pmac.c revision d58b0c39e32f1b410af4d070f9d1a1416057c166
1/*
2 * Support for IDE interfaces on PowerMacs.
3 *
4 * These IDE interfaces are memory-mapped and have a DBDMA channel
5 * for doing DMA.
6 *
7 *  Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
8 *  Copyright (C) 2007-2008 Bartlomiej Zolnierkiewicz
9 *
10 *  This program is free software; you can redistribute it and/or
11 *  modify it under the terms of the GNU General Public License
12 *  as published by the Free Software Foundation; either version
13 *  2 of the License, or (at your option) any later version.
14 *
15 * Some code taken from drivers/ide/ide-dma.c:
16 *
17 *  Copyright (c) 1995-1998  Mark Lord
18 *
19 * TODO: - Use pre-calculated (kauai) timing tables all the time and
20 * get rid of the "rounded" tables used previously, so we have the
21 * same table format for all controllers and can then just have one
22 * big table
23 *
24 */
25#include <linux/types.h>
26#include <linux/kernel.h>
27#include <linux/init.h>
28#include <linux/delay.h>
29#include <linux/ide.h>
30#include <linux/notifier.h>
31#include <linux/reboot.h>
32#include <linux/pci.h>
33#include <linux/adb.h>
34#include <linux/pmu.h>
35#include <linux/scatterlist.h>
36
37#include <asm/prom.h>
38#include <asm/io.h>
39#include <asm/dbdma.h>
40#include <asm/ide.h>
41#include <asm/pci-bridge.h>
42#include <asm/machdep.h>
43#include <asm/pmac_feature.h>
44#include <asm/sections.h>
45#include <asm/irq.h>
46#include <asm/mediabay.h>
47
48#define DRV_NAME "ide-pmac"
49
50#undef IDE_PMAC_DEBUG
51
52#define DMA_WAIT_TIMEOUT	50
53
54typedef struct pmac_ide_hwif {
55	unsigned long			regbase;
56	int				irq;
57	int				kind;
58	int				aapl_bus_id;
59	unsigned			broken_dma : 1;
60	unsigned			broken_dma_warn : 1;
61	struct device_node*		node;
62	struct macio_dev		*mdev;
63	u32				timings[4];
64	volatile u32 __iomem *		*kauai_fcr;
65	ide_hwif_t			*hwif;
66
67	/* Those fields are duplicating what is in hwif. We currently
68	 * can't use the hwif ones because of some assumptions that are
69	 * beeing done by the generic code about the kind of dma controller
70	 * and format of the dma table. This will have to be fixed though.
71	 */
72	volatile struct dbdma_regs __iomem *	dma_regs;
73	struct dbdma_cmd*		dma_table_cpu;
74} pmac_ide_hwif_t;
75
76enum {
77	controller_ohare,	/* OHare based */
78	controller_heathrow,	/* Heathrow/Paddington */
79	controller_kl_ata3,	/* KeyLargo ATA-3 */
80	controller_kl_ata4,	/* KeyLargo ATA-4 */
81	controller_un_ata6,	/* UniNorth2 ATA-6 */
82	controller_k2_ata6,	/* K2 ATA-6 */
83	controller_sh_ata6,	/* Shasta ATA-6 */
84};
85
86static const char* model_name[] = {
87	"OHare ATA",		/* OHare based */
88	"Heathrow ATA",		/* Heathrow/Paddington */
89	"KeyLargo ATA-3",	/* KeyLargo ATA-3 (MDMA only) */
90	"KeyLargo ATA-4",	/* KeyLargo ATA-4 (UDMA/66) */
91	"UniNorth ATA-6",	/* UniNorth2 ATA-6 (UDMA/100) */
92	"K2 ATA-6",		/* K2 ATA-6 (UDMA/100) */
93	"Shasta ATA-6",		/* Shasta ATA-6 (UDMA/133) */
94};
95
96/*
97 * Extra registers, both 32-bit little-endian
98 */
99#define IDE_TIMING_CONFIG	0x200
100#define IDE_INTERRUPT		0x300
101
102/* Kauai (U2) ATA has different register setup */
103#define IDE_KAUAI_PIO_CONFIG	0x200
104#define IDE_KAUAI_ULTRA_CONFIG	0x210
105#define IDE_KAUAI_POLL_CONFIG	0x220
106
107/*
108 * Timing configuration register definitions
109 */
110
111/* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
112#define SYSCLK_TICKS(t)		(((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
113#define SYSCLK_TICKS_66(t)	(((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
114#define IDE_SYSCLK_NS		30	/* 33Mhz cell */
115#define IDE_SYSCLK_66_NS	15	/* 66Mhz cell */
116
117/* 133Mhz cell, found in shasta.
118 * See comments about 100 Mhz Uninorth 2...
119 * Note that PIO_MASK and MDMA_MASK seem to overlap
120 */
121#define TR_133_PIOREG_PIO_MASK		0xff000fff
122#define TR_133_PIOREG_MDMA_MASK		0x00fff800
123#define TR_133_UDMAREG_UDMA_MASK	0x0003ffff
124#define TR_133_UDMAREG_UDMA_EN		0x00000001
125
126/* 100Mhz cell, found in Uninorth 2. I don't have much infos about
127 * this one yet, it appears as a pci device (106b/0033) on uninorth
128 * internal PCI bus and it's clock is controlled like gem or fw. It
129 * appears to be an evolution of keylargo ATA4 with a timing register
130 * extended to 2 32bits registers and a similar DBDMA channel. Other
131 * registers seem to exist but I can't tell much about them.
132 *
133 * So far, I'm using pre-calculated tables for this extracted from
134 * the values used by the MacOS X driver.
135 *
136 * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
137 * register controls the UDMA timings. At least, it seems bit 0
138 * of this one enables UDMA vs. MDMA, and bits 4..7 are the
139 * cycle time in units of 10ns. Bits 8..15 are used by I don't
140 * know their meaning yet
141 */
142#define TR_100_PIOREG_PIO_MASK		0xff000fff
143#define TR_100_PIOREG_MDMA_MASK		0x00fff000
144#define TR_100_UDMAREG_UDMA_MASK	0x0000ffff
145#define TR_100_UDMAREG_UDMA_EN		0x00000001
146
147
148/* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
149 * 40 connector cable and to 4 on 80 connector one.
150 * Clock unit is 15ns (66Mhz)
151 *
152 * 3 Values can be programmed:
153 *  - Write data setup, which appears to match the cycle time. They
154 *    also call it DIOW setup.
155 *  - Ready to pause time (from spec)
156 *  - Address setup. That one is weird. I don't see where exactly
157 *    it fits in UDMA cycles, I got it's name from an obscure piece
158 *    of commented out code in Darwin. They leave it to 0, we do as
159 *    well, despite a comment that would lead to think it has a
160 *    min value of 45ns.
161 * Apple also add 60ns to the write data setup (or cycle time ?) on
162 * reads.
