hp_sdc_rtc.c revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2
1/*
2 * HP i8042 SDC + MSM-58321 BBRTC driver.
3 *
4 * Copyright (c) 2001 Brian S. Julin
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions, and the following disclaimer,
12 *    without modification.
13 * 2. The name of the author may not be used to endorse or promote products
14 *    derived from this software without specific prior written permission.
15 *
16 * Alternatively, this software may be distributed under the terms of the
17 * GNU General Public License ("GPL").
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 *
29 * References:
30 * System Device Controller Microprocessor Firmware Theory of Operation
31 *      for Part Number 1820-4784 Revision B.  Dwg No. A-1820-4784-2
32 * efirtc.c by Stephane Eranian/Hewlett Packard
33 *
34 */
35
36#include <linux/hp_sdc.h>
37#include <linux/errno.h>
38#include <linux/types.h>
39#include <linux/init.h>
40#include <linux/module.h>
41#include <linux/time.h>
42#include <linux/miscdevice.h>
43#include <linux/proc_fs.h>
44#include <linux/poll.h>
45#include <linux/rtc.h>
46
47MODULE_AUTHOR("Brian S. Julin <bri@calyx.com>");
48MODULE_DESCRIPTION("HP i8042 SDC + MSM-58321 RTC Driver");
49MODULE_LICENSE("Dual BSD/GPL");
50
51#define RTC_VERSION "1.10d"
52
53static unsigned long epoch = 2000;
54
55static struct semaphore i8042tregs;
56
57static hp_sdc_irqhook hp_sdc_rtc_isr;
58
59static struct fasync_struct *hp_sdc_rtc_async_queue;
60
61static DECLARE_WAIT_QUEUE_HEAD(hp_sdc_rtc_wait);
62
63static loff_t hp_sdc_rtc_llseek(struct file *file, loff_t offset, int origin);
64
65static ssize_t hp_sdc_rtc_read(struct file *file, char *buf,
66			       size_t count, loff_t *ppos);
67
68static int hp_sdc_rtc_ioctl(struct inode *inode, struct file *file,
69			    unsigned int cmd, unsigned long arg);
70
71static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait);
72
73static int hp_sdc_rtc_open(struct inode *inode, struct file *file);
74static int hp_sdc_rtc_release(struct inode *inode, struct file *file);
75static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on);
76
77static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off,
78				int count, int *eof, void *data);
79
80static void hp_sdc_rtc_isr (int irq, void *dev_id,
81			    uint8_t status, uint8_t data)
82{
83	return;
84}
85
86static int hp_sdc_rtc_do_read_bbrtc (struct rtc_time *rtctm)
87{
88	struct semaphore tsem;
89	hp_sdc_transaction t;
90	uint8_t tseq[91];
91	int i;
92
93	i = 0;
94	while (i < 91) {
95		tseq[i++] = HP_SDC_ACT_DATAREG |
96			HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN;
97		tseq[i++] = 0x01;			/* write i8042[0x70] */
98	  	tseq[i]   = i / 7;			/* BBRTC reg address */
99		i++;
100		tseq[i++] = HP_SDC_CMD_DO_RTCR;		/* Trigger command   */
101		tseq[i++] = 2;		/* expect 1 stat/dat pair back.   */
102		i++; i++;               /* buffer for stat/dat pair       */
103	}
104	tseq[84] |= HP_SDC_ACT_SEMAPHORE;
105	t.endidx =		91;
106	t.seq =			tseq;
107	t.act.semaphore =	&tsem;
108	init_MUTEX_LOCKED(&tsem);
109
110	if (hp_sdc_enqueue_transaction(&t)) return -1;
111
112	down_interruptible(&tsem);  /* Put ourselves to sleep for results. */
113
114	/* Check for nonpresence of BBRTC */
115	if (!((tseq[83] | tseq[90] | tseq[69] | tseq[76] |
116	       tseq[55] | tseq[62] | tseq[34] | tseq[41] |
117	       tseq[20] | tseq[27] | tseq[6]  | tseq[13]) & 0x0f))
118		return -1;
119
120	memset(rtctm, 0, sizeof(struct rtc_time));
