stages starting from new_last_stage->next
1640 * to the end of the list, and point tape->last_stage to new_last_stage.
1641 */
1642static void idetape_abort_pipeline(ide_drive_t *drive,
1643				   idetape_stage_t *new_last_stage)
1644{
1645	idetape_tape_t *tape = drive->driver_data;
1646	idetape_stage_t *stage = new_last_stage->next;
1647	idetape_stage_t *nstage;
1648
1649#if IDETAPE_DEBUG_LOG
1650	if (tape->debug_level >= 4)
1651		printk(KERN_INFO "ide-tape: %s: idetape_abort_pipeline called\n", tape->name);
1652#endif
1653	while (stage) {
1654		nstage = stage->next;
1655		idetape_kfree_stage(tape, stage);
1656		--tape->nr_stages;
1657		--tape->nr_pending_stages;
1658		stage = nstage;
1659	}
1660	if (new_last_stage)
1661		new_last_stage->next = NULL;
1662	tape->last_stage = new_last_stage;
1663	tape->next_stage = NULL;
1664}
1665
1666/*
1667 *	idetape_end_request is used to finish servicing a request, and to
1668 *	insert a pending pipeline request into the main device queue.
1669 */
1670static int idetape_end_request(ide_drive_t *drive, int uptodate, int nr_sects)
1671{
1672	struct request *rq = HWGROUP(drive)->rq;
1673	idetape_tape_t *tape = drive->driver_data;
1674	unsigned long flags;
1675	int error;
1676	int remove_stage = 0;
1677	idetape_stage_t *active_stage;
1678
1679#if IDETAPE_DEBUG_LOG
1680        if (tape->debug_level >= 4)
1681	printk(KERN_INFO "ide-tape: Reached idetape_end_request\n");
1682#endif /* IDETAPE_DEBUG_LOG */
1683
1684	switch (uptodate) {
1685		case 0:	error = IDETAPE_ERROR_GENERAL; break;
1686		case 1: error = 0; break;
1687		default: error = uptodate;
1688	}
1689	rq->errors = error;
1690	if (error)
1691		tape->failed_pc = NULL;
1692
1693	if (!blk_special_request(rq)) {
1694		ide_end_request(drive, uptodate, nr_sects);
1695		return 0;
1696	}
1697
1698	spin_lock_irqsave(&tape->spinlock, flags);
1699
1700	/* The request was a pipelined data transfer request */
1701	if (tape->active_data_request == rq) {
1702		active_stage = tape->active_stage;
1703		tape->active_stage = NULL;
1704		tape->active_data_request = NULL;
1705		tape->nr_pending_stages--;
1706		if (rq->cmd[0] & REQ_IDETAPE_WRITE) {
1707			remove_stage = 1;
1708			if (error) {
1709				set_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
1710				if (error == IDETAPE_ERROR_EOD)
1711					idetape_abort_pipeline(drive, active_stage);
1712			}
1713		} else if (rq->cmd[0] & REQ_IDETAPE_READ) {
1714			if (error == IDETAPE_ERROR_EOD) {
1715				set_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
1716				idetape_abort_pipeline(drive, active_stage);
1717			}
1718		}
1719		if (tape->next_stage != NULL) {
1720			idetape_active_next_stage(drive);
1721
1722			/*
1723			 * Insert the next request into the request queue.
1724			 */
1725			(void) ide_do_drive_cmd(drive, tape->active_data_request, ide_end);
1726		} else if (!error) {
1727				idetape_increase_max_pipeline_stages(drive);
1728		}
1729	}
1730	ide_end_drive_cmd(drive, 0, 0);
1731//	blkdev_dequeue_request(rq);
1732//	drive->rq = NULL;
1733//	end_that_request_last(rq);
1734
1735	if (remove_stage)
1736		idetape_remove_stage_head(drive);
1737	if (tape->active_data_request == NULL)
1738		clear_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
1739	spin_unlock_irqrestore(&tape->spinlock, flags);
1740	return 0;
1741}
1742
1743static ide_startstop_t idetape_request_sense_callback (ide_drive_t *drive)
1744{
1745	idetape_tape_t *tape = drive->driver_data;
1746
1747#if IDETAPE_DEBUG_LOG
1748	if (tape->debug_level >= 4)
1749		printk(KERN_INFO "ide-tape: Reached idetape_request_sense_callback\n");
1750#endif /* IDETAPE_DEBUG_LOG */
1751	if (!tape->pc->error) {
1752		idetape_analyze_error(drive, (idetape_request_sense_result_t *) tape->pc->buffer);
1753		idetape_end_request(drive, 1, 0);
1754	} else {
1755		printk(KERN_ERR "ide-tape: Error in REQUEST SENSE itself - Aborting request!\n");
1756		idetape_end_request(drive, 0, 0);
1757	}
1758	return ide_stopped;
1759}
1760
1761static void idetape_create_request_sense_cmd (idetape_pc_t *pc)
1762{
1763	idetape_init_pc(pc);
1764	pc->c[0] = IDETAPE_REQUEST_SENSE_CMD;
1765	pc->c[4] = 20;
1766	pc->request_transfer = 20;
1767	pc->callback = &idetape_request_sense_callback;
1768}
1769
1770static void idetape_init_rq(struct request *rq, u8 cmd)
1771{
1772	memset(rq, 0, sizeof(*rq));
1773	rq->cmd_type = REQ_TYPE_SPECIAL;
1774	rq->cmd[0] = cmd;
1775}
1776
1777/*
1778 *	idetape_queue_pc_head generates a new packet command request in front
1779 *	of the request queue, before the current request, so that it will be
1780 *	processed immediately, on the next pass through the driver.
1781 *
1782 *	idetape_queue_pc_head is called from the request handling part of
1783 *	the driver (the "bottom" part). Safe storage for the request should
1784 *	be allocated with idetape_next_pc_storage and idetape_next_rq_storage
1785 *	before calling idetape_queue_pc_head.
1786 *
1787 *	Memory for those requests is pre-allocated at initialization time, and
1788 *	is limited to IDETAPE_PC_STACK requests. We assume that we have enough
1789 *	space for the maximum possible number of inter-dependent packet commands.
1790 *
1791 *	The higher level of the driver - The ioctl handler and the character
1792 *	device handling functions should queue request to the lower level part
1793 *	and wait for their completion using idetape_queue_pc_tail or
1794 *	idetape_queue_rw_tail.
1795 */
1796static void idetape_queue_pc_head (ide_drive_t *drive, idetape_pc_t *pc,struct request *rq)
1797{
1798	struct ide_tape_obj *tape = drive->driver_data;
1799
1800	idetape_init_rq(rq, REQ_IDETAPE_PC1);
1801	rq->buffer = (char *) pc;
1802	rq->rq_disk = tape->disk;
1803	(void) ide_do_drive_cmd(drive, rq, ide_preempt);
1804}
1805
1806/*
1807 *	idetape_retry_pc is called when an error was detected during the
1808 *	last packet command. We queue a request sense packet command in
1809 *	the head of the request list.
1810 */
1811static ide_startstop_t idetape_retry_pc (ide_drive_t *drive)
1812{
1813	idetape_tape_t *tape = drive->driver_data;
1814	idetape_pc_t *pc;
1815	struct request *rq;
1816
1817	(void)drive->hwif->INB(IDE_ERROR_REG);
1818	pc = idetape_next_pc_storage(drive);
1819	rq = idetape_next_rq_storage(drive);
1820	idetape_create_request_sense_cmd(pc);
1821	set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
1822	idetape_queue_pc_head(drive, pc, rq);
1823	return ide_stopped;
1824}
1825
1826/*
1827 *	idetape_postpone_request postpones the current request so that
1828 *	ide.c will be able to service requests from another device on
1829 *	the same hwgroup while we are polling for DSC.
1830 */
1831static void idetape_postpone_request (ide_drive_t *drive)
1832{
1833	idetape_tape_t *tape = drive->driver_data;
1834
1835#if IDETAPE_DEBUG_LOG
1836	if (tape->debug_level >= 4)
1837		printk(KERN_INFO "ide-tape: idetape_postpone_request\n");
1838#endif
1839	tape->postponed_rq = HWGROUP(drive)->rq;
1840	ide_stall_queue(drive, tape->dsc_polling_frequency);
1841}
1842
1843/*
1844 *	idetape_pc_intr is the usual interrupt handler which will be called
1845 *	during a packet command. We will transfer some of the data (as
1846 *	requested by the drive) and will re-point interrupt handler to us.
1847 *	When data transfer is finished, we will act according to the
1848 *	algorithm described before idetape_issue_packet_command.
1849 *
1850 */
1851static ide_startstop_t idetape_pc_intr (ide_drive_t *drive)
1852{
1853	ide_hwif_t *hwif = drive->hwif;
1854	idetape_tape_t *tape = drive->driver_data;
1855	idetape_pc_t *pc = tape->pc;
1856	unsigned int temp;
1857#if SIMULATE_ERRORS
1858	static int error_sim_count = 0;
1859#endif
1860	u16 bcount;
1861	u8 stat, ireason;
1862
1863#if IDETAPE_DEBUG_LOG
1864	if (tape->debug_level >= 4)
1865		printk(KERN_INFO "ide-tape: Reached idetape_pc_intr "
1866				"interrupt handler\n");
1867#endif /* IDETAPE_DEBUG_LOG */
1868
1869	/* Clear the interrupt */
1870	stat = hwif->INB(IDE_STATUS_REG);
1871
1872	if (test_bit(PC_DMA_IN_PROGRESS, &pc->flags)) {
1873		if (hwif->ide_dma_end(drive) || (stat & ERR_STAT)) {
1874			/*
1875			 * A DMA error is sometimes expected. For example,
1876			 * if the tape is crossing a filemark during a
1877			 * READ command, it will issue an irq and position
1878			 * itself before the filemark, so that only a partial
1879			 * data transfer will occur (which causes the DMA
1880			 * error). In that case, we will later ask the tape
1881			 * how much bytes of the original request were
1882			 * actually transferred (we can't receive that
1883			 * information from the DMA engine on most chipsets).
1884			 */
1885
1886			/*
1887			 * On the contrary, a DMA error is never expected;
1888			 * it usually indicates a hardware error or abort.
1889			 * If the tape crosses a filemark during a READ
1890			 * command, it will issue an irq and position itself
1891			 * after the filemark (not before). Only a partial
1892			 * data transfer will occur, but no DMA error.
1893			 * (AS, 19 Apr 2001)
1894			 */
1895			set_bit(PC_DMA_ERROR, &pc->flags);
1896		} else {
1897			pc->actually_transferred = pc->request_transfer;
1898			idetape_update_buffers(pc);
1899		}
1900#if IDETAPE_DEBUG_LOG
1901		if (tape->debug_level >= 4)
1902			printk(KERN_INFO "ide-tape: DMA finished\n");
1903#endif /* IDETAPE_DEBUG_LOG */
1904	}
1905
1906	/* No more interrupts */
1907	if ((stat & DRQ_STAT) == 0) {
1908#if IDETAPE_DEBUG_LOG
1909		if (tape->debug_level >= 2)
1910			printk(KERN_INFO "ide-tape: Packet command completed, %d bytes transferred\n", pc->actually_transferred);
1911#endif /* IDETAPE_DEBUG_LOG */
1912		clear_bit(PC_DMA_IN_PROGRESS, &pc->flags);
1913
1914		local_irq_enable();
1915
1916#if SIMULATE_ERRORS
1917		if ((pc->c[0] == IDETAPE_WRITE_CMD ||
1918		     pc->c[0] == IDETAPE_READ_CMD) &&
1919		    (++error_sim_count % 100) == 0) {
1920			printk(KERN_INFO "ide-tape: %s: simulating error\n",
1921				tape->name);
1922			stat |= ERR_STAT;
1923		}
1924#endif
1925		if ((stat & ERR_STAT) && pc->c[0] == IDETAPE_REQUEST_SENSE_CMD)
1926			stat &= ~ERR_STAT;
1927		if ((stat & ERR_STAT) || test_bit(PC_DMA_ERROR, &pc->flags)) {
1928			/* Error detected */
1929#if IDETAPE_DEBUG_LOG
1930			if (tape->debug_level >= 1)
1931				printk(KERN_INFO "ide-tape: %s: I/O error\n",
1932					tape->name);
1933#endif /* IDETAPE_DEBUG_LOG */
1934			if (pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) {
1935				printk(KERN_ERR "ide-tape: I/O error in request sense command\n");
1936				return ide_do_reset(drive);
1937			}
1938#if IDETAPE_DEBUG_LOG
1939			if (tape->debug_level >= 1)
1940				printk(KERN_INFO "ide-tape: [cmd %x]: check condition\n", pc->c[0]);
1941#endif
1942			/* Retry operation */
1943			return idetape_retry_pc(drive);
1944		}
1945		pc->error = 0;
1946		if (test_bit(PC_WAIT_FOR_DSC, &pc->flags) &&
1947		    (stat & SEEK_STAT) == 0) {
1948			/* Media access command */
1949			tape->dsc_polling_start = jiffies;
1950			tape->dsc_polling_frequency = IDETAPE_DSC_MA_FAST;
1951			tape->dsc_timeout = jiffies + IDETAPE_DSC_MA_TIMEOUT;
1952			/* Allow ide.c to handle other requests */
1953			idetape_postpone_request(drive);
1954			return ide_stopped;
1955		}
1956		if (tape->failed_pc == pc)
1957			tape->failed_pc = NULL;
1958		/* Command finished - Call the callback function */
1959		return pc->callback(drive);
1960	}
1961	if (test_and_clear_bit(PC_DMA_IN_PROGRESS, &pc->flags)) {
1962		printk(KERN_ERR "ide-tape: The tape wants to issue more "
1963				"interrupts in DMA mode\n");
1964		printk(KERN_ERR "ide-tape: DMA disabled, reverting to PIO\n");
1965		ide_dma_off(drive);
1966		return ide_do_reset(drive);
1967	}
1968	/* Get the number of bytes to transfer on this interrupt. */
1969	bcount = (hwif->INB(IDE_BCOUNTH_REG) << 8) |
1970		  hwif->INB(IDE_BCOUNTL_REG);
1971
1972	ireason = hwif->INB(IDE_IREASON_REG);
1973
1974	if (ireason & CD) {
1975		printk(KERN_ERR "ide-tape: CoD != 0 in idetape_pc_intr\n");
1976		return ide_do_reset(drive);
1977	}
1978	if (((ireason & IO) == IO) == test_bit(PC_WRITING, &pc->flags)) {
1979		/* Hopefully, we will never get here */
1980		printk(KERN_ERR "ide-tape: We wanted to %s, ",
1981				(ireason & IO) ? "Write" : "Read");
1982		printk(KERN_ERR "ide-tape: but the tape wants us to %s !\n",
1983				(ireason & IO) ? "Read" : "Write");
1984		return ide_do_reset(drive);
1985	}
1986	if (!test_bit(PC_WRITING, &pc->flags)) {
1987		/* Reading - Check that we have enough space */
1988		temp = pc->actually_transferred + bcount;
1989		if (temp > pc->request_transfer) {
1990			if (temp > pc->buffer_size) {
1991				printk(KERN_ERR "ide-tape: The tape wants to send us more data than expected - discarding data\n");
1992				idetape_discard_data(drive, bcount);
1993				ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
1994				return ide_started;
1995			}
1996#if IDETAPE_DEBUG_LOG
1997			if (tape->debug_level >= 2)
1998				printk(KERN_NOTICE "ide-tape: The tape wants to send us more data than expected - allowing transfer\n");
1999#endif /* IDETAPE_DEBUG_LOG */
2000		}
2001	}
2002	if (test_bit(PC_WRITING, &pc->flags)) {
2003		if (pc->bh != NULL)
2004			idetape_output_buffers(drive, pc, bcount);
2005		else
2006			/* Write the current buffer */
2007			hwif->atapi_output_bytes(drive, pc->current_position,
2008						 bcount);
2009	} else {
2010		if (pc->bh != NULL)
2011			idetape_input_buffers(drive, pc, bcount);
2012		else
2013			/* Read the current buffer */
2014			hwif->atapi_input_bytes(drive, pc->current_position,
2015						bcount);
2016	}
2017	/* Update the current position */
2018	pc->actually_transferred += bcount;
2019	pc->current_position += bcount;
2020#if IDETAPE_DEBUG_LOG
2021	if (tape->debug_level >= 2)
2022		printk(KERN_INFO "ide-tape: [cmd %x] transferred %d bytes "
2023				 "on that interrupt\n", pc->c[0], bcount);
2024#endif
2025	/* And set the interrupt handler again */
2026	ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
2027	return ide_started;
2028}
2029
2030/*
2031 *	Packet Command Interface
2032 *
2033 *	The current Packet Command is available in tape->pc, and will not
2034 *	change until we finish handling it. Each packet command is associated
2035 *	with a callback function that will be called when the command is
2036 *	finished.
2037 *
2038 *	The handling will be done in three stages:
2039 *
2040 *	1.	idetape_issue_packet_command will send the packet command to the
2041 *		drive, and will set the interrupt handler to idetape_pc_intr.
2042 *
2043 *	2.	On each interrupt, idetape_pc_intr will be called. This step
2044 *		will be repeated until the device signals us that no more
2045 *		interrupts will be issued.
2046 *
2047 *	3.	ATAPI Tape media access commands have immediate status with a
2048 *		delayed process. In case of a successful initiation of a
2049 *		media access packet command, the DSC bit will be set when the
2050 *		actual execution of the command is finished.
2051 *		Since the tape drive will not issue an interrupt, we have to
2052 *		poll for this event. In this case, we define the request as
2053 *		"low priority request" by setting rq_status to
2054 *		IDETAPE_RQ_POSTPONED, 	set a timer to poll for DSC and exit
2055 *		the driver.
2056 *
2057 *		ide.c will then give higher priority to requests which
2058 *		originate from the other device, until will change rq_status
2059 *		to RQ_ACTIVE.
