hp_sdc_rtc.c revision 3776989d2339c58ff8d8421e754603f186d7439b
1/*
2 * HP i8042 SDC + MSM-58321 BBRTC driver.
3 *
4 * Copyright (c) 2001 Brian S. Julin
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions, and the following disclaimer,
12 *    without modification.
13 * 2. The name of the author may not be used to endorse or promote products
14 *    derived from this software without specific prior written permission.
15 *
16 * Alternatively, this software may be distributed under the terms of the
17 * GNU General Public License ("GPL").
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 *
29 * References:
30 * System Device Controller Microprocessor Firmware Theory of Operation
31 *      for Part Number 1820-4784 Revision B.  Dwg No. A-1820-4784-2
32 * efirtc.c by Stephane Eranian/Hewlett Packard
33 *
34 */
35
36#include <linux/hp_sdc.h>
37#include <linux/errno.h>
38#include <linux/smp_lock.h>
39#include <linux/types.h>
40#include <linux/init.h>
41#include <linux/module.h>
42#include <linux/time.h>
43#include <linux/miscdevice.h>
44#include <linux/proc_fs.h>
45#include <linux/poll.h>
46#include <linux/rtc.h>
47#include <linux/semaphore.h>
48
49MODULE_AUTHOR("Brian S. Julin <bri@calyx.com>");
50MODULE_DESCRIPTION("HP i8042 SDC + MSM-58321 RTC Driver");
51MODULE_LICENSE("Dual BSD/GPL");
52
53#define RTC_VERSION "1.10d"
54
55static unsigned long epoch = 2000;
56
57static struct semaphore i8042tregs;
58
59static hp_sdc_irqhook hp_sdc_rtc_isr;
60
61static struct fasync_struct *hp_sdc_rtc_async_queue;
62
63static DECLARE_WAIT_QUEUE_HEAD(hp_sdc_rtc_wait);
64
65static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf,
66			       size_t count, loff_t *ppos);
67
68static int hp_sdc_rtc_ioctl(struct inode *inode, struct file *file,
69			    unsigned int cmd, unsigned long arg);
70
71static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait);
72
73static int hp_sdc_rtc_open(struct inode *inode, struct file *file);
74static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on);
75
76static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off,
77				int count, int *eof, void *data);
78
79static void hp_sdc_rtc_isr (int irq, void *dev_id,
80			    uint8_t status, uint8_t data)
81{
82	return;
83}
84
85static int hp_sdc_rtc_do_read_bbrtc (struct rtc_time *rtctm)
86{
87	struct semaphore tsem;
88	hp_sdc_transaction t;
89	uint8_t tseq[91];
90	int i;
91
92	i = 0;
93	while (i < 91) {
94		tseq[i++] = HP_SDC_ACT_DATAREG |
95			HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN;
96		tseq[i++] = 0x01;			/* write i8042[0x70] */
97	  	tseq[i]   = i / 7;			/* BBRTC reg address */
98		i++;
99		tseq[i++] = HP_SDC_CMD_DO_RTCR;		/* Trigger command   */
100		tseq[i++] = 2;		/* expect 1 stat/dat pair back.   */
101		i++; i++;               /* buffer for stat/dat pair       */
102	}
103	tseq[84] |= HP_SDC_ACT_SEMAPHORE;
104	t.endidx =		91;
105	t.seq =			tseq;
106	t.act.semaphore =	&tsem;
107	init_MUTEX_LOCKED(&tsem);
108
109	if (hp_sdc_enqueue_transaction(&t)) return -1;
110
111	down_interruptible(&tsem);  /* Put ourselves to sleep for results. */
112
113	/* Check for nonpresence of BBRTC */
114	if (!((tseq[83] | tseq[90] | tseq[69] | tseq[76] |
115	       tseq[55] | tseq[62] | tseq[34] | tseq[41] |
116	       tseq[20] | tseq[27] | tseq[6]  | tseq[13]) & 0x0f))
117		return -1;
118
119	memset(rtctm, 0, sizeof(struct rtc_time));
120	rtctm->tm_year = (tseq[83] & 0x0f) + (tseq[90] & 0x0f) * 10;