163 */
164#define TR_66_UDMA_MASK			0xfff00000
165#define TR_66_UDMA_EN			0x00100000 /* Enable Ultra mode for DMA */
166#define TR_66_UDMA_ADDRSETUP_MASK	0xe0000000 /* Address setup */
167#define TR_66_UDMA_ADDRSETUP_SHIFT	29
168#define TR_66_UDMA_RDY2PAUS_MASK	0x1e000000 /* Ready 2 pause time */
169#define TR_66_UDMA_RDY2PAUS_SHIFT	25
170#define TR_66_UDMA_WRDATASETUP_MASK	0x01e00000 /* Write data setup time */
171#define TR_66_UDMA_WRDATASETUP_SHIFT	21
172#define TR_66_MDMA_MASK			0x000ffc00
173#define TR_66_MDMA_RECOVERY_MASK	0x000f8000
174#define TR_66_MDMA_RECOVERY_SHIFT	15
175#define TR_66_MDMA_ACCESS_MASK		0x00007c00
176#define TR_66_MDMA_ACCESS_SHIFT		10
177#define TR_66_PIO_MASK			0x000003ff
178#define TR_66_PIO_RECOVERY_MASK		0x000003e0
179#define TR_66_PIO_RECOVERY_SHIFT	5
180#define TR_66_PIO_ACCESS_MASK		0x0000001f
181#define TR_66_PIO_ACCESS_SHIFT		0
182
183/* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
184 * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
185 *
186 * The access time and recovery time can be programmed. Some older
187 * Darwin code base limit OHare to 150ns cycle time. I decided to do
188 * the same here fore safety against broken old hardware ;)
189 * The HalfTick bit, when set, adds half a clock (15ns) to the access
190 * time and removes one from recovery. It's not supported on KeyLargo
191 * implementation afaik. The E bit appears to be set for PIO mode 0 and
192 * is used to reach long timings used in this mode.
193 */
194#define TR_33_MDMA_MASK			0x003ff800
195#define TR_33_MDMA_RECOVERY_MASK	0x001f0000
196#define TR_33_MDMA_RECOVERY_SHIFT	16
197#define TR_33_MDMA_ACCESS_MASK		0x0000f800
198#define TR_33_MDMA_ACCESS_SHIFT		11
199#define TR_33_MDMA_HALFTICK		0x00200000
200#define TR_33_PIO_MASK			0x000007ff
201#define TR_33_PIO_E			0x00000400
202#define TR_33_PIO_RECOVERY_MASK		0x000003e0
203#define TR_33_PIO_RECOVERY_SHIFT	5
204#define TR_33_PIO_ACCESS_MASK		0x0000001f
205#define TR_33_PIO_ACCESS_SHIFT		0
206
207/*
208 * Interrupt register definitions
209 */
210#define IDE_INTR_DMA			0x80000000
211#define IDE_INTR_DEVICE			0x40000000
212
213/*
214 * FCR Register on Kauai. Not sure what bit 0x4 is  ...
215 */
216#define KAUAI_FCR_UATA_MAGIC		0x00000004
217#define KAUAI_FCR_UATA_RESET_N		0x00000002
218#define KAUAI_FCR_UATA_ENABLE		0x00000001
219
220/* Rounded Multiword DMA timings
221 *
222 * I gave up finding a generic formula for all controller
223 * types and instead, built tables based on timing values
224 * used by Apple in Darwin's implementation.
225 */
226struct mdma_timings_t {
227	int	accessTime;
228	int	recoveryTime;
229	int	cycleTime;
230};
231
232struct mdma_timings_t mdma_timings_33[] =
233{
234    { 240, 240, 480 },
235    { 180, 180, 360 },
236    { 135, 135, 270 },
237    { 120, 120, 240 },
238    { 105, 105, 210 },
239    {  90,  90, 180 },
240    {  75,  75, 150 },
241    {  75,  45, 120 },
242    {   0,   0,   0 }
243};
244
245struct mdma_timings_t mdma_timings_33k[] =
246{
247    { 240, 240, 480 },
248    { 180, 180, 360 },
249    { 150, 150, 300 },
250    { 120, 120, 240 },
251    {  90, 120, 210 },
252    {  90,  90, 180 },
253    {  90,  60, 150 },
254    {  90,  30, 120 },
255    {   0,   0,   0 }
256};
257
258struct mdma_timings_t mdma_timings_66[] =
259{
260    { 240, 240, 480 },
261    { 180, 180, 360 },
262    { 135, 135, 270 },
263    { 120, 120, 240 },
264    { 105, 105, 210 },
265    {  90,  90, 180 },
266    {  90,  75, 165 },
267    {  75,  45, 120 },
268    {   0,   0,   0 }
269};
270
271/* KeyLargo ATA-4 Ultra DMA timings (rounded) */
272struct {
273	int	addrSetup; /* ??? */
274	int	rdy2pause;
275	int	wrDataSetup;
276} kl66_udma_timings[] =
277{
278    {   0, 180,  120 },	/* Mode 0 */
279    {   0, 150,  90 },	/*      1 */
280    {   0, 120,  60 },	/*      2 */
281    {   0, 90,   45 },	/*      3 */
282    {   0, 90,   30 }	/*      4 */
283};
284
285/* UniNorth 2 ATA/100 timings */
286struct kauai_timing {
287	int	cycle_time;
288	u32	timing_reg;
289};
290
291static struct kauai_timing	kauai_pio_timings[] =
292{
293	{ 930	, 0x08000fff },
294	{ 600	, 0x08000a92 },
295	{ 383	, 0x0800060f },
296	{ 360	, 0x08000492 },
297	{ 330	, 0x0800048f },
298	{ 300	, 0x080003cf },
299	{ 270	, 0x080003cc },
300	{ 240	, 0x0800038b },
301	{ 239	, 0x0800030c },
302	{ 180	, 0x05000249 },
303	{ 120	, 0x04000148 },
304	{ 0	, 0 },
305};
306
307static struct kauai_timing	kauai_mdma_timings[] =
308{
309	{ 1260	, 0x00fff000 },
310	{ 480	, 0x00618000 },
311	{ 360	, 0x00492000 },
312	{ 270	, 0x0038e000 },
313	{ 240	, 0x0030c000 },
314	{ 210	, 0x002cb000 },
315	{ 180	, 0x00249000 },
316	{ 150	, 0x00209000 },
317	{ 120	, 0x00148000 },
318	{ 0	, 0 },
319};
320
321static struct kauai_timing	kauai_udma_timings[] =
322{
323	{ 120	, 0x000070c0 },
324	{ 90	, 0x00005d80 },
325	{ 60	, 0x00004a60 },
326	{ 45	, 0x00003a50 },
327	{ 30	, 0x00002a30 },
328	{ 20	, 0x00002921 },
329	{ 0	, 0 },
330};
331
332static struct kauai_timing	shasta_pio_timings[] =
333{
334	{ 930	, 0x08000fff },
335	{ 600	, 0x0A000c97 },
336	{ 383	, 0x07000712 },
337	{ 360	, 0x040003cd },
338	{ 330	, 0x040003cd },
339	{ 300	, 0x040003cd },
340	{ 270	, 0x040003cd },
341	{ 240	, 0x040003cd },
342	{ 239	, 0x040003cd },
343	{ 180	, 0x0400028b },
344	{ 120	, 0x0400010a },
345	{ 0	, 0 },
346};
347
348static struct kauai_timing	shasta_mdma_timings[] =
349{
350	{ 1260	, 0x00fff000 },
351	{ 480	, 0x00820800 },
352	{ 360	, 0x00820800 },
353	{ 270	, 0x00820800 },
354	{ 240	, 0x00820800 },
355	{ 210	, 0x00820800 },
356	{ 180	, 0x00820800 },
357	{ 150	, 0x0028b000 },
358	{ 120	, 0x001ca000 },
359	{ 0	, 0 },
360};
361
362static struct kauai_timing	shasta_udma133_timings[] =
363{
364	{ 120   , 0x00035901, },
365	{ 90    , 0x000348b1, },
366	{ 60    , 0x00033881, },
367	{ 45    , 0x00033861, },
368	{ 30    , 0x00033841, },
369	{ 20    , 0x00033031, },
370	{ 15    , 0x00033021, },
371	{ 0	, 0 },
372};
373
374
375static inline u32
376kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
377{
378	int i;
379
380	for (i=0; table[i].cycle_time; i++)
381		if (cycle_time > table[i+1].cycle_time)
382			return table[i].timing_reg;
383	BUG();
384	return 0;
385}
386
387/* allow up to 256 DBDMA commands per xfer */
388#define MAX_DCMDS		256
389
390/*
391 * Wait 1s for disk to answer on IDE bus after a hard reset
392 * of the device (via GPIO/FCR).