121	rtctm->tm_year = (tseq[83] & 0x0f) + (tseq[90] & 0x0f) * 10;
122	rtctm->tm_mon  = (tseq[69] & 0x0f) + (tseq[76] & 0x0f) * 10;
123	rtctm->tm_mday = (tseq[55] & 0x0f) + (tseq[62] & 0x0f) * 10;
124	rtctm->tm_wday = (tseq[48] & 0x0f);
125	rtctm->tm_hour = (tseq[34] & 0x0f) + (tseq[41] & 0x0f) * 10;
126	rtctm->tm_min  = (tseq[20] & 0x0f) + (tseq[27] & 0x0f) * 10;
127	rtctm->tm_sec  = (tseq[6]  & 0x0f) + (tseq[13] & 0x0f) * 10;
128
129	return 0;
130}
131
132static int hp_sdc_rtc_read_bbrtc (struct rtc_time *rtctm)
133{
134	struct rtc_time tm, tm_last;
135	int i = 0;
136
137	/* MSM-58321 has no read latch, so must read twice and compare. */
138
139	if (hp_sdc_rtc_do_read_bbrtc(&tm_last)) return -1;
140	if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
141
142	while (memcmp(&tm, &tm_last, sizeof(struct rtc_time))) {
143		if (i++ > 4) return -1;
144		memcpy(&tm_last, &tm, sizeof(struct rtc_time));
145		if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
146	}
147
148	memcpy(rtctm, &tm, sizeof(struct rtc_time));
149
150	return 0;
151}
152
153
154static int64_t hp_sdc_rtc_read_i8042timer (uint8_t loadcmd, int numreg)
155{
156	hp_sdc_transaction t;
157	uint8_t tseq[26] = {
158		HP_SDC_ACT_PRECMD | HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
159		0,
160		HP_SDC_CMD_READ_T1, 2, 0, 0,
161		HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
162		HP_SDC_CMD_READ_T2, 2, 0, 0,
163		HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
164		HP_SDC_CMD_READ_T3, 2, 0, 0,
165		HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
166		HP_SDC_CMD_READ_T4, 2, 0, 0,
167		HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
168		HP_SDC_CMD_READ_T5, 2, 0, 0
169	};
170
171	t.endidx = numreg * 5;
172
173	tseq[1] = loadcmd;
174	tseq[t.endidx - 4] |= HP_SDC_ACT_SEMAPHORE; /* numreg assumed > 1 */
175
176	t.seq =			tseq;
177	t.act.semaphore =	&i8042tregs;
178
179	down_interruptible(&i8042tregs);  /* Sleep if output regs in use. */
180
181	if (hp_sdc_enqueue_transaction(&t)) return -1;
182
183	down_interruptible(&i8042tregs);  /* Sleep until results come back. */
184	up(&i8042tregs);
185
186	return (tseq[5] |
187		((uint64_t)(tseq[10]) << 8)  | ((uint64_t)(tseq[15]) << 16) |
188		((uint64_t)(tseq[20]) << 24) | ((uint64_t)(tseq[25]) << 32));
189}
190
191
192/* Read the i8042 real-time clock */
193static inline int hp_sdc_rtc_read_rt(struct timeval *res) {
194	int64_t raw;
195	uint32_t tenms;
196	unsigned int days;
197
198	raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_RT, 5);
199	if (raw < 0) return -1;
200
201	tenms = (uint32_t)raw & 0xffffff;
202	days  = (unsigned int)(raw >> 24) & 0xffff;
203
204	res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
205	res->tv_sec =  (time_t)(tenms / 100) + days * 86400;
206
207	return 0;
208}
209
210
211/* Read the i8042 fast handshake timer */
212static inline int hp_sdc_rtc_read_fhs(struct timeval *res) {
213	uint64_t raw;
214	unsigned int tenms;
215
216	raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_FHS, 2);
217	if (raw < 0) return -1;
218
219	tenms = (unsigned int)raw & 0xffff;
220
221	res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
222	res->tv_sec  = (time_t)(tenms / 100);
223
224	return 0;
225}
226
227
228/* Read the i8042 match timer (a.k.a. alarm) */
229static inline int hp_sdc_rtc_read_mt(struct timeval *res) {
230	int64_t raw;
231	uint32_t tenms;
232
233	raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_MT, 3);
234	if (raw < 0) return -1;
235
236	tenms = (uint32_t)raw & 0xffffff;
237