121	rtctm->tm_mon  = (tseq[69] & 0x0f) + (tseq[76] & 0x0f) * 10;
122	rtctm->tm_mday = (tseq[55] & 0x0f) + (tseq[62] & 0x0f) * 10;
123	rtctm->tm_wday = (tseq[48] & 0x0f);
124	rtctm->tm_hour = (tseq[34] & 0x0f) + (tseq[41] & 0x0f) * 10;
125	rtctm->tm_min  = (tseq[20] & 0x0f) + (tseq[27] & 0x0f) * 10;
126	rtctm->tm_sec  = (tseq[6]  & 0x0f) + (tseq[13] & 0x0f) * 10;
127
128	return 0;
129}
130
131static int hp_sdc_rtc_read_bbrtc (struct rtc_time *rtctm)
132{
133	struct rtc_time tm, tm_last;
134	int i = 0;
135
136	/* MSM-58321 has no read latch, so must read twice and compare. */
137
138	if (hp_sdc_rtc_do_read_bbrtc(&tm_last)) return -1;
139	if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
140
141	while (memcmp(&tm, &tm_last, sizeof(struct rtc_time))) {
142		if (i++ > 4) return -1;
143		memcpy(&tm_last, &tm, sizeof(struct rtc_time));
144		if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
145	}
146
147	memcpy(rtctm, &tm, sizeof(struct rtc_time));
148
149	return 0;
150}
151
152
153static int64_t hp_sdc_rtc_read_i8042timer (uint8_t loadcmd, int numreg)
154{
155	hp_sdc_transaction t;
156	uint8_t tseq[26] = {
157		HP_SDC_ACT_PRECMD | HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
158		0,
159		HP_SDC_CMD_READ_T1, 2, 0, 0,
160		HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
161		HP_SDC_CMD_READ_T2, 2, 0, 0,
162		HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
163		HP_SDC_CMD_READ_T3, 2, 0, 0,
164		HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
165		HP_SDC_CMD_READ_T4, 2, 0, 0,
166		HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
167		HP_SDC_CMD_READ_T5, 2, 0, 0
168	};
169
170	t.endidx = numreg * 5;
171
172	tseq[1] = loadcmd;
173	tseq[t.endidx - 4] |= HP_SDC_ACT_SEMAPHORE; /* numreg assumed > 1 */
174
175	t.seq =			tseq;
176	t.act.semaphore =	&i8042tregs;
177
178	down_interruptible(&i8042tregs);  /* Sleep if output regs in use. */
179
180	if (hp_sdc_enqueue_transaction(&t)) return -1;
181
182	down_interruptible(&i8042tregs);  /* Sleep until results come back. */
183	up(&i8042tregs);
184
185	return (tseq[5] |
186		((uint64_t)(tseq[10]) << 8)  | ((uint64_t)(tseq[15]) << 16) |
187		((uint64_t)(tseq[20]) << 24) | ((uint64_t)(tseq[25]) << 32));
188}
189
190
191/* Read the i8042 real-time clock */
192static inline int hp_sdc_rtc_read_rt(struct timeval *res) {
193	int64_t raw;
194	uint32_t tenms;
195	unsigned int days;
196
197	raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_RT, 5);
198	if (raw < 0) return -1;
199
200	tenms = (uint32_t)raw & 0xffffff;
201	days  = (unsigned int)(raw >> 24) & 0xffff;
202
203	res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
204	res->tv_sec =  (time_t)(tenms / 100) + days * 86400;
205
206	return 0;
207}
208
209
210/* Read the i8042 fast handshake timer */
211static inline int hp_sdc_rtc_read_fhs(struct timeval *res) {
212	int64_t raw;
213	unsigned int tenms;
214
215	raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_FHS, 2);
216	if (raw < 0) return -1;
217
218	tenms = (unsigned int)raw & 0xffff;
219
220	res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
221	res->tv_sec  = (time_t)(tenms / 100);
222
223	return 0;
224}
225
226
227/* Read the i8042 match timer (a.k.a. alarm) */
228static inline int hp_sdc_rtc_read_mt(struct timeval *res) {
229	int64_t raw;
230	uint32_t tenms;
231
232	raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_MT, 3);
233	if (raw < 0) return -1;
234
