1/*
2 * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
3 *  - BMC150
4 *  - BMI055
5 *  - BMA255
6 *  - BMA250E
7 *  - BMA222E
8 *  - BMA280
9 *
10 * Copyright (c) 2014, Intel Corporation.
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms and conditions of the GNU General Public License,
14 * version 2, as published by the Free Software Foundation.
15 *
16 * This program is distributed in the hope it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
19 * more details.
20 */
21
22#include <linux/module.h>
23#include <linux/i2c.h>
24#include <linux/interrupt.h>
25#include <linux/delay.h>
26#include <linux/slab.h>
27#include <linux/acpi.h>
28#include <linux/gpio/consumer.h>
29#include <linux/pm.h>
30#include <linux/pm_runtime.h>
31#include <linux/iio/iio.h>
32#include <linux/iio/sysfs.h>
33#include <linux/iio/buffer.h>
34#include <linux/iio/events.h>
35#include <linux/iio/trigger.h>
36#include <linux/iio/trigger_consumer.h>
37#include <linux/iio/triggered_buffer.h>
38
39#define BMC150_ACCEL_DRV_NAME			"bmc150_accel"
40#define BMC150_ACCEL_IRQ_NAME			"bmc150_accel_event"
41#define BMC150_ACCEL_GPIO_NAME			"bmc150_accel_int"
42
43#define BMC150_ACCEL_REG_CHIP_ID		0x00
44
45#define BMC150_ACCEL_REG_INT_STATUS_2		0x0B
46#define BMC150_ACCEL_ANY_MOTION_MASK		0x07
47#define BMC150_ACCEL_ANY_MOTION_BIT_X		BIT(0)
48#define BMC150_ACCEL_ANY_MOTION_BIT_Y		BIT(1)
49#define BMC150_ACCEL_ANY_MOTION_BIT_Z		BIT(2)
50#define BMC150_ACCEL_ANY_MOTION_BIT_SIGN	BIT(3)
51
52#define BMC150_ACCEL_REG_PMU_LPW		0x11
53#define BMC150_ACCEL_PMU_MODE_MASK		0xE0
54#define BMC150_ACCEL_PMU_MODE_SHIFT		5
55#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK	0x17
56#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT	1
57
58#define BMC150_ACCEL_REG_PMU_RANGE		0x0F
59
60#define BMC150_ACCEL_DEF_RANGE_2G		0x03
61#define BMC150_ACCEL_DEF_RANGE_4G		0x05
62#define BMC150_ACCEL_DEF_RANGE_8G		0x08
63#define BMC150_ACCEL_DEF_RANGE_16G		0x0C
64
65/* Default BW: 125Hz */
66#define BMC150_ACCEL_REG_PMU_BW		0x10
67#define BMC150_ACCEL_DEF_BW			125
68
69#define BMC150_ACCEL_REG_INT_MAP_0		0x19
70#define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE	BIT(2)
71
72#define BMC150_ACCEL_REG_INT_MAP_1		0x1A
73#define BMC150_ACCEL_INT_MAP_1_BIT_DATA	BIT(0)
74
75#define BMC150_ACCEL_REG_INT_RST_LATCH		0x21
76#define BMC150_ACCEL_INT_MODE_LATCH_RESET	0x80
77#define BMC150_ACCEL_INT_MODE_LATCH_INT	0x0F
78#define BMC150_ACCEL_INT_MODE_NON_LATCH_INT	0x00
79
80#define BMC150_ACCEL_REG_INT_EN_0		0x16
81#define BMC150_ACCEL_INT_EN_BIT_SLP_X		BIT(0)
82#define BMC150_ACCEL_INT_EN_BIT_SLP_Y		BIT(1)
83#define BMC150_ACCEL_INT_EN_BIT_SLP_Z		BIT(2)
84
85#define BMC150_ACCEL_REG_INT_EN_1		0x17
86#define BMC150_ACCEL_INT_EN_BIT_DATA_EN	BIT(4)
87
88#define BMC150_ACCEL_REG_INT_OUT_CTRL		0x20
89#define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL	BIT(0)
90
91#define BMC150_ACCEL_REG_INT_5			0x27
92#define BMC150_ACCEL_SLOPE_DUR_MASK		0x03
93
94#define BMC150_ACCEL_REG_INT_6			0x28
95#define BMC150_ACCEL_SLOPE_THRES_MASK		0xFF
96
97/* Slope duration in terms of number of samples */
98#define BMC150_ACCEL_DEF_SLOPE_DURATION		1
99/* in terms of multiples of g's/LSB, based on range */
100#define BMC150_ACCEL_DEF_SLOPE_THRESHOLD	1
101
102#define BMC150_ACCEL_REG_XOUT_L		0x02
103
104#define BMC150_ACCEL_MAX_STARTUP_TIME_MS	100
105
106/* Sleep Duration values */
107#define BMC150_ACCEL_SLEEP_500_MICRO		0x05
108#define BMC150_ACCEL_SLEEP_1_MS		0x06
109#define BMC150_ACCEL_SLEEP_2_MS		0x07
110#define BMC150_ACCEL_SLEEP_4_MS		0x08
111#define BMC150_ACCEL_SLEEP_6_MS		0x09
112#define BMC150_ACCEL_SLEEP_10_MS		0x0A
113#define BMC150_ACCEL_SLEEP_25_MS		0x0B
114#define BMC150_ACCEL_SLEEP_50_MS		0x0C
115#define BMC150_ACCEL_SLEEP_100_MS		0x0D
116#define BMC150_ACCEL_SLEEP_500_MS		0x0E
117#define BMC150_ACCEL_SLEEP_1_SEC		0x0F
118
119#define BMC150_ACCEL_REG_TEMP			0x08
120#define BMC150_ACCEL_TEMP_CENTER_VAL		24
121
122#define BMC150_ACCEL_AXIS_TO_REG(axis)	(BMC150_ACCEL_REG_XOUT_L + (axis * 2))
123#define BMC150_AUTO_SUSPEND_DELAY_MS		2000
124
125enum bmc150_accel_axis {
126	AXIS_X,
127	AXIS_Y,
128	AXIS_Z,
129};
130
131enum bmc150_power_modes {
132	BMC150_ACCEL_SLEEP_MODE_NORMAL,
133	BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
134	BMC150_ACCEL_SLEEP_MODE_LPM,
135	BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
136};
137
138struct bmc150_scale_info {
139	int scale;
140	u8 reg_range;
141};
142
143struct bmc150_accel_chip_info {
144	u8 chip_id;
145	const struct iio_chan_spec *channels;
146	int num_channels;
147	const struct bmc150_scale_info scale_table[4];
148};
149
150struct bmc150_accel_data {
151	struct i2c_client *client;
152	struct iio_trigger *dready_trig;
153	struct iio_trigger *motion_trig;
154	struct mutex mutex;
155	s16 buffer[8];
156	u8 bw_bits;
157	u32 slope_dur;
158	u32 slope_thres;
159	u32 range;
160	int ev_enable_state;
161	bool dready_trigger_on;
162	bool motion_trigger_on;
163	int64_t timestamp;
164	const struct bmc150_accel_chip_info *chip_info;
165};
166
167static const struct {
168	int val;
169	int val2;
170	u8 bw_bits;
171} bmc150_accel_samp_freq_table[] = { {7, 810000, 0x08},
172				     {15, 630000, 0x09},