238	res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
239	res->tv_sec  = (time_t)(tenms / 100);
240
241	return 0;
242}
243
244
245/* Read the i8042 delay timer */
246static inline int hp_sdc_rtc_read_dt(struct timeval *res) {
247	int64_t raw;
248	uint32_t tenms;
249
250	raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_DT, 3);
251	if (raw < 0) return -1;
252
253	tenms = (uint32_t)raw & 0xffffff;
254
255	res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
256	res->tv_sec  = (time_t)(tenms / 100);
257
258	return 0;
259}
260
261
262/* Read the i8042 cycle timer (a.k.a. periodic) */
263static inline int hp_sdc_rtc_read_ct(struct timeval *res) {
264	int64_t raw;
265	uint32_t tenms;
266
267	raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_CT, 3);
268	if (raw < 0) return -1;
269
270	tenms = (uint32_t)raw & 0xffffff;
271
272	res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
273	res->tv_sec  = (time_t)(tenms / 100);
274
275	return 0;
276}
277
278
279/* Set the i8042 real-time clock */
280static int hp_sdc_rtc_set_rt (struct timeval *setto)
281{
282	uint32_t tenms;
283	unsigned int days;
284	hp_sdc_transaction t;
285	uint8_t tseq[11] = {
286		HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
287		HP_SDC_CMD_SET_RTMS, 3, 0, 0, 0,
288		HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
289		HP_SDC_CMD_SET_RTD, 2, 0, 0
290	};
291
292	t.endidx = 10;
293
294	if (0xffff < setto->tv_sec / 86400) return -1;
295	days = setto->tv_sec / 86400;
296	if (0xffff < setto->tv_usec / 1000000 / 86400) return -1;
297	days += ((setto->tv_sec % 86400) + setto->tv_usec / 1000000) / 86400;
298	if (days > 0xffff) return -1;
299
300	if (0xffffff < setto->tv_sec) return -1;
301	tenms  = setto->tv_sec * 100;
302	if (0xffffff < setto->tv_usec / 10000) return -1;
303	tenms += setto->tv_usec / 10000;
304	if (tenms > 0xffffff) return -1;
305
306	tseq[3] = (uint8_t)(tenms & 0xff);
307	tseq[4] = (uint8_t)((tenms >> 8)  & 0xff);
308	tseq[5] = (uint8_t)((tenms >> 16) & 0xff);
309
310	tseq[9] = (uint8_t)(days & 0xff);
311	tseq[10] = (uint8_t)((days >> 8) & 0xff);
312
313	t.seq =	tseq;
314
315	if (hp_sdc_enqueue_transaction(&t)) return -1;
316	return 0;
317}
318
319/* Set the i8042 fast handshake timer */
320static int hp_sdc_rtc_set_fhs (struct timeval *setto)
321{
322	uint32_t tenms;
323	hp_sdc_transaction t;
324	uint8_t tseq[5] = {
325		HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
326		HP_SDC_CMD_SET_FHS, 2, 0, 0
327	};
328
329	t.endidx = 4;
330
331	if (0xffff < setto->tv_sec) return -1;
332	tenms  = setto->tv_sec * 100;
333	if (0xffff < setto->tv_usec / 10000) return -1;
334	tenms += setto->tv_usec / 10000;
335	if (tenms > 0xffff) return -1;
336
337	tseq[3] = (uint8_t)(tenms & 0xff);
338	tseq[4] = (uint8_t)((tenms >> 8)  & 0xff);
339
340	t.seq =	tseq;
341
342	if (hp_sdc_enqueue_transaction(&t)) return -1;
343	return 0;
344}
345
346
347/* Set the i8042 match timer (a.k.a. alarm) */
348#define hp_sdc_rtc_set_mt (setto) \
349	hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_MT)
350
351/* Set the i8042 delay timer */
352#define hp_sdc_rtc_set_dt (setto) \
353	hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_DT)
354
355/* Set the i8042 cycle timer (a.k.a. periodic) */
356#define hp_sdc_rtc_set_ct (setto) \
357	hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_CT)
358
359/* Set one of the i8042 3-byte wide timers */
360static int hp_sdc_rtc_set_i8042timer (struct timeval *setto, uint8_t setcmd)
361{
362	uint32_t tenms;
363	hp_sdc_transaction t;
364	uint8_t tseq[6] = {