393 *
394 * Some devices seem to "pollute" the bus even after dropping
395 * the BSY bit (typically some combo drives slave on the UDMA
396 * bus) after a hard reset. Since we hard reset all drives on
397 * KeyLargo ATA66, we have to keep that delay around. I may end
398 * up not hard resetting anymore on these and keep the delay only
399 * for older interfaces instead (we have to reset when coming
400 * from MacOS...) --BenH.
401 */
402#define IDE_WAKEUP_DELAY	(1*HZ)
403
404static int pmac_ide_init_dma(ide_hwif_t *, const struct ide_port_info *);
405
406#define PMAC_IDE_REG(x) \
407	((void __iomem *)((drive)->hwif->io_ports.data_addr + (x)))
408
409/*
410 * Apply the timings of the proper unit (master/slave) to the shared
411 * timing register when selecting that unit. This version is for
412 * ASICs with a single timing register
413 */
414static void pmac_ide_apply_timings(ide_drive_t *drive)
415{
416	ide_hwif_t *hwif = drive->hwif;
417	pmac_ide_hwif_t *pmif =
418		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
419
420	if (drive->dn & 1)
421		writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
422	else
423		writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
424	(void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
425}
426
427/*
428 * Apply the timings of the proper unit (master/slave) to the shared
429 * timing register when selecting that unit. This version is for
430 * ASICs with a dual timing register (Kauai)
431 */
432static void pmac_ide_kauai_apply_timings(ide_drive_t *drive)
433{
434	ide_hwif_t *hwif = drive->hwif;
435	pmac_ide_hwif_t *pmif =
436		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
437
438	if (drive->dn & 1) {
439		writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
440		writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
441	} else {
442		writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
443		writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
444	}
445	(void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
446}
447
448/*
449 * Force an update of controller timing values for a given drive
450 */
451static void
452pmac_ide_do_update_timings(ide_drive_t *drive)
453{
454	ide_hwif_t *hwif = drive->hwif;
455	pmac_ide_hwif_t *pmif =
456		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
457
458	if (pmif->kind == controller_sh_ata6 ||
459	    pmif->kind == controller_un_ata6 ||
460	    pmif->kind == controller_k2_ata6)
461		pmac_ide_kauai_apply_timings(drive);
462	else
463		pmac_ide_apply_timings(drive);
464}
465
466static void pmac_dev_select(ide_drive_t *drive)
467{
468	pmac_ide_apply_timings(drive);
469
470	writeb(drive->select | ATA_DEVICE_OBS,
471	       (void __iomem *)drive->hwif->io_ports.device_addr);
472}
473
474static void pmac_kauai_dev_select(ide_drive_t *drive)
475{
476	pmac_ide_kauai_apply_timings(drive);
477
478	writeb(drive->select | ATA_DEVICE_OBS,
479	       (void __iomem *)drive->hwif->io_ports.device_addr);
480}
481
482static void pmac_exec_command(ide_hwif_t *hwif, u8 cmd)
483{
484	writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
485	(void)readl((void __iomem *)(hwif->io_ports.data_addr
486				     + IDE_TIMING_CONFIG));
487}
488
489static void pmac_write_devctl(ide_hwif_t *hwif, u8 ctl)
490{
491	writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
492	(void)readl((void __iomem *)(hwif->io_ports.data_addr
493				     + IDE_TIMING_CONFIG));
494}
495
496/*
497 * Old tuning functions (called on hdparm -p), sets up drive PIO timings
498 */
499static void
500pmac_ide_set_pio_mode(ide_drive_t *drive, const u8 pio)
501{
502	ide_hwif_t *hwif = drive->hwif;
503	pmac_ide_hwif_t *pmif =
504		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
505	struct ide_timing *tim = ide_timing_find_mode(XFER_PIO_0 + pio);
506	u32 *timings, t;
507	unsigned accessTicks, recTicks;
508	unsigned accessTime, recTime;
509	unsigned int cycle_time;
510
511	/* which drive is it ? */
512	timings = &pmif->timings[drive->dn & 1];
513	t = *timings;
514
515	cycle_time = ide_pio_cycle_time(drive, pio);
516
517	switch (pmif->kind) {
518	case controller_sh_ata6: {
519		/* 133Mhz cell */
520		u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
521		t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
522		break;
523		}
524	case controller_un_ata6:
525	case controller_k2_ata6: {
526		/* 100Mhz cell */
527		u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
528		t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
529		break;
530		}
531	case controller_kl_ata4:
532		/* 66Mhz cell */
533		recTime = cycle_time - tim->active - tim->setup;
534		recTime = max(recTime, 150U);
535		accessTime = tim->active;
536		accessTime = max(accessTime, 150U);
537		accessTicks = SYSCLK_TICKS_66(accessTime);
538		accessTicks = min(accessTicks, 0x1fU);
539		recTicks = SYSCLK_TICKS_66(recTime);
540		recTicks = min(recTicks, 0x1fU);
541		t = (t & ~TR_66_PIO_MASK) |
542			(accessTicks << TR_66_PIO_ACCESS_SHIFT) |
543			(recTicks << TR_66_PIO_RECOVERY_SHIFT);
544		break;
545	default: {
546		/* 33Mhz cell */
547		int ebit = 0;
548		recTime = cycle_time - tim->active - tim->setup;
549		recTime = max(recTime, 150U);
550		accessTime = tim->active;
551		accessTime = max(accessTime, 150U);
552		accessTicks = SYSCLK_TICKS(accessTime);
553		accessTicks = min(accessTicks, 0x1fU);
554		accessTicks = max(accessTicks, 4U);
555		recTicks = SYSCLK_TICKS(recTime);
556		recTicks = min(recTicks, 0x1fU);
557		recTicks = max(recTicks, 5U) - 4;
558		if (recTicks > 9) {
559			recTicks--; /* guess, but it's only for PIO0, so... */
560			ebit = 1;
561		}
562		t = (t & ~TR_33_PIO_MASK) |
563				(accessTicks << TR_33_PIO_ACCESS_SHIFT) |
564				(recTicks << TR_33_PIO_RECOVERY_SHIFT);
565		if (ebit)
566			t |= TR_33_PIO_E;
567		break;
568		}
569	}
570
571#ifdef IDE_PMAC_DEBUG
572	printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
573		drive->name, pio,  *timings);
574#endif
575
576	*timings = t;
577	pmac_ide_do_update_timings(drive);
578}
579
580/*
581 * Calculate KeyLargo ATA/66 UDMA timings
582 */
583static int
584set_timings_udma_ata4(u32 *timings, u8 speed)
585{
586	unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
587
588	if (speed > XFER_UDMA_4)
589		return 1;
590
591	rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
592	wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
593	addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
594