235	tenms = (uint32_t)raw & 0xffffff;
236
237	res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
238	res->tv_sec  = (time_t)(tenms / 100);
239
240	return 0;
241}
242
243
244/* Read the i8042 delay timer */
245static inline int hp_sdc_rtc_read_dt(struct timeval *res) {
246	int64_t raw;
247	uint32_t tenms;
248
249	raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_DT, 3);
250	if (raw < 0) return -1;
251
252	tenms = (uint32_t)raw & 0xffffff;
253
254	res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
255	res->tv_sec  = (time_t)(tenms / 100);
256
257	return 0;
258}
259
260
261/* Read the i8042 cycle timer (a.k.a. periodic) */
262static inline int hp_sdc_rtc_read_ct(struct timeval *res) {
263	int64_t raw;
264	uint32_t tenms;
265
266	raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_CT, 3);
267	if (raw < 0) return -1;
268
269	tenms = (uint32_t)raw & 0xffffff;
270
271	res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
272	res->tv_sec  = (time_t)(tenms / 100);
273
274	return 0;
275}
276
277
278/* Set the i8042 real-time clock */
279static int hp_sdc_rtc_set_rt (struct timeval *setto)
280{
281	uint32_t tenms;
282	unsigned int days;
283	hp_sdc_transaction t;
284	uint8_t tseq[11] = {
285		HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
286		HP_SDC_CMD_SET_RTMS, 3, 0, 0, 0,
287		HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
288		HP_SDC_CMD_SET_RTD, 2, 0, 0
289	};
290
291	t.endidx = 10;
292
293	if (0xffff < setto->tv_sec / 86400) return -1;
294	days = setto->tv_sec / 86400;
295	if (0xffff < setto->tv_usec / 1000000 / 86400) return -1;
296	days += ((setto->tv_sec % 86400) + setto->tv_usec / 1000000) / 86400;
297	if (days > 0xffff) return -1;
298
299	if (0xffffff < setto->tv_sec) return -1;
300	tenms  = setto->tv_sec * 100;
301	if (0xffffff < setto->tv_usec / 10000) return -1;
302	tenms += setto->tv_usec / 10000;
303	if (tenms > 0xffffff) return -1;
304
305	tseq[3] = (uint8_t)(tenms & 0xff);
306	tseq[4] = (uint8_t)((tenms >> 8)  & 0xff);
307	tseq[5] = (uint8_t)((tenms >> 16) & 0xff);
308
309	tseq[9] = (uint8_t)(days & 0xff);
310	tseq[10] = (uint8_t)((days >> 8) & 0xff);
311
312	t.seq =	tseq;
313
314	if (hp_sdc_enqueue_transaction(&t)) return -1;
315	return 0;
316}
317
318/* Set the i8042 fast handshake timer */
319static int hp_sdc_rtc_set_fhs (struct timeval *setto)
320{
321	uint32_t tenms;
322	hp_sdc_transaction t;
323	uint8_t tseq[5] = {
324		HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
325		HP_SDC_CMD_SET_FHS, 2, 0, 0
326	};
327
328	t.endidx = 4;
329
330	if (0xffff < setto->tv_sec) return -1;
331	tenms  = setto->tv_sec * 100;
332	if (0xffff < setto->tv_usec / 10000) return -1;
333	tenms += setto->tv_usec / 10000;
334	if (tenms > 0xffff) return -1;
335
336	tseq[3] = (uint8_t)(tenms & 0xff);
337	tseq[4] = (uint8_t)((tenms >> 8)  & 0xff);
338
339	t.seq =	tseq;
340
341	if (hp_sdc_enqueue_transaction(&t)) return -1;
342	return 0;
343}
344
345
346/* Set the i8042 match timer (a.k.a. alarm) */
347#define hp_sdc_rtc_set_mt (setto) \
348	hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_MT)
349
350/* Set the i8042 delay timer */
351#define hp_sdc_rtc_set_dt (setto) \
352	hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_DT)
353
354/* Set the i8042 cycle timer (a.k.a. periodic) */
355#define hp_sdc_rtc_set_ct (setto) \
356	hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_CT)
357
358/* Set one of the i8042 3-byte wide timers */
