hp_sdc_rtc.c revision d2d23559857e5f34762c61487f8ffb2fa4d7442d
1/*
2 * HP i8042 SDC + MSM-58321 BBRTC driver.
3 *
4 * Copyright (c) 2001 Brian S. Julin
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions, and the following disclaimer,
12 *    without modification.
13 * 2. The name of the author may not be used to endorse or promote products
14 *    derived from this software without specific prior written permission.
15 *
16 * Alternatively, this software may be distributed under the terms of the
17 * GNU General Public License ("GPL").
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 *
29 * References:
30 * System Device Controller Microprocessor Firmware Theory of Operation
31 *      for Part Number 1820-4784 Revision B.  Dwg No. A-1820-4784-2
32 * efirtc.c by Stephane Eranian/Hewlett Packard
33 *
34 */
35
36#include <linux/hp_sdc.h>
37#include <linux/errno.h>
38#include <linux/types.h>
39#include <linux/init.h>
40#include <linux/module.h>
41#include <linux/time.h>
42#include <linux/miscdevice.h>
43#include <linux/proc_fs.h>
44#include <linux/poll.h>
45#include <linux/rtc.h>
46#include <linux/semaphore.h>
47
48MODULE_AUTHOR("Brian S. Julin <bri@calyx.com>");
49MODULE_DESCRIPTION("HP i8042 SDC + MSM-58321 RTC Driver");
50MODULE_LICENSE("Dual BSD/GPL");
51
52#define RTC_VERSION "1.10d"
53
54static unsigned long epoch = 2000;
55
56static struct semaphore i8042tregs;
57
58static hp_sdc_irqhook hp_sdc_rtc_isr;
59
60static struct fasync_struct *hp_sdc_rtc_async_queue;
61
62static DECLARE_WAIT_QUEUE_HEAD(hp_sdc_rtc_wait);
63
64static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf,
65			       size_t count, loff_t *ppos);
66
67static int hp_sdc_rtc_ioctl(struct inode *inode, struct file *file,
68			    unsigned int cmd, unsigned long arg);
69
70static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait);
71
72static int hp_sdc_rtc_open(struct inode *inode, struct file *file);
73static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on);
74
75static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off,
76				int count, int *eof, void *data);
77
78static void hp_sdc_rtc_isr (int irq, void *dev_id,
79			    uint8_t status, uint8_t data)
80{
81	return;
82}
83
84static int hp_sdc_rtc_do_read_bbrtc (struct rtc_time *rtctm)
85{
86	struct semaphore tsem;
87	hp_sdc_transaction t;
88	uint8_t tseq[91];
89	int i;
90
91	i = 0;
92	while (i < 91) {
93		tseq[i++] = HP_SDC_ACT_DATAREG |
94			HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN;
95		tseq[i++] = 0x01;			/* write i8042[0x70] */
96	  	tseq[i]   = i / 7;			/* BBRTC reg address */
97		i++;
98		tseq[i++] = HP_SDC_CMD_DO_RTCR;		/* Trigger command   */
99		tseq[i++] = 2;		/* expect 1 stat/dat pair back.   */
100		i++; i++;               /* buffer for stat/dat pair       */
101	}
102	tseq[84] |= HP_SDC_ACT_SEMAPHORE;
103	t.endidx =		91;
104	t.seq =			tseq;
105	t.act.semaphore =	&tsem;
106	init_MUTEX_LOCKED(&tsem);
107
108	if (hp_sdc_enqueue_transaction(&t)) return -1;
109
110	down_interruptible(&tsem);  /* Put ourselves to sleep for results. */
111
112	/* Check for nonpresence of BBRTC */
113	if (!((tseq[83] | tseq[90] | tseq[69] | tseq[76] |
114	       tseq[55] | tseq[62] | tseq[34] | tseq[41] |
115	       tseq[20] | tseq[27] | tseq[6]  | tseq[13]) & 0x0f))
116		return -1;
117
118	memset(rtctm, 0, sizeof(struct rtc_time));
119	rtctm->tm_year = (tseq[83] & 0x0f) + (tseq[90] & 0x0f) * 10;