595	*timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
596			(wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
597			(rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
598			(addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
599			TR_66_UDMA_EN;
600#ifdef IDE_PMAC_DEBUG
601	printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
602		speed & 0xf,  *timings);
603#endif
604
605	return 0;
606}
607
608/*
609 * Calculate Kauai ATA/100 UDMA timings
610 */
611static int
612set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
613{
614	struct ide_timing *t = ide_timing_find_mode(speed);
615	u32 tr;
616
617	if (speed > XFER_UDMA_5 || t == NULL)
618		return 1;
619	tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
620	*ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
621	*ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
622
623	return 0;
624}
625
626/*
627 * Calculate Shasta ATA/133 UDMA timings
628 */
629static int
630set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
631{
632	struct ide_timing *t = ide_timing_find_mode(speed);
633	u32 tr;
634
635	if (speed > XFER_UDMA_6 || t == NULL)
636		return 1;
637	tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
638	*ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
639	*ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
640
641	return 0;
642}
643
644/*
645 * Calculate MDMA timings for all cells
646 */
647static void
648set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
649		 	u8 speed)
650{
651	u16 *id = drive->id;
652	int cycleTime, accessTime = 0, recTime = 0;
653	unsigned accessTicks, recTicks;
654	struct mdma_timings_t* tm = NULL;
655	int i;
656
657	/* Get default cycle time for mode */
658	switch(speed & 0xf) {
659		case 0: cycleTime = 480; break;
660		case 1: cycleTime = 150; break;
661		case 2: cycleTime = 120; break;
662		default:
663			BUG();
664			break;
665	}
666
667	/* Check if drive provides explicit DMA cycle time */
668	if ((id[ATA_ID_FIELD_VALID] & 2) && id[ATA_ID_EIDE_DMA_TIME])
669		cycleTime = max_t(int, id[ATA_ID_EIDE_DMA_TIME], cycleTime);
670
671	/* OHare limits according to some old Apple sources */
672	if ((intf_type == controller_ohare) && (cycleTime < 150))
673		cycleTime = 150;
674	/* Get the proper timing array for this controller */
675	switch(intf_type) {
676	        case controller_sh_ata6:
677		case controller_un_ata6:
678		case controller_k2_ata6:
679			break;
680		case controller_kl_ata4:
681			tm = mdma_timings_66;
682			break;
683		case controller_kl_ata3:
684			tm = mdma_timings_33k;
685			break;
686		default:
687			tm = mdma_timings_33;
688			break;
689	}
690	if (tm != NULL) {
691		/* Lookup matching access & recovery times */
692		i = -1;
693		for (;;) {
694			if (tm[i+1].cycleTime < cycleTime)
695				break;
696			i++;
697		}
698		cycleTime = tm[i].cycleTime;
699		accessTime = tm[i].accessTime;
700		recTime = tm[i].recoveryTime;
701
702#ifdef IDE_PMAC_DEBUG
703		printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
704			drive->name, cycleTime, accessTime, recTime);
705#endif
706	}
707	switch(intf_type) {
708	case controller_sh_ata6: {
709		/* 133Mhz cell */
710		u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
711		*timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
712		*timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
713		}
714	case controller_un_ata6:
715	case controller_k2_ata6: {
716		/* 100Mhz cell */
717		u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
718		*timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
719		*timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
720		}
721		break;
722	case controller_kl_ata4:
723		/* 66Mhz cell */
724		accessTicks = SYSCLK_TICKS_66(accessTime);
725		accessTicks = min(accessTicks, 0x1fU);
726		accessTicks = max(accessTicks, 0x1U);
727		recTicks = SYSCLK_TICKS_66(recTime);
728		recTicks = min(recTicks, 0x1fU);
729		recTicks = max(recTicks, 0x3U);
730		/* Clear out mdma bits and disable udma */
731		*timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
732			(accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
733			(recTicks << TR_66_MDMA_RECOVERY_SHIFT);
734		break;
735	case controller_kl_ata3:
736		/* 33Mhz cell on KeyLargo */
737		accessTicks = SYSCLK_TICKS(accessTime);
738		accessTicks = max(accessTicks, 1U);
739		accessTicks = min(accessTicks, 0x1fU);
740		accessTime = accessTicks * IDE_SYSCLK_NS;
741		recTicks = SYSCLK_TICKS(recTime);
742		recTicks = max(recTicks, 1U);
743		recTicks = min(recTicks, 0x1fU);
744		*timings = ((*timings) & ~TR_33_MDMA_MASK) |
745				(accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
746				(recTicks << TR_33_MDMA_RECOVERY_SHIFT);
747		break;
748	default: {
749		/* 33Mhz cell on others */
750		int halfTick = 0;
751		int origAccessTime = accessTime;
752		int origRecTime = recTime;
753
754		accessTicks = SYSCLK_TICKS(accessTime);
755		accessTicks = max(accessTicks, 1U);
756		accessTicks = min(accessTicks, 0x1fU);
757		accessTime = accessTicks * IDE_SYSCLK_NS;
758		recTicks = SYSCLK_TICKS(recTime);
759		recTicks = max(recTicks, 2U) - 1;
760		recTicks = min(recTicks, 0x1fU);
761		recTime = (recTicks + 1) * IDE_SYSCLK_NS;
762		if ((accessTicks > 1) &&
763		    ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
764		    ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
765            		halfTick = 1;
766			accessTicks--;
767		}
768		*timings = ((*timings) & ~TR_33_MDMA_MASK) |
769				(accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
770				(recTicks << TR_33_MDMA_RECOVERY_SHIFT);
771		if (halfTick)
772			*timings |= TR_33_MDMA_HALFTICK;
773		}
774	}
775#ifdef IDE_PMAC_DEBUG
776	printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
777		drive->name, speed & 0xf,  *timings);
778#endif
779}
780
781static void pmac_ide_set_dma_mode(ide_drive_t *drive, const u8 speed)
782{
783	ide_hwif_t *hwif = drive->hwif;
784	pmac_ide_hwif_t *pmif =
785		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
786	int ret = 0;
787	u32 *timings, *timings2, tl[2];
788	u8 unit = drive->dn & 1;
789
790	timings = &pmif->timings[unit];
791	timings2 = &pmif->timings[unit+2];
792
793	/* Copy timings to local image */
794	tl[0] = *timings;
795	tl[1] = *timings2;
796
797	if (speed >= XFER_UDMA_0) {
798		if (pmif->kind == controller_kl_ata4)
799			ret = set_timings_udma_ata4(&tl[0], speed);
800		else if (pmif->kind == controller_un_ata6
801			 || pmif->kind == controller_k2_ata6)