2060 *
2061 *	4.	When the packet command is finished, it will be checked for errors.
2062 *
2063 *	5.	In case an error was found, we queue a request sense packet
2064 *		command in front of the request queue and retry the operation
2065 *		up to IDETAPE_MAX_PC_RETRIES times.
2066 *
2067 *	6.	In case no error was found, or we decided to give up and not
2068 *		to retry again, the callback function will be called and then
2069 *		we will handle the next request.
2070 *
2071 */
2072static ide_startstop_t idetape_transfer_pc(ide_drive_t *drive)
2073{
2074	ide_hwif_t *hwif = drive->hwif;
2075	idetape_tape_t *tape = drive->driver_data;
2076	idetape_pc_t *pc = tape->pc;
2077	int retries = 100;
2078	ide_startstop_t startstop;
2079	u8 ireason;
2080
2081	if (ide_wait_stat(&startstop,drive,DRQ_STAT,BUSY_STAT,WAIT_READY)) {
2082		printk(KERN_ERR "ide-tape: Strange, packet command initiated yet DRQ isn't asserted\n");
2083		return startstop;
2084	}
2085	ireason = hwif->INB(IDE_IREASON_REG);
2086	while (retries-- && ((ireason & CD) == 0 || (ireason & IO))) {
2087		printk(KERN_ERR "ide-tape: (IO,CoD != (0,1) while issuing "
2088				"a packet command, retrying\n");
2089		udelay(100);
2090		ireason = hwif->INB(IDE_IREASON_REG);
2091		if (retries == 0) {
2092			printk(KERN_ERR "ide-tape: (IO,CoD != (0,1) while "
2093					"issuing a packet command, ignoring\n");
2094			ireason |= CD;
2095			ireason &= ~IO;
2096		}
2097	}
2098	if ((ireason & CD) == 0 || (ireason & IO)) {
2099		printk(KERN_ERR "ide-tape: (IO,CoD) != (0,1) while issuing "
2100				"a packet command\n");
2101		return ide_do_reset(drive);
2102	}
2103	/* Set the interrupt routine */
2104	ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
2105#ifdef CONFIG_BLK_DEV_IDEDMA
2106	/* Begin DMA, if necessary */
2107	if (test_bit(PC_DMA_IN_PROGRESS, &pc->flags))
2108		hwif->dma_start(drive);
2109#endif
2110	/* Send the actual packet */
2111	HWIF(drive)->atapi_output_bytes(drive, pc->c, 12);
2112	return ide_started;
2113}
2114
2115static ide_startstop_t idetape_issue_packet_command (ide_drive_t *drive, idetape_pc_t *pc)
2116{
2117	ide_hwif_t *hwif = drive->hwif;
2118	idetape_tape_t *tape = drive->driver_data;
2119	int dma_ok = 0;
2120	u16 bcount;
2121
2122#if IDETAPE_DEBUG_BUGS
2123	if (tape->pc->c[0] == IDETAPE_REQUEST_SENSE_CMD &&
2124	    pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) {
2125		printk(KERN_ERR "ide-tape: possible ide-tape.c bug - "
2126			"Two request sense in serial were issued\n");
2127	}
2128#endif /* IDETAPE_DEBUG_BUGS */
2129
2130	if (tape->failed_pc == NULL && pc->c[0] != IDETAPE_REQUEST_SENSE_CMD)
2131		tape->failed_pc = pc;
2132	/* Set the current packet command */
2133	tape->pc = pc;
2134
2135	if (pc->retries > IDETAPE_MAX_PC_RETRIES ||
2136	    test_bit(PC_ABORT, &pc->flags)) {
2137		/*
2138		 *	We will "abort" retrying a packet command in case
2139		 *	a legitimate error code was received (crossing a
2140		 *	filemark, or end of the media, for example).
2141		 */
2142		if (!test_bit(PC_ABORT, &pc->flags)) {
2143			if (!(pc->c[0] == IDETAPE_TEST_UNIT_READY_CMD &&
2144			      tape->sense_key == 2 && tape->asc == 4 &&
2145			     (tape->ascq == 1 || tape->ascq == 8))) {
2146				printk(KERN_ERR "ide-tape: %s: I/O error, "
2147						"pc = %2x, key = %2x, "
2148						"asc = %2x, ascq = %2x\n",
2149						tape->name, pc->c[0],
2150						tape->sense_key, tape->asc,
2151						tape->ascq);
2152			}
2153			/* Giving up */
2154			pc->error = IDETAPE_ERROR_GENERAL;
2155		}
2156		tape->failed_pc = NULL;
2157		return pc->callback(drive);
2158	}
2159#if IDETAPE_DEBUG_LOG
2160	if (tape->debug_level >= 2)
2161		printk(KERN_INFO "ide-tape: Retry number - %d, cmd = %02X\n", pc->retries, pc->c[0]);
2162#endif /* IDETAPE_DEBUG_LOG */
2163
2164	pc->retries++;
2165	/* We haven't transferred any data yet */
2166	pc->actually_transferred = 0;
2167	pc->current_position = pc->buffer;
2168	/* Request to transfer the entire buffer at once */
2169	bcount = pc->request_transfer;
2170
2171	if (test_and_clear_bit(PC_DMA_ERROR, &pc->flags)) {
2172		printk(KERN_WARNING "ide-tape: DMA disabled, "
2173				"reverting to PIO\n");
2174		ide_dma_off(drive);
2175	}
2176	if (test_bit(PC_DMA_RECOMMENDED, &pc->flags) && drive->using_dma)
2177		dma_ok = !hwif->dma_setup(drive);
2178
2179	ide_pktcmd_tf_load(drive, IDE_TFLAG_NO_SELECT_MASK |
2180			   IDE_TFLAG_OUT_DEVICE, bcount, dma_ok);
2181
2182	if (dma_ok)			/* Will begin DMA later */
2183		set_bit(PC_DMA_IN_PROGRESS, &pc->flags);
2184	if (test_bit(IDETAPE_DRQ_INTERRUPT, &tape->flags)) {
2185		ide_set_handler(drive, &idetape_transfer_pc, IDETAPE_WAIT_CMD, NULL);
2186		hwif->OUTB(WIN_PACKETCMD, IDE_COMMAND_REG);
2187		return ide_started;
2188	} else {
2189		hwif->OUTB(WIN_PACKETCMD, IDE_COMMAND_REG);
2190		return idetape_transfer_pc(drive);
2191	}
2192}
2193
2194/*
2195 *	General packet command callback function.
2196 */
2197static ide_startstop_t idetape_pc_callback (ide_drive_t *drive)
2198{
2199	idetape_tape_t *tape = drive->driver_data;
2200
2201#if IDETAPE_DEBUG_LOG
2202	if (tape->debug_level >= 4)
2203		printk(KERN_INFO "ide-tape: Reached idetape_pc_callback\n");
2204#endif /* IDETAPE_DEBUG_LOG */
2205
2206	idetape_end_request(drive, tape->pc->error ? 0 : 1, 0);
2207	return ide_stopped;
2208}
2209
2210/*
2211 *	A mode sense command is used to "sense" tape parameters.
2212 */
2213static void idetape_create_mode_sense_cmd (idetape_pc_t *pc, u8 page_code)
2214{
2215	idetape_init_pc(pc);
2216	pc->c[0] = IDETAPE_MODE_SENSE_CMD;
2217	if (page_code != IDETAPE_BLOCK_DESCRIPTOR)
2218		pc->c[1] = 8;	/* DBD = 1 - Don't return block descriptors */
2219	pc->c[2] = page_code;
2220	/*
2221	 * Changed pc->c[3] to 0 (255 will at best return unused info).
2222	 *
2223	 * For SCSI this byte is defined as subpage instead of high byte
2224	 * of length and some IDE drives seem to interpret it this way
2225	 * and return an error when 255 is used.
2226	 */
2227	pc->c[3] = 0;
2228	pc->c[4] = 255;		/* (We will just discard data in that case) */
2229	if (page_code == IDETAPE_BLOCK_DESCRIPTOR)
2230		pc->request_transfer = 12;
2231	else if (page_code == IDETAPE_CAPABILITIES_PAGE)
2232		pc->request_transfer = 24;
2233	else
2234		pc->request_transfer = 50;
2235	pc->callback = &idetape_pc_callback;
2236}
2237
2238static void calculate_speeds(ide_drive_t *drive)
2239{
2240	idetape_tape_t *tape = drive->driver_data;
2241	int full = 125, empty = 75;
2242
2243	if (time_after(jiffies, tape->controlled_pipeline_head_time + 120 * HZ)) {
2244		tape->controlled_previous_pipeline_head = tape->controlled_last_pipeline_head;
2245		tape->controlled_previous_head_time = tape->controlled_pipeline_head_time;
2246		tape->controlled_last_pipeline_head = tape->pipeline_head;
2247		tape->controlled_pipeline_head_time = jiffies;
2248	}
2249	if (time_after(jiffies, tape->controlled_pipeline_head_time + 60 * HZ))
2250		tape->controlled_pipeline_head_speed = (tape->pipeline_head - tape->controlled_last_pipeline_head) * 32 * HZ / (jiffies - tape->controlled_pipeline_head_time);
2251	else if (time_after(jiffies, tape->controlled_previous_head_time))
2252		tape->controlled_pipeline_head_speed = (tape->pipeline_head - tape->controlled_previous_pipeline_head) * 32 * HZ / (jiffies - tape->controlled_previous_head_time);
2253
2254	if (tape->nr_pending_stages < tape->max_stages /*- 1 */) {
2255		/* -1 for read mode error recovery */
2256		if (time_after(jiffies, tape->uncontrolled_previous_head_time + 10 * HZ)) {
2257			tape->uncontrolled_pipeline_head_time = jiffies;
2258			tape->uncontrolled_pipeline_head_speed = (tape->pipeline_head - tape->uncontrolled_previous_pipeline_head) * 32 * HZ / (jiffies - tape->uncontrolled_previous_head_time);
2259		}
2260	} else {
2261		tape->uncontrolled_previous_head_time = jiffies;
2262		tape->uncontrolled_previous_pipeline_head = tape->pipeline_head;
2263		if (time_after(jiffies, tape->uncontrolled_pipeline_head_time + 30 * HZ)) {
2264			tape->uncontrolled_pipeline_head_time = jiffies;
2265		}
2266	}
2267	tape->pipeline_head_speed = max(tape->uncontrolled_pipeline_head_speed, tape->controlled_pipeline_head_speed);
2268	if (tape->speed_control == 0) {
2269		tape->max_insert_speed = 5000;
2270	} else if (tape->speed_control == 1) {
2271		if (tape->nr_pending_stages >= tape->max_stages / 2)
2272			tape->max_insert_speed = tape->pipeline_head_speed +
2273				(1100 - tape->pipeline_head_speed) * 2 * (tape->nr_pending_stages - tape->max_stages / 2) / tape->max_stages;
2274		else
2275			tape->max_insert_speed = 500 +
2276				(tape->pipeline_head_speed - 500) * 2 * tape->nr_pending_stages / tape->max_stages;
2277		if (tape->nr_pending_stages >= tape->max_stages * 99 / 100)
2278			tape->max_insert_speed = 5000;
2279	} else if (tape->speed_control == 2) {
2280		tape->max_insert_speed = tape->pipeline_head_speed * empty / 100 +
2281			(tape->pipeline_head_speed * full / 100 - tape->pipeline_head_speed * empty / 100) * tape->nr_pending_stages / tape->max_stages;
2282	} else
2283		tape->max_insert_speed = tape->speed_control;
2284	tape->max_insert_speed = max(tape->max_insert_speed, 500);
2285}
2286
2287static ide_startstop_t idetape_media_access_finished (ide_drive_t *drive)
2288{
2289	idetape_tape_t *tape = drive->driver_data;
2290	idetape_pc_t *pc = tape->pc;
2291	u8 stat;
2292
2293	stat = drive->hwif->INB(IDE_STATUS_REG);
2294	if (stat & SEEK_STAT) {
2295		if (stat & ERR_STAT) {
2296			/* Error detected */
2297			if (pc->c[0] != IDETAPE_TEST_UNIT_READY_CMD)
2298				printk(KERN_ERR "ide-tape: %s: I/O error, ",
2299						tape->name);
2300			/* Retry operation */
2301			return idetape_retry_pc(drive);
2302		}
2303		pc->error = 0;
2304		if (tape->failed_pc == pc)
2305			tape->failed_pc = NULL;
2306	} else {
2307		pc->error = IDETAPE_ERROR_GENERAL;
2308		tape->failed_pc = NULL;
2309	}
2310	return pc->callback(drive);
2311}
2312
2313static ide_startstop_t idetape_rw_callback (ide_drive_t *drive)
2314{
2315	idetape_tape_t *tape = drive->driver_data;
2316	struct request *rq = HWGROUP(drive)->rq;
2317	int blocks = tape->pc->actually_transferred / tape->tape_block_size;
2318
2319	tape->avg_size += blocks * tape->tape_block_size;
2320	tape->insert_size += blocks * tape->tape_block_size;
2321	if (tape->insert_size > 1024 * 1024)
2322		tape->measure_insert_time = 1;
2323	if (tape->measure_insert_time) {
2324		tape->measure_insert_time = 0;
2325		tape->insert_time = jiffies;
2326		tape->insert_size = 0;
2327	}
2328	if (time_after(jiffies, tape->insert_time))
2329		tape->insert_speed = tape->insert_size / 1024 * HZ / (jiffies - tape->insert_time);
2330	if (time_after_eq(jiffies, tape->avg_time + HZ)) {
2331		tape->avg_speed = tape->avg_size * HZ / (jiffies - tape->avg_time) / 1024;
2332		tape->avg_size = 0;
2333		tape->avg_time = jiffies;
2334	}
2335
2336#if IDETAPE_DEBUG_LOG
2337	if (tape->debug_level >= 4)
2338		printk(KERN_INFO "ide-tape: Reached idetape_rw_callback\n");
2339#endif /* IDETAPE_DEBUG_LOG */
2340
2341	tape->first_frame_position += blocks;
2342	rq->current_nr_sectors -= blocks;
2343
2344	if (!tape->pc->error)
2345		idetape_end_request(drive, 1, 0);
2346	else
2347		idetape_end_request(drive, tape->pc->error, 0);
2348	return ide_stopped;
2349}
2350
2351static void idetape_create_read_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
2352{
2353	idetape_init_pc(pc);
2354	pc->c[0] = IDETAPE_READ_CMD;
2355	put_unaligned(htonl(length), (unsigned int *) &pc->c[1]);
2356	pc->c[1] = 1;
2357	pc->callback = &idetape_rw_callback;
2358	pc->bh = bh;
2359	atomic_set(&bh->b_count, 0);
2360	pc->buffer = NULL;
2361	pc->request_transfer = pc->buffer_size = length * tape->tape_block_size;
2362	if (pc->request_transfer == tape->stage_size)
2363		set_bit(PC_DMA_RECOMMENDED, &pc->flags);
2364}
2365
2366static void idetape_create_read_buffer_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
2367{
2368	int size = 32768;
2369	struct idetape_bh *p = bh;
2370
2371	idetape_init_pc(pc);
2372	pc->c[0] = IDETAPE_READ_BUFFER_CMD;
2373	pc->c[1] = IDETAPE_RETRIEVE_FAULTY_BLOCK;
2374	pc->c[7] = size >> 8;
2375	pc->c[8] = size & 0xff;
2376	pc->callback = &idetape_pc_callback;
2377	pc->bh = bh;
2378	atomic_set(&bh->b_count, 0);
2379	pc->buffer = NULL;
2380	while (p) {
2381		atomic_set(&p->b_count, 0);
2382		p = p->b_reqnext;
2383	}
2384	pc->request_transfer = pc->buffer_size = size;
2385}
2386
2387static void idetape_create_write_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
2388{
2389	idetape_init_pc(pc);
2390	pc->c[0] = IDETAPE_WRITE_CMD;
2391	put_unaligned(htonl(length), (unsigned int *) &pc->c[1]);
2392	pc->c[1] = 1;
2393	pc->callback = &idetape_rw_callback;
2394	set_bit(PC_WRITING, &pc->flags);
2395	pc->bh = bh;
2396	pc->b_data = bh->b_data;
2397	pc->b_count = atomic_read(&bh->b_count);
2398	pc->buffer = NULL;
2399	pc->request_transfer = pc->buffer_size = length * tape->tape_block_size;
2400	if (pc->request_transfer == tape->stage_size)
2401		set_bit(PC_DMA_RECOMMENDED, &pc->flags);
2402}
2403
2404/*
2405 * idetape_do_request is our request handling function.
2406 */
2407static ide_startstop_t idetape_do_request(ide_drive_t *drive,
2408					  struct request *rq, sector_t block)
2409{
2410	idetape_tape_t *tape = drive->driver_data;
2411	idetape_pc_t *pc = NULL;
2412	struct request *postponed_rq = tape->postponed_rq;
2413	u8 stat;
2414
2415#if IDETAPE_DEBUG_LOG
2416#if 0
2417	if (tape->debug_level >= 5)
2418		printk(KERN_INFO "ide-tape:  %d, "
2419			"dev: %s, cmd: %ld, errors: %d\n",
2420			 rq->rq_disk->disk_name, rq->cmd[0], rq->errors);
2421#endif
2422	if (tape->debug_level >= 2)
2423		printk(KERN_INFO "ide-tape: sector: %ld, "
2424			"nr_sectors: %ld, current_nr_sectors: %d\n",
2425			rq->sector, rq->nr_sectors, rq->current_nr_sectors);
2426#endif /* IDETAPE_DEBUG_LOG */
2427
2428	if (!blk_special_request(rq)) {
2429		/*
2430		 * We do not support buffer cache originated requests.