173				     {31, 250000, 0x0A},
174				     {62, 500000, 0x0B},
175				     {125, 0, 0x0C},
176				     {250, 0, 0x0D},
177				     {500, 0, 0x0E},
178				     {1000, 0, 0x0F} };
179
180static const struct {
181	int bw_bits;
182	int msec;
183} bmc150_accel_sample_upd_time[] = { {0x08, 64},
184				     {0x09, 32},
185				     {0x0A, 16},
186				     {0x0B, 8},
187				     {0x0C, 4},
188				     {0x0D, 2},
189				     {0x0E, 1},
190				     {0x0F, 1} };
191
192static const struct {
193	int sleep_dur;
194	u8 reg_value;
195} bmc150_accel_sleep_value_table[] = { {0, 0},
196				       {500, BMC150_ACCEL_SLEEP_500_MICRO},
197				       {1000, BMC150_ACCEL_SLEEP_1_MS},
198				       {2000, BMC150_ACCEL_SLEEP_2_MS},
199				       {4000, BMC150_ACCEL_SLEEP_4_MS},
200				       {6000, BMC150_ACCEL_SLEEP_6_MS},
201				       {10000, BMC150_ACCEL_SLEEP_10_MS},
202				       {25000, BMC150_ACCEL_SLEEP_25_MS},
203				       {50000, BMC150_ACCEL_SLEEP_50_MS},
204				       {100000, BMC150_ACCEL_SLEEP_100_MS},
205				       {500000, BMC150_ACCEL_SLEEP_500_MS},
206				       {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
207
208
209static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
210				 enum bmc150_power_modes mode,
211				 int dur_us)
212{
213	int i;
214	int ret;
215	u8 lpw_bits;
216	int dur_val = -1;
217
218	if (dur_us > 0) {
219		for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
220									 ++i) {
221			if (bmc150_accel_sleep_value_table[i].sleep_dur ==
222									dur_us)
223				dur_val =
224				bmc150_accel_sleep_value_table[i].reg_value;
225		}
226	} else
227		dur_val = 0;
228
229	if (dur_val < 0)
230		return -EINVAL;
231
232	lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
233	lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
234
235	dev_dbg(&data->client->dev, "Set Mode bits %x\n", lpw_bits);
236
237	ret = i2c_smbus_write_byte_data(data->client,
238					BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
239	if (ret < 0) {
240		dev_err(&data->client->dev, "Error writing reg_pmu_lpw\n");
241		return ret;
242	}
243
244	return 0;
245}
246
247static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
248			       int val2)
249{
250	int i;
251	int ret;
252
253	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
254		if (bmc150_accel_samp_freq_table[i].val == val &&
255				bmc150_accel_samp_freq_table[i].val2 == val2) {
256			ret = i2c_smbus_write_byte_data(
257				data->client,
258				BMC150_ACCEL_REG_PMU_BW,
259				bmc150_accel_samp_freq_table[i].bw_bits);
260			if (ret < 0)
261				return ret;
262
263			data->bw_bits =
264				bmc150_accel_samp_freq_table[i].bw_bits;
265			return 0;
266		}
267	}
268
269	return -EINVAL;
270}
271
272static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
273{
274	int ret;
275
276	ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_CHIP_ID);
277	if (ret < 0) {
278		dev_err(&data->client->dev,
279			"Error: Reading chip id\n");
280		return ret;
281	}
282
283	dev_dbg(&data->client->dev, "Chip Id %x\n", ret);
284	if (ret != data->chip_info->chip_id) {
285		dev_err(&data->client->dev, "Invalid chip %x\n", ret);
286		return -ENODEV;
287	}
288
289	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
290	if (ret < 0)
291		return ret;
292
293	/* Set Bandwidth */
294	ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
295	if (ret < 0)
296		return ret;
297
298	/* Set Default Range */
299	ret = i2c_smbus_write_byte_data(data->client,
300					BMC150_ACCEL_REG_PMU_RANGE,
301					BMC150_ACCEL_DEF_RANGE_4G);
302	if (ret < 0) {
303		dev_err(&data->client->dev,
304					"Error writing reg_pmu_range\n");
305		return ret;
306	}
307
308	data->range = BMC150_ACCEL_DEF_RANGE_4G;
309
310	/* Set default slope duration */
311	ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_INT_5);
312	if (ret < 0) {
313		dev_err(&data->client->dev, "Error reading reg_int_5\n");
314		return ret;
315	}
316	data->slope_dur |= BMC150_ACCEL_DEF_SLOPE_DURATION;
317	ret = i2c_smbus_write_byte_data(data->client,
318					BMC150_ACCEL_REG_INT_5,
319					data->slope_dur);
320	if (ret < 0) {
321		dev_err(&data->client->dev, "Error writing reg_int_5\n");
322		return ret;
323	}
324	dev_dbg(&data->client->dev, "slope_dur %x\n", data->slope_dur);
325
326	/* Set default slope thresholds */
327	ret = i2c_smbus_write_byte_data(data->client,
328					BMC150_ACCEL_REG_INT_6,
329					BMC150_ACCEL_DEF_SLOPE_THRESHOLD);
330	if (ret < 0) {
331		dev_err(&data->client->dev, "Error writing reg_int_6\n");
332		return ret;
333	}
334	data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
335	dev_dbg(&data->client->dev, "slope_thres %x\n", data->slope_thres);
336
337	/* Set default as latched interrupts */
338	ret = i2c_smbus_write_byte_data(data->client,
339					BMC150_ACCEL_REG_INT_RST_LATCH,
340					BMC150_ACCEL_INT_MODE_LATCH_INT |
341					BMC150_ACCEL_INT_MODE_LATCH_RESET);
342	if (ret < 0) {
343		dev_err(&data->client->dev,
344			"Error writing reg_int_rst_latch\n");
345		return ret;
346	}
347
348	return 0;
349}
350
351static int bmc150_accel_setup_any_motion_interrupt(
352					struct bmc150_accel_data *data,
353					bool status)
354{
355	int ret;
356
357	/* Enable/Disable INT1 mapping */
358	ret = i2c_smbus_read_byte_data(data->client,