359static int hp_sdc_rtc_set_i8042timer (struct timeval *setto, uint8_t setcmd)
360{
361	uint32_t tenms;
362	hp_sdc_transaction t;
363	uint8_t tseq[6] = {
364		HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
365		0, 3, 0, 0, 0
366	};
367
368	t.endidx = 6;
369
370	if (0xffffff < setto->tv_sec) return -1;
371	tenms  = setto->tv_sec * 100;
372	if (0xffffff < setto->tv_usec / 10000) return -1;
373	tenms += setto->tv_usec / 10000;
374	if (tenms > 0xffffff) return -1;
375
376	tseq[1] = setcmd;
377	tseq[3] = (uint8_t)(tenms & 0xff);
378	tseq[4] = (uint8_t)((tenms >> 8)  & 0xff);
379	tseq[5] = (uint8_t)((tenms >> 16)  & 0xff);
380
381	t.seq =			tseq;
382
383	if (hp_sdc_enqueue_transaction(&t)) {
384		return -1;
385	}
386	return 0;
387}
388
389static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf,
390			       size_t count, loff_t *ppos) {
391	ssize_t retval;
392
393        if (count < sizeof(unsigned long))
394                return -EINVAL;
395
396	retval = put_user(68, (unsigned long __user *)buf);
397	return retval;
398}
399
400static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait)
401{
402        unsigned long l;
403
404	l = 0;
405        if (l != 0)
406                return POLLIN | POLLRDNORM;
407        return 0;
408}
409
410static int hp_sdc_rtc_open(struct inode *inode, struct file *file)
411{
412	cycle_kernel_lock();
413        return 0;
414}
415
416static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on)
417{
418        return fasync_helper (fd, filp, on, &hp_sdc_rtc_async_queue);
419}
420
421static int hp_sdc_rtc_proc_output (char *buf)
422{
423#define YN(bit) ("no")
424#define NY(bit) ("yes")
425        char *p;
426        struct rtc_time tm;
427	struct timeval tv;
428
429	memset(&tm, 0, sizeof(struct rtc_time));
430
431	p = buf;
432
433	if (hp_sdc_rtc_read_bbrtc(&tm)) {
434		p += sprintf(p, "BBRTC\t\t: READ FAILED!\n");
435	} else {
436		p += sprintf(p,
437			     "rtc_time\t: %02d:%02d:%02d\n"
438			     "rtc_date\t: %04d-%02d-%02d\n"
439			     "rtc_epoch\t: %04lu\n",
440			     tm.tm_hour, tm.tm_min, tm.tm_sec,
441			     tm.tm_year + 1900, tm.tm_mon + 1,
442			     tm.tm_mday, epoch);
443	}
444
445	if (hp_sdc_rtc_read_rt(&tv)) {
446		p += sprintf(p, "i8042 rtc\t: READ FAILED!\n");
447	} else {
448		p += sprintf(p, "i8042 rtc\t: %ld.%02d seconds\n",
449			     tv.tv_sec, (int)tv.tv_usec/1000);
450	}
451
452	if (hp_sdc_rtc_read_fhs(&tv)) {
453		p += sprintf(p, "handshake\t: READ FAILED!\n");
454	} else {
455        	p += sprintf(p, "handshake\t: %ld.%02d seconds\n",
456			     tv.tv_sec, (int)tv.tv_usec/1000);
457	}
458
459	if (hp_sdc_rtc_read_mt(&tv)) {
460		p += sprintf(p, "alarm\t\t: READ FAILED!\n");
461	} else {
462		p += sprintf(p, "alarm\t\t: %ld.%02d seconds\n",
463			     tv.tv_sec, (int)tv.tv_usec/1000);
464	}
465
466	if (hp_sdc_rtc_read_dt(&tv)) {
467		p += sprintf(p, "delay\t\t: READ FAILED!\n");
468	} else {
469		p += sprintf(p, "delay\t\t: %ld.%02d seconds\n",
470			     tv.tv_sec, (int)tv.tv_usec/1000);
471	}
472
473	if (hp_sdc_rtc_read_ct(&tv)) {
474		p += sprintf(p, "periodic\t: READ FAILED!\n");
475	} else {
476		p += sprintf(p, "periodic\t: %ld.%02d seconds\n",
477			     tv.tv_sec, (int)tv.tv_usec/1000);
478	}
479
480        p += sprintf(p,
481                     "DST_enable\t: %s\n"
482                     "BCD\t\t: %s\n"
483                     "24hr\t\t: %s\n"
484                     "square_wave\t: %s\n"