365		HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
366		0, 3, 0, 0, 0
367	};
368
369	t.endidx = 6;
370
371	if (0xffffff < setto->tv_sec) return -1;
372	tenms  = setto->tv_sec * 100;
373	if (0xffffff < setto->tv_usec / 10000) return -1;
374	tenms += setto->tv_usec / 10000;
375	if (tenms > 0xffffff) return -1;
376
377	tseq[1] = setcmd;
378	tseq[3] = (uint8_t)(tenms & 0xff);
379	tseq[4] = (uint8_t)((tenms >> 8)  & 0xff);
380	tseq[5] = (uint8_t)((tenms >> 16)  & 0xff);
381
382	t.seq =			tseq;
383
384	if (hp_sdc_enqueue_transaction(&t)) {
385		return -1;
386	}
387	return 0;
388}
389
390static loff_t hp_sdc_rtc_llseek(struct file *file, loff_t offset, int origin)
391{
392        return -ESPIPE;
393}
394
395static ssize_t hp_sdc_rtc_read(struct file *file, char *buf,
396			       size_t count, loff_t *ppos) {
397	ssize_t retval;
398
399        if (count < sizeof(unsigned long))
400                return -EINVAL;
401
402	retval = put_user(68, (unsigned long *)buf);
403	return retval;
404}
405
406static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait)
407{
408        unsigned long l;
409
410	l = 0;
411        if (l != 0)
412                return POLLIN | POLLRDNORM;
413        return 0;
414}
415
416static int hp_sdc_rtc_open(struct inode *inode, struct file *file)
417{
418        return 0;
419}
420
421static int hp_sdc_rtc_release(struct inode *inode, struct file *file)
422{
423	/* Turn off interrupts? */
424
425        if (file->f_flags & FASYNC) {
426                hp_sdc_rtc_fasync (-1, file, 0);
427        }
428
429        return 0;
430}
431
432static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on)
433{
434        return fasync_helper (fd, filp, on, &hp_sdc_rtc_async_queue);
435}
436
437static int hp_sdc_rtc_proc_output (char *buf)
438{
439#define YN(bit) ("no")
440#define NY(bit) ("yes")
441        char *p;
442        struct rtc_time tm;
443	struct timeval tv;
444
445	memset(&tm, 0, sizeof(struct rtc_time));
446
447	p = buf;
448
449	if (hp_sdc_rtc_read_bbrtc(&tm)) {
450		p += sprintf(p, "BBRTC\t\t: READ FAILED!\n");
451	} else {
452		p += sprintf(p,
453			     "rtc_time\t: %02d:%02d:%02d\n"
454			     "rtc_date\t: %04d-%02d-%02d\n"
455			     "rtc_epoch\t: %04lu\n",
456			     tm.tm_hour, tm.tm_min, tm.tm_sec,
457			     tm.tm_year + 1900, tm.tm_mon + 1,
458			     tm.tm_mday, epoch);
459	}
460
461	if (hp_sdc_rtc_read_rt(&tv)) {
462		p += sprintf(p, "i8042 rtc\t: READ FAILED!\n");
463	} else {
464		p += sprintf(p, "i8042 rtc\t: %ld.%02d seconds\n",
465			     tv.tv_sec, tv.tv_usec/1000);
466	}
467
468	if (hp_sdc_rtc_read_fhs(&tv)) {
469		p += sprintf(p, "handshake\t: READ FAILED!\n");
470	} else {
471        	p += sprintf(p, "handshake\t: %ld.%02d seconds\n",
472			     tv.tv_sec, tv.tv_usec/1000);
473	}
474
475	if (hp_sdc_rtc_read_mt(&tv)) {
476		p += sprintf(p, "alarm\t\t: READ FAILED!\n");
477	} else {
478		p += sprintf(p, "alarm\t\t: %ld.%02d seconds\n",
479			     tv.tv_sec, tv.tv_usec/1000);
480	}
481
482	if (hp_sdc_rtc_read_dt(&tv)) {
483		p += sprintf(p, "delay\t\t: READ FAILED!\n");
484	} else {
485		p += sprintf(p, "delay\t\t: %ld.%02d seconds\n",
486			     tv.tv_sec, tv.tv_usec/1000);
487	}
488
489	if (hp_sdc_rtc_read_ct(&tv)) {
490		p += sprintf(p, "periodic\t: READ FAILED!\n");
491	} else {
492		p += sprintf(p, "periodic\t: %ld.%02d seconds\n",
493			     tv.tv_sec, tv.tv_usec/1000);
494	}
495
496        p += sprintf(p,
497                     "DST_enable\t: %s\n"
498                     "BCD\t\t: %s\n"