2431		 */
2432		printk(KERN_NOTICE "ide-tape: %s: Unsupported request in "
2433			"request queue (%d)\n", drive->name, rq->cmd_type);
2434		ide_end_request(drive, 0, 0);
2435		return ide_stopped;
2436	}
2437
2438	/*
2439	 *	Retry a failed packet command
2440	 */
2441	if (tape->failed_pc != NULL &&
2442	    tape->pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) {
2443		return idetape_issue_packet_command(drive, tape->failed_pc);
2444	}
2445#if IDETAPE_DEBUG_BUGS
2446	if (postponed_rq != NULL)
2447		if (rq != postponed_rq) {
2448			printk(KERN_ERR "ide-tape: ide-tape.c bug - "
2449					"Two DSC requests were queued\n");
2450			idetape_end_request(drive, 0, 0);
2451			return ide_stopped;
2452		}
2453#endif /* IDETAPE_DEBUG_BUGS */
2454
2455	tape->postponed_rq = NULL;
2456
2457	/*
2458	 * If the tape is still busy, postpone our request and service
2459	 * the other device meanwhile.
2460	 */
2461	stat = drive->hwif->INB(IDE_STATUS_REG);
2462
2463	if (!drive->dsc_overlap && !(rq->cmd[0] & REQ_IDETAPE_PC2))
2464		set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
2465
2466	if (drive->post_reset == 1) {
2467		set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
2468		drive->post_reset = 0;
2469	}
2470
2471	if (tape->tape_still_time > 100 && tape->tape_still_time < 200)
2472		tape->measure_insert_time = 1;
2473	if (time_after(jiffies, tape->insert_time))
2474		tape->insert_speed = tape->insert_size / 1024 * HZ / (jiffies - tape->insert_time);
2475	calculate_speeds(drive);
2476	if (!test_and_clear_bit(IDETAPE_IGNORE_DSC, &tape->flags) &&
2477	    (stat & SEEK_STAT) == 0) {
2478		if (postponed_rq == NULL) {
2479			tape->dsc_polling_start = jiffies;
2480			tape->dsc_polling_frequency = tape->best_dsc_rw_frequency;
2481			tape->dsc_timeout = jiffies + IDETAPE_DSC_RW_TIMEOUT;
2482		} else if (time_after(jiffies, tape->dsc_timeout)) {
2483			printk(KERN_ERR "ide-tape: %s: DSC timeout\n",
2484				tape->name);
2485			if (rq->cmd[0] & REQ_IDETAPE_PC2) {
2486				idetape_media_access_finished(drive);
2487				return ide_stopped;
2488			} else {
2489				return ide_do_reset(drive);
2490			}
2491		} else if (time_after(jiffies, tape->dsc_polling_start + IDETAPE_DSC_MA_THRESHOLD))
2492			tape->dsc_polling_frequency = IDETAPE_DSC_MA_SLOW;
2493		idetape_postpone_request(drive);
2494		return ide_stopped;
2495	}
2496	if (rq->cmd[0] & REQ_IDETAPE_READ) {
2497		tape->buffer_head++;
2498		tape->postpone_cnt = 0;
2499		pc = idetape_next_pc_storage(drive);
2500		idetape_create_read_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
2501		goto out;
2502	}
2503	if (rq->cmd[0] & REQ_IDETAPE_WRITE) {
2504		tape->buffer_head++;
2505		tape->postpone_cnt = 0;
2506		pc = idetape_next_pc_storage(drive);
2507		idetape_create_write_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
2508		goto out;
2509	}
2510	if (rq->cmd[0] & REQ_IDETAPE_READ_BUFFER) {
2511		tape->postpone_cnt = 0;
2512		pc = idetape_next_pc_storage(drive);
2513		idetape_create_read_buffer_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
2514		goto out;
2515	}
2516	if (rq->cmd[0] & REQ_IDETAPE_PC1) {
2517		pc = (idetape_pc_t *) rq->buffer;
2518		rq->cmd[0] &= ~(REQ_IDETAPE_PC1);
2519		rq->cmd[0] |= REQ_IDETAPE_PC2;
2520		goto out;
2521	}
2522	if (rq->cmd[0] & REQ_IDETAPE_PC2) {
2523		idetape_media_access_finished(drive);
2524		return ide_stopped;
2525	}
2526	BUG();
2527out:
2528	return idetape_issue_packet_command(drive, pc);
2529}
2530
2531/*
2532 *	Pipeline related functions
2533 */
2534static inline int idetape_pipeline_active (idetape_tape_t *tape)
2535{
2536	int rc1, rc2;
2537
2538	rc1 = test_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
2539	rc2 = (tape->active_data_request != NULL);
2540	return rc1;
2541}
2542
2543/*
2544 *	idetape_kmalloc_stage uses __get_free_page to allocate a pipeline
2545 *	stage, along with all the necessary small buffers which together make
2546 *	a buffer of size tape->stage_size (or a bit more). We attempt to
2547 *	combine sequential pages as much as possible.
2548 *
2549 *	Returns a pointer to the new allocated stage, or NULL if we
2550 *	can't (or don't want to) allocate a stage.
2551 *
2552 *	Pipeline stages are optional and are used to increase performance.
2553 *	If we can't allocate them, we'll manage without them.
2554 */
2555static idetape_stage_t *__idetape_kmalloc_stage (idetape_tape_t *tape, int full, int clear)
2556{
2557	idetape_stage_t *stage;
2558	struct idetape_bh *prev_bh, *bh;
2559	int pages = tape->pages_per_stage;
2560	char *b_data = NULL;
2561
2562	if ((stage = kmalloc(sizeof (idetape_stage_t),GFP_KERNEL)) == NULL)
2563		return NULL;
2564	stage->next = NULL;
2565
2566	bh = stage->bh = kmalloc(sizeof(struct idetape_bh), GFP_KERNEL);
2567	if (bh == NULL)
2568		goto abort;
2569	bh->b_reqnext = NULL;
2570	if ((bh->b_data = (char *) __get_free_page (GFP_KERNEL)) == NULL)
2571		goto abort;
2572	if (clear)
2573		memset(bh->b_data, 0, PAGE_SIZE);
2574	bh->b_size = PAGE_SIZE;
2575	atomic_set(&bh->b_count, full ? bh->b_size : 0);
2576
2577	while (--pages) {
2578		if ((b_data = (char *) __get_free_page (GFP_KERNEL)) == NULL)
2579			goto abort;
2580		if (clear)
2581			memset(b_data, 0, PAGE_SIZE);
2582		if (bh->b_data == b_data + PAGE_SIZE) {
2583			bh->b_size += PAGE_SIZE;
2584			bh->b_data -= PAGE_SIZE;
2585			if (full)
2586				atomic_add(PAGE_SIZE, &bh->b_count);
2587			continue;
2588		}
2589		if (b_data == bh->b_data + bh->b_size) {
2590			bh->b_size += PAGE_SIZE;
2591			if (full)
2592				atomic_add(PAGE_SIZE, &bh->b_count);
2593			continue;
2594		}
2595		prev_bh = bh;
2596		if ((bh = kmalloc(sizeof(struct idetape_bh), GFP_KERNEL)) == NULL) {
2597			free_page((unsigned long) b_data);
2598			goto abort;
2599		}
2600		bh->b_reqnext = NULL;
2601		bh->b_data = b_data;
2602		bh->b_size = PAGE_SIZE;
2603		atomic_set(&bh->b_count, full ? bh->b_size : 0);
2604		prev_bh->b_reqnext = bh;
2605	}
2606	bh->b_size -= tape->excess_bh_size;
2607	if (full)
2608		atomic_sub(tape->excess_bh_size, &bh->b_count);
2609	return stage;
2610abort:
2611	__idetape_kfree_stage(stage);
2612	return NULL;
2613}
2614
2615static idetape_stage_t *idetape_kmalloc_stage (idetape_tape_t *tape)
2616{
2617	idetape_stage_t *cache_stage = tape->cache_stage;
2618
2619#if IDETAPE_DEBUG_LOG
2620	if (tape->debug_level >= 4)
2621		printk(KERN_INFO "ide-tape: Reached idetape_kmalloc_stage\n");
2622#endif /* IDETAPE_DEBUG_LOG */
2623
2624	if (tape->nr_stages >= tape->max_stages)
2625		return NULL;
2626	if (cache_stage != NULL) {
2627		tape->cache_stage = NULL;
2628		return cache_stage;
2629	}
2630	return __idetape_kmalloc_stage(tape, 0, 0);
2631}
2632
2633static int idetape_copy_stage_from_user (idetape_tape_t *tape, idetape_stage_t *stage, const char __user *buf, int n)
2634{
2635	struct idetape_bh *bh = tape->bh;
2636	int count;
2637	int ret = 0;
2638
2639	while (n) {
2640#if IDETAPE_DEBUG_BUGS
2641		if (bh == NULL) {
2642			printk(KERN_ERR "ide-tape: bh == NULL in "
2643				"idetape_copy_stage_from_user\n");
2644			return 1;
2645		}
2646#endif /* IDETAPE_DEBUG_BUGS */
2647		count = min((unsigned int)(bh->b_size - atomic_read(&bh->b_count)), (unsigned int)n);
2648		if (copy_from_user(bh->b_data + atomic_read(&bh->b_count), buf, count))
2649			ret = 1;
2650		n -= count;
2651		atomic_add(count, &bh->b_count);
2652		buf += count;
2653		if (atomic_read(&bh->b_count) == bh->b_size) {
2654			bh = bh->b_reqnext;
2655			if (bh)
2656				atomic_set(&bh->b_count, 0);
2657		}
2658	}
2659	tape->bh = bh;
2660	return ret;
2661}
2662
2663static int idetape_copy_stage_to_user (idetape_tape_t *tape, char __user *buf, idetape_stage_t *stage, int n)
2664{
2665	struct idetape_bh *bh = tape->bh;
2666	int count;
2667	int ret = 0;
2668
2669	while (n) {
2670#if IDETAPE_DEBUG_BUGS
2671		if (bh == NULL) {
2672			printk(KERN_ERR "ide-tape: bh == NULL in "
2673				"idetape_copy_stage_to_user\n");
2674			return 1;
2675		}
2676#endif /* IDETAPE_DEBUG_BUGS */
2677		count = min(tape->b_count, n);
2678		if  (copy_to_user(buf, tape->b_data, count))
2679			ret = 1;
2680		n -= count;
2681		tape->b_data += count;
2682		tape->b_count -= count;
2683		buf += count;
2684		if (!tape->b_count) {
2685			tape->bh = bh = bh->b_reqnext;
2686			if (bh) {
2687				tape->b_data = bh->b_data;
2688				tape->b_count = atomic_read(&bh->b_count);
2689			}
2690		}
2691	}
2692	return ret;
2693}
2694
2695static void idetape_init_merge_stage (idetape_tape_t *tape)
2696{
2697	struct idetape_bh *bh = tape->merge_stage->bh;
2698
2699	tape->bh = bh;
2700	if (tape->chrdev_direction == idetape_direction_write)
2701		atomic_set(&bh->b_count, 0);
2702	else {
2703		tape->b_data = bh->b_data;
2704		tape->b_count = atomic_read(&bh->b_count);
2705	}
2706}
2707
2708static void idetape_switch_buffers (idetape_tape_t *tape, idetape_stage_t *stage)
2709{
2710	struct idetape_bh *tmp;
2711
2712	tmp = stage->bh;
2713	stage->bh = tape->merge_stage->bh;
2714	tape->merge_stage->bh = tmp;
2715	idetape_init_merge_stage(tape);
2716}
2717
2718/*
2719 *	idetape_add_stage_tail adds a new stage at the end of the pipeline.
2720 */
2721static void idetape_add_stage_tail (ide_drive_t *drive,idetape_stage_t *stage)
2722{
2723	idetape_tape_t *tape = drive->driver_data;
2724	unsigned long flags;
2725
2726#if IDETAPE_DEBUG_LOG
2727	if (tape->debug_level >= 4)
2728		printk (KERN_INFO "ide-tape: Reached idetape_add_stage_tail\n");
2729#endif /* IDETAPE_DEBUG_LOG */
2730	spin_lock_irqsave(&tape->spinlock, flags);
2731	stage->next = NULL;
2732	if (tape->last_stage != NULL)
2733		tape->last_stage->next=stage;
2734	else
2735		tape->first_stage = tape->next_stage=stage;
2736	tape->last_stage = stage;
2737	if (tape->next_stage == NULL)
2738		tape->next_stage = tape->last_stage;
2739	tape->nr_stages++;
2740	tape->nr_pending_stages++;
2741	spin_unlock_irqrestore(&tape->spinlock, flags);
2742}
2743
2744/*
2745 *	idetape_wait_for_request installs a completion in a pending request
2746 *	and sleeps until it is serviced.
2747 *
2748 *	The caller should ensure that the request will not be serviced
2749 *	before we install the completion (usually by disabling interrupts).
2750 */
2751static void idetape_wait_for_request (ide_drive_t *drive, struct request *rq)
2752{
2753	DECLARE_COMPLETION_ONSTACK(wait);
2754	idetape_tape_t *tape = drive->driver_data;
2755
2756#if IDETAPE_DEBUG_BUGS
2757	if (rq == NULL || !blk_special_request(rq)) {
2758		printk (KERN_ERR "ide-tape: bug: Trying to sleep on non-valid request\n");
2759		return;
2760	}
2761#endif /* IDETAPE_DEBUG_BUGS */
2762	rq->end_io_data = &wait;
2763	rq->end_io = blk_end_sync_rq;
2764	spin_unlock_irq(&tape->spinlock);
2765	wait_for_completion(&wait);
2766	/* The stage and its struct request have been deallocated */
2767	spin_lock_irq(&tape->spinlock);
2768}
2769
2770static ide_startstop_t idetape_read_position_callback (ide_drive_t *drive)
2771{
2772	idetape_tape_t *tape = drive->driver_data;
2773	idetape_read_position_result_t *result;
2774
2775#if IDETAPE_DEBUG_LOG
2776	if (tape->debug_level >= 4)
2777		printk(KERN_INFO "ide-tape: Reached idetape_read_position_callback\n");
2778#endif /* IDETAPE_DEBUG_LOG */
2779
2780	if (!tape->pc->error) {
2781		result = (idetape_read_position_result_t *) tape->pc->buffer;
2782#if IDETAPE_DEBUG_LOG
2783		if (tape->debug_level >= 2)
2784			printk(KERN_INFO "ide-tape: BOP - %s\n",result->bop ? "Yes":"No");
2785		if (tape->debug_level >= 2)
2786			printk(KERN_INFO "ide-tape: EOP - %s\n",result->eop ? "Yes":"No");
2787#endif /* IDETAPE_DEBUG_LOG */
2788		if (result->bpu) {
2789			printk(KERN_INFO "ide-tape: Block location is unknown to the tape\n");
2790			clear_bit(IDETAPE_ADDRESS_VALID, &tape->flags);
2791			idetape_end_request(drive, 0, 0);
2792		} else {
2793#if IDETAPE_DEBUG_LOG
2794			if (tape->debug_level >= 2)
2795				printk(KERN_INFO "ide-tape: Block Location - %u\n", ntohl(result->first_block));
2796#endif /* IDETAPE_DEBUG_LOG */
2797			tape->partition = result->partition;
2798			tape->first_frame_position = ntohl(result->first_block);
2799			tape->last_frame_position = ntohl(result->last_block);
2800			tape->blocks_in_buffer = result->blocks_in_buffer[2];
2801			set_bit(IDETAPE_ADDRESS_VALID, &tape->flags);
2802			idetape_end_request(drive, 1, 0);
2803		}
2804	} else {
2805		idetape_end_request(drive, 0, 0);
2806	}
2807	return ide_stopped;
2808}
2809
2810/*
2811 *	idetape_create_write_filemark_cmd will:
2812 *
2813 *		1.	Write a filemark if write_filemark=1.
2814 *		2.	Flush the device buffers without writing a filemark
2815 *			if write_filemark=0.
2816 *
2817 */
2818static void idetape_create_write_filemark_cmd (ide_drive_t *drive, idetape_pc_t *pc,int write_filemark)
2819{
2820	idetape_init_pc(pc);
2821	pc->c[0] = IDETAPE_WRITE_FILEMARK_CMD;
2822	pc->c[4] = write_filemark;
2823	set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2824	pc->callback = &idetape_pc_callback;
2825}
2826
2827static void idetape_create_test_unit_ready_cmd(idetape_pc_t *pc)
2828{
2829	idetape_init_pc(pc);
2830	pc->c[0] = IDETAPE_TEST_UNIT_READY_CMD;
2831	pc->callback = &idetape_pc_callback;
2832}
2833
2834/*
2835 *	idetape_queue_pc_tail is based on the following functions:
2836 *
2837 *	ide_do_drive_cmd from ide.c
2838 *	cdrom_queue_request and cdrom_queue_packet_command from ide-cd.c
2839 *
2840 *	We add a special packet command request to the tail of the request
2841 *	queue, and wait for it to be serviced.
2842 *
2843 *	This is not to be called from within the request handling part
2844 *	of the driver ! We allocate here data in the stack, and it is valid
2845 *	until the request is finished. This is not the case for the bottom
2846 *	part of the driver, where we are always leaving the functions to wait
2847 *	for an interrupt or a timer event.
2848 *
2849 *	From the bottom part of the driver, we should allocate safe memory
2850 *	using idetape_next_pc_storage and idetape_next_rq_storage, and add
2851 *	the request to the request list without waiting for it to be serviced !
2852 *	In that case, we usually use idetape_queue_pc_head.