359				       BMC150_ACCEL_REG_INT_MAP_0);
360	if (ret < 0) {
361		dev_err(&data->client->dev, "Error reading reg_int_map_0\n");
362		return ret;
363	}
364	if (status)
365		ret |= BMC150_ACCEL_INT_MAP_0_BIT_SLOPE;
366	else
367		ret &= ~BMC150_ACCEL_INT_MAP_0_BIT_SLOPE;
368
369	ret = i2c_smbus_write_byte_data(data->client,
370					BMC150_ACCEL_REG_INT_MAP_0,
371					ret);
372	if (ret < 0) {
373		dev_err(&data->client->dev, "Error writing reg_int_map_0\n");
374		return ret;
375	}
376
377	if (status) {
378		/* Set slope duration (no of samples) */
379		ret = i2c_smbus_write_byte_data(data->client,
380						BMC150_ACCEL_REG_INT_5,
381						data->slope_dur);
382		if (ret < 0) {
383			dev_err(&data->client->dev, "Error write reg_int_5\n");
384			return ret;
385		}
386
387		/* Set slope thresholds */
388		ret = i2c_smbus_write_byte_data(data->client,
389						BMC150_ACCEL_REG_INT_6,
390						data->slope_thres);
391		if (ret < 0) {
392			dev_err(&data->client->dev, "Error write reg_int_6\n");
393			return ret;
394		}
395
396		/*
397		 * New data interrupt is always non-latched,
398		 * which will have higher priority, so no need
399		 * to set latched mode, we will be flooded anyway with INTR
400		 */
401		if (!data->dready_trigger_on) {
402			ret = i2c_smbus_write_byte_data(data->client,
403					BMC150_ACCEL_REG_INT_RST_LATCH,
404					BMC150_ACCEL_INT_MODE_LATCH_INT |
405					BMC150_ACCEL_INT_MODE_LATCH_RESET);
406			if (ret < 0) {
407				dev_err(&data->client->dev,
408					"Error writing reg_int_rst_latch\n");
409				return ret;
410			}
411		}
412
413		ret = i2c_smbus_write_byte_data(data->client,
414						BMC150_ACCEL_REG_INT_EN_0,
415						BMC150_ACCEL_INT_EN_BIT_SLP_X |
416						BMC150_ACCEL_INT_EN_BIT_SLP_Y |
417						BMC150_ACCEL_INT_EN_BIT_SLP_Z);
418	} else
419		ret = i2c_smbus_write_byte_data(data->client,
420						BMC150_ACCEL_REG_INT_EN_0,
421						0);
422
423	if (ret < 0) {
424		dev_err(&data->client->dev, "Error writing reg_int_en_0\n");
425		return ret;
426	}
427
428	return 0;
429}
430
431static int bmc150_accel_setup_new_data_interrupt(struct bmc150_accel_data *data,
432					   bool status)
433{
434	int ret;
435
436	/* Enable/Disable INT1 mapping */
437	ret = i2c_smbus_read_byte_data(data->client,
438				       BMC150_ACCEL_REG_INT_MAP_1);
439	if (ret < 0) {
440		dev_err(&data->client->dev, "Error reading reg_int_map_1\n");
441		return ret;
442	}
443	if (status)
444		ret |= BMC150_ACCEL_INT_MAP_1_BIT_DATA;
445	else
446		ret &= ~BMC150_ACCEL_INT_MAP_1_BIT_DATA;
447
448	ret = i2c_smbus_write_byte_data(data->client,
449					BMC150_ACCEL_REG_INT_MAP_1,
450					ret);
451	if (ret < 0) {
452		dev_err(&data->client->dev, "Error writing reg_int_map_1\n");
453		return ret;
454	}
455
456	if (status) {
457		/*
458		 * Set non latched mode interrupt and clear any latched
459		 * interrupt
460		 */
461		ret = i2c_smbus_write_byte_data(data->client,
462					BMC150_ACCEL_REG_INT_RST_LATCH,
463					BMC150_ACCEL_INT_MODE_NON_LATCH_INT |
464					BMC150_ACCEL_INT_MODE_LATCH_RESET);
465		if (ret < 0) {
466			dev_err(&data->client->dev,
467				"Error writing reg_int_rst_latch\n");
468			return ret;
469		}
470
471		ret = i2c_smbus_write_byte_data(data->client,
472					BMC150_ACCEL_REG_INT_EN_1,
473					BMC150_ACCEL_INT_EN_BIT_DATA_EN);
474
475	} else {
476		/* Restore default interrupt mode */
477		ret = i2c_smbus_write_byte_data(data->client,
478					BMC150_ACCEL_REG_INT_RST_LATCH,
479					BMC150_ACCEL_INT_MODE_LATCH_INT |
480					BMC150_ACCEL_INT_MODE_LATCH_RESET);
481		if (ret < 0) {
482			dev_err(&data->client->dev,
483				"Error writing reg_int_rst_latch\n");
484			return ret;
485		}
486
487		ret = i2c_smbus_write_byte_data(data->client,
488						BMC150_ACCEL_REG_INT_EN_1,
489						0);
490	}
491
492	if (ret < 0) {
493		dev_err(&data->client->dev, "Error writing reg_int_en_1\n");
494		return ret;
495	}
496
497	return 0;
498}
499
500static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
501			       int *val2)
502{
503	int i;
504
505	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
506		if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
507			*val = bmc150_accel_samp_freq_table[i].val;
508			*val2 = bmc150_accel_samp_freq_table[i].val2;
509			return IIO_VAL_INT_PLUS_MICRO;
510		}
511	}
512
513	return -EINVAL;
514}
515
516#ifdef CONFIG_PM_RUNTIME
517static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
518{
519	int i;
520
521	for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
522		if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
523			return bmc150_accel_sample_upd_time[i].msec;
524	}
525
526	return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
527}
528
529static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
530{
531	int ret;
532
533	if (on)
534		ret = pm_runtime_get_sync(&data->client->dev);
535	else {
536		pm_runtime_mark_last_busy(&data->client->dev);
537		ret = pm_runtime_put_autosuspend(&data->client->dev);
538	}
539	if (ret < 0) {
540		dev_err(&data->client->dev,
541			"Failed: bmc150_accel_set_power_state for %d\n", on);
542		if (on)
543			pm_runtime_put_noidle(&data->client->dev);
544
545		return ret;
546	}
547
548	return 0;
549}
550#else