499                     "24hr\t\t: %s\n"
500                     "square_wave\t: %s\n"
501                     "alarm_IRQ\t: %s\n"
502                     "update_IRQ\t: %s\n"
503                     "periodic_IRQ\t: %s\n"
504		     "periodic_freq\t: %ld\n"
505                     "batt_status\t: %s\n",
506                     YN(RTC_DST_EN),
507                     NY(RTC_DM_BINARY),
508                     YN(RTC_24H),
509                     YN(RTC_SQWE),
510                     YN(RTC_AIE),
511                     YN(RTC_UIE),
512                     YN(RTC_PIE),
513                     1UL,
514                     1 ? "okay" : "dead");
515
516        return  p - buf;
517#undef YN
518#undef NY
519}
520
521static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off,
522                         int count, int *eof, void *data)
523{
524	int len = hp_sdc_rtc_proc_output (page);
525        if (len <= off+count) *eof = 1;
526        *start = page + off;
527        len -= off;
528        if (len>count) len = count;
529        if (len<0) len = 0;
530        return len;
531}
532
533static int hp_sdc_rtc_ioctl(struct inode *inode, struct file *file,
534			    unsigned int cmd, unsigned long arg)
535{
536#if 1
537	return -EINVAL;
538#else
539
540        struct rtc_time wtime;
541	struct timeval ttime;
542	int use_wtime = 0;
543
544	/* This needs major work. */
545
546        switch (cmd) {
547
548        case RTC_AIE_OFF:       /* Mask alarm int. enab. bit    */
549        case RTC_AIE_ON:        /* Allow alarm interrupts.      */
550	case RTC_PIE_OFF:       /* Mask periodic int. enab. bit */
551        case RTC_PIE_ON:        /* Allow periodic ints          */
552        case RTC_UIE_ON:        /* Allow ints for RTC updates.  */
553        case RTC_UIE_OFF:       /* Allow ints for RTC updates.  */
554        {
555		/* We cannot mask individual user timers and we
556		   cannot tell them apart when they occur, so it
557		   would be disingenuous to succeed these IOCTLs */
558		return -EINVAL;
559        }
560        case RTC_ALM_READ:      /* Read the present alarm time */
561        {
562		if (hp_sdc_rtc_read_mt(&ttime)) return -EFAULT;
563		if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;
564
565		wtime.tm_hour = ttime.tv_sec / 3600;  ttime.tv_sec %= 3600;
566		wtime.tm_min  = ttime.tv_sec / 60;    ttime.tv_sec %= 60;
567		wtime.tm_sec  = ttime.tv_sec;
568
569		break;
570        }
571        case RTC_IRQP_READ:     /* Read the periodic IRQ rate.  */
572        {
573                return put_user(hp_sdc_rtc_freq, (unsigned long *)arg);
574        }
575        case RTC_IRQP_SET:      /* Set periodic IRQ rate.       */
576        {
577                /*
578                 * The max we can do is 100Hz.
579		 */
580
581                if ((arg < 1) || (arg > 100)) return -EINVAL;
582		ttime.tv_sec = 0;
583		ttime.tv_usec = 1000000 / arg;
584		if (hp_sdc_rtc_set_ct(&ttime)) return -EFAULT;
585		hp_sdc_rtc_freq = arg;
586                return 0;
587        }
588        case RTC_ALM_SET:       /* Store a time into the alarm */
589        {
590                /*
591                 * This expects a struct hp_sdc_rtc_time. Writing 0xff means
592                 * "don't care" or "match all" for PC timers.  The HP SDC
593		 * does not support that perk, but it could be emulated fairly
594		 * easily.  Only the tm_hour, tm_min and tm_sec are used.
595		 * We could do it with 10ms accuracy with the HP SDC, if the
596		 * rtc interface left us a way to do that.