120	rtctm->tm_mon  = (tseq[69] & 0x0f) + (tseq[76] & 0x0f) * 10;
121	rtctm->tm_mday = (tseq[55] & 0x0f) + (tseq[62] & 0x0f) * 10;
122	rtctm->tm_wday = (tseq[48] & 0x0f);
123	rtctm->tm_hour = (tseq[34] & 0x0f) + (tseq[41] & 0x0f) * 10;
124	rtctm->tm_min  = (tseq[20] & 0x0f) + (tseq[27] & 0x0f) * 10;
125	rtctm->tm_sec  = (tseq[6]  & 0x0f) + (tseq[13] & 0x0f) * 10;
126
127	return 0;
128}
129
130static int hp_sdc_rtc_read_bbrtc (struct rtc_time *rtctm)
131{
132	struct rtc_time tm, tm_last;
133	int i = 0;
134
135	/* MSM-58321 has no read latch, so must read twice and compare. */
136
137	if (hp_sdc_rtc_do_read_bbrtc(&tm_last)) return -1;
138	if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
139
140	while (memcmp(&tm, &tm_last, sizeof(struct rtc_time))) {
141		if (i++ > 4) return -1;
142		memcpy(&tm_last, &tm, sizeof(struct rtc_time));
143		if (hp_sdc_rtc_do_read_bbrtc(&tm)) return -1;
144	}
145
146	memcpy(rtctm, &tm, sizeof(struct rtc_time));
147
148	return 0;
149}
150
151
152static int64_t hp_sdc_rtc_read_i8042timer (uint8_t loadcmd, int numreg)
153{
154	hp_sdc_transaction t;
155	uint8_t tseq[26] = {
156		HP_SDC_ACT_PRECMD | HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
157		0,
158		HP_SDC_CMD_READ_T1, 2, 0, 0,
159		HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
160		HP_SDC_CMD_READ_T2, 2, 0, 0,
161		HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
162		HP_SDC_CMD_READ_T3, 2, 0, 0,
163		HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
164		HP_SDC_CMD_READ_T4, 2, 0, 0,
165		HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN,
166		HP_SDC_CMD_READ_T5, 2, 0, 0
167	};
168
169	t.endidx = numreg * 5;
170
171	tseq[1] = loadcmd;
172	tseq[t.endidx - 4] |= HP_SDC_ACT_SEMAPHORE; /* numreg assumed > 1 */
173
174	t.seq =			tseq;
175	t.act.semaphore =	&i8042tregs;
176
177	down_interruptible(&i8042tregs);  /* Sleep if output regs in use. */
178
179	if (hp_sdc_enqueue_transaction(&t)) return -1;
180
181	down_interruptible(&i8042tregs);  /* Sleep until results come back. */
182	up(&i8042tregs);
183
184	return (tseq[5] |
185		((uint64_t)(tseq[10]) << 8)  | ((uint64_t)(tseq[15]) << 16) |
186		((uint64_t)(tseq[20]) << 24) | ((uint64_t)(tseq[25]) << 32));
187}
188
189
190/* Read the i8042 real-time clock */
191static inline int hp_sdc_rtc_read_rt(struct timeval *res) {
192	int64_t raw;
193	uint32_t tenms;
194	unsigned int days;
195
196	raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_RT, 5);
197	if (raw < 0) return -1;
198
199	tenms = (uint32_t)raw & 0xffffff;
200	days  = (unsigned int)(raw >> 24) & 0xffff;
201
202	res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
203	res->tv_sec =  (time_t)(tenms / 100) + days * 86400;
204
205	return 0;
206}
207
208
209/* Read the i8042 fast handshake timer */
210static inline int hp_sdc_rtc_read_fhs(struct timeval *res) {
211	uint64_t raw;
212	unsigned int tenms;
213
214	raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_FHS, 2);
215	if (raw < 0) return -1;
216
217	tenms = (unsigned int)raw & 0xffff;
218
219	res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
220	res->tv_sec  = (time_t)(tenms / 100);
221
222	return 0;
223}
224
225
226/* Read the i8042 match timer (a.k.a. alarm) */
227static inline int hp_sdc_rtc_read_mt(struct timeval *res) {
228	int64_t raw;
229	uint32_t tenms;
230
231	raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_MT, 3);
232	if (raw < 0) return -1;
233