2853 */
2854static int __idetape_queue_pc_tail (ide_drive_t *drive, idetape_pc_t *pc)
2855{
2856	struct ide_tape_obj *tape = drive->driver_data;
2857	struct request rq;
2858
2859	idetape_init_rq(&rq, REQ_IDETAPE_PC1);
2860	rq.buffer = (char *) pc;
2861	rq.rq_disk = tape->disk;
2862	return ide_do_drive_cmd(drive, &rq, ide_wait);
2863}
2864
2865static void idetape_create_load_unload_cmd (ide_drive_t *drive, idetape_pc_t *pc,int cmd)
2866{
2867	idetape_init_pc(pc);
2868	pc->c[0] = IDETAPE_LOAD_UNLOAD_CMD;
2869	pc->c[4] = cmd;
2870	set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2871	pc->callback = &idetape_pc_callback;
2872}
2873
2874static int idetape_wait_ready(ide_drive_t *drive, unsigned long timeout)
2875{
2876	idetape_tape_t *tape = drive->driver_data;
2877	idetape_pc_t pc;
2878	int load_attempted = 0;
2879
2880	/*
2881	 * Wait for the tape to become ready
2882	 */
2883	set_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags);
2884	timeout += jiffies;
2885	while (time_before(jiffies, timeout)) {
2886		idetape_create_test_unit_ready_cmd(&pc);
2887		if (!__idetape_queue_pc_tail(drive, &pc))
2888			return 0;
2889		if ((tape->sense_key == 2 && tape->asc == 4 && tape->ascq == 2)
2890		    || (tape->asc == 0x3A)) {	/* no media */
2891			if (load_attempted)
2892				return -ENOMEDIUM;
2893			idetape_create_load_unload_cmd(drive, &pc, IDETAPE_LU_LOAD_MASK);
2894			__idetape_queue_pc_tail(drive, &pc);
2895			load_attempted = 1;
2896		/* not about to be ready */
2897		} else if (!(tape->sense_key == 2 && tape->asc == 4 &&
2898			     (tape->ascq == 1 || tape->ascq == 8)))
2899			return -EIO;
2900		msleep(100);
2901	}
2902	return -EIO;
2903}
2904
2905static int idetape_queue_pc_tail (ide_drive_t *drive,idetape_pc_t *pc)
2906{
2907	return __idetape_queue_pc_tail(drive, pc);
2908}
2909
2910static int idetape_flush_tape_buffers (ide_drive_t *drive)
2911{
2912	idetape_pc_t pc;
2913	int rc;
2914
2915	idetape_create_write_filemark_cmd(drive, &pc, 0);
2916	if ((rc = idetape_queue_pc_tail(drive, &pc)))
2917		return rc;
2918	idetape_wait_ready(drive, 60 * 5 * HZ);
2919	return 0;
2920}
2921
2922static void idetape_create_read_position_cmd (idetape_pc_t *pc)
2923{
2924	idetape_init_pc(pc);
2925	pc->c[0] = IDETAPE_READ_POSITION_CMD;
2926	pc->request_transfer = 20;
2927	pc->callback = &idetape_read_position_callback;
2928}
2929
2930static int idetape_read_position (ide_drive_t *drive)
2931{
2932	idetape_tape_t *tape = drive->driver_data;
2933	idetape_pc_t pc;
2934	int position;
2935
2936#if IDETAPE_DEBUG_LOG
2937        if (tape->debug_level >= 4)
2938		printk(KERN_INFO "ide-tape: Reached idetape_read_position\n");
2939#endif /* IDETAPE_DEBUG_LOG */
2940
2941	idetape_create_read_position_cmd(&pc);
2942	if (idetape_queue_pc_tail(drive, &pc))
2943		return -1;
2944	position = tape->first_frame_position;
2945	return position;
2946}
2947
2948static void idetape_create_locate_cmd (ide_drive_t *drive, idetape_pc_t *pc, unsigned int block, u8 partition, int skip)
2949{
2950	idetape_init_pc(pc);
2951	pc->c[0] = IDETAPE_LOCATE_CMD;
2952	pc->c[1] = 2;
2953	put_unaligned(htonl(block), (unsigned int *) &pc->c[3]);
2954	pc->c[8] = partition;
2955	set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2956	pc->callback = &idetape_pc_callback;
2957}
2958
2959static int idetape_create_prevent_cmd (ide_drive_t *drive, idetape_pc_t *pc, int prevent)
2960{
2961	idetape_tape_t *tape = drive->driver_data;
2962
2963	if (!tape->capabilities.lock)
2964		return 0;
2965
2966	idetape_init_pc(pc);
2967	pc->c[0] = IDETAPE_PREVENT_CMD;
2968	pc->c[4] = prevent;
2969	pc->callback = &idetape_pc_callback;
2970	return 1;
2971}
2972
2973static int __idetape_discard_read_pipeline (ide_drive_t *drive)
2974{
2975	idetape_tape_t *tape = drive->driver_data;
2976	unsigned long flags;
2977	int cnt;
2978
2979	if (tape->chrdev_direction != idetape_direction_read)
2980		return 0;
2981
2982	/* Remove merge stage. */
2983	cnt = tape->merge_stage_size / tape->tape_block_size;
2984	if (test_and_clear_bit(IDETAPE_FILEMARK, &tape->flags))
2985		++cnt;		/* Filemarks count as 1 sector */
2986	tape->merge_stage_size = 0;
2987	if (tape->merge_stage != NULL) {
2988		__idetape_kfree_stage(tape->merge_stage);
2989		tape->merge_stage = NULL;
2990	}
2991
2992	/* Clear pipeline flags. */
2993	clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
2994	tape->chrdev_direction = idetape_direction_none;
2995
2996	/* Remove pipeline stages. */
2997	if (tape->first_stage == NULL)
2998		return 0;
2999
3000	spin_lock_irqsave(&tape->spinlock, flags);
3001	tape->next_stage = NULL;
3002	if (idetape_pipeline_active(tape))
3003		idetape_wait_for_request(drive, tape->active_data_request);
3004	spin_unlock_irqrestore(&tape->spinlock, flags);
3005
3006	while (tape->first_stage != NULL) {
3007		struct request *rq_ptr = &tape->first_stage->rq;
3008
3009		cnt += rq_ptr->nr_sectors - rq_ptr->current_nr_sectors;
3010		if (rq_ptr->errors == IDETAPE_ERROR_FILEMARK)
3011			++cnt;
3012		idetape_remove_stage_head(drive);
3013	}
3014	tape->nr_pending_stages = 0;
3015	tape->max_stages = tape->min_pipeline;
3016	return cnt;
3017}
3018
3019/*
3020 *	idetape_position_tape positions the tape to the requested block
3021 *	using the LOCATE packet command. A READ POSITION command is then
3022 *	issued to check where we are positioned.
3023 *
3024 *	Like all higher level operations, we queue the commands at the tail
3025 *	of the request queue and wait for their completion.
3026 *
3027 */
3028static int idetape_position_tape (ide_drive_t *drive, unsigned int block, u8 partition, int skip)
3029{
3030	idetape_tape_t *tape = drive->driver_data;
3031	int retval;
3032	idetape_pc_t pc;
3033
3034	if (tape->chrdev_direction == idetape_direction_read)
3035		__idetape_discard_read_pipeline(drive);
3036	idetape_wait_ready(drive, 60 * 5 * HZ);
3037	idetape_create_locate_cmd(drive, &pc, block, partition, skip);
3038	retval = idetape_queue_pc_tail(drive, &pc);
3039	if (retval)
3040		return (retval);
3041
3042	idetape_create_read_position_cmd(&pc);
3043	return (idetape_queue_pc_tail(drive, &pc));
3044}
3045
3046static void idetape_discard_read_pipeline (ide_drive_t *drive, int restore_position)
3047{
3048	idetape_tape_t *tape = drive->driver_data;
3049	int cnt;
3050	int seek, position;
3051
3052	cnt = __idetape_discard_read_pipeline(drive);
3053	if (restore_position) {
3054		position = idetape_read_position(drive);
3055		seek = position > cnt ? position - cnt : 0;
3056		if (idetape_position_tape(drive, seek, 0, 0)) {
3057			printk(KERN_INFO "ide-tape: %s: position_tape failed in discard_pipeline()\n", tape->name);
3058			return;
3059		}
3060	}
3061}
3062
3063/*
3064 * idetape_queue_rw_tail generates a read/write request for the block
3065 * device interface and wait for it to be serviced.
3066 */
3067static int idetape_queue_rw_tail(ide_drive_t *drive, int cmd, int blocks, struct idetape_bh *bh)
3068{
3069	idetape_tape_t *tape = drive->driver_data;
3070	struct request rq;
3071
3072#if IDETAPE_DEBUG_LOG
3073	if (tape->debug_level >= 2)
3074		printk(KERN_INFO "ide-tape: idetape_queue_rw_tail: cmd=%d\n",cmd);
3075#endif /* IDETAPE_DEBUG_LOG */
3076#if IDETAPE_DEBUG_BUGS
3077	if (idetape_pipeline_active(tape)) {
3078		printk(KERN_ERR "ide-tape: bug: the pipeline is active in idetape_queue_rw_tail\n");
3079		return (0);
3080	}
3081#endif /* IDETAPE_DEBUG_BUGS */
3082
3083	idetape_init_rq(&rq, cmd);
3084	rq.rq_disk = tape->disk;
3085	rq.special = (void *)bh;
3086	rq.sector = tape->first_frame_position;
3087	rq.nr_sectors = rq.current_nr_sectors = blocks;
3088	(void) ide_do_drive_cmd(drive, &rq, ide_wait);
3089
3090	if ((cmd & (REQ_IDETAPE_READ | REQ_IDETAPE_WRITE)) == 0)
3091		return 0;
3092
3093	if (tape->merge_stage)
3094		idetape_init_merge_stage(tape);
3095	if (rq.errors == IDETAPE_ERROR_GENERAL)
3096		return -EIO;
3097	return (tape->tape_block_size * (blocks-rq.current_nr_sectors));
3098}
3099
3100/*
3101 *	idetape_insert_pipeline_into_queue is used to start servicing the
3102 *	pipeline stages, starting from tape->next_stage.
3103 */
3104static void idetape_insert_pipeline_into_queue (ide_drive_t *drive)
3105{
3106	idetape_tape_t *tape = drive->driver_data;
3107
3108	if (tape->next_stage == NULL)
3109		return;
3110	if (!idetape_pipeline_active(tape)) {
3111		set_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
3112		idetape_active_next_stage(drive);
3113		(void) ide_do_drive_cmd(drive, tape->active_data_request, ide_end);
3114	}
3115}
3116
3117static void idetape_create_inquiry_cmd (idetape_pc_t *pc)
3118{
3119	idetape_init_pc(pc);
3120	pc->c[0] = IDETAPE_INQUIRY_CMD;
3121	pc->c[4] = pc->request_transfer = 254;
3122	pc->callback = &idetape_pc_callback;
3123}
3124
3125static void idetape_create_rewind_cmd (ide_drive_t *drive, idetape_pc_t *pc)
3126{
3127	idetape_init_pc(pc);
3128	pc->c[0] = IDETAPE_REWIND_CMD;
3129	set_bit(PC_WAIT_FOR_DSC, &pc->flags);
3130	pc->callback = &idetape_pc_callback;
3131}
3132
3133#if 0
3134static void idetape_create_mode_select_cmd (idetape_pc_t *pc, int length)
3135{
3136	idetape_init_pc(pc);
3137	set_bit(PC_WRITING, &pc->flags);
3138	pc->c[0] = IDETAPE_MODE_SELECT_CMD;
3139	pc->c[1] = 0x10;
3140	put_unaligned(htons(length), (unsigned short *) &pc->c[3]);
3141	pc->request_transfer = 255;
3142	pc->callback = &idetape_pc_callback;
3143}
3144#endif
3145
3146static void idetape_create_erase_cmd (idetape_pc_t *pc)
3147{
3148	idetape_init_pc(pc);
3149	pc->c[0] = IDETAPE_ERASE_CMD;
3150	pc->c[1] = 1;
3151	set_bit(PC_WAIT_FOR_DSC, &pc->flags);
3152	pc->callback = &idetape_pc_callback;
3153}
3154
3155static void idetape_create_space_cmd (idetape_pc_t *pc,int count, u8 cmd)
3156{
3157	idetape_init_pc(pc);
3158	pc->c[0] = IDETAPE_SPACE_CMD;
3159	put_unaligned(htonl(count), (unsigned int *) &pc->c[1]);
3160	pc->c[1] = cmd;
3161	set_bit(PC_WAIT_FOR_DSC, &pc->flags);
3162	pc->callback = &idetape_pc_callback;
3163}
3164
3165static void idetape_wait_first_stage (ide_drive_t *drive)
3166{
3167	idetape_tape_t *tape = drive->driver_data;
3168	unsigned long flags;
3169
3170	if (tape->first_stage == NULL)
3171		return;
3172	spin_lock_irqsave(&tape->spinlock, flags);
3173	if (tape->active_stage == tape->first_stage)
3174		idetape_wait_for_request(drive, tape->active_data_request);
3175	spin_unlock_irqrestore(&tape->spinlock, flags);
3176}
3177
3178/*
3179 *	idetape_add_chrdev_write_request tries to add a character device
3180 *	originated write request to our pipeline. In case we don't succeed,
3181 *	we revert to non-pipelined operation mode for this request.
3182 *
3183 *	1.	Try to allocate a new pipeline stage.
3184 *	2.	If we can't, wait for more and more requests to be serviced
3185 *		and try again each time.
3186 *	3.	If we still can't allocate a stage, fallback to
3187 *		non-pipelined operation mode for this request.
3188 */
3189static int idetape_add_chrdev_write_request (ide_drive_t *drive, int blocks)
3190{
3191	idetape_tape_t *tape = drive->driver_data;
3192	idetape_stage_t *new_stage;
3193	unsigned long flags;
3194	struct request *rq;
3195
3196#if IDETAPE_DEBUG_LOG
3197	if (tape->debug_level >= 3)
3198		printk(KERN_INFO "ide-tape: Reached idetape_add_chrdev_write_request\n");
3199#endif /* IDETAPE_DEBUG_LOG */
3200
3201     	/*
3202     	 *	Attempt to allocate a new stage.
3203	 *	Pay special attention to possible race conditions.
3204	 */
3205	while ((new_stage = idetape_kmalloc_stage(tape)) == NULL) {
3206		spin_lock_irqsave(&tape->spinlock, flags);
3207		if (idetape_pipeline_active(tape)) {
3208			idetape_wait_for_request(drive, tape->active_data_request);
3209			spin_unlock_irqrestore(&tape->spinlock, flags);
3210		} else {
3211			spin_unlock_irqrestore(&tape->spinlock, flags);
3212			idetape_insert_pipeline_into_queue(drive);
3213			if (idetape_pipeline_active(tape))
3214				continue;
3215			/*
3216			 *	Linux is short on memory. Fallback to
3217			 *	non-pipelined operation mode for this request.
3218			 */
3219			return idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, blocks, tape->merge_stage->bh);
3220		}
3221	}
3222	rq = &new_stage->rq;
3223	idetape_init_rq(rq, REQ_IDETAPE_WRITE);
3224	/* Doesn't actually matter - We always assume sequential access */
3225	rq->sector = tape->first_frame_position;
3226	rq->nr_sectors = rq->current_nr_sectors = blocks;
3227
3228	idetape_switch_buffers(tape, new_stage);
3229	idetape_add_stage_tail(drive, new_stage);
3230	tape->pipeline_head++;
3231	calculate_speeds(drive);
3232
3233	/*
3234	 *	Estimate whether the tape has stopped writing by checking
3235	 *	if our write pipeline is currently empty. If we are not
3236	 *	writing anymore, wait for the pipeline to be full enough
3237	 *	(90%) before starting to service requests, so that we will
3238	 *	be able to keep up with the higher speeds of the tape.
3239	 */
3240	if (!idetape_pipeline_active(tape)) {
3241		if (tape->nr_stages >= tape->max_stages * 9 / 10 ||
3242		    tape->nr_stages >= tape->max_stages - tape->uncontrolled_pipeline_head_speed * 3 * 1024 / tape->tape_block_size) {
3243			tape->measure_insert_time = 1;
3244			tape->insert_time = jiffies;
3245			tape->insert_size = 0;
3246			tape->insert_speed = 0;
3247			idetape_insert_pipeline_into_queue(drive);
3248		}
3249	}
3250	if (test_and_clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags))
3251		/* Return a deferred error */
3252		return -EIO;
3253	return blocks;
3254}
3255
3256/*
3257 *	idetape_wait_for_pipeline will wait until all pending pipeline
3258 *	requests are serviced. Typically called on device close.
3259 */
3260static void idetape_wait_for_pipeline (ide_drive_t *drive)
3261{
3262	idetape_tape_t *tape = drive->driver_data;
3263	unsigned long flags;
3264
3265	while (tape->next_stage || idetape_pipeline_active(tape)) {
3266		idetape_insert_pipeline_into_queue(drive);
3267		spin_lock_irqsave(&tape->spinlock, flags);
3268		if (idetape_pipeline_active(tape))
3269			idetape_wait_for_request(drive, tape->active_data_request);
3270		spin_unlock_irqrestore(&tape->spinlock, flags);
3271	}
3272}
3273
3274static void idetape_empty_write_pipeline (ide_drive_t *drive)
3275{
3276	idetape_tape_t *tape = drive->driver_data;
3277	int blocks, min;
3278	struct idetape_bh *bh;
3279
3280#if IDETAPE_DEBUG_BUGS
3281	if (tape->chrdev_direction != idetape_direction_write) {
3282		printk(KERN_ERR "ide-tape: bug: Trying to empty write pipeline, but we are not writing.\n");
3283		return;
3284	}
3285	if (tape->merge_stage_size > tape->stage_size) {
3286		printk(KERN_ERR "ide-tape: bug: merge_buffer too big\n");
3287		tape->merge_stage_size = tape->stage_size;
3288	}
3289#endif /* IDETAPE_DEBUG_BUGS */
3290	if (tape->merge_stage_size) {
3291		blocks = tape->merge_stage_size / tape->tape_block_size;
3292		if (tape->merge_stage_size % tape->tape_block_size) {
3293			unsigned int i;
3294
3295			blocks++;
3296			i = tape->tape_block_size - tape->merge_stage_size % tape->tape_block_size;
3297			bh = tape->bh->b_reqnext;
3298			while (bh) {
3299				atomic_set(&bh->b_count, 0);
3300				bh = bh->b_reqnext;
3301			}
3302			bh = tape->bh;
3303			while (i) {
3304				if (bh == NULL) {
3305
3306					printk(KERN_INFO "ide-tape: bug, bh NULL\n");
3307					break;
3308				}
3309				min = min(i, (unsigned int)(bh->b_size - atomic_read(&bh->b_count)));
3310				memset(bh->b_data + atomic_read(&bh->b_count), 0, min);
3311				atomic_add(min, &bh->b_count);
3312				i -= min;
3313				bh = bh->b_reqnext;
3314			}
3315		}
3316		(void) idetape_add_chrdev_write_request(drive, blocks);
3317		tape->merge_stage_size = 0;
3318	}
3319	idetape_wait_for_pipeline(drive);
3320	if (tape->merge_stage != NULL) {
3321		__idetape_kfree_stage(tape->merge_stage);
3322		tape->merge_stage = NULL;
3323	}
3324	clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
3325	tape->chrdev_direction = idetape_direction_none;
3326
3327	/*
3328	 *	On the next backup, perform the feedback loop again.