802			ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
803		else if (pmif->kind == controller_sh_ata6)
804			ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
805		else
806			ret = -1;
807	} else
808		set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
809
810	if (ret)
811		return;
812
813	/* Apply timings to controller */
814	*timings = tl[0];
815	*timings2 = tl[1];
816
817	pmac_ide_do_update_timings(drive);
818}
819
820/*
821 * Blast some well known "safe" values to the timing registers at init or
822 * wakeup from sleep time, before we do real calculation
823 */
824static void
825sanitize_timings(pmac_ide_hwif_t *pmif)
826{
827	unsigned int value, value2 = 0;
828
829	switch(pmif->kind) {
830		case controller_sh_ata6:
831			value = 0x0a820c97;
832			value2 = 0x00033031;
833			break;
834		case controller_un_ata6:
835		case controller_k2_ata6:
836			value = 0x08618a92;
837			value2 = 0x00002921;
838			break;
839		case controller_kl_ata4:
840			value = 0x0008438c;
841			break;
842		case controller_kl_ata3:
843			value = 0x00084526;
844			break;
845		case controller_heathrow:
846		case controller_ohare:
847		default:
848			value = 0x00074526;
849			break;
850	}
851	pmif->timings[0] = pmif->timings[1] = value;
852	pmif->timings[2] = pmif->timings[3] = value2;
853}
854
855static int on_media_bay(pmac_ide_hwif_t *pmif)
856{
857	return pmif->mdev && pmif->mdev->media_bay != NULL;
858}
859
860/* Suspend call back, should be called after the child devices
861 * have actually been suspended
862 */
863static int pmac_ide_do_suspend(pmac_ide_hwif_t *pmif)
864{
865	/* We clear the timings */
866	pmif->timings[0] = 0;
867	pmif->timings[1] = 0;
868
869	disable_irq(pmif->irq);
870
871	/* The media bay will handle itself just fine */
872	if (on_media_bay(pmif))
873		return 0;
874
875	/* Kauai has bus control FCRs directly here */
876	if (pmif->kauai_fcr) {
877		u32 fcr = readl(pmif->kauai_fcr);
878		fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
879		writel(fcr, pmif->kauai_fcr);
880	}
881
882	/* Disable the bus on older machines and the cell on kauai */
883	ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
884			    0);
885
886	return 0;
887}
888
889/* Resume call back, should be called before the child devices
890 * are resumed
891 */
892static int pmac_ide_do_resume(pmac_ide_hwif_t *pmif)
893{
894	/* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
895	if (!on_media_bay(pmif)) {
896		ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
897		ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
898		msleep(10);
899		ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
900
901		/* Kauai has it different */
902		if (pmif->kauai_fcr) {
903			u32 fcr = readl(pmif->kauai_fcr);
904			fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
905			writel(fcr, pmif->kauai_fcr);
906		}
907
908		msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
909	}
910
911	/* Sanitize drive timings */
912	sanitize_timings(pmif);
913
914	enable_irq(pmif->irq);
915
916	return 0;
917}
918
919static u8 pmac_ide_cable_detect(ide_hwif_t *hwif)
920{
921	pmac_ide_hwif_t *pmif =
922		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
923	struct device_node *np = pmif->node;
924	const char *cable = of_get_property(np, "cable-type", NULL);
925	struct device_node *root = of_find_node_by_path("/");
926	const char *model = of_get_property(root, "model", NULL);
927
928	/* Get cable type from device-tree. */
929	if (cable && !strncmp(cable, "80-", 3)) {
930		/* Some drives fail to detect 80c cable in PowerBook */
931		/* These machine use proprietary short IDE cable anyway */
932		if (!strncmp(model, "PowerBook", 9))
933			return ATA_CBL_PATA40_SHORT;
934		else
935			return ATA_CBL_PATA80;
936	}
937
938	/*
939	 * G5's seem to have incorrect cable type in device-tree.
940	 * Let's assume they have a 80 conductor cable, this seem
941	 * to be always the case unless the user mucked around.
942	 */
943	if (of_device_is_compatible(np, "K2-UATA") ||
944	    of_device_is_compatible(np, "shasta-ata"))
945		return ATA_CBL_PATA80;
946
947	return ATA_CBL_PATA40;
948}
949
950static void pmac_ide_init_dev(ide_drive_t *drive)
951{
952	ide_hwif_t *hwif = drive->hwif;
953	pmac_ide_hwif_t *pmif =
954		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
955
956	if (on_media_bay(pmif)) {
957		if (check_media_bay(pmif->mdev->media_bay) == MB_CD) {
958			drive->dev_flags &= ~IDE_DFLAG_NOPROBE;
959			return;
960		}
961		drive->dev_flags |= IDE_DFLAG_NOPROBE;
962	}
963}
964
965static const struct ide_tp_ops pmac_tp_ops = {
966	.exec_command		= pmac_exec_command,
967	.read_status		= ide_read_status,
968	.read_altstatus		= ide_read_altstatus,
969	.write_devctl		= pmac_write_devctl,
970
971	.dev_select		= pmac_dev_select,
972	.tf_load		= ide_tf_load,
973	.tf_read		= ide_tf_read,
974
975	.input_data		= ide_input_data,
976	.output_data		= ide_output_data,
977};
978
979static const struct ide_tp_ops pmac_ata6_tp_ops = {
980	.exec_command		= pmac_exec_command,
981	.read_status		= ide_read_status,
982	.read_altstatus		= ide_read_altstatus,
983	.write_devctl		= pmac_write_devctl,
984
985	.dev_select		= pmac_kauai_dev_select,
986	.tf_load		= ide_tf_load,
987	.tf_read		= ide_tf_read,
988
989	.input_data		= ide_input_data,
990	.output_data		= ide_output_data,
991};
992
993static const struct ide_port_ops pmac_ide_ata4_port_ops = {
994	.init_dev		= pmac_ide_init_dev,
995	.set_pio_mode		= pmac_ide_set_pio_mode,
996	.set_dma_mode		= pmac_ide_set_dma_mode,
997	.cable_detect		= pmac_ide_cable_detect,
998};
999
1000static const struct ide_port_ops pmac_ide_port_ops = {
1001	.init_dev		= pmac_ide_init_dev,
1002	.set_pio_mode		= pmac_ide_set_pio_mode,
1003	.set_dma_mode		= pmac_ide_set_dma_mode,
1004};
1005
1006static const struct ide_dma_ops pmac_dma_ops;
1007
1008static const struct ide_port_info pmac_port_info = {
1009	.name			= DRV_NAME,
1010	.init_dma		= pmac_ide_init_dma,
1011	.chipset		= ide_pmac,
1012	.tp_ops			= &pmac_tp_ops,
1013	.port_ops		= &pmac_ide_port_ops,
1014	.dma_ops		= &pmac_dma_ops,
1015	.host_flags		= IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
1016				  IDE_HFLAG_POST_SET_MODE |
1017				  IDE_HFLAG_MMIO |
1018				  IDE_HFLAG_UNMASK_IRQS,
1019	.pio_mask		= ATA_PIO4,
1020	.mwdma_mask		= ATA_MWDMA2,
1021};
1022
1023/*
1024 * Setup, register & probe an IDE channel driven by this driver, this is
1025 * called by one of the 2 probe functions (macio or PCI).