234	tenms = (uint32_t)raw & 0xffffff;
235
236	res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
237	res->tv_sec  = (time_t)(tenms / 100);
238
239	return 0;
240}
241
242
243/* Read the i8042 delay timer */
244static inline int hp_sdc_rtc_read_dt(struct timeval *res) {
245	int64_t raw;
246	uint32_t tenms;
247
248	raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_DT, 3);
249	if (raw < 0) return -1;
250
251	tenms = (uint32_t)raw & 0xffffff;
252
253	res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
254	res->tv_sec  = (time_t)(tenms / 100);
255
256	return 0;
257}
258
259
260/* Read the i8042 cycle timer (a.k.a. periodic) */
261static inline int hp_sdc_rtc_read_ct(struct timeval *res) {
262	int64_t raw;
263	uint32_t tenms;
264
265	raw = hp_sdc_rtc_read_i8042timer(HP_SDC_CMD_LOAD_CT, 3);
266	if (raw < 0) return -1;
267
268	tenms = (uint32_t)raw & 0xffffff;
269
270	res->tv_usec = (suseconds_t)(tenms % 100) * 10000;
271	res->tv_sec  = (time_t)(tenms / 100);
272
273	return 0;
274}
275
276
277/* Set the i8042 real-time clock */
278static int hp_sdc_rtc_set_rt (struct timeval *setto)
279{
280	uint32_t tenms;
281	unsigned int days;
282	hp_sdc_transaction t;
283	uint8_t tseq[11] = {
284		HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
285		HP_SDC_CMD_SET_RTMS, 3, 0, 0, 0,
286		HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
287		HP_SDC_CMD_SET_RTD, 2, 0, 0
288	};
289
290	t.endidx = 10;
291
292	if (0xffff < setto->tv_sec / 86400) return -1;
293	days = setto->tv_sec / 86400;
294	if (0xffff < setto->tv_usec / 1000000 / 86400) return -1;
295	days += ((setto->tv_sec % 86400) + setto->tv_usec / 1000000) / 86400;
296	if (days > 0xffff) return -1;
297
298	if (0xffffff < setto->tv_sec) return -1;
299	tenms  = setto->tv_sec * 100;
300	if (0xffffff < setto->tv_usec / 10000) return -1;
301	tenms += setto->tv_usec / 10000;
302	if (tenms > 0xffffff) return -1;
303
304	tseq[3] = (uint8_t)(tenms & 0xff);
305	tseq[4] = (uint8_t)((tenms >> 8)  & 0xff);
306	tseq[5] = (uint8_t)((tenms >> 16) & 0xff);
307
308	tseq[9] = (uint8_t)(days & 0xff);
309	tseq[10] = (uint8_t)((days >> 8) & 0xff);
310
311	t.seq =	tseq;
312
313	if (hp_sdc_enqueue_transaction(&t)) return -1;
314	return 0;
315}
316
317/* Set the i8042 fast handshake timer */
318static int hp_sdc_rtc_set_fhs (struct timeval *setto)
319{
320	uint32_t tenms;
321	hp_sdc_transaction t;
322	uint8_t tseq[5] = {
323		HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
324		HP_SDC_CMD_SET_FHS, 2, 0, 0
325	};
326
327	t.endidx = 4;
328
329	if (0xffff < setto->tv_sec) return -1;
330	tenms  = setto->tv_sec * 100;
331	if (0xffff < setto->tv_usec / 10000) return -1;
332	tenms += setto->tv_usec / 10000;
333	if (tenms > 0xffff) return -1;
334
335	tseq[3] = (uint8_t)(tenms & 0xff);
336	tseq[4] = (uint8_t)((tenms >> 8)  & 0xff);
337
338	t.seq =	tseq;
339
340	if (hp_sdc_enqueue_transaction(&t)) return -1;
341	return 0;
342}
343
344
345/* Set the i8042 match timer (a.k.a. alarm) */
346#define hp_sdc_rtc_set_mt (setto) \
347	hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_MT)
348
349/* Set the i8042 delay timer */
350#define hp_sdc_rtc_set_dt (setto) \
351	hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_DT)
352
353/* Set the i8042 cycle timer (a.k.a. periodic) */
354#define hp_sdc_rtc_set_ct (setto) \
355	hp_sdc_rtc_set_i8042timer(setto, HP_SDC_CMD_SET_CT)
356
357/* Set one of the i8042 3-byte wide timers */