551static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
552{
553	return 0;
554}
555#endif
556
557static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
558{
559	int ret, i;
560
561	for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
562		if (data->chip_info->scale_table[i].scale == val) {
563			ret = i2c_smbus_write_byte_data(
564				     data->client,
565				     BMC150_ACCEL_REG_PMU_RANGE,
566				     data->chip_info->scale_table[i].reg_range);
567			if (ret < 0) {
568				dev_err(&data->client->dev,
569					"Error writing pmu_range\n");
570				return ret;
571			}
572
573			data->range = data->chip_info->scale_table[i].reg_range;
574			return 0;
575		}
576	}
577
578	return -EINVAL;
579}
580
581static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
582{
583	int ret;
584
585	mutex_lock(&data->mutex);
586
587	ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_TEMP);
588	if (ret < 0) {
589		dev_err(&data->client->dev, "Error reading reg_temp\n");
590		mutex_unlock(&data->mutex);
591		return ret;
592	}
593	*val = sign_extend32(ret, 7);
594
595	mutex_unlock(&data->mutex);
596
597	return IIO_VAL_INT;
598}
599
600static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
601				 struct iio_chan_spec const *chan,
602				 int *val)
603{
604	int ret;
605	int axis = chan->scan_index;
606
607	mutex_lock(&data->mutex);
608	ret = bmc150_accel_set_power_state(data, true);
609	if (ret < 0) {
610		mutex_unlock(&data->mutex);
611		return ret;
612	}
613
614	ret = i2c_smbus_read_word_data(data->client,
615				       BMC150_ACCEL_AXIS_TO_REG(axis));
616	if (ret < 0) {
617		dev_err(&data->client->dev, "Error reading axis %d\n", axis);
618		bmc150_accel_set_power_state(data, false);
619		mutex_unlock(&data->mutex);
620		return ret;
621	}
622	*val = sign_extend32(ret >> chan->scan_type.shift,
623			     chan->scan_type.realbits - 1);
624	ret = bmc150_accel_set_power_state(data, false);
625	mutex_unlock(&data->mutex);
626	if (ret < 0)
627		return ret;
628
629	return IIO_VAL_INT;
630}
631
632static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
633				 struct iio_chan_spec const *chan,
634				 int *val, int *val2, long mask)
635{
636	struct bmc150_accel_data *data = iio_priv(indio_dev);
637	int ret;
638
639	switch (mask) {
640	case IIO_CHAN_INFO_RAW:
641		switch (chan->type) {
642		case IIO_TEMP:
643			return bmc150_accel_get_temp(data, val);
644		case IIO_ACCEL:
645			if (iio_buffer_enabled(indio_dev))
646				return -EBUSY;
647			else
648				return bmc150_accel_get_axis(data, chan, val);
649		default:
650			return -EINVAL;
651		}
652	case IIO_CHAN_INFO_OFFSET:
653		if (chan->type == IIO_TEMP) {
654			*val = BMC150_ACCEL_TEMP_CENTER_VAL;
655			return IIO_VAL_INT;
656		} else
657			return -EINVAL;
658	case IIO_CHAN_INFO_SCALE:
659		*val = 0;
660		switch (chan->type) {
661		case IIO_TEMP:
662			*val2 = 500000;
663			return IIO_VAL_INT_PLUS_MICRO;
664		case IIO_ACCEL:
665		{
666			int i;
667			const struct bmc150_scale_info *si;
668			int st_size = ARRAY_SIZE(data->chip_info->scale_table);
669
670			for (i = 0; i < st_size; ++i) {
671				si = &data->chip_info->scale_table[i];
672				if (si->reg_range == data->range) {
673					*val2 = si->scale;
674					return IIO_VAL_INT_PLUS_MICRO;
675				}
676			}
677			return -EINVAL;
678		}
679		default:
680			return -EINVAL;
681		}
682	case IIO_CHAN_INFO_SAMP_FREQ:
683		mutex_lock(&data->mutex);
684		ret = bmc150_accel_get_bw(data, val, val2);
685		mutex_unlock(&data->mutex);
686		return ret;
687	default:
688		return -EINVAL;
689	}
690}
691
692static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
693				  struct iio_chan_spec const *chan,
694				  int val, int val2, long mask)
695{
696	struct bmc150_accel_data *data = iio_priv(indio_dev);
697	int ret;
698
699	switch (mask) {
700	case IIO_CHAN_INFO_SAMP_FREQ:
701		mutex_lock(&data->mutex);
702		ret = bmc150_accel_set_bw(data, val, val2);
703		mutex_unlock(&data->mutex);
704		break;
705	case IIO_CHAN_INFO_SCALE:
706		if (val)
707			return -EINVAL;
708
709		mutex_lock(&data->mutex);
710		ret = bmc150_accel_set_scale(data, val2);
711		mutex_unlock(&data->mutex);
712		return ret;
713	default:
714		ret = -EINVAL;
715	}
716
717	return ret;
718}
719
720static int bmc150_accel_read_event(struct iio_dev *indio_dev,
721				   const struct iio_chan_spec *chan,
722				   enum iio_event_type type,
723				   enum iio_event_direction dir,
724				   enum iio_event_info info,
725				   int *val, int *val2)
726{
727	struct bmc150_accel_data *data = iio_priv(indio_dev);
728
729	*val2 = 0;
730	switch (info) {
731	case IIO_EV_INFO_VALUE:
732		*val = data->slope_thres;
733		break;
734	case IIO_EV_INFO_PERIOD:
735		*val = data->slope_dur & BMC150_ACCEL_SLOPE_DUR_MASK;
736		break;
737	default:
738		return -EINVAL;
739	}
740
741	return IIO_VAL_INT;
742}
743
744static int bmc150_accel_write_event(struct iio_dev *indio_dev,
745				    const struct iio_chan_spec *chan,
746				    enum iio_event_type type,
747				    enum iio_event_direction dir,
748				    enum iio_event_info info,
749				    int val, int val2)
750{
751	struct bmc150_accel_data *data = iio_priv(indio_dev);
752
753	if (data->ev_enable_state)
754		return -EBUSY;
755
756	switch (info) {