1026 */
1027static int __devinit pmac_ide_setup_device(pmac_ide_hwif_t *pmif,
1028					   struct ide_hw *hw)
1029{
1030	struct device_node *np = pmif->node;
1031	const int *bidp;
1032	struct ide_host *host;
1033	ide_hwif_t *hwif;
1034	struct ide_hw *hws[] = { hw };
1035	struct ide_port_info d = pmac_port_info;
1036	int rc;
1037
1038	pmif->broken_dma = pmif->broken_dma_warn = 0;
1039	if (of_device_is_compatible(np, "shasta-ata")) {
1040		pmif->kind = controller_sh_ata6;
1041		d.tp_ops = &pmac_ata6_tp_ops;
1042		d.port_ops = &pmac_ide_ata4_port_ops;
1043		d.udma_mask = ATA_UDMA6;
1044	} else if (of_device_is_compatible(np, "kauai-ata")) {
1045		pmif->kind = controller_un_ata6;
1046		d.tp_ops = &pmac_ata6_tp_ops;
1047		d.port_ops = &pmac_ide_ata4_port_ops;
1048		d.udma_mask = ATA_UDMA5;
1049	} else if (of_device_is_compatible(np, "K2-UATA")) {
1050		pmif->kind = controller_k2_ata6;
1051		d.tp_ops = &pmac_ata6_tp_ops;
1052		d.port_ops = &pmac_ide_ata4_port_ops;
1053		d.udma_mask = ATA_UDMA5;
1054	} else if (of_device_is_compatible(np, "keylargo-ata")) {
1055		if (strcmp(np->name, "ata-4") == 0) {
1056			pmif->kind = controller_kl_ata4;
1057			d.port_ops = &pmac_ide_ata4_port_ops;
1058			d.udma_mask = ATA_UDMA4;
1059		} else
1060			pmif->kind = controller_kl_ata3;
1061	} else if (of_device_is_compatible(np, "heathrow-ata")) {
1062		pmif->kind = controller_heathrow;
1063	} else {
1064		pmif->kind = controller_ohare;
1065		pmif->broken_dma = 1;
1066	}
1067
1068	bidp = of_get_property(np, "AAPL,bus-id", NULL);
1069	pmif->aapl_bus_id =  bidp ? *bidp : 0;
1070
1071	/* On Kauai-type controllers, we make sure the FCR is correct */
1072	if (pmif->kauai_fcr)
1073		writel(KAUAI_FCR_UATA_MAGIC |
1074		       KAUAI_FCR_UATA_RESET_N |
1075		       KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
1076
1077	/* Make sure we have sane timings */
1078	sanitize_timings(pmif);
1079
1080	/* If we are on a media bay, wait for it to settle and lock it */
1081	if (pmif->mdev)
1082		lock_media_bay(pmif->mdev->media_bay);
1083
1084	host = ide_host_alloc(&d, hws, 1);
1085	if (host == NULL) {
1086		rc = -ENOMEM;
1087		goto bail;
1088	}
1089	hwif = pmif->hwif = host->ports[0];
1090
1091	if (on_media_bay(pmif)) {
1092		/* Fixup bus ID for media bay */
1093		if (!bidp)
1094			pmif->aapl_bus_id = 1;
1095	} else if (pmif->kind == controller_ohare) {
1096		/* The code below is having trouble on some ohare machines
1097		 * (timing related ?). Until I can put my hand on one of these
1098		 * units, I keep the old way
1099		 */
1100		ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1101	} else {
1102 		/* This is necessary to enable IDE when net-booting */
1103		ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1104		ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1105		msleep(10);
1106		ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1107		msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1108	}
1109
1110	printk(KERN_INFO DRV_NAME ": Found Apple %s controller (%s), "
1111	       "bus ID %d%s, irq %d\n", model_name[pmif->kind],
1112	       pmif->mdev ? "macio" : "PCI", pmif->aapl_bus_id,
1113	       on_media_bay(pmif) ? " (mediabay)" : "", hw->irq);
1114
1115	rc = ide_host_register(host, &d, hws);
1116	if (rc)
1117		pmif->hwif = NULL;
1118
1119	if (pmif->mdev)
1120		unlock_media_bay(pmif->mdev->media_bay);
1121
1122 bail:
1123	if (rc && host)
1124		ide_host_free(host);
1125	return rc;
1126}
1127
1128static void __devinit pmac_ide_init_ports(struct ide_hw *hw, unsigned long base)
1129{
1130	int i;
1131
1132	for (i = 0; i < 8; ++i)
1133		hw->io_ports_array[i] = base + i * 0x10;
1134
1135	hw->io_ports.ctl_addr = base + 0x160;
1136}
1137
1138/*
1139 * Attach to a macio probed interface
1140 */
1141static int __devinit
1142pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
1143{
1144	void __iomem *base;
1145	unsigned long regbase;
1146	pmac_ide_hwif_t *pmif;
1147	int irq, rc;
1148	struct ide_hw hw;
1149
1150	pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1151	if (pmif == NULL)
1152		return -ENOMEM;
1153
1154	if (macio_resource_count(mdev) == 0) {
1155		printk(KERN_WARNING "ide-pmac: no address for %s\n",
1156				    mdev->ofdev.node->full_name);
1157		rc = -ENXIO;
1158		goto out_free_pmif;
1159	}
1160
1161	/* Request memory resource for IO ports */
1162	if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1163		printk(KERN_ERR "ide-pmac: can't request MMIO resource for "
1164				"%s!\n", mdev->ofdev.node->full_name);
1165		rc = -EBUSY;
1166		goto out_free_pmif;
1167	}
1168
1169	/* XXX This is bogus. Should be fixed in the registry by checking
1170	 * the kind of host interrupt controller, a bit like gatwick
1171	 * fixes in irq.c. That works well enough for the single case
1172	 * where that happens though...
1173	 */
1174	if (macio_irq_count(mdev) == 0) {
1175		printk(KERN_WARNING "ide-pmac: no intrs for device %s, using "
1176				    "13\n", mdev->ofdev.node->full_name);
1177		irq = irq_create_mapping(NULL, 13);
1178	} else
1179		irq = macio_irq(mdev, 0);
1180
1181	base = ioremap(macio_resource_start(mdev, 0), 0x400);
1182	regbase = (unsigned long) base;
1183
1184	pmif->mdev = mdev;
1185	pmif->node = mdev->ofdev.node;
1186	pmif->regbase = regbase;
1187	pmif->irq = irq;
1188	pmif->kauai_fcr = NULL;
1189
1190	if (macio_resource_count(mdev) >= 2) {
1191		if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1192			printk(KERN_WARNING "ide-pmac: can't request DMA "
1193					    "resource for %s!\n",
1194					    mdev->ofdev.node->full_name);
1195		else
1196			pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1197	} else
1198		pmif->dma_regs = NULL;
1199
1200	dev_set_drvdata(&mdev->ofdev.dev, pmif);
1201
1202	memset(&hw, 0, sizeof(hw));
1203	pmac_ide_init_ports(&hw, pmif->regbase);
1204	hw.irq = irq;
1205	hw.dev = &mdev->bus->pdev->dev;
1206	hw.parent = &mdev->ofdev.dev;
1207
1208	rc = pmac_ide_setup_device(pmif, &hw);
1209	if (rc != 0) {
1210		/* The inteface is released to the common IDE layer */
1211		dev_set_drvdata(&mdev->ofdev.dev, NULL);
1212		iounmap(base);
1213		if (pmif->dma_regs) {
1214			iounmap(pmif->dma_regs);
1215			macio_release_resource(mdev, 1);
1216		}
1217		macio_release_resource(mdev, 0);