3329	 *	(I don't want to keep sense information between backups,
3330	 *	 as some systems are constantly on, and the system load
3331	 *	 can be totally different on the next backup).
3332	 */
3333	tape->max_stages = tape->min_pipeline;
3334#if IDETAPE_DEBUG_BUGS
3335	if (tape->first_stage != NULL ||
3336	    tape->next_stage != NULL ||
3337	    tape->last_stage != NULL ||
3338	    tape->nr_stages != 0) {
3339		printk(KERN_ERR "ide-tape: ide-tape pipeline bug, "
3340			"first_stage %p, next_stage %p, "
3341			"last_stage %p, nr_stages %d\n",
3342			tape->first_stage, tape->next_stage,
3343			tape->last_stage, tape->nr_stages);
3344	}
3345#endif /* IDETAPE_DEBUG_BUGS */
3346}
3347
3348static void idetape_restart_speed_control (ide_drive_t *drive)
3349{
3350	idetape_tape_t *tape = drive->driver_data;
3351
3352	tape->restart_speed_control_req = 0;
3353	tape->pipeline_head = 0;
3354	tape->controlled_last_pipeline_head = tape->uncontrolled_last_pipeline_head = 0;
3355	tape->controlled_previous_pipeline_head = tape->uncontrolled_previous_pipeline_head = 0;
3356	tape->pipeline_head_speed = tape->controlled_pipeline_head_speed = 5000;
3357	tape->uncontrolled_pipeline_head_speed = 0;
3358	tape->controlled_pipeline_head_time = tape->uncontrolled_pipeline_head_time = jiffies;
3359	tape->controlled_previous_head_time = tape->uncontrolled_previous_head_time = jiffies;
3360}
3361
3362static int idetape_initiate_read (ide_drive_t *drive, int max_stages)
3363{
3364	idetape_tape_t *tape = drive->driver_data;
3365	idetape_stage_t *new_stage;
3366	struct request rq;
3367	int bytes_read;
3368	int blocks = tape->capabilities.ctl;
3369
3370	/* Initialize read operation */
3371	if (tape->chrdev_direction != idetape_direction_read) {
3372		if (tape->chrdev_direction == idetape_direction_write) {
3373			idetape_empty_write_pipeline(drive);
3374			idetape_flush_tape_buffers(drive);
3375		}
3376#if IDETAPE_DEBUG_BUGS
3377		if (tape->merge_stage || tape->merge_stage_size) {
3378			printk (KERN_ERR "ide-tape: merge_stage_size should be 0 now\n");
3379			tape->merge_stage_size = 0;
3380		}
3381#endif /* IDETAPE_DEBUG_BUGS */
3382		if ((tape->merge_stage = __idetape_kmalloc_stage(tape, 0, 0)) == NULL)
3383			return -ENOMEM;
3384		tape->chrdev_direction = idetape_direction_read;
3385
3386		/*
3387		 *	Issue a read 0 command to ensure that DSC handshake
3388		 *	is switched from completion mode to buffer available
3389		 *	mode.
3390		 *	No point in issuing this if DSC overlap isn't supported,
3391		 *	some drives (Seagate STT3401A) will return an error.
3392		 */
3393		if (drive->dsc_overlap) {
3394			bytes_read = idetape_queue_rw_tail(drive, REQ_IDETAPE_READ, 0, tape->merge_stage->bh);
3395			if (bytes_read < 0) {
3396				__idetape_kfree_stage(tape->merge_stage);
3397				tape->merge_stage = NULL;
3398				tape->chrdev_direction = idetape_direction_none;
3399				return bytes_read;
3400			}
3401		}
3402	}
3403	if (tape->restart_speed_control_req)
3404		idetape_restart_speed_control(drive);
3405	idetape_init_rq(&rq, REQ_IDETAPE_READ);
3406	rq.sector = tape->first_frame_position;
3407	rq.nr_sectors = rq.current_nr_sectors = blocks;
3408	if (!test_bit(IDETAPE_PIPELINE_ERROR, &tape->flags) &&
3409	    tape->nr_stages < max_stages) {
3410		new_stage = idetape_kmalloc_stage(tape);
3411		while (new_stage != NULL) {
3412			new_stage->rq = rq;
3413			idetape_add_stage_tail(drive, new_stage);
3414			if (tape->nr_stages >= max_stages)
3415				break;
3416			new_stage = idetape_kmalloc_stage(tape);
3417		}
3418	}
3419	if (!idetape_pipeline_active(tape)) {
3420		if (tape->nr_pending_stages >= 3 * max_stages / 4) {
3421			tape->measure_insert_time = 1;
3422			tape->insert_time = jiffies;
3423			tape->insert_size = 0;
3424			tape->insert_speed = 0;
3425			idetape_insert_pipeline_into_queue(drive);
3426		}
3427	}
3428	return 0;
3429}
3430
3431/*
3432 *	idetape_add_chrdev_read_request is called from idetape_chrdev_read
3433 *	to service a character device read request and add read-ahead
3434 *	requests to our pipeline.
3435 */
3436static int idetape_add_chrdev_read_request (ide_drive_t *drive,int blocks)
3437{
3438	idetape_tape_t *tape = drive->driver_data;
3439	unsigned long flags;
3440	struct request *rq_ptr;
3441	int bytes_read;
3442
3443#if IDETAPE_DEBUG_LOG
3444	if (tape->debug_level >= 4)
3445		printk(KERN_INFO "ide-tape: Reached idetape_add_chrdev_read_request, %d blocks\n", blocks);
3446#endif /* IDETAPE_DEBUG_LOG */
3447
3448	/*
3449	 * If we are at a filemark, return a read length of 0
3450	 */
3451	if (test_bit(IDETAPE_FILEMARK, &tape->flags))
3452		return 0;
3453
3454	/*
3455	 * Wait for the next block to be available at the head
3456	 * of the pipeline
3457	 */
3458	idetape_initiate_read(drive, tape->max_stages);
3459	if (tape->first_stage == NULL) {
3460		if (test_bit(IDETAPE_PIPELINE_ERROR, &tape->flags))
3461			return 0;
3462		return idetape_queue_rw_tail(drive, REQ_IDETAPE_READ, blocks, tape->merge_stage->bh);
3463	}
3464	idetape_wait_first_stage(drive);
3465	rq_ptr = &tape->first_stage->rq;
3466	bytes_read = tape->tape_block_size * (rq_ptr->nr_sectors - rq_ptr->current_nr_sectors);
3467	rq_ptr->nr_sectors = rq_ptr->current_nr_sectors = 0;
3468
3469
3470	if (rq_ptr->errors == IDETAPE_ERROR_EOD)
3471		return 0;
3472	else {
3473		idetape_switch_buffers(tape, tape->first_stage);
3474		if (rq_ptr->errors == IDETAPE_ERROR_FILEMARK)
3475			set_bit(IDETAPE_FILEMARK, &tape->flags);
3476		spin_lock_irqsave(&tape->spinlock, flags);
3477		idetape_remove_stage_head(drive);
3478		spin_unlock_irqrestore(&tape->spinlock, flags);
3479		tape->pipeline_head++;
3480		calculate_speeds(drive);
3481	}
3482#if IDETAPE_DEBUG_BUGS
3483	if (bytes_read > blocks * tape->tape_block_size) {
3484		printk(KERN_ERR "ide-tape: bug: trying to return more bytes than requested\n");
3485		bytes_read = blocks * tape->tape_block_size;
3486	}
3487#endif /* IDETAPE_DEBUG_BUGS */
3488	return (bytes_read);
3489}
3490
3491static void idetape_pad_zeros (ide_drive_t *drive, int bcount)
3492{
3493	idetape_tape_t *tape = drive->driver_data;
3494	struct idetape_bh *bh;
3495	int blocks;
3496
3497	while (bcount) {
3498		unsigned int count;
3499
3500		bh = tape->merge_stage->bh;
3501		count = min(tape->stage_size, bcount);
3502		bcount -= count;
3503		blocks = count / tape->tape_block_size;
3504		while (count) {
3505			atomic_set(&bh->b_count, min(count, (unsigned int)bh->b_size));
3506			memset(bh->b_data, 0, atomic_read(&bh->b_count));
3507			count -= atomic_read(&bh->b_count);
3508			bh = bh->b_reqnext;
3509		}
3510		idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, blocks, tape->merge_stage->bh);
3511	}
3512}
3513
3514static int idetape_pipeline_size (ide_drive_t *drive)
3515{
3516	idetape_tape_t *tape = drive->driver_data;
3517	idetape_stage_t *stage;
3518	struct request *rq;
3519	int size = 0;
3520
3521	idetape_wait_for_pipeline(drive);
3522	stage = tape->first_stage;
3523	while (stage != NULL) {
3524		rq = &stage->rq;
3525		size += tape->tape_block_size * (rq->nr_sectors-rq->current_nr_sectors);
3526		if (rq->errors == IDETAPE_ERROR_FILEMARK)
3527			size += tape->tape_block_size;
3528		stage = stage->next;
3529	}
3530	size += tape->merge_stage_size;
3531	return size;
3532}
3533
3534/*
3535 *	Rewinds the tape to the Beginning Of the current Partition (BOP).
3536 *
3537 *	We currently support only one partition.
3538 */
3539static int idetape_rewind_tape (ide_drive_t *drive)
3540{
3541	int retval;
3542	idetape_pc_t pc;
3543#if IDETAPE_DEBUG_LOG
3544	idetape_tape_t *tape = drive->driver_data;
3545	if (tape->debug_level >= 2)
3546		printk(KERN_INFO "ide-tape: Reached idetape_rewind_tape\n");
3547#endif /* IDETAPE_DEBUG_LOG */
3548
3549	idetape_create_rewind_cmd(drive, &pc);
3550	retval = idetape_queue_pc_tail(drive, &pc);
3551	if (retval)
3552		return retval;
3553
3554	idetape_create_read_position_cmd(&pc);
3555	retval = idetape_queue_pc_tail(drive, &pc);
3556	if (retval)
3557		return retval;
3558	return 0;
3559}
3560
3561/*
3562 *	Our special ide-tape ioctl's.
3563 *
3564 *	Currently there aren't any ioctl's.
3565 *	mtio.h compatible commands should be issued to the character device
3566 *	interface.
3567 */
3568static int idetape_blkdev_ioctl(ide_drive_t *drive, unsigned int cmd, unsigned long arg)
3569{
3570	idetape_tape_t *tape = drive->driver_data;
3571	idetape_config_t config;
3572	void __user *argp = (void __user *)arg;
3573
3574#if IDETAPE_DEBUG_LOG
3575	if (tape->debug_level >= 4)
3576		printk(KERN_INFO "ide-tape: Reached idetape_blkdev_ioctl\n");
3577#endif /* IDETAPE_DEBUG_LOG */
3578	switch (cmd) {
3579		case 0x0340:
3580			if (copy_from_user(&config, argp, sizeof (idetape_config_t)))
3581				return -EFAULT;
3582			tape->best_dsc_rw_frequency = config.dsc_rw_frequency;
3583			tape->max_stages = config.nr_stages;
3584			break;
3585		case 0x0350:
3586			config.dsc_rw_frequency = (int) tape->best_dsc_rw_frequency;
3587			config.nr_stages = tape->max_stages;
3588			if (copy_to_user(argp, &config, sizeof (idetape_config_t)))
3589				return -EFAULT;
3590			break;
3591		default:
3592			return -EIO;
3593	}
3594	return 0;
3595}
3596
3597/*
3598 *	idetape_space_over_filemarks is now a bit more complicated than just
3599 *	passing the command to the tape since we may have crossed some
3600 *	filemarks during our pipelined read-ahead mode.
3601 *
3602 *	As a minor side effect, the pipeline enables us to support MTFSFM when
3603 *	the filemark is in our internal pipeline even if the tape doesn't
3604 *	support spacing over filemarks in the reverse direction.
3605 */
3606static int idetape_space_over_filemarks (ide_drive_t *drive,short mt_op,int mt_count)
3607{
3608	idetape_tape_t *tape = drive->driver_data;
3609	idetape_pc_t pc;
3610	unsigned long flags;
3611	int retval,count=0;
3612
3613	if (mt_count == 0)
3614		return 0;
3615	if (MTBSF == mt_op || MTBSFM == mt_op) {
3616		if (!tape->capabilities.sprev)
3617			return -EIO;
3618		mt_count = - mt_count;
3619	}
3620
3621	if (tape->chrdev_direction == idetape_direction_read) {
3622		/*
3623		 *	We have a read-ahead buffer. Scan it for crossed
3624		 *	filemarks.
3625		 */
3626		tape->merge_stage_size = 0;
3627		if (test_and_clear_bit(IDETAPE_FILEMARK, &tape->flags))
3628			++count;
3629		while (tape->first_stage != NULL) {
3630			if (count == mt_count) {
3631				if (mt_op == MTFSFM)
3632					set_bit(IDETAPE_FILEMARK, &tape->flags);
3633				return 0;
3634			}
3635			spin_lock_irqsave(&tape->spinlock, flags);
3636			if (tape->first_stage == tape->active_stage) {
3637				/*
3638				 *	We have reached the active stage in the read pipeline.
3639				 *	There is no point in allowing the drive to continue
3640				 *	reading any farther, so we stop the pipeline.
3641				 *
3642				 *	This section should be moved to a separate subroutine,
3643				 *	because a similar function is performed in
3644				 *	__idetape_discard_read_pipeline(), for example.
3645				 */
3646				tape->next_stage = NULL;
3647				spin_unlock_irqrestore(&tape->spinlock, flags);
3648				idetape_wait_first_stage(drive);
3649				tape->next_stage = tape->first_stage->next;
3650			} else
3651				spin_unlock_irqrestore(&tape->spinlock, flags);
3652			if (tape->first_stage->rq.errors == IDETAPE_ERROR_FILEMARK)
3653				++count;
3654			idetape_remove_stage_head(drive);
3655		}
3656		idetape_discard_read_pipeline(drive, 0);
3657	}
3658
3659	/*
3660	 *	The filemark was not found in our internal pipeline.
3661	 *	Now we can issue the space command.
3662	 */
3663	switch (mt_op) {
3664		case MTFSF:
3665		case MTBSF:
3666			idetape_create_space_cmd(&pc,mt_count-count,IDETAPE_SPACE_OVER_FILEMARK);
3667			return (idetape_queue_pc_tail(drive, &pc));
3668		case MTFSFM:
3669		case MTBSFM:
3670			if (!tape->capabilities.sprev)
3671				return (-EIO);
3672			retval = idetape_space_over_filemarks(drive, MTFSF, mt_count-count);
3673			if (retval) return (retval);
3674			count = (MTBSFM == mt_op ? 1 : -1);
3675			return (idetape_space_over_filemarks(drive, MTFSF, count));
3676		default:
3677			printk(KERN_ERR "ide-tape: MTIO operation %d not supported\n",mt_op);
3678			return (-EIO);
3679	}
3680}
3681
3682
3683/*
3684 *	Our character device read / write functions.
3685 *
3686 *	The tape is optimized to maximize throughput when it is transferring
3687 *	an integral number of the "continuous transfer limit", which is
3688 *	a parameter of the specific tape (26 KB on my particular tape).
3689 *      (32 kB for Onstream)
3690 *
3691 *	As of version 1.3 of the driver, the character device provides an
3692 *	abstract continuous view of the media - any mix of block sizes (even 1
3693 *	byte) on the same backup/restore procedure is supported. The driver
3694 *	will internally convert the requests to the recommended transfer unit,
3695 *	so that an unmatch between the user's block size to the recommended
3696 *	size will only result in a (slightly) increased driver overhead, but
3697 *	will no longer hit performance.
3698 *      This is not applicable to Onstream.