757	case IIO_EV_INFO_VALUE:
758		data->slope_thres = val;
759		break;
760	case IIO_EV_INFO_PERIOD:
761		data->slope_dur &= ~BMC150_ACCEL_SLOPE_DUR_MASK;
762		data->slope_dur |= val & BMC150_ACCEL_SLOPE_DUR_MASK;
763		break;
764	default:
765		return -EINVAL;
766	}
767
768	return 0;
769}
770
771static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
772					  const struct iio_chan_spec *chan,
773					  enum iio_event_type type,
774					  enum iio_event_direction dir)
775{
776
777	struct bmc150_accel_data *data = iio_priv(indio_dev);
778
779	return data->ev_enable_state;
780}
781
782static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
783					   const struct iio_chan_spec *chan,
784					   enum iio_event_type type,
785					   enum iio_event_direction dir,
786					   int state)
787{
788	struct bmc150_accel_data *data = iio_priv(indio_dev);
789	int ret;
790
791	if (state && data->ev_enable_state)
792		return 0;
793
794	mutex_lock(&data->mutex);
795
796	if (!state && data->motion_trigger_on) {
797		data->ev_enable_state = 0;
798		mutex_unlock(&data->mutex);
799		return 0;
800	}
801
802	/*
803	 * We will expect the enable and disable to do operation in
804	 * in reverse order. This will happen here anyway as our
805	 * resume operation uses sync mode runtime pm calls, the
806	 * suspend operation will be delayed by autosuspend delay
807	 * So the disable operation will still happen in reverse of
808	 * enable operation. When runtime pm is disabled the mode
809	 * is always on so sequence doesn't matter
810	 */
811
812	ret = bmc150_accel_set_power_state(data, state);
813	if (ret < 0) {
814		mutex_unlock(&data->mutex);
815		return ret;
816	}
817
818	ret =  bmc150_accel_setup_any_motion_interrupt(data, state);
819	if (ret < 0) {
820		bmc150_accel_set_power_state(data, false);
821		mutex_unlock(&data->mutex);
822		return ret;
823	}
824
825	data->ev_enable_state = state;
826	mutex_unlock(&data->mutex);
827
828	return 0;
829}
830
831static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
832				   struct iio_trigger *trig)
833{
834	struct bmc150_accel_data *data = iio_priv(indio_dev);
835
836	if (data->dready_trig != trig && data->motion_trig != trig)
837		return -EINVAL;
838
839	return 0;
840}
841
842static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
843		"7.810000 15.630000 31.250000 62.500000 125 250 500 1000");
844
845static struct attribute *bmc150_accel_attributes[] = {
846	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
847	NULL,
848};
849
850static const struct attribute_group bmc150_accel_attrs_group = {
851	.attrs = bmc150_accel_attributes,
852};
853
854static const struct iio_event_spec bmc150_accel_event = {
855		.type = IIO_EV_TYPE_ROC,
856		.dir = IIO_EV_DIR_EITHER,
857		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
858				 BIT(IIO_EV_INFO_ENABLE) |
859				 BIT(IIO_EV_INFO_PERIOD)
860};
861
862#define BMC150_ACCEL_CHANNEL(_axis, bits) {				\
863	.type = IIO_ACCEL,						\
864	.modified = 1,							\
865	.channel2 = IIO_MOD_##_axis,					\
866	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
867	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
868				BIT(IIO_CHAN_INFO_SAMP_FREQ),		\
869	.scan_index = AXIS_##_axis,					\
870	.scan_type = {							\
871		.sign = 's',						\
872		.realbits = (bits),					\
873		.storagebits = 16,					\
874		.shift = 16 - (bits),					\
875	},								\
876	.event_spec = &bmc150_accel_event,				\
877	.num_event_specs = 1						\
878}
879
880#define BMC150_ACCEL_CHANNELS(bits) {					\
881	{								\
882		.type = IIO_TEMP,					\
883		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
884				      BIT(IIO_CHAN_INFO_SCALE) |	\
885				      BIT(IIO_CHAN_INFO_OFFSET),	\
886		.scan_index = -1,					\
887	},								\
888	BMC150_ACCEL_CHANNEL(X, bits),					\
889	BMC150_ACCEL_CHANNEL(Y, bits),					\
890	BMC150_ACCEL_CHANNEL(Z, bits),					\
891	IIO_CHAN_SOFT_TIMESTAMP(3),					\
892}
893
894static const struct iio_chan_spec bma222e_accel_channels[] =
895	BMC150_ACCEL_CHANNELS(8);
896static const struct iio_chan_spec bma250e_accel_channels[] =
897	BMC150_ACCEL_CHANNELS(10);
898static const struct iio_chan_spec bmc150_accel_channels[] =
899	BMC150_ACCEL_CHANNELS(12);
900static const struct iio_chan_spec bma280_accel_channels[] =
901	BMC150_ACCEL_CHANNELS(14);
902
903enum {
904	bmc150,
905	bmi055,
906	bma255,
907	bma250e,
908	bma222e,
909	bma280,
910};
911
912static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
913	[bmc150] = {
914		.chip_id = 0xFA,
915		.channels = bmc150_accel_channels,
916		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
917		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
918				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
919				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
920				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
921	},
922	[bmi055] = {
923		.chip_id = 0xFA,
924		.channels = bmc150_accel_channels,
925		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
926		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
927				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
928				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
929				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