597                 */
598                struct hp_sdc_rtc_time alm_tm;
599
600                if (copy_from_user(&alm_tm, (struct hp_sdc_rtc_time*)arg,
601                                   sizeof(struct hp_sdc_rtc_time)))
602                       return -EFAULT;
603
604                if (alm_tm.tm_hour > 23) return -EINVAL;
605		if (alm_tm.tm_min  > 59) return -EINVAL;
606		if (alm_tm.tm_sec  > 59) return -EINVAL;
607
608		ttime.sec = alm_tm.tm_hour * 3600 +
609		  alm_tm.tm_min * 60 + alm_tm.tm_sec;
610		ttime.usec = 0;
611		if (hp_sdc_rtc_set_mt(&ttime)) return -EFAULT;
612                return 0;
613        }
614        case RTC_RD_TIME:       /* Read the time/date from RTC  */
615        {
616		if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;
617                break;
618        }
619        case RTC_SET_TIME:      /* Set the RTC */
620        {
621                struct rtc_time hp_sdc_rtc_tm;
622                unsigned char mon, day, hrs, min, sec, leap_yr;
623                unsigned int yrs;
624
625                if (!capable(CAP_SYS_TIME))
626                        return -EACCES;
627		if (copy_from_user(&hp_sdc_rtc_tm, (struct rtc_time *)arg,
628                                   sizeof(struct rtc_time)))
629                        return -EFAULT;
630
631                yrs = hp_sdc_rtc_tm.tm_year + 1900;
632                mon = hp_sdc_rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
633                day = hp_sdc_rtc_tm.tm_mday;
634                hrs = hp_sdc_rtc_tm.tm_hour;
635                min = hp_sdc_rtc_tm.tm_min;
636                sec = hp_sdc_rtc_tm.tm_sec;
637
638                if (yrs < 1970)
639                        return -EINVAL;
640
641                leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
642
643                if ((mon > 12) || (day == 0))
644                        return -EINVAL;
645                if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
646                        return -EINVAL;
647		if ((hrs >= 24) || (min >= 60) || (sec >= 60))
648                        return -EINVAL;
649
650                if ((yrs -= eH) > 255)    /* They are unsigned */
651                        return -EINVAL;
652
653
654                return 0;
655        }
656        case RTC_EPOCH_READ:    /* Read the epoch.      */
657        {
658                return put_user (epoch, (unsigned long *)arg);
659        }
660        case RTC_EPOCH_SET:     /* Set the epoch.       */
661        {
662                /*
663                 * There were no RTC clocks before 1900.
664                 */
665                if (arg < 1900)
666		  return -EINVAL;
667		if (!capable(CAP_SYS_TIME))
668		  return -EACCES;
669
670                epoch = arg;
671                return 0;
672        }
673        default:
674                return -EINVAL;
675        }
676        return copy_to_user((void *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
677#endif
678}
679
680static struct file_operations hp_sdc_rtc_fops = {
681        .owner =	THIS_MODULE,
682        .llseek =	hp_sdc_rtc_llseek,
683        .read =		hp_sdc_rtc_read,
684        .poll =		hp_sdc_rtc_poll,
685        .ioctl =	hp_sdc_rtc_ioctl,
686        .open =		hp_sdc_rtc_open,
687        .release =	hp_sdc_rtc_release,
688        .fasync =	hp_sdc_rtc_fasync,
689};
690
691static struct miscdevice hp_sdc_rtc_dev = {
692        .minor =	RTC_MINOR,
693        .name =		"rtc_HIL",
694        .fops =		&hp_sdc_rtc_fops
695};
696
697static int __init hp_sdc_rtc_init(void)
698{
699	int ret;
700
701	init_MUTEX(&i8042tregs);
702
703	if ((ret = hp_sdc_request_timer_irq(&hp_sdc_rtc_isr)))
704		return ret;
705	misc_register(&hp_sdc_rtc_dev);
706        create_proc_read_entry ("driver/rtc", 0, 0,
707				hp_sdc_rtc_read_proc, NULL);
708
709	printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support loaded "
710			 "(RTC v " RTC_VERSION ")\n");
711
712	return 0;
713}
714
715static void __exit hp_sdc_rtc_exit(void)
716{
717	remove_proc_entry ("driver/rtc", NULL);
718        misc_deregister(&hp_sdc_rtc_dev);
719	hp_sdc_release_timer_irq(hp_sdc_rtc_isr);
720        printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support unloaded\n");
721}
722
723module_init(hp_sdc_rtc_init);
724module_exit(hp_sdc_rtc_exit);
725