358static int hp_sdc_rtc_set_i8042timer (struct timeval *setto, uint8_t setcmd)
359{
360	uint32_t tenms;
361	hp_sdc_transaction t;
362	uint8_t tseq[6] = {
363		HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT,
364		0, 3, 0, 0, 0
365	};
366
367	t.endidx = 6;
368
369	if (0xffffff < setto->tv_sec) return -1;
370	tenms  = setto->tv_sec * 100;
371	if (0xffffff < setto->tv_usec / 10000) return -1;
372	tenms += setto->tv_usec / 10000;
373	if (tenms > 0xffffff) return -1;
374
375	tseq[1] = setcmd;
376	tseq[3] = (uint8_t)(tenms & 0xff);
377	tseq[4] = (uint8_t)((tenms >> 8)  & 0xff);
378	tseq[5] = (uint8_t)((tenms >> 16)  & 0xff);
379
380	t.seq =			tseq;
381
382	if (hp_sdc_enqueue_transaction(&t)) {
383		return -1;
384	}
385	return 0;
386}
387
388static ssize_t hp_sdc_rtc_read(struct file *file, char __user *buf,
389			       size_t count, loff_t *ppos) {
390	ssize_t retval;
391
392        if (count < sizeof(unsigned long))
393                return -EINVAL;
394
395	retval = put_user(68, (unsigned long __user *)buf);
396	return retval;
397}
398
399static unsigned int hp_sdc_rtc_poll(struct file *file, poll_table *wait)
400{
401        unsigned long l;
402
403	l = 0;
404        if (l != 0)
405                return POLLIN | POLLRDNORM;
406        return 0;
407}
408
409static int hp_sdc_rtc_open(struct inode *inode, struct file *file)
410{
411        return 0;
412}
413
414static int hp_sdc_rtc_fasync (int fd, struct file *filp, int on)
415{
416        return fasync_helper (fd, filp, on, &hp_sdc_rtc_async_queue);
417}
418
419static int hp_sdc_rtc_proc_output (char *buf)
420{
421#define YN(bit) ("no")
422#define NY(bit) ("yes")
423        char *p;
424        struct rtc_time tm;
425	struct timeval tv;
426
427	memset(&tm, 0, sizeof(struct rtc_time));
428
429	p = buf;
430
431	if (hp_sdc_rtc_read_bbrtc(&tm)) {
432		p += sprintf(p, "BBRTC\t\t: READ FAILED!\n");
433	} else {
434		p += sprintf(p,
435			     "rtc_time\t: %02d:%02d:%02d\n"
436			     "rtc_date\t: %04d-%02d-%02d\n"
437			     "rtc_epoch\t: %04lu\n",
438			     tm.tm_hour, tm.tm_min, tm.tm_sec,
439			     tm.tm_year + 1900, tm.tm_mon + 1,
440			     tm.tm_mday, epoch);
441	}
442
443	if (hp_sdc_rtc_read_rt(&tv)) {
444		p += sprintf(p, "i8042 rtc\t: READ FAILED!\n");
445	} else {
446		p += sprintf(p, "i8042 rtc\t: %ld.%02d seconds\n",
447			     tv.tv_sec, (int)tv.tv_usec/1000);
448	}
449
450	if (hp_sdc_rtc_read_fhs(&tv)) {
451		p += sprintf(p, "handshake\t: READ FAILED!\n");
452	} else {
453        	p += sprintf(p, "handshake\t: %ld.%02d seconds\n",
454			     tv.tv_sec, (int)tv.tv_usec/1000);
455	}
456
457	if (hp_sdc_rtc_read_mt(&tv)) {
458		p += sprintf(p, "alarm\t\t: READ FAILED!\n");
459	} else {
460		p += sprintf(p, "alarm\t\t: %ld.%02d seconds\n",
461			     tv.tv_sec, (int)tv.tv_usec/1000);
462	}
463
464	if (hp_sdc_rtc_read_dt(&tv)) {
465		p += sprintf(p, "delay\t\t: READ FAILED!\n");
466	} else {
467		p += sprintf(p, "delay\t\t: %ld.%02d seconds\n",
468			     tv.tv_sec, (int)tv.tv_usec/1000);
469	}
470
471	if (hp_sdc_rtc_read_ct(&tv)) {
472		p += sprintf(p, "periodic\t: READ FAILED!\n");
473	} else {
474		p += sprintf(p, "periodic\t: %ld.%02d seconds\n",
475			     tv.tv_sec, (int)tv.tv_usec/1000);
476	}
477
478        p += sprintf(p,
479                     "DST_enable\t: %s\n"
480                     "BCD\t\t: %s\n"
481                     "24hr\t\t: %s\n"
482                     "square_wave\t: %s\n"