930	},
931	[bma255] = {
932		.chip_id = 0xFA,
933		.channels = bmc150_accel_channels,
934		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
935		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
936				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
937				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
938				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
939	},
940	[bma250e] = {
941		.chip_id = 0xF9,
942		.channels = bma250e_accel_channels,
943		.num_channels = ARRAY_SIZE(bma250e_accel_channels),
944		.scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
945				 {76590, BMC150_ACCEL_DEF_RANGE_4G},
946				 {153277, BMC150_ACCEL_DEF_RANGE_8G},
947				 {306457, BMC150_ACCEL_DEF_RANGE_16G} },
948	},
949	[bma222e] = {
950		.chip_id = 0xF8,
951		.channels = bma222e_accel_channels,
952		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
953		.scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
954				 {306457, BMC150_ACCEL_DEF_RANGE_4G},
955				 {612915, BMC150_ACCEL_DEF_RANGE_8G},
956				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
957	},
958	[bma280] = {
959		.chip_id = 0xFB,
960		.channels = bma280_accel_channels,
961		.num_channels = ARRAY_SIZE(bma280_accel_channels),
962		.scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
963				 {4785, BMC150_ACCEL_DEF_RANGE_4G},
964				 {9581, BMC150_ACCEL_DEF_RANGE_8G},
965				 {19152, BMC150_ACCEL_DEF_RANGE_16G} },
966	},
967};
968
969static const struct iio_info bmc150_accel_info = {
970	.attrs			= &bmc150_accel_attrs_group,
971	.read_raw		= bmc150_accel_read_raw,
972	.write_raw		= bmc150_accel_write_raw,
973	.read_event_value	= bmc150_accel_read_event,
974	.write_event_value	= bmc150_accel_write_event,
975	.write_event_config	= bmc150_accel_write_event_config,
976	.read_event_config	= bmc150_accel_read_event_config,
977	.validate_trigger	= bmc150_accel_validate_trigger,
978	.driver_module		= THIS_MODULE,
979};
980
981static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
982{
983	struct iio_poll_func *pf = p;
984	struct iio_dev *indio_dev = pf->indio_dev;
985	struct bmc150_accel_data *data = iio_priv(indio_dev);
986	int bit, ret, i = 0;
987
988	mutex_lock(&data->mutex);
989	for_each_set_bit(bit, indio_dev->buffer->scan_mask,
990			 indio_dev->masklength) {
991		ret = i2c_smbus_read_word_data(data->client,
992					       BMC150_ACCEL_AXIS_TO_REG(bit));
993		if (ret < 0) {
994			mutex_unlock(&data->mutex);
995			goto err_read;
996		}
997		data->buffer[i++] = ret;
998	}
999	mutex_unlock(&data->mutex);
1000
1001	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1002					   data->timestamp);
1003err_read:
1004	iio_trigger_notify_done(indio_dev->trig);
1005
1006	return IRQ_HANDLED;
1007}
1008
1009static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
1010{
1011	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
1012	struct bmc150_accel_data *data = iio_priv(indio_dev);
1013	int ret;
1014
1015	/* new data interrupts don't need ack */
1016	if (data->dready_trigger_on)
1017		return 0;
1018
1019	mutex_lock(&data->mutex);
1020	/* clear any latched interrupt */
1021	ret = i2c_smbus_write_byte_data(data->client,
1022					BMC150_ACCEL_REG_INT_RST_LATCH,
1023					BMC150_ACCEL_INT_MODE_LATCH_INT |
1024					BMC150_ACCEL_INT_MODE_LATCH_RESET);
1025	mutex_unlock(&data->mutex);
1026	if (ret < 0) {
1027		dev_err(&data->client->dev,
1028			"Error writing reg_int_rst_latch\n");
1029		return ret;
1030	}
1031
1032	return 0;
1033}
1034
1035static int bmc150_accel_data_rdy_trigger_set_state(struct iio_trigger *trig,
1036						   bool state)
1037{
1038	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
1039	struct bmc150_accel_data *data = iio_priv(indio_dev);
1040	int ret;
1041
1042	mutex_lock(&data->mutex);
1043
1044	if (!state && data->ev_enable_state && data->motion_trigger_on) {
1045		data->motion_trigger_on = false;
1046		mutex_unlock(&data->mutex);
1047		return 0;
1048	}
1049
1050	/*
1051	 * Refer to comment in bmc150_accel_write_event_config for
1052	 * enable/disable operation order
1053	 */
1054	ret = bmc150_accel_set_power_state(data, state);
1055	if (ret < 0) {
1056		mutex_unlock(&data->mutex);
1057		return ret;
1058	}
1059	if (data->motion_trig == trig)
1060		ret =  bmc150_accel_setup_any_motion_interrupt(data, state);
1061	else
1062		ret = bmc150_accel_setup_new_data_interrupt(data, state);
1063	if (ret < 0) {
1064		bmc150_accel_set_power_state(data, false);
1065		mutex_unlock(&data->mutex);
1066		return ret;
1067	}
1068	if (data->motion_trig == trig)
1069		data->motion_trigger_on = state;
1070	else
1071		data->dready_trigger_on = state;
1072
1073	mutex_unlock(&data->mutex);
1074
1075	return ret;
1076}
1077
1078static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1079	.set_trigger_state = bmc150_accel_data_rdy_trigger_set_state,
1080	.try_reenable = bmc150_accel_trig_try_reen,
1081	.owner = THIS_MODULE,
1082};
1083
1084static irqreturn_t bmc150_accel_event_handler(int irq, void *private)
1085{
1086	struct iio_dev *indio_dev = private;
1087	struct bmc150_accel_data *data = iio_priv(indio_dev);
1088	int ret;
1089	int dir;
1090
1091	ret = i2c_smbus_read_byte_data(data->client,
1092				       BMC150_ACCEL_REG_INT_STATUS_2);