1218		kfree(pmif);
1219	}
1220
1221	return rc;
1222
1223out_free_pmif:
1224	kfree(pmif);
1225	return rc;
1226}
1227
1228static int
1229pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1230{
1231	pmac_ide_hwif_t *pmif =
1232		(pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1233	int rc = 0;
1234
1235	if (mesg.event != mdev->ofdev.dev.power.power_state.event
1236			&& (mesg.event & PM_EVENT_SLEEP)) {
1237		rc = pmac_ide_do_suspend(pmif);
1238		if (rc == 0)
1239			mdev->ofdev.dev.power.power_state = mesg;
1240	}
1241
1242	return rc;
1243}
1244
1245static int
1246pmac_ide_macio_resume(struct macio_dev *mdev)
1247{
1248	pmac_ide_hwif_t *pmif =
1249		(pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1250	int rc = 0;
1251
1252	if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1253		rc = pmac_ide_do_resume(pmif);
1254		if (rc == 0)
1255			mdev->ofdev.dev.power.power_state = PMSG_ON;
1256	}
1257
1258	return rc;
1259}
1260
1261/*
1262 * Attach to a PCI probed interface
1263 */
1264static int __devinit
1265pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
1266{
1267	struct device_node *np;
1268	pmac_ide_hwif_t *pmif;
1269	void __iomem *base;
1270	unsigned long rbase, rlen;
1271	int rc;
1272	struct ide_hw hw;
1273
1274	np = pci_device_to_OF_node(pdev);
1275	if (np == NULL) {
1276		printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1277		return -ENODEV;
1278	}
1279
1280	pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1281	if (pmif == NULL)
1282		return -ENOMEM;
1283
1284	if (pci_enable_device(pdev)) {
1285		printk(KERN_WARNING "ide-pmac: Can't enable PCI device for "
1286				    "%s\n", np->full_name);
1287		rc = -ENXIO;
1288		goto out_free_pmif;
1289	}
1290	pci_set_master(pdev);
1291
1292	if (pci_request_regions(pdev, "Kauai ATA")) {
1293		printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources for "
1294				"%s\n", np->full_name);
1295		rc = -ENXIO;
1296		goto out_free_pmif;
1297	}
1298
1299	pmif->mdev = NULL;
1300	pmif->node = np;
1301
1302	rbase = pci_resource_start(pdev, 0);
1303	rlen = pci_resource_len(pdev, 0);
1304
1305	base = ioremap(rbase, rlen);
1306	pmif->regbase = (unsigned long) base + 0x2000;
1307	pmif->dma_regs = base + 0x1000;
1308	pmif->kauai_fcr = base;
1309	pmif->irq = pdev->irq;
1310
1311	pci_set_drvdata(pdev, pmif);
1312
1313	memset(&hw, 0, sizeof(hw));
1314	pmac_ide_init_ports(&hw, pmif->regbase);
1315	hw.irq = pdev->irq;
1316	hw.dev = &pdev->dev;
1317
1318	rc = pmac_ide_setup_device(pmif, &hw);
1319	if (rc != 0) {
1320		/* The inteface is released to the common IDE layer */
1321		pci_set_drvdata(pdev, NULL);
1322		iounmap(base);
1323		pci_release_regions(pdev);
1324		kfree(pmif);
1325	}
1326
1327	return rc;
1328
1329out_free_pmif:
1330	kfree(pmif);
1331	return rc;
1332}
1333
1334static int
1335pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1336{
1337	pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)pci_get_drvdata(pdev);
1338	int rc = 0;
1339
1340	if (mesg.event != pdev->dev.power.power_state.event
1341			&& (mesg.event & PM_EVENT_SLEEP)) {
1342		rc = pmac_ide_do_suspend(pmif);
1343		if (rc == 0)
1344			pdev->dev.power.power_state = mesg;
1345	}
1346
1347	return rc;
1348}
1349
1350static int
1351pmac_ide_pci_resume(struct pci_dev *pdev)
1352{
1353	pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)pci_get_drvdata(pdev);
1354	int rc = 0;
1355
1356	if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1357		rc = pmac_ide_do_resume(pmif);
1358		if (rc == 0)
1359			pdev->dev.power.power_state = PMSG_ON;
1360	}
1361
1362	return rc;
1363}
1364
1365#ifdef CONFIG_PMAC_MEDIABAY
1366static void pmac_ide_macio_mb_event(struct macio_dev* mdev, int mb_state)
1367{
1368	pmac_ide_hwif_t *pmif =
1369		(pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1370
1371	switch(mb_state) {
1372	case MB_CD:
1373		if (!pmif->hwif->present)
1374			ide_port_scan(pmif->hwif);
1375		break;
1376	default:
1377		if (pmif->hwif->present)
1378			ide_port_unregister_devices(pmif->hwif);
1379	}
1380}
1381#endif /* CONFIG_PMAC_MEDIABAY */
1382
1383
1384static struct of_device_id pmac_ide_macio_match[] =
1385{
1386	{
1387	.name 		= "IDE",
1388	},
1389	{
1390	.name 		= "ATA",
1391	},
1392	{
1393	.type		= "ide",
1394	},
1395	{
1396	.type		= "ata",
1397	},
1398	{},
1399};
1400
1401static struct macio_driver pmac_ide_macio_driver =
1402{
1403	.name 		= "ide-pmac",
1404	.match_table	= pmac_ide_macio_match,
1405	.probe		= pmac_ide_macio_attach,
1406	.suspend	= pmac_ide_macio_suspend,
1407	.resume		= pmac_ide_macio_resume,
1408#ifdef CONFIG_PMAC_MEDIABAY
1409	.mediabay_event	= pmac_ide_macio_mb_event,
1410#endif
1411};
1412
1413static const struct pci_device_id pmac_ide_pci_match[] = {
1414	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA),	0 },
1415	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100),	0 },
1416	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100),	0 },
1417	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA),	0 },
1418	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA),	0 },
1419	{},
1420};
1421
1422static struct pci_driver pmac_ide_pci_driver = {
1423	.name		= "ide-pmac",
1424	.id_table	= pmac_ide_pci_match,
1425	.probe		= pmac_ide_pci_attach,
1426	.suspend	= pmac_ide_pci_suspend,
1427	.resume		= pmac_ide_pci_resume,
1428};
1429MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1430
1431int __init pmac_ide_probe(void)
1432{
1433	int error;
1434
1435	if (!machine_is(powermac))
1436		return -ENODEV;
1437
1438#ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1439	error = pci_register_driver(&pmac_ide_pci_driver);
1440	if (error)
1441		goto out;
1442	error = macio_register_driver(&pmac_ide_macio_driver);
1443	if (error) {
1444		pci_unregister_driver(&pmac_ide_pci_driver);
1445		goto out;
1446	}
1447#else
1448	error = macio_register_driver(&pmac_ide_macio_driver);
1449	if (error)
1450		goto out;
1451	error = pci_register_driver(&pmac_ide_pci_driver);
1452	if (error) {
1453		macio_unregister_driver(&pmac_ide_macio_driver);
1454		goto out;
1455	}
1456#endif
1457out:
1458	return error;
1459}
1460
1461/*
1462 * pmac_ide_build_dmatable builds the DBDMA command list
1463 * for a transfer and sets the DBDMA channel to point to it.