483                     "alarm_IRQ\t: %s\n"
484                     "update_IRQ\t: %s\n"
485                     "periodic_IRQ\t: %s\n"
486		     "periodic_freq\t: %ld\n"
487                     "batt_status\t: %s\n",
488                     YN(RTC_DST_EN),
489                     NY(RTC_DM_BINARY),
490                     YN(RTC_24H),
491                     YN(RTC_SQWE),
492                     YN(RTC_AIE),
493                     YN(RTC_UIE),
494                     YN(RTC_PIE),
495                     1UL,
496                     1 ? "okay" : "dead");
497
498        return  p - buf;
499#undef YN
500#undef NY
501}
502
503static int hp_sdc_rtc_read_proc(char *page, char **start, off_t off,
504                         int count, int *eof, void *data)
505{
506	int len = hp_sdc_rtc_proc_output (page);
507        if (len <= off+count) *eof = 1;
508        *start = page + off;
509        len -= off;
510        if (len>count) len = count;
511        if (len<0) len = 0;
512        return len;
513}
514
515static int hp_sdc_rtc_ioctl(struct inode *inode, struct file *file,
516			    unsigned int cmd, unsigned long arg)
517{
518#if 1
519	return -EINVAL;
520#else
521
522        struct rtc_time wtime;
523	struct timeval ttime;
524	int use_wtime = 0;
525
526	/* This needs major work. */
527
528        switch (cmd) {
529
530        case RTC_AIE_OFF:       /* Mask alarm int. enab. bit    */
531        case RTC_AIE_ON:        /* Allow alarm interrupts.      */
532	case RTC_PIE_OFF:       /* Mask periodic int. enab. bit */
533        case RTC_PIE_ON:        /* Allow periodic ints          */
534        case RTC_UIE_ON:        /* Allow ints for RTC updates.  */
535        case RTC_UIE_OFF:       /* Allow ints for RTC updates.  */
536        {
537		/* We cannot mask individual user timers and we
538		   cannot tell them apart when they occur, so it
539		   would be disingenuous to succeed these IOCTLs */
540		return -EINVAL;
541        }
542        case RTC_ALM_READ:      /* Read the present alarm time */
543        {
544		if (hp_sdc_rtc_read_mt(&ttime)) return -EFAULT;
545		if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;
546
547		wtime.tm_hour = ttime.tv_sec / 3600;  ttime.tv_sec %= 3600;
548		wtime.tm_min  = ttime.tv_sec / 60;    ttime.tv_sec %= 60;
549		wtime.tm_sec  = ttime.tv_sec;
550
551		break;
552        }
553        case RTC_IRQP_READ:     /* Read the periodic IRQ rate.  */
554        {
555                return put_user(hp_sdc_rtc_freq, (unsigned long *)arg);
556        }
557        case RTC_IRQP_SET:      /* Set periodic IRQ rate.       */
558        {
559                /*
560                 * The max we can do is 100Hz.
561		 */
562
563                if ((arg < 1) || (arg > 100)) return -EINVAL;
564		ttime.tv_sec = 0;
565		ttime.tv_usec = 1000000 / arg;
566		if (hp_sdc_rtc_set_ct(&ttime)) return -EFAULT;
567		hp_sdc_rtc_freq = arg;
568                return 0;
569        }
570        case RTC_ALM_SET:       /* Store a time into the alarm */
571        {
572                /*
573                 * This expects a struct hp_sdc_rtc_time. Writing 0xff means
574                 * "don't care" or "match all" for PC timers.  The HP SDC
575		 * does not support that perk, but it could be emulated fairly
576		 * easily.  Only the tm_hour, tm_min and tm_sec are used.
577		 * We could do it with 10ms accuracy with the HP SDC, if the
578		 * rtc interface left us a way to do that.