1093	if (ret < 0) {
1094		dev_err(&data->client->dev, "Error reading reg_int_status_2\n");
1095		goto ack_intr_status;
1096	}
1097
1098	if (ret & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1099		dir = IIO_EV_DIR_FALLING;
1100	else
1101		dir = IIO_EV_DIR_RISING;
1102
1103	if (ret & BMC150_ACCEL_ANY_MOTION_BIT_X)
1104		iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL,
1105							0,
1106							IIO_MOD_X,
1107							IIO_EV_TYPE_ROC,
1108							dir),
1109							data->timestamp);
1110	if (ret & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1111		iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL,
1112							0,
1113							IIO_MOD_Y,
1114							IIO_EV_TYPE_ROC,
1115							dir),
1116							data->timestamp);
1117	if (ret & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1118		iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL,
1119							0,
1120							IIO_MOD_Z,
1121							IIO_EV_TYPE_ROC,
1122							dir),
1123							data->timestamp);
1124ack_intr_status:
1125	if (!data->dready_trigger_on)
1126		ret = i2c_smbus_write_byte_data(data->client,
1127					BMC150_ACCEL_REG_INT_RST_LATCH,
1128					BMC150_ACCEL_INT_MODE_LATCH_INT |
1129					BMC150_ACCEL_INT_MODE_LATCH_RESET);
1130
1131	return IRQ_HANDLED;
1132}
1133
1134static irqreturn_t bmc150_accel_data_rdy_trig_poll(int irq, void *private)
1135{
1136	struct iio_dev *indio_dev = private;
1137	struct bmc150_accel_data *data = iio_priv(indio_dev);
1138
1139	data->timestamp = iio_get_time_ns();
1140
1141	if (data->dready_trigger_on)
1142		iio_trigger_poll(data->dready_trig);
1143	else if (data->motion_trigger_on)
1144		iio_trigger_poll(data->motion_trig);
1145
1146	if (data->ev_enable_state)
1147		return IRQ_WAKE_THREAD;
1148	else
1149		return IRQ_HANDLED;
1150}
1151
1152static const char *bmc150_accel_match_acpi_device(struct device *dev, int *data)
1153{
1154	const struct acpi_device_id *id;
1155
1156	id = acpi_match_device(dev->driver->acpi_match_table, dev);
1157
1158	if (!id)
1159		return NULL;
1160
1161	*data = (int) id->driver_data;
1162
1163	return dev_name(dev);
1164}
1165
1166static int bmc150_accel_gpio_probe(struct i2c_client *client,
1167					struct bmc150_accel_data *data)
1168{
1169	struct device *dev;
1170	struct gpio_desc *gpio;
1171	int ret;
1172
1173	if (!client)
1174		return -EINVAL;
1175
1176	dev = &client->dev;
1177
1178	/* data ready gpio interrupt pin */
1179	gpio = devm_gpiod_get_index(dev, BMC150_ACCEL_GPIO_NAME, 0);
1180	if (IS_ERR(gpio)) {
1181		dev_err(dev, "Failed: gpio get index\n");
1182		return PTR_ERR(gpio);
1183	}
1184
1185	ret = gpiod_direction_input(gpio);
1186	if (ret)
1187		return ret;
1188
1189	ret = gpiod_to_irq(gpio);
1190
1191	dev_dbg(dev, "GPIO resource, no:%d irq:%d\n", desc_to_gpio(gpio), ret);
1192
1193	return ret;
1194}
1195
1196static int bmc150_accel_probe(struct i2c_client *client,
1197			      const struct i2c_device_id *id)
1198{
1199	struct bmc150_accel_data *data;
1200	struct iio_dev *indio_dev;
1201	int ret;
1202	const char *name = NULL;
1203	int chip_id = 0;
1204
1205	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
1206	if (!indio_dev)
1207		return -ENOMEM;
1208
1209	data = iio_priv(indio_dev);
1210	i2c_set_clientdata(client, indio_dev);
1211	data->client = client;
1212
1213	if (id) {
1214		name = id->name;
1215		chip_id = id->driver_data;
1216	}
1217
1218	if (ACPI_HANDLE(&client->dev))
1219		name = bmc150_accel_match_acpi_device(&client->dev, &chip_id);
1220
1221	data->chip_info = &bmc150_accel_chip_info_tbl[chip_id];
1222
1223	ret = bmc150_accel_chip_init(data);
1224	if (ret < 0)
1225		return ret;
1226
1227	mutex_init(&data->mutex);
1228
1229	indio_dev->dev.parent = &client->dev;
1230	indio_dev->channels = data->chip_info->channels;
1231	indio_dev->num_channels = data->chip_info->num_channels;
1232	indio_dev->name = name;
1233	indio_dev->modes = INDIO_DIRECT_MODE;
1234	indio_dev->info = &bmc150_accel_info;
1235
1236	if (client->irq < 0)
1237		client->irq = bmc150_accel_gpio_probe(client, data);
1238
1239	if (client->irq >= 0) {
1240		ret = devm_request_threaded_irq(
1241						&client->dev, client->irq,
1242						bmc150_accel_data_rdy_trig_poll,
1243						bmc150_accel_event_handler,
1244						IRQF_TRIGGER_RISING,
1245						BMC150_ACCEL_IRQ_NAME,
1246						indio_dev);
1247		if (ret)
1248			return ret;
1249
1250		data->dready_trig = devm_iio_trigger_alloc(&client->dev,
1251							   "%s-dev%d",
1252							   indio_dev->name,
1253							   indio_dev->id);
1254		if (!data->dready_trig)
1255			return -ENOMEM;
1256
1257		data->motion_trig = devm_iio_trigger_alloc(&client->dev,
1258							  "%s-any-motion-dev%d",
1259							  indio_dev->name,
1260							  indio_dev->id);
1261		if (!data->motion_trig)
1262			return -ENOMEM;
1263
1264		data->dready_trig->dev.parent = &client->dev;
1265		data->dready_trig->ops = &bmc150_accel_trigger_ops;
1266		iio_trigger_set_drvdata(data->dready_trig, indio_dev);
1267		ret = iio_trigger_register(data->dready_trig);
1268		if (ret)
1269			return ret;
1270
1271		data->motion_trig->dev.parent = &client->dev;
1272		data->motion_trig->ops = &bmc150_accel_trigger_ops;
1273		iio_trigger_set_drvdata(data->motion_trig, indio_dev);