485                     "alarm_IRQ\t: %s\n"
486                     "update_IRQ\t: %s\n"
487                     "periodic_IRQ\t: %s\n"
488		     "periodic_freq\t: %ld\n"
489                     "batt_status\t: %s\n",
490                     YN(RTC_DST_EN),
491                     NY(RTC_DM_BINARY),
492                     YN(RTC_24H),
493                     YN(RTC_SQWE),
494                     YN(RTC_AIE),
495                     YN(RTC_UIE),
496                     YN(RTC_PIE),
497                     1UL,
498                     1 ? "okay" : "dead");
499
500        return  p - buf;
501#undef YN
502#undef NY
503}
504
505static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off,
506                         int count, int *eof, void *data)
507{
508	int len = hp_sdc_rtc_proc_output (page);
509        if (len <= off+count) *eof = 1;
510        *start = page + off;
511        len -= off;
512        if (len>count) len = count;
513        if (len<0) len = 0;
514        return len;
515}
516
517static int hp_sdc_rtc_ioctl(struct inode *inode, struct file *file,
518			    unsigned int cmd, unsigned long arg)
519{
520#if 1
521	return -EINVAL;
522#else
523
524        struct rtc_time wtime;
525	struct timeval ttime;
526	int use_wtime = 0;
527
528	/* This needs major work. */
529
530        switch (cmd) {
531
532        case RTC_AIE_OFF:       /* Mask alarm int. enab. bit    */
533        case RTC_AIE_ON:        /* Allow alarm interrupts.      */
534	case RTC_PIE_OFF:       /* Mask periodic int. enab. bit */
535        case RTC_PIE_ON:        /* Allow periodic ints          */
536        case RTC_UIE_ON:        /* Allow ints for RTC updates.  */
537        case RTC_UIE_OFF:       /* Allow ints for RTC updates.  */
538        {
539		/* We cannot mask individual user timers and we
540		   cannot tell them apart when they occur, so it
541		   would be disingenuous to succeed these IOCTLs */
542		return -EINVAL;
543        }
544        case RTC_ALM_READ:      /* Read the present alarm time */
545        {
546		if (hp_sdc_rtc_read_mt(&ttime)) return -EFAULT;
547		if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;
548
549		wtime.tm_hour = ttime.tv_sec / 3600;  ttime.tv_sec %= 3600;
550		wtime.tm_min  = ttime.tv_sec / 60;    ttime.tv_sec %= 60;
551		wtime.tm_sec  = ttime.tv_sec;
552
553		break;
554        }
555        case RTC_IRQP_READ:     /* Read the periodic IRQ rate.  */
556        {
557                return put_user(hp_sdc_rtc_freq, (unsigned long *)arg);
558        }
559        case RTC_IRQP_SET:      /* Set periodic IRQ rate.       */
560        {
561                /*
562                 * The max we can do is 100Hz.
563		 */
564
565                if ((arg < 1) || (arg > 100)) return -EINVAL;
566		ttime.tv_sec = 0;
567		ttime.tv_usec = 1000000 / arg;
568		if (hp_sdc_rtc_set_ct(&ttime)) return -EFAULT;
569		hp_sdc_rtc_freq = arg;
570                return 0;
571        }
572        case RTC_ALM_SET:       /* Store a time into the alarm */
573        {
574                /*
575                 * This expects a struct hp_sdc_rtc_time. Writing 0xff means
576                 * "don't care" or "match all" for PC timers.  The HP SDC
577		 * does not support that perk, but it could be emulated fairly
578		 * easily.  Only the tm_hour, tm_min and tm_sec are used.
579		 * We could do it with 10ms accuracy with the HP SDC, if the
580		 * rtc interface left us a way to do that.