1464 */
1465static int pmac_ide_build_dmatable(ide_drive_t *drive, struct ide_cmd *cmd)
1466{
1467	ide_hwif_t *hwif = drive->hwif;
1468	pmac_ide_hwif_t *pmif =
1469		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1470	struct dbdma_cmd *table;
1471	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1472	struct scatterlist *sg;
1473	int wr = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1474	int i = cmd->sg_nents, count = 0;
1475
1476	/* DMA table is already aligned */
1477	table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1478
1479	/* Make sure DMA controller is stopped (necessary ?) */
1480	writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1481	while (readl(&dma->status) & RUN)
1482		udelay(1);
1483
1484	/* Build DBDMA commands list */
1485	sg = hwif->sg_table;
1486	while (i && sg_dma_len(sg)) {
1487		u32 cur_addr;
1488		u32 cur_len;
1489
1490		cur_addr = sg_dma_address(sg);
1491		cur_len = sg_dma_len(sg);
1492
1493		if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1494			if (pmif->broken_dma_warn == 0) {
1495				printk(KERN_WARNING "%s: DMA on non aligned address, "
1496				       "switching to PIO on Ohare chipset\n", drive->name);
1497				pmif->broken_dma_warn = 1;
1498			}
1499			return 0;
1500		}
1501		while (cur_len) {
1502			unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1503
1504			if (count++ >= MAX_DCMDS) {
1505				printk(KERN_WARNING "%s: DMA table too small\n",
1506				       drive->name);
1507				return 0;
1508			}
1509			st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
1510			st_le16(&table->req_count, tc);
1511			st_le32(&table->phy_addr, cur_addr);
1512			table->cmd_dep = 0;
1513			table->xfer_status = 0;
1514			table->res_count = 0;
1515			cur_addr += tc;
1516			cur_len -= tc;
1517			++table;
1518		}
1519		sg = sg_next(sg);
1520		i--;
1521	}
1522
1523	/* convert the last command to an input/output last command */
1524	if (count) {
1525		st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
1526		/* add the stop command to the end of the list */
1527		memset(table, 0, sizeof(struct dbdma_cmd));
1528		st_le16(&table->command, DBDMA_STOP);
1529		mb();
1530		writel(hwif->dmatable_dma, &dma->cmdptr);
1531		return 1;
1532	}
1533
1534	printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
1535
1536	return 0; /* revert to PIO for this request */
1537}
1538
1539/*
1540 * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1541 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1542 */
1543static int pmac_ide_dma_setup(ide_drive_t *drive, struct ide_cmd *cmd)
1544{
1545	ide_hwif_t *hwif = drive->hwif;
1546	pmac_ide_hwif_t *pmif =
1547		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1548	u8 unit = drive->dn & 1, ata4 = (pmif->kind == controller_kl_ata4);
1549	u8 write = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1550
1551	if (pmac_ide_build_dmatable(drive, cmd) == 0)
1552		return 1;
1553
1554	/* Apple adds 60ns to wrDataSetup on reads */
1555	if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1556		writel(pmif->timings[unit] + (write ? 0 : 0x00800000UL),
1557			PMAC_IDE_REG(IDE_TIMING_CONFIG));
1558		(void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
1559	}
1560
1561	return 0;
1562}
1563
1564/*
1565 * Kick the DMA controller into life after the DMA command has been issued
1566 * to the drive.
1567 */
1568static void
1569pmac_ide_dma_start(ide_drive_t *drive)
1570{
1571	ide_hwif_t *hwif = drive->hwif;
1572	pmac_ide_hwif_t *pmif =
1573		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1574	volatile struct dbdma_regs __iomem *dma;
1575
1576	dma = pmif->dma_regs;
1577
1578	writel((RUN << 16) | RUN, &dma->control);
1579	/* Make sure it gets to the controller right now */
1580	(void)readl(&dma->control);
1581}
1582
1583/*
1584 * After a DMA transfer, make sure the controller is stopped
1585 */
1586static int
1587pmac_ide_dma_end (ide_drive_t *drive)
1588{
1589	ide_hwif_t *hwif = drive->hwif;
1590	pmac_ide_hwif_t *pmif =
1591		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1592	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1593	u32 dstat;
1594
1595	dstat = readl(&dma->status);
1596	writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1597
1598	/* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1599	 * in theory, but with ATAPI decices doing buffer underruns, that would
1600	 * cause us to disable DMA, which isn't what we want
1601	 */
1602	return (dstat & (RUN|DEAD)) != RUN;
1603}
1604
1605/*
1606 * Check out that the interrupt we got was for us. We can't always know this
1607 * for sure with those Apple interfaces (well, we could on the recent ones but
1608 * that's not implemented yet), on the other hand, we don't have shared interrupts
1609 * so it's not really a problem
1610 */
1611static int
1612pmac_ide_dma_test_irq (ide_drive_t *drive)
1613{
1614	ide_hwif_t *hwif = drive->hwif;
1615	pmac_ide_hwif_t *pmif =
1616		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1617	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1618	unsigned long status, timeout;
1619
1620	/* We have to things to deal with here:
1621	 *
1622	 * - The dbdma won't stop if the command was started
1623	 * but completed with an error without transferring all
1624	 * datas. This happens when bad blocks are met during
1625	 * a multi-block transfer.
1626	 *
1627	 * - The dbdma fifo hasn't yet finished flushing to
1628	 * to system memory when the disk interrupt occurs.
1629	 *
1630	 */
1631
1632	/* If ACTIVE is cleared, the STOP command have passed and
1633	 * transfer is complete.
1634	 */
1635	status = readl(&dma->status);
1636	if (!(status & ACTIVE))
1637		return 1;
1638
1639	/* If dbdma didn't execute the STOP command yet, the
1640	 * active bit is still set. We consider that we aren't
1641	 * sharing interrupts (which is hopefully the case with
1642	 * those controllers) and so we just try to flush the
1643	 * channel for pending data in the fifo
1644	 */
1645	udelay(1);
1646	writel((FLUSH << 16) | FLUSH, &dma->control);
1647	timeout = 0;
1648	for (;;) {
1649		udelay(1);
1650		status = readl(&dma->status);
1651		if ((status & FLUSH) == 0)
1652			break;
1653		if (++timeout > 100) {
1654			printk(KERN_WARNING "ide%d, ide_dma_test_irq \
1655			timeout flushing channel\n", hwif->index);
1656			break;
1657		}
1658	}
1659	return 1;
1660}
1661
1662static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
1663{
1664}
1665
1666static void
1667pmac_ide_dma_lost_irq (ide_drive_t *drive)
1668{
1669	ide_hwif_t *hwif = drive->hwif;
1670	pmac_ide_hwif_t *pmif =
1671		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1672	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1673	unsigned long status = readl(&dma->status);
1674
1675	printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
1676}
1677
1678static const struct ide_dma_ops pmac_dma_ops = {
1679	.dma_host_set		= pmac_ide_dma_host_set,
1680	.dma_setup		= pmac_ide_dma_setup,
1681	.dma_start		= pmac_ide_dma_start,
1682	.dma_end		= pmac_ide_dma_end,
1683	.dma_test_irq		= pmac_ide_dma_test_irq,
1684	.dma_lost_irq		= pmac_ide_dma_lost_irq,
1685};
1686
1687/*
1688 * Allocate the data structures needed for using DMA with an interface
1689 * and fill the proper list of functions pointers
1690 */
1691static int __devinit pmac_ide_init_dma(ide_hwif_t *hwif,
1692				       const struct ide_port_info *d)
1693{
1694	pmac_ide_hwif_t *pmif =
1695		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1696	struct pci_dev *dev = to_pci_dev(hwif->dev);
1697
1698	/* We won't need pci_dev if we switch to generic consistent
1699	 * DMA routines ...
1700	 */
1701	if (dev == NULL || pmif->dma_regs == 0)
1702		return -ENODEV;
1703	/*
1704	 * Allocate space for the DBDMA commands.
1705	 * The +2 is +1 for the stop command and +1 to allow for
1706	 * aligning the start address to a multiple of 16 bytes.
1707	 */
1708	pmif->dma_table_cpu = pci_alloc_consistent(
1709		dev,
1710		(MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
1711		&hwif->dmatable_dma);
1712	if (pmif->dma_table_cpu == NULL) {
1713		printk(KERN_ERR "%s: unable to allocate DMA command list\n",
1714		       hwif->name);
1715		return -ENOMEM;
1716	}
1717
1718	hwif->sg_max_nents = MAX_DCMDS;
1719
1720	return 0;
1721}
1722
1723module_init(pmac_ide_probe);
1724
1725MODULE_LICENSE("GPL");
1726