3699 */
3700static ssize_t idetape_chrdev_read (struct file *file, char __user *buf,
3701				    size_t count, loff_t *ppos)
3702{
3703	struct ide_tape_obj *tape = ide_tape_f(file);
3704	ide_drive_t *drive = tape->drive;
3705	ssize_t bytes_read,temp, actually_read = 0, rc;
3706	ssize_t ret = 0;
3707
3708#if IDETAPE_DEBUG_LOG
3709	if (tape->debug_level >= 3)
3710		printk(KERN_INFO "ide-tape: Reached idetape_chrdev_read, count %Zd\n", count);
3711#endif /* IDETAPE_DEBUG_LOG */
3712
3713	if (tape->chrdev_direction != idetape_direction_read) {
3714		if (test_bit(IDETAPE_DETECT_BS, &tape->flags))
3715			if (count > tape->tape_block_size &&
3716			    (count % tape->tape_block_size) == 0)
3717				tape->user_bs_factor = count / tape->tape_block_size;
3718	}
3719	if ((rc = idetape_initiate_read(drive, tape->max_stages)) < 0)
3720		return rc;
3721	if (count == 0)
3722		return (0);
3723	if (tape->merge_stage_size) {
3724		actually_read = min((unsigned int)(tape->merge_stage_size), (unsigned int)count);
3725		if (idetape_copy_stage_to_user(tape, buf, tape->merge_stage, actually_read))
3726			ret = -EFAULT;
3727		buf += actually_read;
3728		tape->merge_stage_size -= actually_read;
3729		count -= actually_read;
3730	}
3731	while (count >= tape->stage_size) {
3732		bytes_read = idetape_add_chrdev_read_request(drive, tape->capabilities.ctl);
3733		if (bytes_read <= 0)
3734			goto finish;
3735		if (idetape_copy_stage_to_user(tape, buf, tape->merge_stage, bytes_read))
3736			ret = -EFAULT;
3737		buf += bytes_read;
3738		count -= bytes_read;
3739		actually_read += bytes_read;
3740	}
3741	if (count) {
3742		bytes_read = idetape_add_chrdev_read_request(drive, tape->capabilities.ctl);
3743		if (bytes_read <= 0)
3744			goto finish;
3745		temp = min((unsigned long)count, (unsigned long)bytes_read);
3746		if (idetape_copy_stage_to_user(tape, buf, tape->merge_stage, temp))
3747			ret = -EFAULT;
3748		actually_read += temp;
3749		tape->merge_stage_size = bytes_read-temp;
3750	}
3751finish:
3752	if (!actually_read && test_bit(IDETAPE_FILEMARK, &tape->flags)) {
3753#if IDETAPE_DEBUG_LOG
3754		if (tape->debug_level >= 2)
3755			printk(KERN_INFO "ide-tape: %s: spacing over filemark\n", tape->name);
3756#endif
3757		idetape_space_over_filemarks(drive, MTFSF, 1);
3758		return 0;
3759	}
3760
3761	return (ret) ? ret : actually_read;
3762}
3763
3764static ssize_t idetape_chrdev_write (struct file *file, const char __user *buf,
3765				     size_t count, loff_t *ppos)
3766{
3767	struct ide_tape_obj *tape = ide_tape_f(file);
3768	ide_drive_t *drive = tape->drive;
3769	ssize_t actually_written = 0;
3770	ssize_t ret = 0;
3771
3772	/* The drive is write protected. */
3773	if (tape->write_prot)
3774		return -EACCES;
3775
3776#if IDETAPE_DEBUG_LOG
3777	if (tape->debug_level >= 3)
3778		printk(KERN_INFO "ide-tape: Reached idetape_chrdev_write, "
3779			"count %Zd\n", count);
3780#endif /* IDETAPE_DEBUG_LOG */
3781
3782	/* Initialize write operation */
3783	if (tape->chrdev_direction != idetape_direction_write) {
3784		if (tape->chrdev_direction == idetape_direction_read)
3785			idetape_discard_read_pipeline(drive, 1);
3786#if IDETAPE_DEBUG_BUGS
3787		if (tape->merge_stage || tape->merge_stage_size) {
3788			printk(KERN_ERR "ide-tape: merge_stage_size "
3789				"should be 0 now\n");
3790			tape->merge_stage_size = 0;
3791		}
3792#endif /* IDETAPE_DEBUG_BUGS */
3793		if ((tape->merge_stage = __idetape_kmalloc_stage(tape, 0, 0)) == NULL)
3794			return -ENOMEM;
3795		tape->chrdev_direction = idetape_direction_write;
3796		idetape_init_merge_stage(tape);
3797
3798		/*
3799		 *	Issue a write 0 command to ensure that DSC handshake
3800		 *	is switched from completion mode to buffer available
3801		 *	mode.
3802		 *	No point in issuing this if DSC overlap isn't supported,
3803		 *	some drives (Seagate STT3401A) will return an error.
3804		 */
3805		if (drive->dsc_overlap) {
3806			ssize_t retval = idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, 0, tape->merge_stage->bh);
3807			if (retval < 0) {
3808				__idetape_kfree_stage(tape->merge_stage);
3809				tape->merge_stage = NULL;
3810				tape->chrdev_direction = idetape_direction_none;
3811				return retval;
3812			}
3813		}
3814	}
3815	if (count == 0)
3816		return (0);
3817	if (tape->restart_speed_control_req)
3818		idetape_restart_speed_control(drive);
3819	if (tape->merge_stage_size) {
3820#if IDETAPE_DEBUG_BUGS
3821		if (tape->merge_stage_size >= tape->stage_size) {
3822			printk(KERN_ERR "ide-tape: bug: merge buffer too big\n");
3823			tape->merge_stage_size = 0;
3824		}
3825#endif /* IDETAPE_DEBUG_BUGS */
3826		actually_written = min((unsigned int)(tape->stage_size - tape->merge_stage_size), (unsigned int)count);
3827		if (idetape_copy_stage_from_user(tape, tape->merge_stage, buf, actually_written))
3828				ret = -EFAULT;
3829		buf += actually_written;
3830		tape->merge_stage_size += actually_written;
3831		count -= actually_written;
3832
3833		if (tape->merge_stage_size == tape->stage_size) {
3834			ssize_t retval;
3835			tape->merge_stage_size = 0;
3836			retval = idetape_add_chrdev_write_request(drive, tape->capabilities.ctl);
3837			if (retval <= 0)
3838				return (retval);
3839		}
3840	}
3841	while (count >= tape->stage_size) {
3842		ssize_t retval;
3843		if (idetape_copy_stage_from_user(tape, tape->merge_stage, buf, tape->stage_size))
3844			ret = -EFAULT;
3845		buf += tape->stage_size;
3846		count -= tape->stage_size;
3847		retval = idetape_add_chrdev_write_request(drive, tape->capabilities.ctl);
3848		actually_written += tape->stage_size;
3849		if (retval <= 0)
3850			return (retval);
3851	}
3852	if (count) {
3853		actually_written += count;
3854		if (idetape_copy_stage_from_user(tape, tape->merge_stage, buf, count))
3855			ret = -EFAULT;
3856		tape->merge_stage_size += count;
3857	}
3858	return (ret) ? ret : actually_written;
3859}
3860
3861static int idetape_write_filemark (ide_drive_t *drive)
3862{
3863	idetape_pc_t pc;
3864
3865	/* Write a filemark */
3866	idetape_create_write_filemark_cmd(drive, &pc, 1);
3867	if (idetape_queue_pc_tail(drive, &pc)) {
3868		printk(KERN_ERR "ide-tape: Couldn't write a filemark\n");
3869		return -EIO;
3870	}
3871	return 0;
3872}
3873
3874/*
3875 *	idetape_mtioctop is called from idetape_chrdev_ioctl when
3876 *	the general mtio MTIOCTOP ioctl is requested.
3877 *
3878 *	We currently support the following mtio.h operations:
3879 *
3880 *	MTFSF	-	Space over mt_count filemarks in the positive direction.
3881 *			The tape is positioned after the last spaced filemark.
3882 *
3883 *	MTFSFM	-	Same as MTFSF, but the tape is positioned before the
3884 *			last filemark.
3885 *
3886 *	MTBSF	-	Steps background over mt_count filemarks, tape is
3887 *			positioned before the last filemark.
3888 *
3889 *	MTBSFM	-	Like MTBSF, only tape is positioned after the last filemark.
3890 *
3891 *	Note:
3892 *
3893 *		MTBSF and MTBSFM are not supported when the tape doesn't
3894 *		support spacing over filemarks in the reverse direction.
3895 *		In this case, MTFSFM is also usually not supported (it is
3896 *		supported in the rare case in which we crossed the filemark
3897 *		during our read-ahead pipelined operation mode).
3898 *
3899 *	MTWEOF	-	Writes mt_count filemarks. Tape is positioned after
3900 *			the last written filemark.
3901 *
3902 *	MTREW	-	Rewinds tape.
3903 *
3904 *	MTLOAD	-	Loads the tape.
3905 *
3906 *	MTOFFL	-	Puts the tape drive "Offline": Rewinds the tape and
3907 *	MTUNLOAD	prevents further access until the media is replaced.
3908 *
3909 *	MTNOP	-	Flushes tape buffers.
3910 *
3911 *	MTRETEN	-	Retension media. This typically consists of one end
3912 *			to end pass on the media.
3913 *
3914 *	MTEOM	-	Moves to the end of recorded data.
3915 *
3916 *	MTERASE	-	Erases tape.
3917 *
3918 *	MTSETBLK - 	Sets the user block size to mt_count bytes. If
3919 *			mt_count is 0, we will attempt to autodetect
3920 *			the block size.
3921 *
3922 *	MTSEEK	-	Positions the tape in a specific block number, where
3923 *			each block is assumed to contain which user_block_size
3924 *			bytes.
3925 *
3926 *	MTSETPART - 	Switches to another tape partition.
3927 *
3928 *	MTLOCK - 	Locks the tape door.
3929 *
3930 *	MTUNLOCK - 	Unlocks the tape door.
3931 *
3932 *	The following commands are currently not supported:
3933 *
3934 *	MTFSS, MTBSS, MTWSM, MTSETDENSITY,
3935 *	MTSETDRVBUFFER, MT_ST_BOOLEANS, MT_ST_WRITE_THRESHOLD.
3936 */
3937static int idetape_mtioctop (ide_drive_t *drive,short mt_op,int mt_count)
3938{
3939	idetape_tape_t *tape = drive->driver_data;
3940	idetape_pc_t pc;
3941	int i,retval;
3942
3943#if IDETAPE_DEBUG_LOG
3944	if (tape->debug_level >= 1)
3945		printk(KERN_INFO "ide-tape: Handling MTIOCTOP ioctl: "
3946			"mt_op=%d, mt_count=%d\n", mt_op, mt_count);
3947#endif /* IDETAPE_DEBUG_LOG */
3948	/*
3949	 *	Commands which need our pipelined read-ahead stages.
3950	 */
3951	switch (mt_op) {
3952		case MTFSF:
3953		case MTFSFM:
3954		case MTBSF:
3955		case MTBSFM:
3956			if (!mt_count)
3957				return (0);
3958			return (idetape_space_over_filemarks(drive,mt_op,mt_count));
3959		default:
3960			break;
3961	}
3962	switch (mt_op) {
3963		case MTWEOF:
3964			if (tape->write_prot)
3965				return -EACCES;
3966			idetape_discard_read_pipeline(drive, 1);
3967			for (i = 0; i < mt_count; i++) {
3968				retval = idetape_write_filemark(drive);
3969				if (retval)
3970					return retval;
3971			}
3972			return (0);
3973		case MTREW:
3974			idetape_discard_read_pipeline(drive, 0);
3975			if (idetape_rewind_tape(drive))
3976				return -EIO;
3977			return 0;
3978		case MTLOAD:
3979			idetape_discard_read_pipeline(drive, 0);
3980			idetape_create_load_unload_cmd(drive, &pc, IDETAPE_LU_LOAD_MASK);
3981			return (idetape_queue_pc_tail(drive, &pc));
3982		case MTUNLOAD:
3983		case MTOFFL:
3984			/*
3985			 * If door is locked, attempt to unlock before
3986			 * attempting to eject.
3987			 */
3988			if (tape->door_locked) {
3989				if (idetape_create_prevent_cmd(drive, &pc, 0))
3990					if (!idetape_queue_pc_tail(drive, &pc))
3991						tape->door_locked = DOOR_UNLOCKED;
3992			}
3993			idetape_discard_read_pipeline(drive, 0);
3994			idetape_create_load_unload_cmd(drive, &pc,!IDETAPE_LU_LOAD_MASK);
3995			retval = idetape_queue_pc_tail(drive, &pc);
3996			if (!retval)
3997				clear_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags);
3998			return retval;
3999		case MTNOP:
4000			idetape_discard_read_pipeline(drive, 0);
4001			return (idetape_flush_tape_buffers(drive));
4002		case MTRETEN:
4003			idetape_discard_read_pipeline(drive, 0);
4004			idetape_create_load_unload_cmd(drive, &pc,IDETAPE_LU_RETENSION_MASK | IDETAPE_LU_LOAD_MASK);
4005			return (idetape_queue_pc_tail(drive, &pc));
4006		case MTEOM:
4007			idetape_create_space_cmd(&pc, 0, IDETAPE_SPACE_TO_EOD);
4008			return (idetape_queue_pc_tail(drive, &pc));
4009		case MTERASE:
4010			(void) idetape_rewind_tape(drive);
4011			idetape_create_erase_cmd(&pc);
4012			return (idetape_queue_pc_tail(drive, &pc));
4013		case MTSETBLK:
4014			if (mt_count) {
4015				if (mt_count < tape->tape_block_size || mt_count % tape->tape_block_size)
4016					return -EIO;
4017				tape->user_bs_factor = mt_count / tape->tape_block_size;
4018				clear_bit(IDETAPE_DETECT_BS, &tape->flags);
4019			} else
4020				set_bit(IDETAPE_DETECT_BS, &tape->flags);
4021			return 0;
4022		case MTSEEK:
4023			idetape_discard_read_pipeline(drive, 0);
4024			return idetape_position_tape(drive, mt_count * tape->user_bs_factor, tape->partition, 0);
4025		case MTSETPART:
4026			idetape_discard_read_pipeline(drive, 0);
4027			return (idetape_position_tape(drive, 0, mt_count, 0));
4028		case MTFSR:
4029		case MTBSR:
4030		case MTLOCK:
4031			if (!idetape_create_prevent_cmd(drive, &pc, 1))
4032				return 0;
4033			retval = idetape_queue_pc_tail(drive, &pc);
4034			if (retval) return retval;
4035			tape->door_locked = DOOR_EXPLICITLY_LOCKED;
4036			return 0;
4037		case MTUNLOCK:
4038			if (!idetape_create_prevent_cmd(drive, &pc, 0))
4039				return 0;
4040			retval = idetape_queue_pc_tail(drive, &pc);
4041			if (retval) return retval;
4042			tape->door_locked = DOOR_UNLOCKED;
4043			return 0;
4044		default:
4045			printk(KERN_ERR "ide-tape: MTIO operation %d not "
4046				"supported\n", mt_op);
4047			return (-EIO);
4048	}
4049}
4050
4051/*
4052 *	Our character device ioctls.
4053 *
4054 *	General mtio.h magnetic io commands are supported here, and not in
4055 *	the corresponding block interface.
4056 *
4057 *	The following ioctls are supported:
4058 *
4059 *	MTIOCTOP -	Refer to idetape_mtioctop for detailed description.
4060 *
4061 *	MTIOCGET - 	The mt_dsreg field in the returned mtget structure
4062 *			will be set to (user block size in bytes <<
4063 *			MT_ST_BLKSIZE_SHIFT) & MT_ST_BLKSIZE_MASK.
4064 *
4065 *			The mt_blkno is set to the current user block number.
4066 *			The other mtget fields are not supported.
4067 *
4068 *	MTIOCPOS -	The current tape "block position" is returned. We
4069 *			assume that each block contains user_block_size
4070 *			bytes.
4071 *
4072 *	Our own ide-tape ioctls are supported on both interfaces.
4073 */
4074static int idetape_chrdev_ioctl (struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
4075{
4076	struct ide_tape_obj *tape = ide_tape_f(file);
4077	ide_drive_t *drive = tape->drive;
4078	struct mtop mtop;
4079	struct mtget mtget;
4080	struct mtpos mtpos;
4081	int block_offset = 0, position = tape->first_frame_position;
4082	void __user *argp = (void __user *)arg;
4083
4084#if IDETAPE_DEBUG_LOG
4085	if (tape->debug_level >= 3)
4086		printk(KERN_INFO "ide-tape: Reached idetape_chrdev_ioctl, "
4087			"cmd=%u\n", cmd);
4088#endif /* IDETAPE_DEBUG_LOG */
4089
4090	tape->restart_speed_control_req = 1;
4091	if (tape->chrdev_direction == idetape_direction_write) {
4092		idetape_empty_write_pipeline(drive);
4093		idetape_flush_tape_buffers(drive);
4094	}
4095	if (cmd == MTIOCGET || cmd == MTIOCPOS) {
4096		block_offset = idetape_pipeline_size(drive) / (tape->tape_block_size * tape->user_bs_factor);
4097		if ((position = idetape_read_position(drive)) < 0)
4098			return -EIO;
4099	}
4100	switch (cmd) {
4101		case MTIOCTOP:
4102			if (copy_from_user(&mtop, argp, sizeof (struct mtop)))
4103				return -EFAULT;
4104			return (idetape_mtioctop(drive,mtop.mt_op,mtop.mt_count));
4105		case MTIOCGET:
4106			memset(&mtget, 0, sizeof (struct mtget));
4107			mtget.mt_type = MT_ISSCSI2;
4108			mtget.mt_blkno = position / tape->user_bs_factor - block_offset;
4109			mtget.mt_dsreg = ((tape->tape_block_size * tape->user_bs_factor) << MT_ST_BLKSIZE_SHIFT) & MT_ST_BLKSIZE_MASK;
4110			if (tape->drv_write_prot) {
4111				mtget.mt_gstat |= GMT_WR_PROT(0xffffffff);
4112			}
4113			if (copy_to_user(argp, &mtget, sizeof(struct mtget)))
4114				return -EFAULT;
4115			return 0;
4116		case MTIOCPOS:
4117			mtpos.mt_blkno = position / tape->user_bs_factor - block_offset;
4118			if (copy_to_user(argp, &mtpos, sizeof(struct mtpos)))
4119				return -EFAULT;
4120			return 0;
4121		default:
4122			if (tape->chrdev_direction == idetape_direction_read)
4123				idetape_discard_read_pipeline(drive, 1);
4124			return idetape_blkdev_ioctl(drive, cmd, arg);
4125	}
4126}
4127
4128static void idetape_get_blocksize_from_block_descriptor(ide_drive_t *drive);
4129
4130/*
4131 *	Our character device open function.