581                 */
582                struct hp_sdc_rtc_time alm_tm;
583
584                if (copy_from_user(&alm_tm, (struct hp_sdc_rtc_time*)arg,
585                                   sizeof(struct hp_sdc_rtc_time)))
586                       return -EFAULT;
587
588                if (alm_tm.tm_hour > 23) return -EINVAL;
589		if (alm_tm.tm_min  > 59) return -EINVAL;
590		if (alm_tm.tm_sec  > 59) return -EINVAL;
591
592		ttime.sec = alm_tm.tm_hour * 3600 +
593		  alm_tm.tm_min * 60 + alm_tm.tm_sec;
594		ttime.usec = 0;
595		if (hp_sdc_rtc_set_mt(&ttime)) return -EFAULT;
596                return 0;
597        }
598        case RTC_RD_TIME:       /* Read the time/date from RTC  */
599        {
600		if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;
601                break;
602        }
603        case RTC_SET_TIME:      /* Set the RTC */
604        {
605                struct rtc_time hp_sdc_rtc_tm;
606                unsigned char mon, day, hrs, min, sec, leap_yr;
607                unsigned int yrs;
608
609                if (!capable(CAP_SYS_TIME))
610                        return -EACCES;
611		if (copy_from_user(&hp_sdc_rtc_tm, (struct rtc_time *)arg,
612                                   sizeof(struct rtc_time)))
613                        return -EFAULT;
614
615                yrs = hp_sdc_rtc_tm.tm_year + 1900;
616                mon = hp_sdc_rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
617                day = hp_sdc_rtc_tm.tm_mday;
618                hrs = hp_sdc_rtc_tm.tm_hour;
619                min = hp_sdc_rtc_tm.tm_min;
620                sec = hp_sdc_rtc_tm.tm_sec;
621
622                if (yrs < 1970)
623                        return -EINVAL;
624
625                leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
626
627                if ((mon > 12) || (day == 0))
628                        return -EINVAL;
629                if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
630                        return -EINVAL;
631		if ((hrs >= 24) || (min >= 60) || (sec >= 60))
632                        return -EINVAL;
633
634                if ((yrs -= eH) > 255)    /* They are unsigned */
635                        return -EINVAL;
636
637
638                return 0;
639        }
640        case RTC_EPOCH_READ:    /* Read the epoch.      */
641        {
642                return put_user (epoch, (unsigned long *)arg);
643        }
644        case RTC_EPOCH_SET:     /* Set the epoch.       */
645        {
646                /*
647                 * There were no RTC clocks before 1900.
648                 */
649                if (arg < 1900)
650		  return -EINVAL;
651		if (!capable(CAP_SYS_TIME))
652		  return -EACCES;
653
654                epoch = arg;
655                return 0;
656        }
657        default:
658                return -EINVAL;
659        }
660        return copy_to_user((void *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
661#endif
662}
663
664static const struct file_operations hp_sdc_rtc_fops = {
665        .owner =	THIS_MODULE,
666        .llseek =	no_llseek,
667        .read =		hp_sdc_rtc_read,
668        .poll =		hp_sdc_rtc_poll,
669        .ioctl =	hp_sdc_rtc_ioctl,
670        .open =		hp_sdc_rtc_open,
671        .fasync =	hp_sdc_rtc_fasync,
672};
673
674static struct miscdevice hp_sdc_rtc_dev = {
675        .minor =	RTC_MINOR,
676        .name =		"rtc_HIL",
677        .fops =		&hp_sdc_rtc_fops
678};
679
680static int __init hp_sdc_rtc_init(void)
681{
682	int ret;
683
684#ifdef __mc68000__
685	if (!MACH_IS_HP300)
686		return -ENODEV;
687#endif
688
689	init_MUTEX(&i8042tregs);
690
691	if ((ret = hp_sdc_request_timer_irq(&hp_sdc_rtc_isr)))
692		return ret;
693	if (misc_register(&hp_sdc_rtc_dev) != 0)
694		printk(KERN_INFO "Could not register misc. dev for i8042 rtc\n");
695
696        create_proc_read_entry ("driver/rtc", 0, NULL,
697				hp_sdc_rtc_read_proc, NULL);
698
699	printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support loaded "
700			 "(RTC v " RTC_VERSION ")\n");
701
702	return 0;
703}
704
705static void __exit hp_sdc_rtc_exit(void)
706{
707	remove_proc_entry ("driver/rtc", NULL);
708        misc_deregister(&hp_sdc_rtc_dev);
709	hp_sdc_release_timer_irq(hp_sdc_rtc_isr);
710        printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support unloaded\n");
711}
712
713module_init(hp_sdc_rtc_init);
714module_exit(hp_sdc_rtc_exit);
715