579                 */
580                struct hp_sdc_rtc_time alm_tm;
581
582                if (copy_from_user(&alm_tm, (struct hp_sdc_rtc_time*)arg,
583                                   sizeof(struct hp_sdc_rtc_time)))
584                       return -EFAULT;
585
586                if (alm_tm.tm_hour > 23) return -EINVAL;
587		if (alm_tm.tm_min  > 59) return -EINVAL;
588		if (alm_tm.tm_sec  > 59) return -EINVAL;
589
590		ttime.sec = alm_tm.tm_hour * 3600 +
591		  alm_tm.tm_min * 60 + alm_tm.tm_sec;
592		ttime.usec = 0;
593		if (hp_sdc_rtc_set_mt(&ttime)) return -EFAULT;
594                return 0;
595        }
596        case RTC_RD_TIME:       /* Read the time/date from RTC  */
597        {
598		if (hp_sdc_rtc_read_bbrtc(&wtime)) return -EFAULT;
599                break;
600        }
601        case RTC_SET_TIME:      /* Set the RTC */
602        {
603                struct rtc_time hp_sdc_rtc_tm;
604                unsigned char mon, day, hrs, min, sec, leap_yr;
605                unsigned int yrs;
606
607                if (!capable(CAP_SYS_TIME))
608                        return -EACCES;
609		if (copy_from_user(&hp_sdc_rtc_tm, (struct rtc_time *)arg,
610                                   sizeof(struct rtc_time)))
611                        return -EFAULT;
612
613                yrs = hp_sdc_rtc_tm.tm_year + 1900;
614                mon = hp_sdc_rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
615                day = hp_sdc_rtc_tm.tm_mday;
616                hrs = hp_sdc_rtc_tm.tm_hour;
617                min = hp_sdc_rtc_tm.tm_min;
618                sec = hp_sdc_rtc_tm.tm_sec;
619
620                if (yrs < 1970)
621                        return -EINVAL;
622
623                leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
624
625                if ((mon > 12) || (day == 0))
626                        return -EINVAL;
627                if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
628                        return -EINVAL;
629		if ((hrs >= 24) || (min >= 60) || (sec >= 60))
630                        return -EINVAL;
631
632                if ((yrs -= eH) > 255)    /* They are unsigned */
633                        return -EINVAL;
634
635
636                return 0;
637        }
638        case RTC_EPOCH_READ:    /* Read the epoch.      */
639        {
640                return put_user (epoch, (unsigned long *)arg);
641        }
642        case RTC_EPOCH_SET:     /* Set the epoch.       */
643        {
644                /*
645                 * There were no RTC clocks before 1900.
646                 */
647                if (arg < 1900)
648		  return -EINVAL;
649		if (!capable(CAP_SYS_TIME))
650		  return -EACCES;
651
652                epoch = arg;
653                return 0;
654        }
655        default:
656                return -EINVAL;
657        }
658        return copy_to_user((void *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
659#endif
660}
661
662static const struct file_operations hp_sdc_rtc_fops = {
663        .owner =	THIS_MODULE,
664        .llseek =	no_llseek,
665        .read =		hp_sdc_rtc_read,
666        .poll =		hp_sdc_rtc_poll,
667        .ioctl =	hp_sdc_rtc_ioctl,
668        .open =		hp_sdc_rtc_open,
669        .fasync =	hp_sdc_rtc_fasync,
670};
671
672static struct miscdevice hp_sdc_rtc_dev = {
673        .minor =	RTC_MINOR,
674        .name =		"rtc_HIL",
675        .fops =		&hp_sdc_rtc_fops
676};
677
678static int __init hp_sdc_rtc_init(void)
679{
680	int ret;
681
682#ifdef __mc68000__
683	if (!MACH_IS_HP300)
684		return -ENODEV;
685#endif
686
687	init_MUTEX(&i8042tregs);
688
689	if ((ret = hp_sdc_request_timer_irq(&hp_sdc_rtc_isr)))
690		return ret;
691	if (misc_register(&hp_sdc_rtc_dev) != 0)
692		printk(KERN_INFO "Could not register misc. dev for i8042 rtc\n");
693
694        create_proc_read_entry ("driver/rtc", 0, NULL,
695				hp_sdc_rtc_read_proc, NULL);
696
697	printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support loaded "
698			 "(RTC v " RTC_VERSION ")\n");
699
700	return 0;
701}
702
703static void __exit hp_sdc_rtc_exit(void)
704{
705	remove_proc_entry ("driver/rtc", NULL);
706        misc_deregister(&hp_sdc_rtc_dev);
707	hp_sdc_release_timer_irq(hp_sdc_rtc_isr);
708        printk(KERN_INFO "HP i8042 SDC + MSM-58321 RTC support unloaded\n");
709}
710
711module_init(hp_sdc_rtc_init);
712module_exit(hp_sdc_rtc_exit);
713