4132 */
4133static int idetape_chrdev_open (struct inode *inode, struct file *filp)
4134{
4135	unsigned int minor = iminor(inode), i = minor & ~0xc0;
4136	ide_drive_t *drive;
4137	idetape_tape_t *tape;
4138	idetape_pc_t pc;
4139	int retval;
4140
4141	/*
4142	 * We really want to do nonseekable_open(inode, filp); here, but some
4143	 * versions of tar incorrectly call lseek on tapes and bail out if that
4144	 * fails.  So we disallow pread() and pwrite(), but permit lseeks.
4145	 */
4146	filp->f_mode &= ~(FMODE_PREAD | FMODE_PWRITE);
4147
4148#if IDETAPE_DEBUG_LOG
4149	printk(KERN_INFO "ide-tape: Reached idetape_chrdev_open\n");
4150#endif /* IDETAPE_DEBUG_LOG */
4151
4152	if (i >= MAX_HWIFS * MAX_DRIVES)
4153		return -ENXIO;
4154
4155	if (!(tape = ide_tape_chrdev_get(i)))
4156		return -ENXIO;
4157
4158	drive = tape->drive;
4159
4160	filp->private_data = tape;
4161
4162	if (test_and_set_bit(IDETAPE_BUSY, &tape->flags)) {
4163		retval = -EBUSY;
4164		goto out_put_tape;
4165	}
4166
4167	retval = idetape_wait_ready(drive, 60 * HZ);
4168	if (retval) {
4169		clear_bit(IDETAPE_BUSY, &tape->flags);
4170		printk(KERN_ERR "ide-tape: %s: drive not ready\n", tape->name);
4171		goto out_put_tape;
4172	}
4173
4174	idetape_read_position(drive);
4175	if (!test_bit(IDETAPE_ADDRESS_VALID, &tape->flags))
4176		(void)idetape_rewind_tape(drive);
4177
4178	if (tape->chrdev_direction != idetape_direction_read)
4179		clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
4180
4181	/* Read block size and write protect status from drive. */
4182	idetape_get_blocksize_from_block_descriptor(drive);
4183
4184	/* Set write protect flag if device is opened as read-only. */
4185	if ((filp->f_flags & O_ACCMODE) == O_RDONLY)
4186		tape->write_prot = 1;
4187	else
4188		tape->write_prot = tape->drv_write_prot;
4189
4190	/* Make sure drive isn't write protected if user wants to write. */
4191	if (tape->write_prot) {
4192		if ((filp->f_flags & O_ACCMODE) == O_WRONLY ||
4193		    (filp->f_flags & O_ACCMODE) == O_RDWR) {
4194			clear_bit(IDETAPE_BUSY, &tape->flags);
4195			retval = -EROFS;
4196			goto out_put_tape;
4197		}
4198	}
4199
4200	/*
4201	 * Lock the tape drive door so user can't eject.
4202	 */
4203	if (tape->chrdev_direction == idetape_direction_none) {
4204		if (idetape_create_prevent_cmd(drive, &pc, 1)) {
4205			if (!idetape_queue_pc_tail(drive, &pc)) {
4206				if (tape->door_locked != DOOR_EXPLICITLY_LOCKED)
4207					tape->door_locked = DOOR_LOCKED;
4208			}
4209		}
4210	}
4211	idetape_restart_speed_control(drive);
4212	tape->restart_speed_control_req = 0;
4213	return 0;
4214
4215out_put_tape:
4216	ide_tape_put(tape);
4217	return retval;
4218}
4219
4220static void idetape_write_release (ide_drive_t *drive, unsigned int minor)
4221{
4222	idetape_tape_t *tape = drive->driver_data;
4223
4224	idetape_empty_write_pipeline(drive);
4225	tape->merge_stage = __idetape_kmalloc_stage(tape, 1, 0);
4226	if (tape->merge_stage != NULL) {
4227		idetape_pad_zeros(drive, tape->tape_block_size * (tape->user_bs_factor - 1));
4228		__idetape_kfree_stage(tape->merge_stage);
4229		tape->merge_stage = NULL;
4230	}
4231	idetape_write_filemark(drive);
4232	idetape_flush_tape_buffers(drive);
4233	idetape_flush_tape_buffers(drive);
4234}
4235
4236/*
4237 *	Our character device release function.
4238 */
4239static int idetape_chrdev_release (struct inode *inode, struct file *filp)
4240{
4241	struct ide_tape_obj *tape = ide_tape_f(filp);
4242	ide_drive_t *drive = tape->drive;
4243	idetape_pc_t pc;
4244	unsigned int minor = iminor(inode);
4245
4246	lock_kernel();
4247	tape = drive->driver_data;
4248#if IDETAPE_DEBUG_LOG
4249	if (tape->debug_level >= 3)
4250		printk(KERN_INFO "ide-tape: Reached idetape_chrdev_release\n");
4251#endif /* IDETAPE_DEBUG_LOG */
4252
4253	if (tape->chrdev_direction == idetape_direction_write)
4254		idetape_write_release(drive, minor);
4255	if (tape->chrdev_direction == idetape_direction_read) {
4256		if (minor < 128)
4257			idetape_discard_read_pipeline(drive, 1);
4258		else
4259			idetape_wait_for_pipeline(drive);
4260	}
4261	if (tape->cache_stage != NULL) {
4262		__idetape_kfree_stage(tape->cache_stage);
4263		tape->cache_stage = NULL;
4264	}
4265	if (minor < 128 && test_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags))
4266		(void) idetape_rewind_tape(drive);
4267	if (tape->chrdev_direction == idetape_direction_none) {
4268		if (tape->door_locked == DOOR_LOCKED) {
4269			if (idetape_create_prevent_cmd(drive, &pc, 0)) {
4270				if (!idetape_queue_pc_tail(drive, &pc))
4271					tape->door_locked = DOOR_UNLOCKED;
4272			}
4273		}
4274	}
4275	clear_bit(IDETAPE_BUSY, &tape->flags);
4276	ide_tape_put(tape);
4277	unlock_kernel();
4278	return 0;
4279}
4280
4281/*
4282 *	idetape_identify_device is called to check the contents of the
4283 *	ATAPI IDENTIFY command results. We return:
4284 *
4285 *	1	If the tape can be supported by us, based on the information
4286 *		we have so far.
4287 *
4288 *	0 	If this tape driver is not currently supported by us.
4289 */
4290static int idetape_identify_device (ide_drive_t *drive)
4291{
4292	struct idetape_id_gcw gcw;
4293	struct hd_driveid *id = drive->id;
4294
4295	if (drive->id_read == 0)
4296		return 1;
4297
4298	*((unsigned short *) &gcw) = id->config;
4299
4300#if IDETAPE_DEBUG_INFO
4301	printk(KERN_INFO "ide-tape: Dumping ATAPI Identify Device tape parameters\n");
4302	printk(KERN_INFO "ide-tape: Protocol Type: ");
4303	switch (gcw.protocol) {
4304		case 0: case 1: printk("ATA\n");break;
4305		case 2:	printk("ATAPI\n");break;
4306		case 3: printk("Reserved (Unknown to ide-tape)\n");break;
4307	}
4308	printk(KERN_INFO "ide-tape: Device Type: %x - ",gcw.device_type);
4309	switch (gcw.device_type) {
4310		case 0: printk("Direct-access Device\n");break;
4311		case 1: printk("Streaming Tape Device\n");break;
4312		case 2: case 3: case 4: printk("Reserved\n");break;
4313		case 5: printk("CD-ROM Device\n");break;
4314		case 6: printk("Reserved\n");
4315		case 7: printk("Optical memory Device\n");break;
4316		case 0x1f: printk("Unknown or no Device type\n");break;
4317		default: printk("Reserved\n");
4318	}
4319	printk(KERN_INFO "ide-tape: Removable: %s",gcw.removable ? "Yes\n":"No\n");
4320	printk(KERN_INFO "ide-tape: Command Packet DRQ Type: ");
4321	switch (gcw.drq_type) {
4322		case 0: printk("Microprocessor DRQ\n");break;
4323		case 1: printk("Interrupt DRQ\n");break;
4324		case 2: printk("Accelerated DRQ\n");break;
4325		case 3: printk("Reserved\n");break;
4326	}
4327	printk(KERN_INFO "ide-tape: Command Packet Size: ");
4328	switch (gcw.packet_size) {
4329		case 0: printk("12 bytes\n");break;
4330		case 1: printk("16 bytes\n");break;
4331		default: printk("Reserved\n");break;
4332	}
4333#endif /* IDETAPE_DEBUG_INFO */
4334
4335	/* Check that we can support this device */
4336
4337	if (gcw.protocol !=2 )
4338		printk(KERN_ERR "ide-tape: Protocol is not ATAPI\n");
4339	else if (gcw.device_type != 1)
4340		printk(KERN_ERR "ide-tape: Device type is not set to tape\n");
4341	else if (!gcw.removable)
4342		printk(KERN_ERR "ide-tape: The removable flag is not set\n");
4343	else if (gcw.packet_size != 0) {
4344		printk(KERN_ERR "ide-tape: Packet size is not 12 bytes long\n");
4345		if (gcw.packet_size == 1)
4346			printk(KERN_ERR "ide-tape: Sorry, padding to 16 bytes is still not supported\n");
4347	} else
4348		return 1;
4349	return 0;
4350}
4351
4352/*
4353 * Use INQUIRY to get the firmware revision
4354 */
4355static void idetape_get_inquiry_results (ide_drive_t *drive)
4356{
4357	char *r;
4358	idetape_tape_t *tape = drive->driver_data;
4359	idetape_pc_t pc;
4360	idetape_inquiry_result_t *inquiry;
4361
4362	idetape_create_inquiry_cmd(&pc);
4363	if (idetape_queue_pc_tail(drive, &pc)) {
4364		printk(KERN_ERR "ide-tape: %s: can't get INQUIRY results\n", tape->name);
4365		return;
4366	}
4367	inquiry = (idetape_inquiry_result_t *) pc.buffer;
4368	memcpy(tape->vendor_id, inquiry->vendor_id, 8);
4369	memcpy(tape->product_id, inquiry->product_id, 16);
4370	memcpy(tape->firmware_revision, inquiry->revision_level, 4);
4371	ide_fixstring(tape->vendor_id, 10, 0);
4372	ide_fixstring(tape->product_id, 18, 0);
4373	ide_fixstring(tape->firmware_revision, 6, 0);
4374	r = tape->firmware_revision;
4375	if (*(r + 1) == '.')
4376		tape->firmware_revision_num = (*r - '0') * 100 + (*(r + 2) - '0') * 10 + *(r + 3) - '0';
4377	printk(KERN_INFO "ide-tape: %s <-> %s: %s %s rev %s\n", drive->name, tape->name, tape->vendor_id, tape->product_id, tape->firmware_revision);
4378}
4379
4380/*
4381 *	idetape_get_mode_sense_results asks the tape about its various
4382 *	parameters. In particular, we will adjust our data transfer buffer
4383 *	size to the recommended value as returned by the tape.
4384 */
4385static void idetape_get_mode_sense_results (ide_drive_t *drive)
4386{
4387	idetape_tape_t *tape = drive->driver_data;
4388	idetape_pc_t pc;
4389	idetape_mode_parameter_header_t *header;
4390	idetape_capabilities_page_t *capabilities;
4391
4392	idetape_create_mode_sense_cmd(&pc, IDETAPE_CAPABILITIES_PAGE);
4393	if (idetape_queue_pc_tail(drive, &pc)) {
4394		printk(KERN_ERR "ide-tape: Can't get tape parameters - assuming some default values\n");
4395		tape->tape_block_size = 512;
4396		tape->capabilities.ctl = 52;
4397		tape->capabilities.speed = 450;
4398		tape->capabilities.buffer_size = 6 * 52;
4399		return;
4400	}
4401	header = (idetape_mode_parameter_header_t *) pc.buffer;
4402	capabilities = (idetape_capabilities_page_t *) (pc.buffer + sizeof(idetape_mode_parameter_header_t) + header->bdl);
4403
4404	capabilities->max_speed = ntohs(capabilities->max_speed);
4405	capabilities->ctl = ntohs(capabilities->ctl);
4406	capabilities->speed = ntohs(capabilities->speed);
4407	capabilities->buffer_size = ntohs(capabilities->buffer_size);
4408
4409	if (!capabilities->speed) {
4410		printk(KERN_INFO "ide-tape: %s: overriding capabilities->speed (assuming 650KB/sec)\n", drive->name);
4411		capabilities->speed = 650;
4412	}
4413	if (!capabilities->max_speed) {
4414		printk(KERN_INFO "ide-tape: %s: overriding capabilities->max_speed (assuming 650KB/sec)\n", drive->name);
4415		capabilities->max_speed = 650;
4416	}
4417
4418	tape->capabilities = *capabilities;		/* Save us a copy */
4419	if (capabilities->blk512)
4420		tape->tape_block_size = 512;
4421	else if (capabilities->blk1024)
4422		tape->tape_block_size = 1024;
4423
4424#if IDETAPE_DEBUG_INFO
4425	printk(KERN_INFO "ide-tape: Dumping the results of the MODE SENSE packet command\n");
4426	printk(KERN_INFO "ide-tape: Mode Parameter Header:\n");
4427	printk(KERN_INFO "ide-tape: Mode Data Length - %d\n",header->mode_data_length);
4428	printk(KERN_INFO "ide-tape: Medium Type - %d\n",header->medium_type);
4429	printk(KERN_INFO "ide-tape: Device Specific Parameter - %d\n",header->dsp);
4430	printk(KERN_INFO "ide-tape: Block Descriptor Length - %d\n",header->bdl);
4431
4432	printk(KERN_INFO "ide-tape: Capabilities and Mechanical Status Page:\n");
4433	printk(KERN_INFO "ide-tape: Page code - %d\n",capabilities->page_code);
4434	printk(KERN_INFO "ide-tape: Page length - %d\n",capabilities->page_length);
4435	printk(KERN_INFO "ide-tape: Read only - %s\n",capabilities->ro ? "Yes":"No");
4436	printk(KERN_INFO "ide-tape: Supports reverse space - %s\n",capabilities->sprev ? "Yes":"No");
4437	printk(KERN_INFO "ide-tape: Supports erase initiated formatting - %s\n",capabilities->efmt ? "Yes":"No");
4438	printk(KERN_INFO "ide-tape: Supports QFA two Partition format - %s\n",capabilities->qfa ? "Yes":"No");
4439	printk(KERN_INFO "ide-tape: Supports locking the medium - %s\n",capabilities->lock ? "Yes":"No");
4440	printk(KERN_INFO "ide-tape: The volume is currently locked - %s\n",capabilities->locked ? "Yes":"No");
4441	printk(KERN_INFO "ide-tape: The device defaults in the prevent state - %s\n",capabilities->prevent ? "Yes":"No");
4442	printk(KERN_INFO "ide-tape: Supports ejecting the medium - %s\n",capabilities->eject ? "Yes":"No");
4443	printk(KERN_INFO "ide-tape: Supports error correction - %s\n",capabilities->ecc ? "Yes":"No");
4444	printk(KERN_INFO "ide-tape: Supports data compression - %s\n",capabilities->cmprs ? "Yes":"No");
4445	printk(KERN_INFO "ide-tape: Supports 512 bytes block size - %s\n",capabilities->blk512 ? "Yes":"No");
4446	printk(KERN_INFO "ide-tape: Supports 1024 bytes block size - %s\n",capabilities->blk1024 ? "Yes":"No");
4447	printk(KERN_INFO "ide-tape: Supports 32768 bytes block size / Restricted byte count for PIO transfers - %s\n",capabilities->blk32768 ? "Yes":"No");
4448	printk(KERN_INFO "ide-tape: Maximum supported speed in KBps - %d\n",capabilities->max_speed);
4449	printk(KERN_INFO "ide-tape: Continuous transfer limits in blocks - %d\n",capabilities->ctl);
4450	printk(KERN_INFO "ide-tape: Current speed in KBps - %d\n",capabilities->speed);
4451	printk(KERN_INFO "ide-tape: Buffer size - %d\n",capabilities->buffer_size*512);
4452#endif /* IDETAPE_DEBUG_INFO */
4453}
4454
4455/*
4456 *	ide_get_blocksize_from_block_descriptor does a mode sense page 0 with block descriptor
4457 *	and if it succeeds sets the tape block size with the reported value
4458 */
4459static void idetape_get_blocksize_from_block_descriptor(ide_drive_t *drive)
4460{
4461
4462	idetape_tape_t *tape = drive->driver_data;
4463	idetape_pc_t pc;
4464	idetape_mode_parameter_header_t *header;
4465	idetape_parameter_block_descriptor_t *block_descrp;
4466
4467	idetape_create_mode_sense_cmd(&pc, IDETAPE_BLOCK_DESCRIPTOR);
4468	if (idetape_queue_pc_tail(drive, &pc)) {
4469		printk(KERN_ERR "ide-tape: Can't get block descriptor\n");
4470		if (tape->tape_block_size == 0) {
4471			printk(KERN_WARNING "ide-tape: Cannot deal with zero block size, assume 32k\n");
4472			tape->tape_block_size =  32768;
4473		}
4474		return;
4475	}
4476	header = (idetape_mode_parameter_header_t *) pc.buffer;
4477	block_descrp = (idetape_parameter_block_descriptor_t *) (pc.buffer + sizeof(idetape_mode_parameter_header_t));
4478	tape->tape_block_size =( block_descrp->length[0]<<16) + (block_descrp->length[1]<<8) + block_descrp->length[2];
4479	tape->drv_write_prot = (header->dsp & 0x80) >> 7;
4480
4481#if IDETAPE_DEBUG_INFO
4482	printk(KERN_INFO "ide-tape: Adjusted block size - %d\n", tape->tape_block_size);
4483#endif /* IDETAPE_DEBUG_INFO */
4484}
4485
4486#ifdef CONFIG_IDE_PROC_FS
4487static void idetape_add_settings (ide_drive_t *drive)
4488{
4489	idetape_tape_t *tape = drive->driver_data;
4490
4491/*
4492 *			drive	setting name		read/write	data type	min			max			mul_factor			div_factor	data pointer				set function
4493 */
4494	ide_add_setting(drive,	"buffer",		SETTING_READ,	TYPE_SHORT,	0,			0xffff,			1,				2,		&tape->capabilities.buffer_size,	NULL);
4495	ide_add_setting(drive,	"pipeline_min",		SETTING_RW,	TYPE_INT,	1,			0xffff,			tape->stage_size / 1024,	1,		&tape->min_pipeline,			NULL);
4496	ide_add_setting(drive,	"pipeline",		SETTING_RW,	TYPE_INT,	1,			0xffff,			tape->stage_size / 1024,	1,		&tape->max_stages,			NULL);
4497	ide_add_setting(drive,	"pipeline_max",		SETTING_RW,	TYPE_INT,	1,			0xffff,			tape->stage_size / 1024,	1,		&tape->max_pipeline,			NULL);
4498	ide_add_setting(drive,	"pipeline_used",	SETTING_READ,	TYPE_INT,	0,			0xffff,			tape->stage_size / 1024,	1,		&tape->nr_stages,			NULL);
4499	ide_add_setting(drive,	"pipeline_pending",	SETTING_READ,	TYPE_INT,	0,			0xffff,			tape->stage_size / 1024,	1,		&tape->nr_pending_stages,		NULL);
4500	ide_add_setting(drive,	"speed",		SETTING_READ,	TYPE_SHORT,	0,			0xffff,			1,				1,		&tape->capabilities.speed,		NULL);
4501	ide_add_setting(drive,	"stage",		SETTING_READ,	TYPE_INT,	0,			0xffff,			1,				1024,		&tape->stage_size,			NULL);
4502	ide_add_setting(drive,	"tdsc",			SETTING_RW,	TYPE_INT,	IDETAPE_DSC_RW_MIN,	IDETAPE_DSC_RW_MAX,	1000,				HZ,		&tape->best_dsc_rw_frequency,		NULL);
4503	ide_add_setting(drive,	"dsc_overlap",		SETTING_RW,	TYPE_BYTE,	0,			1,			1,				1,		&drive->dsc_overlap,			NULL);
4504	ide_add_setting(drive,	"pipeline_head_speed_c",SETTING_READ,	TYPE_INT,	0,			0xffff,			1,				1,		&tape->controlled_pipeline_head_speed,	NULL);
4505	ide_add_setting(drive,	"pipeline_head_speed_u",SETTING_READ,	TYPE_INT,	0,			0xffff,			1,				1,		&tape->uncontrolled_pipeline_head_speed,NULL);
4506	ide_add_setting(drive,	"avg_speed",		SETTING_READ,	TYPE_INT,	0,			0xffff,			1,				1,		&tape->avg_speed,			NULL);
4507	ide_add_setting(drive,	"debug_level",		SETTING_RW,	TYPE_INT,	0,			0xffff,			1,				1,		&tape->debug_level,			NULL);
4508}
4509#else
4510static inline void idetape_add_settings(ide_drive_t *drive) { ; }
4511#endif
4512
4513/*
4514 *	ide_setup is called to:
4515 *
4516 *		1.	Initialize our various state variables.