1274		ret = iio_trigger_register(data->motion_trig);
1275		if (ret) {
1276			data->motion_trig = NULL;
1277			goto err_trigger_unregister;
1278		}
1279
1280		ret = iio_triggered_buffer_setup(indio_dev,
1281						 &iio_pollfunc_store_time,
1282						 bmc150_accel_trigger_handler,
1283						 NULL);
1284		if (ret < 0) {
1285			dev_err(&client->dev,
1286				"Failed: iio triggered buffer setup\n");
1287			goto err_trigger_unregister;
1288		}
1289	}
1290
1291	ret = iio_device_register(indio_dev);
1292	if (ret < 0) {
1293		dev_err(&client->dev, "Unable to register iio device\n");
1294		goto err_buffer_cleanup;
1295	}
1296
1297	ret = pm_runtime_set_active(&client->dev);
1298	if (ret)
1299		goto err_iio_unregister;
1300
1301	pm_runtime_enable(&client->dev);
1302	pm_runtime_set_autosuspend_delay(&client->dev,
1303					 BMC150_AUTO_SUSPEND_DELAY_MS);
1304	pm_runtime_use_autosuspend(&client->dev);
1305
1306	return 0;
1307
1308err_iio_unregister:
1309	iio_device_unregister(indio_dev);
1310err_buffer_cleanup:
1311	if (data->dready_trig)
1312		iio_triggered_buffer_cleanup(indio_dev);
1313err_trigger_unregister:
1314	if (data->dready_trig)
1315		iio_trigger_unregister(data->dready_trig);
1316	if (data->motion_trig)
1317		iio_trigger_unregister(data->motion_trig);
1318
1319	return ret;
1320}
1321
1322static int bmc150_accel_remove(struct i2c_client *client)
1323{
1324	struct iio_dev *indio_dev = i2c_get_clientdata(client);
1325	struct bmc150_accel_data *data = iio_priv(indio_dev);
1326
1327	pm_runtime_disable(&client->dev);
1328	pm_runtime_set_suspended(&client->dev);
1329	pm_runtime_put_noidle(&client->dev);
1330
1331	iio_device_unregister(indio_dev);
1332
1333	if (data->dready_trig) {
1334		iio_triggered_buffer_cleanup(indio_dev);
1335		iio_trigger_unregister(data->dready_trig);
1336		iio_trigger_unregister(data->motion_trig);
1337	}
1338
1339	mutex_lock(&data->mutex);
1340	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1341	mutex_unlock(&data->mutex);
1342
1343	return 0;
1344}
1345
1346#ifdef CONFIG_PM_SLEEP
1347static int bmc150_accel_suspend(struct device *dev)
1348{
1349	struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1350	struct bmc150_accel_data *data = iio_priv(indio_dev);
1351
1352	mutex_lock(&data->mutex);
1353	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1354	mutex_unlock(&data->mutex);
1355
1356	return 0;
1357}
1358
1359static int bmc150_accel_resume(struct device *dev)
1360{
1361	struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1362	struct bmc150_accel_data *data = iio_priv(indio_dev);
1363
1364	mutex_lock(&data->mutex);
1365	if (data->dready_trigger_on || data->motion_trigger_on ||
1366							data->ev_enable_state)
1367		bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1368	mutex_unlock(&data->mutex);
1369
1370	return 0;
1371}
1372#endif
1373
1374#ifdef CONFIG_PM_RUNTIME
1375static int bmc150_accel_runtime_suspend(struct device *dev)
1376{
1377	struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1378	struct bmc150_accel_data *data = iio_priv(indio_dev);
1379	int ret;
1380
1381	dev_dbg(&data->client->dev,  __func__);
1382	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1383	if (ret < 0)
1384		return -EAGAIN;
1385
1386	return 0;
1387}
1388
1389static int bmc150_accel_runtime_resume(struct device *dev)
1390{
1391	struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
1392	struct bmc150_accel_data *data = iio_priv(indio_dev);
1393	int ret;
1394	int sleep_val;
1395
1396	dev_dbg(&data->client->dev,  __func__);
1397
1398	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1399	if (ret < 0)
1400		return ret;
1401
1402	sleep_val = bmc150_accel_get_startup_times(data);
1403	if (sleep_val < 20)
1404		usleep_range(sleep_val * 1000, 20000);
1405	else
1406		msleep_interruptible(sleep_val);
1407
1408	return 0;
1409}
1410#endif
1411
1412static const struct dev_pm_ops bmc150_accel_pm_ops = {
1413	SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1414	SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1415			   bmc150_accel_runtime_resume, NULL)
1416};
1417
1418static const struct acpi_device_id bmc150_accel_acpi_match[] = {
1419	{"BSBA0150",	bmc150},
1420	{"BMC150A",	bmc150},
1421	{"BMI055A",	bmi055},
1422	{"BMA0255",	bma255},
1423	{"BMA250E",	bma250e},
1424	{"BMA222E",	bma222e},
1425	{"BMA0280",	bma280},
1426	{ },
1427};
1428MODULE_DEVICE_TABLE(acpi, bmc150_accel_acpi_match);
1429
1430static const struct i2c_device_id bmc150_accel_id[] = {
1431	{"bmc150_accel",	bmc150},
1432	{"bmi055_accel",	bmi055},
1433	{"bma255",		bma255},
1434	{"bma250e",		bma250e},
1435	{"bma222e",		bma222e},
1436	{"bma280",		bma280},
1437	{}
1438};
1439
1440MODULE_DEVICE_TABLE(i2c, bmc150_accel_id);
1441
1442static struct i2c_driver bmc150_accel_driver = {
1443	.driver = {
1444		.name	= BMC150_ACCEL_DRV_NAME,
1445		.acpi_match_table = ACPI_PTR(bmc150_accel_acpi_match),
1446		.pm	= &bmc150_accel_pm_ops,
1447	},
1448	.probe		= bmc150_accel_probe,
1449	.remove		= bmc150_accel_remove,
1450	.id_table	= bmc150_accel_id,
1451};
1452module_i2c_driver(bmc150_accel_driver);
1453
1454MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1455MODULE_LICENSE("GPL v2");
1456MODULE_DESCRIPTION("BMC150 accelerometer driver");
1457