4517 *		2.	Ask the tape for its capabilities.
4518 *		3.	Allocate a buffer which will be used for data
4519 *			transfer. The buffer size is chosen based on
4520 *			the recommendation which we received in step (2).
4521 *
4522 *	Note that at this point ide.c already assigned us an irq, so that
4523 *	we can queue requests here and wait for their completion.
4524 */
4525static void idetape_setup (ide_drive_t *drive, idetape_tape_t *tape, int minor)
4526{
4527	unsigned long t1, tmid, tn, t;
4528	int speed;
4529	struct idetape_id_gcw gcw;
4530	int stage_size;
4531	struct sysinfo si;
4532
4533	spin_lock_init(&tape->spinlock);
4534	drive->dsc_overlap = 1;
4535#ifdef CONFIG_BLK_DEV_IDEPCI
4536	if (HWIF(drive)->pci_dev != NULL) {
4537		/*
4538		 * These two ide-pci host adapters appear to need DSC overlap disabled.
4539		 * This probably needs further analysis.
4540		 */
4541		if ((HWIF(drive)->pci_dev->device == PCI_DEVICE_ID_ARTOP_ATP850UF) ||
4542		    (HWIF(drive)->pci_dev->device == PCI_DEVICE_ID_TTI_HPT343)) {
4543			printk(KERN_INFO "ide-tape: %s: disabling DSC overlap\n", tape->name);
4544		    	drive->dsc_overlap = 0;
4545		}
4546	}
4547#endif /* CONFIG_BLK_DEV_IDEPCI */
4548	/* Seagate Travan drives do not support DSC overlap. */
4549	if (strstr(drive->id->model, "Seagate STT3401"))
4550		drive->dsc_overlap = 0;
4551	tape->minor = minor;
4552	tape->name[0] = 'h';
4553	tape->name[1] = 't';
4554	tape->name[2] = '0' + minor;
4555	tape->chrdev_direction = idetape_direction_none;
4556	tape->pc = tape->pc_stack;
4557	tape->max_insert_speed = 10000;
4558	tape->speed_control = 1;
4559	*((unsigned short *) &gcw) = drive->id->config;
4560	if (gcw.drq_type == 1)
4561		set_bit(IDETAPE_DRQ_INTERRUPT, &tape->flags);
4562
4563	tape->min_pipeline = tape->max_pipeline = tape->max_stages = 10;
4564
4565	idetape_get_inquiry_results(drive);
4566	idetape_get_mode_sense_results(drive);
4567	idetape_get_blocksize_from_block_descriptor(drive);
4568	tape->user_bs_factor = 1;
4569	tape->stage_size = tape->capabilities.ctl * tape->tape_block_size;
4570	while (tape->stage_size > 0xffff) {
4571		printk(KERN_NOTICE "ide-tape: decreasing stage size\n");
4572		tape->capabilities.ctl /= 2;
4573		tape->stage_size = tape->capabilities.ctl * tape->tape_block_size;
4574	}
4575	stage_size = tape->stage_size;
4576	tape->pages_per_stage = stage_size / PAGE_SIZE;
4577	if (stage_size % PAGE_SIZE) {
4578		tape->pages_per_stage++;
4579		tape->excess_bh_size = PAGE_SIZE - stage_size % PAGE_SIZE;
4580	}
4581
4582	/*
4583	 *	Select the "best" DSC read/write polling frequency
4584	 *	and pipeline size.
4585	 */
4586	speed = max(tape->capabilities.speed, tape->capabilities.max_speed);
4587
4588	tape->max_stages = speed * 1000 * 10 / tape->stage_size;
4589
4590	/*
4591	 * 	Limit memory use for pipeline to 10% of physical memory
4592	 */
4593	si_meminfo(&si);
4594	if (tape->max_stages * tape->stage_size > si.totalram * si.mem_unit / 10)
4595		tape->max_stages = si.totalram * si.mem_unit / (10 * tape->stage_size);
4596	tape->max_stages   = min(tape->max_stages, IDETAPE_MAX_PIPELINE_STAGES);
4597	tape->min_pipeline = min(tape->max_stages, IDETAPE_MIN_PIPELINE_STAGES);
4598	tape->max_pipeline = min(tape->max_stages * 2, IDETAPE_MAX_PIPELINE_STAGES);
4599	if (tape->max_stages == 0)
4600		tape->max_stages = tape->min_pipeline = tape->max_pipeline = 1;
4601
4602	t1 = (tape->stage_size * HZ) / (speed * 1000);
4603	tmid = (tape->capabilities.buffer_size * 32 * HZ) / (speed * 125);
4604	tn = (IDETAPE_FIFO_THRESHOLD * tape->stage_size * HZ) / (speed * 1000);
4605
4606	if (tape->max_stages)
4607		t = tn;
4608	else
4609		t = t1;
4610
4611	/*
4612	 *	Ensure that the number we got makes sense; limit
4613	 *	it within IDETAPE_DSC_RW_MIN and IDETAPE_DSC_RW_MAX.
4614	 */
4615	tape->best_dsc_rw_frequency = max_t(unsigned long, min_t(unsigned long, t, IDETAPE_DSC_RW_MAX), IDETAPE_DSC_RW_MIN);
4616	printk(KERN_INFO "ide-tape: %s <-> %s: %dKBps, %d*%dkB buffer, "
4617		"%dkB pipeline, %lums tDSC%s\n",
4618		drive->name, tape->name, tape->capabilities.speed,
4619		(tape->capabilities.buffer_size * 512) / tape->stage_size,
4620		tape->stage_size / 1024,
4621		tape->max_stages * tape->stage_size / 1024,
4622		tape->best_dsc_rw_frequency * 1000 / HZ,
4623		drive->using_dma ? ", DMA":"");
4624
4625	idetape_add_settings(drive);
4626}
4627
4628static void ide_tape_remove(ide_drive_t *drive)
4629{
4630	idetape_tape_t *tape = drive->driver_data;
4631
4632	ide_proc_unregister_driver(drive, tape->driver);
4633
4634	ide_unregister_region(tape->disk);
4635
4636	ide_tape_put(tape);
4637}
4638
4639static void ide_tape_release(struct kref *kref)
4640{
4641	struct ide_tape_obj *tape = to_ide_tape(kref);
4642	ide_drive_t *drive = tape->drive;
4643	struct gendisk *g = tape->disk;
4644
4645	BUG_ON(tape->first_stage != NULL || tape->merge_stage_size);
4646
4647	drive->dsc_overlap = 0;
4648	drive->driver_data = NULL;
4649	device_destroy(idetape_sysfs_class, MKDEV(IDETAPE_MAJOR, tape->minor));
4650	device_destroy(idetape_sysfs_class, MKDEV(IDETAPE_MAJOR, tape->minor + 128));
4651	idetape_devs[tape->minor] = NULL;
4652	g->private_data = NULL;
4653	put_disk(g);
4654	kfree(tape);
4655}
4656
4657#ifdef CONFIG_IDE_PROC_FS
4658static int proc_idetape_read_name
4659	(char *page, char **start, off_t off, int count, int *eof, void *data)
4660{
4661	ide_drive_t	*drive = (ide_drive_t *) data;
4662	idetape_tape_t	*tape = drive->driver_data;
4663	char		*out = page;
4664	int		len;
4665
4666	len = sprintf(out, "%s\n", tape->name);
4667	PROC_IDE_READ_RETURN(page, start, off, count, eof, len);
4668}
4669
4670static ide_proc_entry_t idetape_proc[] = {
4671	{ "capacity",	S_IFREG|S_IRUGO,	proc_ide_read_capacity, NULL },
4672	{ "name",	S_IFREG|S_IRUGO,	proc_idetape_read_name,	NULL },
4673	{ NULL, 0, NULL, NULL }
4674};
4675#endif
4676
4677static int ide_tape_probe(ide_drive_t *);
4678
4679static ide_driver_t idetape_driver = {
4680	.gen_driver = {
4681		.owner		= THIS_MODULE,
4682		.name		= "ide-tape",
4683		.bus		= &ide_bus_type,
4684	},
4685	.probe			= ide_tape_probe,
4686	.remove			= ide_tape_remove,
4687	.version		= IDETAPE_VERSION,
4688	.media			= ide_tape,
4689	.supports_dsc_overlap 	= 1,
4690	.do_request		= idetape_do_request,
4691	.end_request		= idetape_end_request,
4692	.error			= __ide_error,
4693	.abort			= __ide_abort,
4694#ifdef CONFIG_IDE_PROC_FS
4695	.proc			= idetape_proc,
4696#endif
4697};
4698
4699/*
4700 *	Our character device supporting functions, passed to register_chrdev.
4701 */
4702static const struct file_operations idetape_fops = {
4703	.owner		= THIS_MODULE,
4704	.read		= idetape_chrdev_read,
4705	.write		= idetape_chrdev_write,
4706	.ioctl		= idetape_chrdev_ioctl,
4707	.open		= idetape_chrdev_open,
4708	.release	= idetape_chrdev_release,
4709};
4710
4711static int idetape_open(struct inode *inode, struct file *filp)
4712{
4713	struct gendisk *disk = inode->i_bdev->bd_disk;
4714	struct ide_tape_obj *tape;
4715
4716	if (!(tape = ide_tape_get(disk)))
4717		return -ENXIO;
4718
4719	return 0;
4720}
4721
4722static int idetape_release(struct inode *inode, struct file *filp)
4723{
4724	struct gendisk *disk = inode->i_bdev->bd_disk;
4725	struct ide_tape_obj *tape = ide_tape_g(disk);
4726
4727	ide_tape_put(tape);
4728
4729	return 0;
4730}
4731
4732static int idetape_ioctl(struct inode *inode, struct file *file,
4733			unsigned int cmd, unsigned long arg)
4734{
4735	struct block_device *bdev = inode->i_bdev;
4736	struct ide_tape_obj *tape = ide_tape_g(bdev->bd_disk);
4737	ide_drive_t *drive = tape->drive;
4738	int err = generic_ide_ioctl(drive, file, bdev, cmd, arg);
4739	if (err == -EINVAL)
4740		err = idetape_blkdev_ioctl(drive, cmd, arg);
4741	return err;
4742}
4743
4744static struct block_device_operations idetape_block_ops = {
4745	.owner		= THIS_MODULE,
4746	.open		= idetape_open,
4747	.release	= idetape_release,
4748	.ioctl		= idetape_ioctl,
4749};
4750
4751static int ide_tape_probe(ide_drive_t *drive)
4752{
4753	idetape_tape_t *tape;
4754	struct gendisk *g;
4755	int minor;
4756
4757	if (!strstr("ide-tape", drive->driver_req))
4758		goto failed;
4759	if (!drive->present)
4760		goto failed;
4761	if (drive->media != ide_tape)
4762		goto failed;
4763	if (!idetape_identify_device (drive)) {
4764		printk(KERN_ERR "ide-tape: %s: not supported by this version of ide-tape\n", drive->name);
4765		goto failed;
4766	}
4767	if (drive->scsi) {
4768		printk("ide-tape: passing drive %s to ide-scsi emulation.\n", drive->name);
4769		goto failed;
4770	}
4771	if (strstr(drive->id->model, "OnStream DI-")) {
4772		printk(KERN_WARNING "ide-tape: Use drive %s with ide-scsi emulation and osst.\n", drive->name);
4773		printk(KERN_WARNING "ide-tape: OnStream support will be removed soon from ide-tape!\n");
4774	}
4775	tape = kzalloc(sizeof (idetape_tape_t), GFP_KERNEL);
4776	if (tape == NULL) {
4777		printk(KERN_ERR "ide-tape: %s: Can't allocate a tape structure\n", drive->name);
4778		goto failed;
4779	}
4780
4781	g = alloc_disk(1 << PARTN_BITS);
4782	if (!g)
4783		goto out_free_tape;
4784
4785	ide_init_disk(g, drive);
4786
4787	ide_proc_register_driver(drive, &idetape_driver);
4788
4789	kref_init(&tape->kref);
4790
4791	tape->drive = drive;
4792	tape->driver = &idetape_driver;
4793	tape->disk = g;
4794
4795	g->private_data = &tape->driver;
4796
4797	drive->driver_data = tape;
4798
4799	mutex_lock(&idetape_ref_mutex);
4800	for (minor = 0; idetape_devs[minor]; minor++)
4801		;
4802	idetape_devs[minor] = tape;
4803	mutex_unlock(&idetape_ref_mutex);
4804
4805	idetape_setup(drive, tape, minor);
4806
4807	device_create(idetape_sysfs_class, &drive->gendev,
4808		      MKDEV(IDETAPE_MAJOR, minor), "%s", tape->name);
4809	device_create(idetape_sysfs_class, &drive->gendev,
4810			MKDEV(IDETAPE_MAJOR, minor + 128), "n%s", tape->name);
4811
4812	g->fops = &idetape_block_ops;
4813	ide_register_region(g);
4814
4815	return 0;
4816
4817out_free_tape:
4818	kfree(tape);
4819failed:
4820	return -ENODEV;
4821}
4822
4823MODULE_DESCRIPTION("ATAPI Streaming TAPE Driver");
4824MODULE_LICENSE("GPL");
4825
4826static void __exit idetape_exit (void)
4827{
4828	driver_unregister(&idetape_driver.gen_driver);
4829	class_destroy(idetape_sysfs_class);
4830	unregister_chrdev(IDETAPE_MAJOR, "ht");
4831}
4832
4833static int __init idetape_init(void)
4834{
4835	int error = 1;
4836	idetape_sysfs_class = class_create(THIS_MODULE, "ide_tape");
4837	if (IS_ERR(idetape_sysfs_class)) {
4838		idetape_sysfs_class = NULL;
4839		printk(KERN_ERR "Unable to create sysfs class for ide tapes\n");
4840		error = -EBUSY;
4841		goto out;
4842	}
4843
4844	if (register_chrdev(IDETAPE_MAJOR, "ht", &idetape_fops)) {
4845		printk(KERN_ERR "ide-tape: Failed to register character device interface\n");
4846		error = -EBUSY;
4847		goto out_free_class;
4848	}
4849
4850	error = driver_register(&idetape_driver.gen_driver);
4851	if (error)
4852		goto out_free_driver;
4853
4854	return 0;
4855
4856out_free_driver:
4857	driver_unregister(&idetape_driver.gen_driver);
4858out_free_class:
4859	class_destroy(idetape_sysfs_class);
4860out:
4861	return error;
4862}
4863
4864MODULE_ALIAS("ide:*m-tape*");
4865module_init(idetape_init);
4866module_exit(idetape_exit);
4867MODULE_ALIAS_CHARDEV_MAJOR(IDETAPE_MAJOR);
4868